1
|
Nanamatsu A, de Araújo L, LaFavers KA, El-Achkar TM. Advances in uromodulin biology and potential clinical applications. Nat Rev Nephrol 2024; 20:806-821. [PMID: 39160319 PMCID: PMC11568936 DOI: 10.1038/s41581-024-00881-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2024] [Indexed: 08/21/2024]
Abstract
Uromodulin (also known as Tamm-Horsfall protein) is a kidney-specific glycoprotein secreted bidirectionally into urine and into the circulation, and it is the most abundant protein in normal urine. Although the discovery of uromodulin predates modern medicine, its significance in health and disease has been rather enigmatic. Research studies have gradually revealed that uromodulin exists in multiple forms and has important roles in urinary and systemic homeostasis. Most uromodulin in urine is polymerized into highly organized filaments, whereas non-polymeric uromodulin is detected both in urine and in the circulation, and can have distinct roles. The interactions of uromodulin with the immune system, which were initially reported to be a key role of this protein, are now better understood. Moreover, the discovery that uromodulin is associated with a spectrum of kidney diseases, including acute kidney injury, chronic kidney disease and autosomal-dominant tubulointerstitial kidney disease, has further accelerated investigations into the role of this protein. These discoveries have prompted new questions and ushered in a new era in uromodulin research. Here, we delineate the latest discoveries in uromodulin biology and its emerging roles in modulating kidney and systemic diseases, and consider future directions, including its potential clinical applications.
Collapse
Affiliation(s)
- Azuma Nanamatsu
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Larissa de Araújo
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Kaice A LaFavers
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Tarek M El-Achkar
- Department of Medicine, Division of Nephrology and Hypertension, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Roudebush VA Medical Center, Indianapolis, IN, USA.
| |
Collapse
|
2
|
Zheng K, Qian Y, Wang H, Song D, You H, Hou B, Han F, Zhu Y, Feng F, Lam SM, Shui G, Li X. Withdrawn: Combinatorial lipidomics and proteomics underscore erythrocyte lipid membrane aberrations in the development of adverse cardio-cerebrovascular complications in maintenance hemodialysis patients. Redox Biol 2024; 76:103295. [PMID: 39159596 PMCID: PMC11378344 DOI: 10.1016/j.redox.2024.103295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/21/2024] [Accepted: 07/31/2024] [Indexed: 08/21/2024] Open
Abstract
This article has been withdrawn: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/about/policies/article-withdrawal). The authors reached out to the Publisher to alert the Publisher to incorrect text published in the article. After investigating the situation, the journal came to the conclusion that the wrong version of the file was sent by the authors to the production team during the proof stage and the misplaced text was not noticed by the authors when they approved the final version. After consulting with the Editor-in-Chief of the journal, the decision was made to withdraw the current version of the article.
Collapse
Affiliation(s)
- Ke Zheng
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yujun Qian
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China; Department of Nephrology, Jiangsu Province Hospital/The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Haiyun Wang
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Song
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hui You
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Bo Hou
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Fei Han
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yicheng Zhu
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Feng
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Xuemei Li
- Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China.
| |
Collapse
|
3
|
Jaykumar AB, Monu SR, Mendez M, Rhaleb NE, Ortiz PA. ALMS1 KO rat: a new model of metabolic syndrome with spontaneous hypertension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.22.614364. [PMID: 39386593 PMCID: PMC11463523 DOI: 10.1101/2024.09.22.614364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
ALMS1 is a protein initially associated with Alström syndrome. This is a rare human disorder characterized by metabolic dysfunction, hypertension, obesity and hyperinsulinemia. In addition, ALMS1 gene was linked to hypertension status in a multipoint linkage population analysis. However, the mechanisms by which ALMS1 contributes to the development of obesity, insulin resistance and other metabolic disturbances are unknown. To study the role of ALMS1 in blood pressure regulation and renal function we previously generated an ALMS1 knockout rat model, where we found these rats are hypertensive. In this study, we further characterized the ALMS1 knockout rat, and found that they exhibit most characteristics of metabolic syndrome including hypertension and higher body weight by 10-12 weeks of age. In contrast, obesity, hyperinsulinemia and vascular dysfunction manifested at around 14-16 weeks of age. Interestingly, ALMS1 KO rats developed hyperleptinemia prior to the development of obesity rapidly after weaning by 7 weeks of age, suggesting an early role for ALMS1 in the hormonal control of leptin. We also found that female ALMS1 KO rats develop severe metabolic syndrome with hypertension similar to their male counterparts, lacking any protection often associated with better cardiovascular outcomes. Therefore, ALMS1 is an essential gene for sex- and age-dependent metabolic function. The ALMS1 knockout rat provides an invaluable pre-clinical animal model that recapitulates most symptoms present in patients and allows the study of new drugs and mechanisms that cause metabolic syndrome.
Collapse
Affiliation(s)
- Ankita B. Jaykumar
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, USA
- Department of Physiology, Wayne State School of Medicine, Detroit, USA
| | - Sumit R. Monu
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, USA
- Department of Physiology, Wayne State School of Medicine, Detroit, USA
| | - Mariela Mendez
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, USA
- Department of Physiology, Wayne State School of Medicine, Detroit, USA
| | - Nour-Eddine Rhaleb
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, USA
- Department of Physiology, Wayne State School of Medicine, Detroit, USA
| | - Pablo A. Ortiz
- Division of Hypertension and Vascular Research, Henry Ford Hospital, Detroit, USA
- Department of Physiology, Wayne State School of Medicine, Detroit, USA
| |
Collapse
|
4
|
Cañadas-Garre M, Maqueda JJ, Baños-Jaime B, Hill C, Skelly R, Cappa R, Brennan E, Doyle R, Godson C, Maxwell AP, McKnight AJ. Mitochondrial related variants associated with cardiovascular traits. Front Physiol 2024; 15:1395371. [PMID: 39258111 PMCID: PMC11385366 DOI: 10.3389/fphys.2024.1395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 08/05/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction Cardiovascular disease (CVD) is responsible for over 30% of mortality worldwide. CVD arises from the complex influence of molecular, clinical, social, and environmental factors. Despite the growing number of autosomal genetic variants contributing to CVD, the cause of most CVDs is still unclear. Mitochondria are crucial in the pathophysiology, development and progression of CVDs; the impact of mitochondrial DNA (mtDNA) variants and mitochondrial haplogroups in the context of CVD has recently been highlighted. Aims We investigated the role of genetic variants in both mtDNA and nuclear-encoded mitochondrial genes (NEMG) in CVD, including coronary artery disease (CAD), hypertension, and serum lipids in the UK Biobank, with sub-group analysis for diabetes. Methods We investigated 371,542 variants in 2,527 NEMG, along with 192 variants in 32 mitochondrial genes in 381,994 participants of the UK Biobank, stratifying by presence of diabetes. Results Mitochondrial variants showed associations with CVD, hypertension, and serum lipids. Mitochondrial haplogroup J was associated with CAD and serum lipids, whereas mitochondrial haplogroups T and U were associated with CVD. Among NEMG, variants within Nitric Oxide Synthase 3 (NOS3) showed associations with CVD, CAD, hypertension, as well as diastolic and systolic blood pressure. We also identified Translocase Of Outer Mitochondrial Membrane 40 (TOMM40) variants associated with CAD; Solute carrier family 22 member 2 (SLC22A2) variants associated with CAD and CVD; and HLA-DQA1 variants associated with hypertension. Variants within these three genes were also associated with serum lipids. Conclusion Our study demonstrates the relevance of mitochondrial related variants in the context of CVD. We have linked mitochondrial haplogroup U to CVD, confirmed association of mitochondrial haplogroups J and T with CVD and proposed new markers of hypertension and serum lipids in the context of diabetes. We have also evidenced connections between the etiological pathways underlying CVDs, blood pressure and serum lipids, placing NOS3, SLC22A2, TOMM40 and HLA-DQA1 genes as common nexuses.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- MRC Integrative Epidemiology Unit, Bristol Medical School (Population Health Sciences), University of Bristol Oakfield House, Belfast, United Kingdom
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de la Cartuja (cicCartuja), Universidad de Sevilla, Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| | - Eoin Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
- Mater Misericordiae University Hospital, Dublin, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
- School of Medicine, University College Dublin, Dublin, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
- Regional Nephrology Unit, Belfast City Hospital Belfast, Belfast, United Kingdom
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, United Kingdom
| |
Collapse
|
5
|
Lee HJ, Min L, Gao J, Matta S, Drel V, Saliba A, Tamayo I, Montellano R, Hejazi L, Maity S, Xu G, Grajeda BI, Roy S, Hallows KR, Choudhury GG, Kasinath BS, Sharma K. Female Protection Against Diabetic Kidney Disease Is Regulated by Kidney-Specific AMPK Activity. Diabetes 2024; 73:1167-1177. [PMID: 38656940 PMCID: PMC11189830 DOI: 10.2337/db23-0807] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 04/15/2024] [Indexed: 04/26/2024]
Abstract
Reduced kidney AMPK activity is associated with nutrient stress-induced chronic kidney disease (CKD) in male mice. In contrast, female mice resist nutrient stress-induced CKD. The role of kidney AMPK in sex-related organ protection against nutrient stress and metabolite changes was evaluated in diabetic kidney tubule-specific AMPKγ2KO (KTAMPKγ2ΚΟ) male and female mice. In wild-type (WT) males, diabetes increased albuminuria, urinary kidney injury molecule-1, hypertension, kidney p70S6K phosphorylation, and kidney matrix accumulation; these features were not exacerbated with KTAMPKγ2ΚΟ. Whereas WT females had protection against diabetes-induced kidney injury, KTAMPKγ2ΚΟ led to loss of female protection against kidney disease. The hormone 17β-estradiol ameliorated high glucose-induced AMPK inactivation, p70S6K phosphorylation, and matrix protein accumulation in kidney tubule cells. The mechanism for female protection against diabetes-induced kidney injury is likely via an estrogen-AMPK pathway, as inhibition of AMPK led to loss of estrogen protection to glucose-induced mTORC1 activation and matrix production. RNA sequencing and metabolomic analysis identified a decrease in the degradation pathway of phenylalanine and tyrosine resulting in increased urinary phenylalanine and tyrosine levels in females. The metabolite levels correlated with loss of female protection. The findings provide new insights to explain evolutionary advantages to females during states of nutrient challenges. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Hak Joo Lee
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| | - Liang Min
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Jingli Gao
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Shane Matta
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Viktor Drel
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Afaf Saliba
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Ian Tamayo
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Richard Montellano
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Leila Hejazi
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Soumya Maity
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Guogang Xu
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
| | - Brian I. Grajeda
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX
| | - Sourav Roy
- Department of Biological Sciences and Border Biomedical Research Center, University of Texas, El Paso, TX
| | - Kenneth R. Hallows
- USC/UKRO Kidney Research Center, Division of Nephrology and Hypertension, University of Southern California Keck School of Medicine, Los Angeles, CA
| | - Goutam Ghosh Choudhury
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| | - Balakuntalam S. Kasinath
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| | - Kumar Sharma
- Center for Precision Medicine, Division of Nephrology, University of Texas Health, San Antonio, TX
- South Texas Veterans Health Care System, San Antonio, TX
| |
Collapse
|
6
|
Lee AM, Xu Y, Hu J, Xiao R, Hooper SR, Hartung EA, Coresh J, Rhee EP, Vasan RS, Kimmel PL, Warady BA, Furth SL, Denburg MR. Longitudinal Plasma Metabolome Patterns and Relation to Kidney Function and Proteinuria in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:837-850. [PMID: 38709558 PMCID: PMC11254025 DOI: 10.2215/cjn.0000000000000463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/29/2024] [Indexed: 05/08/2024]
Abstract
Key Points Longitudinal untargeted metabolomics. Children with CKD have a circulating metabolome that changes over time. Background Understanding plasma metabolome patterns in relation to changing kidney function in pediatric CKD is important for continued research for identifying novel biomarkers, characterizing biochemical pathophysiology, and developing targeted interventions. There are a limited number of studies of longitudinal metabolomics and virtually none in pediatric CKD. Methods The CKD in Children study is a multi-institutional, prospective cohort that enrolled children aged 6 months to 16 years with eGFR 30–90 ml/min per 1.73 m2. Untargeted metabolomics profiling was performed on plasma samples from the baseline, 2-, and 4-year study visits. There were technologic updates in the metabolomic profiling platform used between the baseline and follow-up assays. Statistical approaches were adopted to avoid direct comparison of baseline and follow-up measurements. To identify metabolite associations with eGFR or urine protein-creatinine ratio (UPCR) among all three time points, we applied linear mixed-effects (LME) models. To identify metabolites associated with time, we applied LME models to the 2- and 4-year follow-up data. We applied linear regression analysis to examine associations between change in metabolite level over time (∆level) and change in eGFR (∆eGFR) and UPCR (∆UPCR). We reported significance on the basis of both the false discovery rate (FDR) <0.05 and P < 0.05. Results There were 1156 person-visits (N : baseline=626, 2-year=254, 4-year=276) included. There were 622 metabolites with standardized measurements at all three time points. In LME modeling, 406 and 343 metabolites associated with eGFR and UPCR at FDR <0.05, respectively. Among 530 follow-up person-visits, 158 metabolites showed differences over time at FDR <0.05. For participants with complete data at both follow-up visits (n =123), we report 35 metabolites with ∆level–∆eGFR associations significant at FDR <0.05. There were no metabolites with significant ∆level–∆UPCR associations at FDR <0.05. We report 16 metabolites with ∆level–∆UPCR associations at P < 0.05 and associations with UPCR in LME modeling at FDR <0.05. Conclusions We characterized longitudinal plasma metabolomic patterns associated with eGFR and UPCR in a large pediatric CKD population. Many of these metabolite signals have been associated with CKD progression, etiology, and proteinuria in previous CKD Biomarkers Consortium studies. There were also novel metabolite associations with eGFR and proteinuria detected.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- NYU Grossman School of Medicine, New York, New York
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children’s Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Children’s Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Xu W, Liang X, Chen L, Hong W, Hu X. Biobanks in chronic disease management: A comprehensive review of strategies, challenges, and future directions. Heliyon 2024; 10:e32063. [PMID: 38868047 PMCID: PMC11168399 DOI: 10.1016/j.heliyon.2024.e32063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
Biobanks, through the collection and storage of patient blood, tissue, genomic, and other biological samples, provide unique and rich resources for the research and management of chronic diseases such as cardiovascular diseases, diabetes, and cancer. These samples contain valuable cellular and molecular level information that can be utilized to decipher the pathogenesis of diseases, guide the development of novel diagnostic technologies, treatment methods, and personalized medical strategies. This article first outlines the historical evolution of biobanks, their classification, and the impact of technological advancements. Subsequently, it elaborates on the significant role of biobanks in revealing molecular biomarkers of chronic diseases, promoting the translation of basic research to clinical applications, and achieving individualized treatment and management. Additionally, challenges such as standardization of sample processing, information privacy, and security are discussed. Finally, from the perspectives of policy support, regulatory improvement, and public participation, this article provides a forecast on the future development directions of biobanks and strategies to address challenges, aiming to safeguard and enhance their unique advantages in supporting chronic disease prevention and treatment.
Collapse
Affiliation(s)
- Wanna Xu
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Xiongshun Liang
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Lin Chen
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Wenxu Hong
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
| | - Xuqiao Hu
- Shenzhen Center for Chronic Disease Control, Shenzhen Institute of Dermatology, Shenzhen, 518020, China
- Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology (Shenzhen People's Hospital), Shenzhen, China
| |
Collapse
|
8
|
Cañadas-Garre M, Baños-Jaime B, Maqueda JJ, Smyth LJ, Cappa R, Skelly R, Hill C, Brennan EP, Doyle R, Godson C, Maxwell AP, McKnight AJ. Genetic variants affecting mitochondrial function provide further insights for kidney disease. BMC Genomics 2024; 25:576. [PMID: 38858654 PMCID: PMC11163707 DOI: 10.1186/s12864-024-10449-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 05/24/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a complex disorder that has become a high prevalence global health problem, with diabetes being its predominant pathophysiologic driver. Autosomal genetic variation only explains some of the predisposition to kidney disease. Variations in the mitochondrial genome (mtDNA) and nuclear-encoded mitochondrial genes (NEMG) are implicated in susceptibility to kidney disease and CKD progression, but they have not been thoroughly explored. Our aim was to investigate the association of variation in both mtDNA and NEMG with CKD (and related traits), with a particular focus on diabetes. METHODS We used the UK Biobank (UKB) and UK-ROI, an independent collection of individuals with type 1 diabetes mellitus (T1DM) patients. RESULTS Fourteen mitochondrial variants were associated with estimated glomerular filtration rate (eGFR) in UKB. Mitochondrial variants and haplogroups U, H and J were associated with eGFR and serum variables. Mitochondrial haplogroup H was associated with all the serum variables regardless of the presence of diabetes. Mitochondrial haplogroup X was associated with end-stage kidney disease (ESKD) in UKB. We confirmed the influence of several known NEMG on kidney disease and function and found novel associations for SLC39A13, CFL1, ACP2 or ATP5G1 with serum variables and kidney damage, and for SLC4A1, NUP210 and MYH14 with ESKD. The G allele of TBC1D32-rs113987180 was associated with higher risk of ESKD in patients with diabetes (OR:9.879; CI95%:4.440-21.980; P = 2.0E-08). In UK-ROI, AGXT2-rs71615838 and SURF1-rs183853102 were associated with diabetic nephropathies, and TFB1M-rs869120 with eGFR. CONCLUSIONS We identified novel variants both in mtDNA and NEMG which may explain some of the missing heritability for CKD and kidney phenotypes. We confirmed the role of MT-ND5 and mitochondrial haplogroup H on renal disease (serum variables), and identified the MT-ND5-rs41535848G variant, along with mitochondrial haplogroup X, associated with higher risk of ESKD. Despite most of the associations were independent of diabetes, we also showed potential roles for NEMG in T1DM.
Collapse
Affiliation(s)
- Marisa Cañadas-Garre
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK.
- Genomic Oncology Area, Centre for Genomics and Oncological Research: Pfizer, GENYO, University of Granada-Andalusian Regional Government, PTS Granada. Avenida de La Ilustración 114, 18016, Granada, Spain.
- Hematology Department, Hospital Universitario Virgen de Las Nieves, Avenida de Las Fuerzas Armadas 2, 18014, Granada, Spain.
- Instituto de Investigación Biosanitaria de Granada (Ibs.GRANADA), Avda. de Madrid, 15, 18012, Granada, Spain.
| | - Blanca Baños-Jaime
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Instituto de Investigaciones Químicas (IIQ), Centro de Investigaciones Científicas Isla de La Cartuja (cicCartuja), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Sevilla, Avda. Américo Vespucio 49, 41092, Seville, Spain
| | - Joaquín J Maqueda
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, 40136, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, 40126, Bologna, Italy
| | - Laura J Smyth
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ruaidhri Cappa
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Ryan Skelly
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Claire Hill
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| | - Eoin P Brennan
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Ross Doyle
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
- Mater Misericordiae University Hospital, Eccles St, Dublin, D07 R2WY, Ireland
| | - Catherine Godson
- UCD Diabetes Complications Research Centre, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, D04 V1W8, Ireland
- School of Medicine, University College Dublin, Dublin, D04 V1W8, Ireland
| | - Alexander P Maxwell
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
- Regional Nephrology Unit, Belfast City Hospital, Level 11Lisburn Road, Belfast, BT9 7AB, UK
| | - Amy Jayne McKnight
- Molecular Epidemiology and Public Health Research Group, Centre for Public Health,, Queen's University Belfast, Institute for Clinical Sciences A, Royal Victoria Hospital, Belfast, BT12 6BA, UK
| |
Collapse
|
9
|
Mpofu R, Kawuma AN, Wasmann RE, Akpomiemie G, Chandiwana N, Sokhela SM, Moorhouse M, Venter WDF, Denti P, Wiesner L, Post FA, Haas DW, Maartens G, Sinxadi P. Determinants of early change in serum creatinine after initiation of dolutegravir-based antiretroviral therapy in South Africa. Br J Clin Pharmacol 2024; 90:1247-1257. [PMID: 38332460 DOI: 10.1111/bcp.16009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/20/2023] [Accepted: 01/03/2024] [Indexed: 02/10/2024] Open
Abstract
AIMS Dolutegravir increases serum creatinine by inhibiting its renal tubular secretion and elimination. We investigated determinants of early changes in serum creatinine in a southern African cohort starting first-line dolutegravir-based antiretroviral therapy (ART). METHODS We conducted a secondary analysis of data from participants in a randomized controlled trial of dolutegravir, emtricitabine and tenofovir disoproxil fumarate (TDF) or tenofovir alafenamide fumarate (TAF) (ADVANCE, NCT03122262). We assessed clinical, pharmacokinetic and genetic factors associated with change in serum creatinine from baseline to Week 4 using linear regression models adjusted for age, sex, baseline serum creatinine, HIV-1 RNA concentration, CD4 T-cell count, total body weight and co-trimoxazole use. RESULTS We included 689 participants, of whom 470 had pharmacokinetic data and 315 had genetic data. Mean change in serum creatinine was 11.3 (SD 9.9) μmol.L-1. Factors that were positively associated with change in serum creatinine at Week 4 were increased log dolutegravir area under the 24-h concentration-time curve (change in creatinine coefficient [β] = 2.78 μmol.L-1 [95% confidence interval (CI) 0.54, 5.01]), TDF use (β = 2.30 [0.53, 4.06]), male sex (β = 5.20 [2.92, 7.48]), baseline serum creatinine (β = -0.22 [-0.31, -0.12]) and UGT1A1 rs929596 A→G polymorphism with a dominant model (β = -2.33 [-4.49, -0.17]). The latter did not withstand correction for multiple testing. CONCLUSIONS Multiple clinical and pharmacokinetic factors were associated with early change in serum creatinine in individuals initiating dolutegravir-based ART. UGT1A1 polymorphisms may play a role, but further research on genetic determinants is needed.
Collapse
Affiliation(s)
- Rephaim Mpofu
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Aida N Kawuma
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Roeland E Wasmann
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Godspower Akpomiemie
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nomathemba Chandiwana
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Simiso Mandisa Sokhela
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Michelle Moorhouse
- Ezintsha, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Paolo Denti
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Lubbe Wiesner
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Frank A Post
- King's College Hospital NHS Foundation Trust, London, UK
| | - David W Haas
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Internal Medicine, Meharry Medical College, Nashville, Tennessee, USA
| | - Gary Maartens
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
- SAMRC/UCT Platform for Pharmacogenomics Research and Translation (PREMED) unit, Cape Town, South Africa
| |
Collapse
|
10
|
Osborne AJ, Bierzynska A, Colby E, Andag U, Kalra PA, Radresa O, Skroblin P, Taal MW, Welsh GI, Saleem MA, Campbell C. Multivariate canonical correlation analysis identifies additional genetic variants for chronic kidney disease. NPJ Syst Biol Appl 2024; 10:28. [PMID: 38459044 PMCID: PMC10924093 DOI: 10.1038/s41540-024-00350-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 02/20/2024] [Indexed: 03/10/2024] Open
Abstract
Chronic kidney diseases (CKD) have genetic associations with kidney function. Univariate genome-wide association studies (GWAS) have identified single nucleotide polymorphisms (SNPs) associated with estimated glomerular filtration rate (eGFR) and blood urea nitrogen (BUN), two complementary kidney function markers. However, it is unknown whether additional SNPs for kidney function can be identified by multivariate statistical analysis. To address this, we applied canonical correlation analysis (CCA), a multivariate method, to two individual-level CKD genotype datasets, and metaCCA to two published GWAS summary statistics datasets. We identified SNPs previously associated with kidney function by published univariate GWASs with high replication rates, validating the metaCCA method. We then extended discovery and identified previously unreported lead SNPs for both kidney function markers, jointly. These showed expression quantitative trait loci (eQTL) colocalisation with genes having significant differential expression between CKD and healthy individuals. Several of these identified lead missense SNPs were predicted to have a functional impact, including in SLC14A2. We also identified previously unreported lead SNPs that showed significant correlation with both kidney function markers, jointly, in the European ancestry CKDGen, National Unified Renal Translational Research Enterprise (NURTuRE)-CKD and Salford Kidney Study (SKS) datasets. Of these, rs3094060 colocalised with FLOT1 gene expression and was significantly more common in CKD cases in both NURTURE-CKD and SKS, than in the general population. Overall, by using multivariate analysis by CCA, we identified additional SNPs and genes for both kidney function and CKD, that can be prioritised for further CKD analyses.
Collapse
Affiliation(s)
- Amy J Osborne
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.
| | - Agnieszka Bierzynska
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Elizabeth Colby
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Uwe Andag
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Philip A Kalra
- Department of Renal Medicine, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Stott Lane, Salford, M6 8HD, UK
| | - Olivier Radresa
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Philipp Skroblin
- Department of Metabolic and Renal Diseases, Evotec International GmbH, Marie-Curie-Strasse 7, 37079, Göttingen, Germany
| | - Maarten W Taal
- Centre for Kidney Research and Innovation, University of Nottingham, Derby, UK
| | - Gavin I Welsh
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Moin A Saleem
- Bristol Renal, University of Bristol and Bristol Royal Hospital for Children, Bristol, BS1 3NY, UK
| | - Colin Campbell
- Intelligent Systems Laboratory, University of Bristol, Bristol, BS8 1TW, UK.
| |
Collapse
|
11
|
Fountoglou A, Deltas C, Siomou E, Dounousi E. Genome-wide association studies reconstructing chronic kidney disease. Nephrol Dial Transplant 2024; 39:395-402. [PMID: 38124660 PMCID: PMC10899781 DOI: 10.1093/ndt/gfad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Indexed: 12/23/2023] Open
Abstract
Chronic kidney disease (CKD) is a major health problem with an increasing epidemiological burden, and is the 16th leading cause of years of life lost worldwide. It is estimated that more than 10% of the population have a variable stage of CKD, while about 850 million people worldwide are affected. Nevertheless, public awareness remains low, clinical access is inappropriate in many circumstances and medication is still ineffective due to the lack of clear therapeutic targets. One of the main issues that drives these problems is the fact that CKD remains a clinical entity with significant causal ambiguity. Beyond diabetes mellitus and hypertension, which are the two major causes of kidney disease, there are still many gray areas in the diagnostic context of CKD. Genetics nowadays emerges as a promising field in nephrology. The role of genetic factors in CKD's causes and predisposition is well documented and thousands of genetic variants are well established to contribute to the high burden of disease. Next-generation sequencing is increasingly revealing old and new rare variants that cause Mendelian forms of chronic nephropathy while genome-wide association studies (GWAS) uncover common variants associated with CKD-defining traits in the general population. In this article we review how GWAS has revolutionized-and continues to revolutionize-the old concept of CKD. Furthermore, we present how the investigation of common genetic variants with previously unknown kidney significance has begun to expand our knowledge on disease understanding, providing valuable insights into disease mechanisms and perhaps paving the way for novel therapeutic targets.
Collapse
Affiliation(s)
- Anastasios Fountoglou
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Constantinos Deltas
- School of Medicine and biobank.cy Center of Excellence in Biobanking and Biomedical Research, University of Cyprus, Nicosia 2109, Cyprus
| | - Ekaterini Siomou
- Department of Pediatrics, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Evangelia Dounousi
- Department of Nephrology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| |
Collapse
|
12
|
Patel W, Shankar RG, Smith MA, Snodgrass HR, Pirmohamed M, Jorgensen AL, Alfirevic A, Dickens D. Role of Transporters and Enzymes in Metabolism and Distribution of 4-Chlorokynurenine (AV-101). Mol Pharm 2024; 21:550-563. [PMID: 38261609 PMCID: PMC10848289 DOI: 10.1021/acs.molpharmaceut.3c00700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/25/2024]
Abstract
4-Chlorokynurenine (4-Cl-KYN, AV-101) is a prodrug of a NMDA receptor antagonist and is in clinical development for potential CNS indications. We sought to further understand the distribution and metabolism of 4-Cl-KYN, as this information might provide a strategy to enhance the clinical development of this drug. We used excretion studies in rats, in vitro transporter assays, and pharmacogenetic analysis of clinical trial data to determine how 4-Cl-KYN and metabolites are distributed. Our data indicated that a novel acetylated metabolite (N-acetyl-4-Cl-KYN) did not affect the uptake of 4-Cl-KYN across the blood-brain barrier via LAT1. 4-Cl-KYN and its metabolites were found to be renally excreted in rodents. In addition, we found that N-acetyl-4-Cl-KYN inhibited renal and hepatic transporters involved in excretion. Thus, this metabolite has the potential to limit the excretion of a range of compounds. Our pharmacogenetic analysis found that a SNP in N-acetyltransferase 8 (NAT8, rs13538) was linked to levels of N-acetyl-4-Cl-KYN relative to 4-Cl-KYN found in the plasma and that a SNP in SLC7A5 (rs28582913) was associated with the plasma levels of the active metabolite, 7-Cl-KYNA. Thus, we have a pharmacogenetics-based association for plasma drug level that could aid in the drug development of 4-Cl-KYN and have investigated the interaction of a novel metabolite with drug transporters.
Collapse
Affiliation(s)
- Waseema Patel
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - Ravi G. Shankar
- Institute
of Population Health, University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Mark A. Smith
- Vistagen
Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
- Medical
College of Georgia, 1120
15th St, Augusta, Georgia 30912, United States
| | - H. Ralph Snodgrass
- Formerly
at Vistagen Therapeutics, Inc., 343 Allerton Ave, South San Francisco, California 94080, United States
| | - Munir Pirmohamed
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - Andrea L. Jorgensen
- Institute
of Population Health, University of Liverpool, Liverpool L69 3GL, United Kingdom
| | - Ana Alfirevic
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| | - David Dickens
- Department
of Pharmacology and Therapeutics, University
of Liverpool, Liverpool L69 3GL, United
Kingdom
| |
Collapse
|
13
|
Lee AM, Xu Y, Hooper SR, Abraham AG, Hu J, Xiao R, Matheson MB, Brunson C, Rhee EP, Coresh J, Vasan RS, Schrauben S, Kimmel PL, Warady BA, Furth SL, Hartung EA, Denburg MR. Circulating Metabolomic Associations with Neurocognitive Outcomes in Pediatric CKD. Clin J Am Soc Nephrol 2024; 19:13-25. [PMID: 37871960 PMCID: PMC10843217 DOI: 10.2215/cjn.0000000000000318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/16/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Children with CKD are at risk for impaired neurocognitive functioning. We investigated metabolomic associations with neurocognition in children with CKD. METHODS We leveraged data from the Chronic Kidney Disease in Children (CKiD) study and the Neurocognitive Assessment and Magnetic Resonance Imaging Analysis of Children and Young Adults with Chronic Kidney Disease (NiCK) study. CKiD is a multi-institutional cohort that enrolled children aged 6 months to 16 years with eGFR 30-90 ml/min per 1.73 m 2 ( n =569). NiCK is a single-center cross-sectional study of participants aged 8-25 years with eGFR<90 ml/min per 1.73 m 2 ( n =60) and matched healthy controls ( n =67). Untargeted metabolomic quantification was performed on plasma (CKiD, 622 metabolites) and serum (NiCK, 825 metabolites) samples. Four neurocognitive domains were assessed: intelligence, attention regulation, working memory, and parent ratings of executive function. Repeat assessments were performed in CKiD at 2-year intervals. Linear regression and linear mixed-effects regression analyses adjusting for age, sex, delivery history, hypertension, proteinuria, CKD duration, and glomerular versus nonglomerular diagnosis were used to identify metabolites associated with neurocognitive z-scores. Analyses were performed with and without adjustment for eGFR. RESULTS There were multiple metabolite associations with neurocognition observed in at least two of the analytic samples (CKiD baseline, CKiD follow-up, and NiCK CKD). Most of these metabolites were significantly elevated in children with CKD compared with healthy controls in NiCK. Notable signals included associations with parental ratings of executive function: phenylacetylglutamine, indoleacetylglutamine, and trimethylamine N-oxide-and with intelligence: γ -glutamyl amino acids and aconitate. CONCLUSIONS Several metabolites were associated with neurocognitive dysfunction in pediatric CKD, implicating gut microbiome-derived substances, mitochondrial dysfunction, and altered energy metabolism, circulating toxins, and redox homeostasis. PODCAST This article contains a podcast at https://dts.podtrac.com/redirect.mp3/www.asn-online.org/media/podcast/CJASN/2023_11_17_CJN0000000000000318.mp3.
Collapse
Affiliation(s)
- Arthur M. Lee
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Yunwen Xu
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Stephen R. Hooper
- Department of Health Sciences, School of Medicine, University of North Carolina-Chapel Hill, Chapel Hill, North Carolina
| | - Alison G. Abraham
- Department of Epidemiology, Colorado University School of Public Health, Aurora, Colorado
| | - Jian Hu
- Department of Human Genetics, Emory University School of Medicine, Atlanta, Georgia
| | - Rui Xiao
- Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Matthew B. Matheson
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Celina Brunson
- Division of Nephrology, Children's National Hospital, Washington, DC
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital, Boston, Massachusetts
- Harvard School of Medicine, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, Massachusetts
- Boston University School of Public Health, Boston, Massachusetts
| | - Sarah Schrauben
- Perelman School of Medicine at the University of Pennsylvania, Department of Medicine and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul L. Kimmel
- Division of Kidney, Urologic, and Hematologic Diseases, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland
| | - Bradley A. Warady
- Division of Nephrology, Children's Mercy Kansas City, Kansas City, Missouri
- University of Missouri-Kansas City School of Medicine, Kansas City, Missouri
| | - Susan L. Furth
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Children's Hospital of Philadelphia Research Institute, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
| | - Erum A. Hartung
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Michelle R. Denburg
- Division of Nephrology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine at the University of Pennsylvania, Department of Pediatrics and Department of Biostatistics, Epidemiology, and Informatics, Philadelphia, Pennsylvania
| |
Collapse
|
14
|
Monu SR, Potter DL, Liao TD, King KN, Ortiz PA. Role of Alström syndrome 1 in the regulation of glomerular hemodynamics. Am J Physiol Renal Physiol 2023; 325:F418-F425. [PMID: 37560774 PMCID: PMC10639022 DOI: 10.1152/ajprenal.00017.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 08/11/2023] Open
Abstract
Inactivating mutations in the ALMS1 gene in humans cause Alström syndrome, characterized by the early onset of obesity, insulin resistance, and renal dysfunction. However, the role of ALMS1 in renal function and hemodynamics is unclear. We previously found that ALMS1 is expressed in thick ascending limbs, where it binds and decreases Na+-K+-2Cl- cotransporter activity. We hypothesized that ALMS1 is expressed in macula densa cells and that its deletion enhances tubuloglomerular feedback (TGF) and reduces glomerular filtration rate (GFR) in rats. To test this, homozygous ALMS1 knockout (KO) and littermate wild-type Dahl salt-sensitive rats were studied. TGF sensitivity was higher in ALMS1 KO rats as measured by in vivo renal micropuncture. Using confocal microscopy, we confirmed immunolabeling of ALMS1 in macula densa cells (nitric oxide synthase 1 positive), supporting a role for ALMS1 in TGF regulation. Baseline glomerular capillary pressure was higher in ALMS1 KO rats, as was mean arterial pressure. Renal interstitial hydrostatic pressure was lower in ALMS1 KO rats, which is linked to increased Na+ reabsorption and hypertension. GFR was reduced in ALMS1 KO rats. Seven-week-old ALMS1 KO rats were not proteinuric, but proteinuria was present in 18- to 22-wk-old ALMS1 KO rats. The glomerulosclerosis index was higher in 18-wk-old ALMS1 KO rats. In conclusion, ALMS1 is involved in the control of glomerular hemodynamics in part by enhancing TGF sensitivity, and this may contribute to decreased GFR. Increased TGF sensitivity, enhanced glomerular capillary pressure, and hypertension may lead to glomerular damage in ALMS1 KO rats. These are the first data supporting the role of ALMS1 in TGF and glomerular hemodynamics.NEW & NOTEWORTHY ALMS1 is a novel protein involved in regulating tubuloglomerular feedback (TGF) sensitivity, glomerular capillary pressure, and blood pressure, and its dysfunction may reduce renal function and cause glomerular damage.
Collapse
Affiliation(s)
- Sumit R Monu
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
- Department of Physiology, Wayne State University, Detroit, Michigan, United States
| | - D'Anna L Potter
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
| | - Tang-Dong Liao
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
| | - Keyona Nicole King
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
| | - Pablo A Ortiz
- Division of Hypertension and Vascular Research, Department of Internal Medicine, Henry Ford Hospital, Detroit, Michigan, United States
- Department of Physiology, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
15
|
Beenken A, Cerutti G, Brasch J, Guo Y, Sheng Z, Erdjument-Bromage H, Aziz Z, Robbins-Juarez SY, Chavez EY, Ahlsen G, Katsamba PS, Neubert TA, Fitzpatrick AWP, Barasch J, Shapiro L. Structures of LRP2 reveal a molecular machine for endocytosis. Cell 2023; 186:821-836.e13. [PMID: 36750096 PMCID: PMC9993842 DOI: 10.1016/j.cell.2023.01.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/29/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023]
Abstract
The low-density lipoprotein (LDL) receptor-related protein 2 (LRP2 or megalin) is representative of the phylogenetically conserved subfamily of giant LDL receptor-related proteins, which function in endocytosis and are implicated in diseases of the kidney and brain. Here, we report high-resolution cryoelectron microscopy structures of LRP2 isolated from mouse kidney, at extracellular and endosomal pH. The structures reveal LRP2 to be a molecular machine that adopts a conformation for ligand binding at the cell surface and for ligand shedding in the endosome. LRP2 forms a homodimer, the conformational transformation of which is governed by pH-sensitive sites at both homodimer and intra-protomer interfaces. A subset of LRP2 deleterious missense variants in humans appears to impair homodimer assembly. These observations lay the foundation for further understanding the function and mechanism of LDL receptors and implicate homodimerization as a conserved feature of the LRP receptor subfamily.
Collapse
Affiliation(s)
- Andrew Beenken
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA
| | - Gabriele Cerutti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Julia Brasch
- Department of Biochemistry, University of Utah, Salt Lake City, UT 84112, USA
| | - Yicheng Guo
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Zizhang Sheng
- Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA
| | - Hediye Erdjument-Bromage
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Zainab Aziz
- Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | | | - Estefania Y Chavez
- Department of Pediatrics, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA
| | - Goran Ahlsen
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Phinikoula S Katsamba
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Thomas A Neubert
- Department of Cell Biology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Anthony W P Fitzpatrick
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Jonathan Barasch
- Division of Nephrology, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA; Columbia University George M. O'Brien Urology Center, New York, NY 10032, USA.
| | - Lawrence Shapiro
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA; Aaron Diamond AIDS Research Center, Columbia University, New York, NY 10032, USA; Department of Biochemistry and Molecular Biophysics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
16
|
Zhong Y, Wu Y, Yang Y, Chen Y, Hui R, Zhang M, Zhang W. Association of MPPED2 gene variant rs10767873 with kidney function and risk of cardiovascular disease in patients with hypertension. J Hum Genet 2023; 68:393-398. [PMID: 36797372 DOI: 10.1038/s10038-022-01118-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 02/18/2023]
Abstract
Changes in kidney function and the progression of chronic kidney disease (CKD) are associated with the risk of cardiovascular disease (CVD) and influenced by genetic factors. However, the association between genetic variants and kidney function in patients treated with antihypertensive drugs remains uncertain. This study aimed to examine the association between 30 variants locating at the 22 genes and the risk of kidney function evaluated by the estimated glomerular filtration rate (eGFR) in 1911 patients with hypertension from a Chinese community-based longitudinal cohort (including 1220 participants with CKD and 691 without CKD at baseline). By using multivariate linear regression analysis after adjustment for age, sex, traditional cardiovascular risk factors, and the use of antihypertensive drugs, as well as after correction for multiple comparison, patients with rs10767873T allele of the metallophosphoesterase domain containing 2 (MPPED2) gene were associated with higher level of eGFR (β = 0.041, p = 0.01) and lower levels of serum creatinine (β = -0.068, p = 0.001) and serum uric acid (β = -0.047, p = 0.02). But variant rs10767873 was not found to be associated with the risk of CKD, regardless of the types of antihypertensive drugs used. During a median 2.25-year follow-up, 152 CVD events were documented. Interestingly, patients with the rs10767873TT genotype had an increased risk of CVD events (hazard ratio, 1.74, 95% confidence interval, 1.11 to 2.73; p = 0.02) compared with patients carrying the wild-type genotype of rs10767873CC. In conclusion, our findings suggest variant rs10767873 of the MPPED2 gene is associated with kidney function and risk of CVD in Chinese hypertensive patients.
Collapse
Affiliation(s)
- Yixuan Zhong
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Yiyi Wu
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China.,The First Affiliated Hospital of Anhui University of Science and Technology (The First People's Hospital of Huainan City), Huainan, 232000, Anhui, China
| | - Yunyun Yang
- The First Affiliated Hospital of Xiamen University; Clinical laboratory; Xiamen Key Laboratory of Genetic Testing, Xiamen, 361000, Fujian, China
| | - Yu Chen
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Rutai Hui
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China
| | - Mei Zhang
- The First Affiliated Hospital of Anhui University of Science and Technology (The First People's Hospital of Huainan City), Huainan, 232000, Anhui, China.
| | - Weili Zhang
- National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, 100037, China. .,Central-China Branch of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Hospital, Zhengzhou, 450046, China.
| |
Collapse
|
17
|
Lingaas F, Tengvall K, Jansen JH, Pelander L, Hurst MH, Meuwissen T, Karlsson Å, Meadows JRS, Sundström E, Thoresen SI, Arnet EF, Guttersrud OA, Kierczak M, Hytönen MK, Lohi H, Hedhammar Å, Lindblad-Toh K, Wang C. Bayesian mixed model analysis uncovered 21 risk loci for chronic kidney disease in boxer dogs. PLoS Genet 2023; 19:e1010599. [PMID: 36693108 PMCID: PMC9897549 DOI: 10.1371/journal.pgen.1010599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/03/2023] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.
Collapse
Affiliation(s)
- Frode Lingaas
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Høgset Jansen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Lena Pelander
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Theo Meuwissen
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jennifer R. S. Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Stein Istre Thoresen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ellen Frøysadal Arnet
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ole Albert Guttersrud
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (KL-T); (CW)
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (KL-T); (CW)
| |
Collapse
|
18
|
Rabbani N, Adaikalakoteswari A, Larkin JR, Panagiotopoulos S, MacIsaac RJ, Yue DK, Fulcher GR, Roberts MA, Thomas M, Ekinci E, Thornalley PJ. Analysis of Serum Advanced Glycation Endproducts Reveals Methylglyoxal-Derived Advanced Glycation MG-H1 Free Adduct Is a Risk Marker in Non-Diabetic and Diabetic Chronic Kidney Disease. Int J Mol Sci 2022; 24:ijms24010152. [PMID: 36613596 PMCID: PMC9820473 DOI: 10.3390/ijms24010152] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Accumulation of advanced glycation endproducts (AGEs) is linked to decline in renal function, particularly in patients with diabetes. Major forms of AGEs in serum are protein-bound AGEs and AGE free adducts. In this study, we assessed levels of AGEs in subjects with and without diabetes, with normal renal function and stages 2 to 4 chronic kidney disease (CKD), to identify which AGE has the greatest progressive change with decline in renal function and change in diabetes. We performed a cross-sectional study of patients with stages 2-4 CKD, with and without diabetes, and healthy controls (n = 135). Nine protein-bound and free adduct AGEs were quantified in serum. Most protein-bound AGEs increased moderately through stages 2-4 CKD whereas AGE free adducts increased markedly. Methylglyoxal-derived hydroimidazolone MG-H1 free adduct was the AGE most responsive to CKD status, increasing 8-fold and 30-fold in stage 4 CKD in patients without and with diabetes, respectively. MG-H1 Glomerular filtration flux was increased 5-fold in diabetes, likely reflecting increased methylglyoxal glycation status. We conclude that serum MG-H1 free adduct concentration was strongly related to stage of CKD and increased in diabetes status. Serum MG-H1 free adduct is a candidate AGE risk marker of non-diabetic and diabetic CKD.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Antonysunil Adaikalakoteswari
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - James R. Larkin
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
| | - Sianna Panagiotopoulos
- Endocrine Centre, Austin Health, The University of Melbourne, West Heidelberg, VIC 3084, Australia
| | - Richard J. MacIsaac
- Department of Endocrinology & Diabetes, St Vincent’s Hospital Melbourne, Fitzroy, VIC 3065, Australia
- Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Dennis K. Yue
- Diabetes Centre, Royal Prince Alfred Hospital, Camperdown, NSW 2050, Australia
| | - Gregory R. Fulcher
- Department of Diabetes, Endocrinology & Metabolism, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Matthew A. Roberts
- Eastern Health Clinical School, Monash University, Box Hill, VIC 3128, Australia
| | - Merlin Thomas
- Department of Diabetes, Monash University, Melbourne, VIC 3004, Australia
| | - Elif Ekinci
- Endocrine Centre, Austin Health, The University of Melbourne, West Heidelberg, VIC 3084, Australia
- Australian Centre for Accelerating Diabetes Innovations, School of Medicine, University of Melbourne, Parkville, VIC 3052, Australia
| | - Paul J. Thornalley
- Clinical Sciences Research Laboratories, Warwick Medical School, University of Warwick, University Hospital, Coventry CV2 2DX, UK
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
- Correspondence: ; Tel.: +974-7090-1635
| |
Collapse
|
19
|
Abramova MY, Ponomarenko IV, Churnosov MI. The Polymorphic Locus rs167479 of the RGL3 Gene Is Associated with the Risk of Severe Preeclampsia. RUSS J GENET+ 2022. [DOI: 10.1134/s102279542212002x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
20
|
Gorski M, Rasheed H, Teumer A, Thomas LF, Graham SE, Sveinbjornsson G, Winkler TW, Günther F, Stark KJ, Chai JF, Tayo BO, Wuttke M, Li Y, Tin A, Ahluwalia TS, Ärnlöv J, Åsvold BO, Bakker SJL, Banas B, Bansal N, Biggs ML, Biino G, Böhnke M, Boerwinkle E, Bottinger EP, Brenner H, Brumpton B, Carroll RJ, Chaker L, Chalmers J, Chee ML, Chee ML, Cheng CY, Chu AY, Ciullo M, Cocca M, Cook JP, Coresh J, Cusi D, de Borst MH, Degenhardt F, Eckardt KU, Endlich K, Evans MK, Feitosa MF, Franke A, Freitag-Wolf S, Fuchsberger C, Gampawar P, Gansevoort RT, Ghanbari M, Ghasemi S, Giedraitis V, Gieger C, Gudbjartsson DF, Hallan S, Hamet P, Hishida A, Ho K, Hofer E, Holleczek B, Holm H, Hoppmann A, Horn K, Hutri-Kähönen N, Hveem K, Hwang SJ, Ikram MA, Josyula NS, Jung B, Kähönen M, Karabegović I, Khor CC, Koenig W, Kramer H, Krämer BK, Kühnel B, Kuusisto J, Laakso M, Lange LA, Lehtimäki T, Li M, Lieb W, Lind L, Lindgren CM, Loos RJF, Lukas MA, Lyytikäinen LP, Mahajan A, Matias-Garcia PR, Meisinger C, Meitinger T, Melander O, Milaneschi Y, Mishra PP, Mononen N, Morris AP, Mychaleckyj JC, Nadkarni GN, Naito M, et alGorski M, Rasheed H, Teumer A, Thomas LF, Graham SE, Sveinbjornsson G, Winkler TW, Günther F, Stark KJ, Chai JF, Tayo BO, Wuttke M, Li Y, Tin A, Ahluwalia TS, Ärnlöv J, Åsvold BO, Bakker SJL, Banas B, Bansal N, Biggs ML, Biino G, Böhnke M, Boerwinkle E, Bottinger EP, Brenner H, Brumpton B, Carroll RJ, Chaker L, Chalmers J, Chee ML, Chee ML, Cheng CY, Chu AY, Ciullo M, Cocca M, Cook JP, Coresh J, Cusi D, de Borst MH, Degenhardt F, Eckardt KU, Endlich K, Evans MK, Feitosa MF, Franke A, Freitag-Wolf S, Fuchsberger C, Gampawar P, Gansevoort RT, Ghanbari M, Ghasemi S, Giedraitis V, Gieger C, Gudbjartsson DF, Hallan S, Hamet P, Hishida A, Ho K, Hofer E, Holleczek B, Holm H, Hoppmann A, Horn K, Hutri-Kähönen N, Hveem K, Hwang SJ, Ikram MA, Josyula NS, Jung B, Kähönen M, Karabegović I, Khor CC, Koenig W, Kramer H, Krämer BK, Kühnel B, Kuusisto J, Laakso M, Lange LA, Lehtimäki T, Li M, Lieb W, Lind L, Lindgren CM, Loos RJF, Lukas MA, Lyytikäinen LP, Mahajan A, Matias-Garcia PR, Meisinger C, Meitinger T, Melander O, Milaneschi Y, Mishra PP, Mononen N, Morris AP, Mychaleckyj JC, Nadkarni GN, Naito M, Nakatochi M, Nalls MA, Nauck M, Nikus K, Ning B, Nolte IM, Nutile T, O'Donoghue ML, O'Connell J, Olafsson I, Orho-Melander M, Parsa A, Pendergrass SA, Penninx BWJH, Pirastu M, Preuss MH, Psaty BM, Raffield LM, Raitakari OT, Rheinberger M, Rice KM, Rizzi F, Rosenkranz AR, Rossing P, Rotter JI, Ruggiero D, Ryan KA, Sabanayagam C, Salvi E, Schmidt H, Schmidt R, Scholz M, Schöttker B, Schulz CA, Sedaghat S, Shaffer CM, Sieber KB, Sim X, Sims M, Snieder H, Stanzick KJ, Thorsteinsdottir U, Stocker H, Strauch K, Stringham HM, Sulem P, Szymczak S, Taylor KD, Thio CHL, Tremblay J, Vaccargiu S, van der Harst P, van der Most PJ, Verweij N, Völker U, Wakai K, Waldenberger M, Wallentin L, Wallner S, Wang J, Waterworth DM, White HD, Willer CJ, Wong TY, Woodward M, Yang Q, Yerges-Armstrong LM, Zimmermann M, Zonderman AB, Bergler T, Stefansson K, Böger CA, Pattaro C, Köttgen A, Kronenberg F, Heid IM. Genetic loci and prioritization of genes for kidney function decline derived from a meta-analysis of 62 longitudinal genome-wide association studies. Kidney Int 2022; 102:624-639. [PMID: 35716955 PMCID: PMC10034922 DOI: 10.1016/j.kint.2022.05.021] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022]
Abstract
Estimated glomerular filtration rate (eGFR) reflects kidney function. Progressive eGFR-decline can lead to kidney failure, necessitating dialysis or transplantation. Hundreds of loci from genome-wide association studies (GWAS) for eGFR help explain population cross section variability. Since the contribution of these or other loci to eGFR-decline remains largely unknown, we derived GWAS for annual eGFR-decline and meta-analyzed 62 longitudinal studies with eGFR assessed twice over time in all 343,339 individuals and in high-risk groups. We also explored different covariate adjustment. Twelve genome-wide significant independent variants for eGFR-decline unadjusted or adjusted for eGFR-baseline (11 novel, one known for this phenotype), including nine variants robustly associated across models were identified. All loci for eGFR-decline were known for cross-sectional eGFR and thus distinguished a subgroup of eGFR loci. Seven of the nine variants showed variant-by-age interaction on eGFR cross section (further about 350,000 individuals), which linked genetic associations for eGFR-decline with age-dependency of genetic cross-section associations. Clinically important were two to four-fold greater genetic effects on eGFR-decline in high-risk subgroups. Five variants associated also with chronic kidney disease progression mapped to genes with functional in-silico evidence (UMOD, SPATA7, GALNTL5, TPPP). An unfavorable versus favorable nine-variant genetic profile showed increased risk odds ratios of 1.35 for kidney failure (95% confidence intervals 1.03-1.77) and 1.27 for acute kidney injury (95% confidence intervals 1.08-1.50) in over 2000 cases each, with matched controls). Thus, we provide a large data resource, genetic loci, and prioritized genes for kidney function decline, which help inform drug development pipelines revealing important insights into the age-dependency of kidney function genetics.
Collapse
Affiliation(s)
- Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany; Department of Nephrology, University Hospital Regensburg, Regensburg, Germany.
| | - Humaira Rasheed
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, Bialystok, Poland
| | - Laurent F Thomas
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; BioCore-Bioinformatics Core Facility, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sarah E Graham
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Thomas W Winkler
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Felix Günther
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany; Statistical Consulting Unit StaBLab, Department of Statistics, LMU Munich, Munich, Germany
| | - Klaus J Stark
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, USA
| | - Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Adrienne Tin
- Memory Impairment and Neurodegenerative Dementia (MIND) Center, University of Mississippi Medical Center, Jackson, Mississippi, USA; Division of Nephrology, Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Tarunveer S Ahluwalia
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; The Bioinformatics Center, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; School of Health and Social Studies, Dalarna University, Stockholm, Sweden
| | - Bjørn Olav Åsvold
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Bernhard Banas
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Nisha Bansal
- Division of Nephrology, University of Washington, Seattle, Washington, USA; Kidney Research Institute, University of Washington, Seattle, Washington, USA
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA; Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Michael Böhnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, Texas, USA
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Digital Health Center, Hasso Plattner Institute and University of Potsdam, Potsdam, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Ben Brumpton
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; MRC Integrative Epidemiology Unit, Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK; Clinic of Thoracic and Occupational Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Layal Chaker
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - John Chalmers
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Miao-Ling Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore; Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Audrey Y Chu
- Genetics, Merck & Co, Inc., Kenilworth, New Jersey, USA
| | - Marina Ciullo
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS "Burlo Garofolo," Trieste, Italy
| | - James P Cook
- Department of Health Data Science, University of Liverpool, Liverpool, UK
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Daniele Cusi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy; Bio4Dreams-Business Nursery for Life Sciences, Milan, Italy
| | - Martin H de Borst
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany; Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Karlhans Endlich
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Baltimore, Maryland, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Christian Fuchsberger
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA; Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Piyush Gampawar
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sahar Ghasemi
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany; DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Vilmantas Giedraitis
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Christian Gieger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Daniel F Gudbjartsson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland; Iceland School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Stein Hallan
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Science and Technology, Trondheim, Norway; Department of Nephrology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Pavel Hamet
- Montreal University Hospital Research Center, CHUM, Montreal, Quebec, Canada; Medpharmgene, Montreal, Quebec, Canada; CRCHUM, Montreal, Quebec, Canada
| | - Asahi Hishida
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kevin Ho
- Kidney Health Research Institute (KHRI), Geisinger, Danville, Pennsylvania, USA; Department of Nephrology, Geisinger, Danville, Pennsylvania, USA
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria; Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Bernd Holleczek
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Hilma Holm
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland
| | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland; Department of Pediatrics, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kristian Hveem
- K. G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Shih-Jen Hwang
- National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, USA; Population Sciences Branch, Division of Intramural Research, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Navya Shilpa Josyula
- Geisinger Research, Biomedical and Translational Informatics Institute, Rockville, Maryland, USA
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology and Rheumatology, Kliniken Südostbayern, Traunstein, Germany; KfH Kidney Centre Traunstein, Traunstein, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland; Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Irma Karabegović
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Holly Kramer
- Department of Public Health Sciences, Loyola University Chicago, Maywood, Illinois, USA; Division of Nephrology and Hypertension, Loyola University Chicago, Chicago, Illinois, USA
| | - Bernhard K Krämer
- Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Brigitte Kühnel
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Johanna Kuusisto
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Centre for Medicine and Clinical Research, University of Eastern Finland School of Medicine, Kuopio, Finland
| | - Markku Laakso
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland; Centre for Medicine and Clinical Research, University of Eastern Finland School of Medicine, Kuopio, Finland
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Man Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany
| | - Lars Lind
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Nuffield Department of Population Health, University of Oxford, Oxford, UK; Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA; Wellcome Center for Human Genetics, University of Oxford, Oxford, UK; Nuffield Department of Women's and Reproductive Health, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Oxford, UK; Li Ka Shing Centre for Health Information and Discovery, The Big Data Institute, University of Oxford, Oxford, UK
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mary Ann Lukas
- Clinical Sciences, GlaxoSmithKline, Albuquerque, New Mexico, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anubha Mahajan
- Wellcome Center for Human Genetics, University of Oxford, Oxford, UK; Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Pamela R Matias-Garcia
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany; Chair of Epidemiology, University of Augsburg, University Hospital Augsburg, Augsburg, Germany
| | - Thomas Meitinger
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany; Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Department of Clinical Sciences Malmö, Lund University, Malmö, Sweden
| | - Yuri Milaneschi
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, the Netherlands
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland; Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Andrew P Morris
- Department of Health Data Science, University of Liverpool, Liverpool, UK; Wellcome Center for Human Genetics, University of Oxford, Oxford, UK; Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, The University of Manchester, Manchester, UK
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Charlottesville, Virginia, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA; Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mariko Naito
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan; Department of Oral Epidemiology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masahiro Nakatochi
- Public Health Informatics Unit, Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA; Data Tecnica International, Glen Echo, Maryland, USA
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland; Department of Cardiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Boting Ning
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Teresa Nutile
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy
| | - Michelle L O'Donoghue
- Cardiovascular Division, Brigham and Women's Hospital, Boston, Massachusetts, USA; TIMI Study Group, Boston, Massachusetts, USA
| | | | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Afshin Parsa
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA; Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sarah A Pendergrass
- Geisinger Research, Biomedical and Translational Informatics Institute, Danville, Pennsylvania, USA
| | - Brenda W J H Penninx
- Department of Psychiatry, Amsterdam Public Health and Amsterdam Neuroscience, Amsterdam UMC/Vrije Universiteit and GGZ inGeest, Amsterdam, the Netherlands
| | - Mario Pirastu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Li Punti, Sassari, Italy
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Department of Epidemiology, Department of Health Services, University of Washington, Seattle, Washington, USA
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Olli T Raitakari
- Centre for Population Health Research, University of Turku and Turku University Hospital, Turku, Finland; Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland; Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | - Myriam Rheinberger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology and Rheumatology, Kliniken Südostbayern, Traunstein, Germany; KfH Kidney Centre Traunstein, Traunstein, Germany
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, USA
| | - Federica Rizzi
- Department of Health Sciences, University of Milan, Milano, Italy; ePhood Scientific Unit, ePhood SRL, Milano, Italy
| | - Alexander R Rosenkranz
- Division of Nephrology, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, Gentofte, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics "Adriano Buzzati-Traverso"-CNR, Naples, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Charumathi Sabanayagam
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milano, Italy; Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany; LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Christina-Alexandra Schulz
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clinical Sciences in Malmö, Lund University, Malmö, Sweden
| | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands; Department of Preventive Medicine, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Christian M Shaffer
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Karsten B Sieber
- Human Genetics, GlaxoSmithKline, Collegeville, Pennsylvania, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Mario Sims
- Department of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Kira J Stanzick
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Hannah Stocker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany; Network Aging Research, Heidelberg University, Heidelberg, Germany
| | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany; Institute of Medical Biostatistics, Epidemiology and Informatics, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Silke Szymczak
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany; Institute of Medical Biometry and Statistics, University of Lübeck, University Hospital Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Johanne Tremblay
- Montreal University Hospital Research Center, CHUM, Montreal, Quebec, Canada; CRCHUM, Montreal, Quebec, Canada; Medpharmgene, Montreal, Quebec, Canada
| | - Simona Vaccargiu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Li Punti, Sassari, Italy
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; Durrer Center for Cardiovascular Research, The Netherlands Heart Institute, Utrecht, the Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany; Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Kenji Wakai
- Department of Preventive Medicine, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Melanie Waldenberger
- Research Unit Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lars Wallentin
- Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden; Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Stefan Wallner
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Judy Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Harvey D White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - Cristen J Willer
- Department of Internal Medicine, Division of Cardiology, University of Michigan, Ann Arbor, Michigan, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA; Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, USA
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore; Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
| | - Mark Woodward
- The George Institute for Global Health, University of New South Wales, Sydney, Australia; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA; The George Institute for Global Health, University of Oxford, Oxford, UK
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | | | - Martina Zimmermann
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Baltimore, Maryland, USA
| | - Tobias Bergler
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Kari Stefansson
- deCODE Genetics/Amgen, Inc., Reykjavik, Iceland; Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany; Department of Nephrology and Rheumatology, Kliniken Südostbayern, Traunstein, Germany; KfH Kidney Centre Traunstein, Traunstein, Germany
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany; Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
21
|
Rysz J, Franczyk B, Rysz-Górzyńska M, Gluba-Brzózka A. Are Alterations in DNA Methylation Related to CKD Development? Int J Mol Sci 2022; 23:7108. [PMID: 35806113 PMCID: PMC9267048 DOI: 10.3390/ijms23137108] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/29/2022] Open
Abstract
The modifications in genomic DNA methylation are involved in the regulation of normal and pathological cellular processes. The epigenetic regulation stimulates biological plasticity as an adaptive response to variations in environmental factors. The role of epigenetic changes is vital for the development of some diseases, including atherogenesis, cancers, and chronic kidney disease (CKD). The results of studies presented in this review have suggested that altered DNA methylation can modulate the expression of pro-inflammatory and pro-fibrotic genes, as well those essential for kidney development and function, thus stimulating renal disease progression. Abnormally increased homocysteine, hypoxia, and inflammation have been suggested to alter epigenetic regulation of gene expression in CKD. Studies of renal samples have demonstrated the relationship between variations in DNA methylation and fibrosis and variations in estimated glomerular filtration rate (eGFR) in human CKD. The unravelling of the genetic-epigenetic profile would enhance our understanding of processes underlying the development of CKD. The understanding of multifaceted relationship between DNA methylation, genes expression, and disease development and progression could improve the ability to identify individuals at risk of CKD and enable the choice of appropriate disease management.
Collapse
Affiliation(s)
- Jacek Rysz
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Beata Franczyk
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| | - Magdalena Rysz-Górzyńska
- Department of Otolaryngology, Laryngological Oncology, Audiology and Phoniatrics, Medical Univesity of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland;
| | - Anna Gluba-Brzózka
- Department of Nephrology, Hypertension and Family Medicine, Medical University of Lodz, 113 Żeromskego Street, 90-549 Lodz, Poland; (J.R.); (B.F.)
| |
Collapse
|
22
|
AGEomics Biomarkers and Machine Learning-Realizing the Potential of Protein Glycation in Clinical Diagnostics. Int J Mol Sci 2022; 23:ijms23094584. [PMID: 35562975 PMCID: PMC9099912 DOI: 10.3390/ijms23094584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 11/30/2022] Open
Abstract
Protein damage by glycation, oxidation and nitration is a continuous process in the physiological system caused by reactive metabolites associated with dicarbonyl stress, oxidative stress and nitrative stress, respectively. The term AGEomics is defined as multiplexed quantitation of spontaneous modification of proteins damage and other usually low-level modifications associated with a change of structure and function—for example, citrullination and transglutamination. The method of quantitation is stable isotopic dilution analysis liquid chromatography—tandem mass spectrometry (LC-MS/MS). This provides robust quantitation of normal and damaged or modified amino acids concurrently. AGEomics biomarkers have been used in diagnostic algorithms using machine learning methods. In this review, I describe the utility of AGEomics biomarkers and provide evidence why these are close to the phenotype of a condition or disease compared to other metabolites and metabolomic approaches and how to train and test algorithms for clinical diagnostic and screening applications with high accuracy, sensitivity and specificity using machine learning approaches.
Collapse
|
23
|
Zhang H, Mo X, Wang A, Peng H, Guo D, Zhong C, Zhu Z, Xu T, Zhang Y. Association of DNA Methylation in Blood Pressure-Related Genes With Ischemic Stroke Risk and Prognosis. Front Cardiovasc Med 2022; 9:796245. [PMID: 35345488 PMCID: PMC8957103 DOI: 10.3389/fcvm.2022.796245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/31/2022] [Indexed: 12/16/2022] Open
Abstract
BackgroundA genome-wide association study identified 12 genetic loci influencing blood pressure and implicated a role of DNA methylation. However, the relationship between methylation and ischemic stroke has not yet been clarified. We conducted a large-sample sequencing study to identify blood leukocyte DNA methylations as novel biomarkers for ischemic stroke risk and prognosis based on previously identified genetic loci.MethodsMethylation levels of 17 genes were measured by sequencing in 271 ischemic stroke cases and 323 controls, and the significant associations were validated in another independent sample of 852 cases and 925 controls. The associations between methylation levels and ischemic stroke risk and prognosis were evaluated.ResultsMethylation of AMH, C17orf82, HDAC9, IGFBP3, LRRC10B, PDE3A, PRDM6, SYT7 and TBX2 was significantly associated with ischemic stroke. Compared to participants without any hypomethylated targets, the odds ratio (OR) (95% confidence interval, CI) for those with 9 hypomethylated genes was 1.41 (1.33–1.51) for ischemic stroke. Adding methylation levels of the 9 genes to the basic model of traditional risk factors significantly improved the risk stratification for ischemic stroke. Associations between AMH, HDAC9, IGFBP3, PDE3A and PRDM6 gene methylation and modified Rankin Scale scores were significant after adjustment for covariates. Lower methylation levels of AMH, C17orf82, PRDM6 and TBX2 were significantly associated with increased 3-month mortality. Compared to patients without any hypomethylated targets, the OR (95% CI) for those with 4 hypomethylated targets was 1.12 (1.08–1.15) for 3-month mortality (P = 2.28 × 10−10).ConclusionThe present study identified blood leukocyte DNA methylations as potential factors affecting ischemic stroke risk and prognosis among Han Chinese individuals.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Hao Peng
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Daoxia Guo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Chongke Zhong
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Zhengbao Zhu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China
- Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
- *Correspondence: Yonghong Zhang
| |
Collapse
|
24
|
Correia MJ, Pimpão AB, Fernandes DGF, Morello J, Sequeira CO, Calado J, Antunes AMM, Almeida MS, Branco P, Monteiro EC, Vicente JB, Serpa J, Pereira SA. Cysteine as a Multifaceted Player in Kidney, the Cysteine-Related Thiolome and Its Implications for Precision Medicine. Molecules 2022; 27:1416. [PMID: 35209204 PMCID: PMC8874463 DOI: 10.3390/molecules27041416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 11/16/2022] Open
Abstract
In this review encouraged by original data, we first provided in vivo evidence that the kidney, comparative to the liver or brain, is an organ particularly rich in cysteine. In the kidney, the total availability of cysteine was higher in cortex tissue than in the medulla and distributed in free reduced, free oxidized and protein-bound fractions (in descending order). Next, we provided a comprehensive integrated review on the evidence that supports the reliance on cysteine of the kidney beyond cysteine antioxidant properties, highlighting the relevance of cysteine and its renal metabolism in the control of cysteine excess in the body as a pivotal source of metabolites to kidney biomass and bioenergetics and a promoter of adaptive responses to stressors. This view might translate into novel perspectives on the mechanisms of kidney function and blood pressure regulation and on clinical implications of the cysteine-related thiolome as a tool in precision medicine.
Collapse
Affiliation(s)
- Maria João Correia
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - António B. Pimpão
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Dalila G. F. Fernandes
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Judit Morello
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Catarina O. Sequeira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - Joaquim Calado
- Centre for Toxicogenomics and Human Health (ToxOmics), Genetics, Oncology and Human Toxicology, Nova Medical School/Faculdade de Ciências Médicas, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal;
- Nephrology Department, Centro Hospitalar Universitário de Lisboa Central, 1069-166 Lisboa, Portugal
| | - Alexandra M. M. Antunes
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, 1049-001 Lisboa, Portugal;
| | - Manuel S. Almeida
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Patrícia Branco
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Hospital de Santa Cruz, Centro Hospitalar de Lisboa Ocidental, 2790-134 Carnaxide, Portugal
| | - Emília C. Monteiro
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| | - João B. Vicente
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB NOVA), 2780-157 Oeiras, Portugal; (D.G.F.F.); (J.B.V.)
| | - Jacinta Serpa
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), 1099-023 Lisboa, Portugal
| | - Sofia A. Pereira
- CEDOC, NOVA Medical School, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal; (M.J.C.); (A.B.P.); (J.M.); (C.O.S.); (M.S.A.); (P.B.); (E.C.M.); (J.S.)
| |
Collapse
|
25
|
Golovchenko OV, Abramova MY, Orlova VS, Batlutskaya IV, Sorokina IN. Clinical and Genetic Characteristics of Preeclampsia. ARCHIVES OF RAZI INSTITUTE 2022; 77:293-299. [PMID: 35891763 PMCID: PMC9288621 DOI: 10.22092/ari.2021.356481.1852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 06/15/2023]
Abstract
Preeclampsia (PE) is a severe complication of pregnancy accompanied by arterial hypertension, edema, or proteinuria with impaired functioning of various organs and systems. It is also an important medical and social problem, which has been one of the leading causes of maternal and perinatal mortality and morbidity worldwide. Despite the achievements of modern medicine, the etiology of this pathology is still unknown. Recently, many scientists have especially focused on the study of genetic factors underlying the etiopathogenesis of PE, namely, the contribution of individual polymorphic loci of various candidate genes. The current study aimed to investigate the clinical characteristics of PE and the contribution of the polymorphic loci rs1042838 of Progesterone Receptor (PGR) gene and rs8068318 of the T-Box Transcription Factor 2 (TBX2) gene to the development of PE. The study was conducted on 219 women with PE with the mean±SD age of 26.52±5.51 years and 329 women with the physiological course of pregnancy as the control group with the mean±SD age of 26.27±4.88 years. In total, 64.20%, 68.29%, 16.44%, 98.63%, and 35.48% of women with PE had increased systolic and normal diastolic blood pressure (SBP and DBP) values, proteinuria, edema, and overweight (BMI≥25), respectively. In the control group, 100%, 1.53%, 1.12%, and 35.48% of cases had normal SBP values with no proteinuria, DBP>90 mm Hg, edema, and overweight (BMI≥25), respectively. An association was observed between the CC genotype of the rs8068318 polymorphism of the TBX2 gene with the risk of developing PE in women with PE (OR=2.12, 95%CI: 1.14-3.92, P=0.02). In addition, there was an association between the rs8068318 TBX2 polymorphic locus with lower SBP (Me=140, Q25 - Q75 130 - 142.5, P=0.01) and PBP (Me=50, Q25 - Q75 40 - 55, P<0.01). According to the GeneCards database, the TBX2 gene, a member of a phylogenetically conserved gene family, is located on the long arm of chromosome 17 and encodes the TBX2 T-box transcription factor protein, which is a regulator of the transcriptional activity of various genes (i.e., it suppresses the expression of CDKN2A (p19/ARF), inhibits cyclin-dependent kinase p21 Cip1 (CDKN1A), and affects the expression of MYC, RAS, BRCA1, and BRCA2 genes).
Collapse
Affiliation(s)
- O V Golovchenko
- Belgorod State University, 308015, Belgorod, Pobeda Street, 85, Russia
| | - M Y Abramova
- Belgorod State University, 308015, Belgorod, Pobeda Street, 85, Russia
| | - V S Orlova
- Belgorod State University, 308015, Belgorod, Pobeda Street, 85, Russia
| | - I V Batlutskaya
- Belgorod State University, 308015, Belgorod, Pobeda Street, 85, Russia
| | - I N Sorokina
- Belgorod State University, 308015, Belgorod, Pobeda Street, 85, Russia
| |
Collapse
|
26
|
Piras D, Lepori N, Cabiddu G, Pani A. How Genetics Can Improve Clinical Practice in Chronic Kidney Disease: From Bench to Bedside. J Pers Med 2022; 12:jpm12020193. [PMID: 35207681 PMCID: PMC8875178 DOI: 10.3390/jpm12020193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/17/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Chronic kidney disease (CKD) is considered a major global health problem with high socio-economic costs: the risk of CKD in individuals with an affected first degree relative has been found to be three times higher than in the general population. Genetic factors are known to be involved in CKD pathogenesis, both due to the possible presence of monogenic pathologies as causes of CKD, and to the role of numerous gene variants in determining susceptibility to the development of CKD. The genetic study of CKD patients can represent a useful tool in the hands of the clinician; not only in the diagnostic and prognostic field, but potentially also in guiding therapeutic choices and in designing clinical trials. In this review we discuss the various aspects of the role of genetic analysis on clinical management of patients with CKD with a focus on clinical applications. Several topics are discussed in an effort to provide useful information for daily clinical practice: definition of susceptibility to the development of CKD, identification of unrecognized monogenic diseases, reclassification of the etiological diagnosis, role of pharmacogenetics.
Collapse
Affiliation(s)
- Doloretta Piras
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Correspondence:
| | - Nicola Lepori
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
| | - Gianfranca Cabiddu
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
| | - Antonello Pani
- Struttura Complessa di Nefrologia, Dialisi e Trapianto, ARNAS Brotzu, 09134 Cagliari, Italy; (N.L.); (G.C.); (A.P.)
- Dipartimento di Scienze Mediche e Sanità Pubblica, Università degli Studi di Cagliari, 09134 Cagliari, Italy
- Istituto di Ricerca Genetica e Biomedica (IRGB), Consiglio Nazionale delle Ricerce (CNR), 09042 Monserrato, Italy
| |
Collapse
|
27
|
Zhang H, Wang A, Xu T, Mo X, Zhang Y. Promoter DNA Methylation in GWAS-Identified Genes as Potential Functional Elements for Blood Pressure: An Observational and Mendelian Randomization Study. Front Genet 2022; 12:791146. [PMID: 35087571 PMCID: PMC8787193 DOI: 10.3389/fgene.2021.791146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 01/03/2023] Open
Abstract
Genome-wide association studies have identified numerous genetic loci for blood pressure (BP). However, the relationships of functional elements inside these loci with BP are not fully understood. This study represented an effort to determine if promoter DNA methylations inside BP-associated loci were associated with BP.We conducted a cross-sectional study investigating the association between promoter DNA methylations of 10 candidate genes and BP in 1,241 Chinese individuals. Twenty-one genomic fragments in the CpG Islands were sequenced. The associations of methylation levels with BP and hypertension were assessed in regression models. Mendelian randomization (MR) analysis was then applied to find supporting evidence for the identified associations.A total of 413 DNA methylation sites were examined in an observational study. Methylation levels of 24 sites in PRDM6, IGFBP3, SYT7, PDE3A, TBX2 and C17orf82 were significantly associated with BP. Methylation levels of PRDM6 and SYT7 were significantly associated with hypertension. Methylation levels of five sites (including cg06713098) in IGFBP3 were significantly associated with DBP. MR analysis found associations between the methylation levels of six CpG sites (cg06713098, cg14228300, cg23193639, cg21268650, cg10677697 and cg04812164) around the IGFBP3 promoter and DBP. Methylation levels of cg14228300 and cg04812164 were associated with SBP. By further applying several MR methods we showed that the associations may not be due to pleiotropy. Association between IGFBP3 mRNA levels in blood cells and BP was also found in MR analysis. This study identified promoter methylation as potential functional element for BP. The identified methylations may be involved in the regulatory pathway linking genetic variants to BP.
Collapse
Affiliation(s)
- Huan Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Aili Wang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Tan Xu
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xingbo Mo
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China.,Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Yonghong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Medical College of Soochow University, Suzhou, China.,Department of Epidemiology, School of Public Health, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
28
|
Koch V, Weber C, Riffel JH, Buchner K, Buss SJ, Hein S, Mereles D, Hagenmueller M, Erbel C, März W, Booz C, Albrecht MH, Vogl TJ, Frey N, Hardt SE, Ochs M. Impact of Homoarginine on Myocardial Function and Remodeling in a Rat Model of Chronic Renal Failure. J Cardiovasc Pharmacol Ther 2022; 27:10742484211054620. [PMID: 34994208 DOI: 10.1177/10742484211054620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Low plasma concentrations of the amino acid homoarginine (HA) have been shown to correlate with adverse cardiovascular outcome, particularly in patients with chronic kidney disease. The present study sought to investigate the effect of HA treatment on cardiac remodeling in rats undergoing artificially induced renal insufficiency by 5/6 nephrectomy (5/6 Nx). METHODS A total of 33 male Wistar rats were randomly divided into sham and 5/6 Nx groups, receiving either placebo treatment or 400 mg·kg-1·day-1 HA over a 4-week period. RESULTS 5/6 Nx per se resulted in adverse myocardial remodeling with aggravated cardiac function and associated cardiac overload as the most obvious alteration (-23% ejection fraction, P < 0.0001), as well as increased myocardial fibrosis (+80%, P = 0.0005) compared to placebo treated sham animals. HA treatment of 5/6 Nx rats has led to an improvement of ejection fraction (+24%, P = 0.0003) and fractional shortening (+21%, P = 0.0126), as well as a decrease of collagen deposition (-32%, P = 0.0041), left ventricular weight (-14%, P = 0.0468), and myocyte cross-sectional area (-12%, P < 0.0001). These changes were accompanied by a downregulation of atrial natriuretic factor (-65% P < 0.0001) and collagen type V alpha 1 chain (-44%, P = 0.0006). Sham animals revealed no significant changes in cardiac function, myocardial fibrosis, or any of the aforementioned molecular changes after drug treatment. CONCLUSION Dietary HA supplementation appears to have the potential of preventing cardiac remodeling and improving heart function in the setting of chronic kidney disease. Our findings shed new light on HA as a possible new therapeutic agent for patients at high cardiovascular risk.
Collapse
Affiliation(s)
- Vitali Koch
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Christophe Weber
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes H Riffel
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Kristina Buchner
- Institute of Human Genetics, Section for Developmental Genetics, 27178University of Heidelberg, Heidelberg, Germany
| | - Sebastian J Buss
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Selina Hein
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Derliz Mereles
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Hagenmueller
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Christian Erbel
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Winfried März
- Synlab Academy, Synlab Holding Deutschland GmbH, Augsburg, Germany
| | - Christian Booz
- 9173Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- 9173Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Norbert Frey
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Stefan E Hardt
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| | - Marco Ochs
- Department of Cardiology, Angiology and Pulmonology, 27178Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
29
|
Jiao H, Zhang M, Zhang Y, Wang Y, Li WD. Pathway Association Studies Reveal Gene Loci and Pathway Networks that Associated With Plasma Cystatin C Levels. Front Genet 2021; 12:711155. [PMID: 34899825 PMCID: PMC8656399 DOI: 10.3389/fgene.2021.711155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 11/09/2021] [Indexed: 01/09/2023] Open
Abstract
As a marker for glomerular filtration, plasma cystatin C level is used to evaluate kidney function. To decipher genetic factors that control the plasma cystatin C level, we performed genome-wide association and pathway association studies using United Kingdom Biobank data. One hundred fifteen loci yielded p values less than 1 × 10−100, three genes (clusters) showed the most significant associations, including the CST8-CST9 cluster on chromosome 20, the SH2B3-ATXN2 gene region on chromosome 12, and the SHROOM3-CCDC158 gene region on chromosome 4. In pathway association studies, forty significant pathways had FDR (false discovery rate) and or FWER (family-wise error rate) ≤ 0.001: spermatogenesis, leukocyte trans-endothelial migration, cell adhesion, glycoprotein, membrane lipid, steroid metabolic process, and insulin signaling pathways were among the most significant pathways that associated with the plasma cystatin C levels. We also performed Genome-wide association studies for eGFR, top associated genes were largely overlapped with those for cystatin C.
Collapse
Affiliation(s)
- Hongxiao Jiao
- Research Center of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Miaomiao Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yuan Zhang
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.,College of Public Health, Tianjin Medical University, Tianjin, China
| | - Yaogang Wang
- College of Public Health, Tianjin Medical University, Tianjin, China
| | - Wei-Dong Li
- Department of Genetics, College of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
30
|
Sönmez Flitman R, Khalili B, Kutalik Z, Rueedi R, Brümmer A, Bergmann S. Untargeted Metabolome- and Transcriptome-Wide Association Study Suggests Causal Genes Modulating Metabolite Concentrations in Urine. J Proteome Res 2021; 20:5103-5114. [PMID: 34699229 PMCID: PMC9286311 DOI: 10.1021/acs.jproteome.1c00585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
![]()
Gene products can
affect the concentrations of small molecules
(aka “metabolites”), and conversely, some metabolites
can modulate the concentrations of gene transcripts. While many specific
instances of this interplay have been revealed, a global approach
to systematically uncover human gene-metabolite interactions is still
lacking. We performed a metabolome- and transcriptome-wide association
study to identify genes influencing the human metabolome using untargeted
metabolome features, extracted from 1H nuclear magnetic
resonance spectroscopy (NMR) of urine samples, and gene expression
levels, quantified from RNA-Seq of lymphoblastoid cell lines (LCL)
from 555 healthy individuals. We identified 20 study-wide significant
associations corresponding to 15 genes, of which 5 associations (with
2 genes) were confirmed with follow-up NMR data. Using metabomatching,
we identified the metabolites corresponding to metabolome features
associated with the genes, namely, N-acetylated compounds with ALMS1 and trimethylamine (TMA) with HPS1. Finally, Mendelian randomization analysis supported a potential
causal link between the expression of genes in both the ALMS1- and HPS1-loci and their associated metabolite
concentrations. In the case of HPS1, we additionally
observed that TMA concentration likely exhibits a reverse causal effect
on HPS1 expression levels, indicating a negative
feedback loop. Our study highlights how the integration of metabolomics,
gene expression, and genetic data can pinpoint causal genes modulating
metabolite concentrations.
Collapse
Affiliation(s)
- Reyhan Sönmez Flitman
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Bita Khalili
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Zoltan Kutalik
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,University Center for Primary Care and Public Health, University of Lausanne, Lausanne 1010, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Anneke Brümmer
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland
| | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne 1015, Switzerland.,Swiss Institute of Bioinformatics, Lausanne 1015, Switzerland.,Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town 7700, South Africa
| |
Collapse
|
31
|
UMOD Polymorphisms Associated with Kidney Function, Serum Uromodulin and Risk of Mortality among Patients with Chronic Kidney Disease, Results from the C-STRIDE Study. Genes (Basel) 2021; 12:genes12111687. [PMID: 34828293 PMCID: PMC8620616 DOI: 10.3390/genes12111687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/13/2022] Open
Abstract
We aimed to explore associations of several single nucleotide polymorphisms (SNPs) detected by genome-wide association studies in uromodulin (UMOD) gene with phenotypes and prognosis of chronic kidney disease (CKD) among 2731 Chinese patients with CKD stage 1–4. Polymorphisms of rs11864909, rs4293393, rs6497476, and rs13333226 were genotyped using the Sequenom MassARRAY iPLEX platform. The SNPs of rs13333226 and rs4293393 were in complete linkage disequilibrium. Based on the T dominant model, T allele of rs11864909 was associated with levels of estimated glomerular filtration rate (eGFR) and serum uromodulin with linear regression coefficients of 2.68 (95% confidence interval (CI): 0.61, 4.96) and −12.95 (95% CI: −17.59, −7.98), respectively, after adjustment for cardiovascular and kidney-specific risk factors. After a median follow-up of 4.94 years, both G allele of rs4293393/rs13333226 and C allele of rs6497476 were associated with reduced risk of all-cause mortality with multivariable-adjusted hazard ratios of 0.341 (95% CI: 0.105, 0.679) and 0.344 (95% CI: 0.104, 0.671), respectively. However, no associations were found between the variants and slope of eGFR in the linear mix effect model. In summary, the variant of rs11864909 in the UMOD gene was associated with levels of eGFR and serum uromodulin, while those of rs4293393 and rs6497476 were associated with all-cause mortality among patients with CKD.
Collapse
|
32
|
You Y, Ren Y, Liu J, Qu J. Promising Epigenetic Biomarkers Associated With Cancer-Associated-Fibroblasts for Progression of Kidney Renal Clear Cell Carcinoma. Front Genet 2021; 12:736156. [PMID: 34630525 PMCID: PMC8495159 DOI: 10.3389/fgene.2021.736156] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/08/2021] [Indexed: 12/24/2022] Open
Abstract
Kidney renal clear cell carcinoma (KIRC) is the most common malignant kidney tumor as its characterization of highly metastatic potential. Patients with KIRC are associated with poor clinical outcomes with limited treatment options. Up to date, the underlying molecular mechanisms of KIRC pathogenesis and progression are still poorly understood. Instead, particular features of Cancer-Associated Fibroblasts (CAFs) are highly associated with adverse outcomes of patients with KIRC, while the precise regulatory mechanisms at the epigenetic level of KIRC in governing CAFs remain poorly defined. Therefore, explore the correlations between epigenetic regulation and CAFs infiltration may help us better understand the molecular mechanisms behind KIRC progression, which may improve clinical outcomes and patients quality of life. In the present study, we identified a set of clinically relevant CAFs-related methylation-driven genes, NAT8, TINAG, and SLC17A1 in KIRC. Our comprehensive in silico analysis revealed that the expression levels of NAT8, TINAG, and SLC17A1 are highly associated with outcomes of patients with KIRC. Meanwhile, their methylation levels are highly correlates with the severity of KIRC. We suggest that the biomarkers might contribute to CAFs infiltration in KIRC. Taken together, our study provides a set of promising biomarkers which could predict the progression and prognosis of KIRC. Our findings could have potential prognosis and therapeutic significance in the progression of KIRC.
Collapse
Affiliation(s)
- Yongke You
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen, China
| | - Yeping Ren
- Department of Nephrology, Shenzhen University General Hospital, Shenzhen, China
| | - Jikui Liu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianhua Qu
- Department of Hepatobiliary Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
33
|
Gilardoni M, Léonço D, Caffin F, Gros-Désormeaux F, Eldin C, Béal D, Ouzia S, Junot C, Fenaille F, Piérard C, Douki T. Evidence for the systemic diffusion of (2-chloroethyl)-ethyl-sulfide, a sulfur mustard analog, and its deleterious effects in brain. Toxicology 2021; 462:152950. [PMID: 34534560 DOI: 10.1016/j.tox.2021.152950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 10/20/2022]
Abstract
Sulfur mustard, a chemical warfare agent known to be a vesicant of skin, readily diffuses in the blood stream and reaches internal organs. In the present study, we used the analog (2-chloroethyl)-ethyl-sulfide (CEES) to provide novel data on the systemic diffusion of vesicants and on their ability to induce brain damage, which result in neurological disorders. SKH-1 hairless mice were topically exposed to CEES and sacrificed at different time until 14 days after exposure. A plasma metabolomics study showed a strong systemic impact following a self-protection mechanism to alleviate the injury of CEES exposure. This result was confirmed by the quantification of specific biomarkers in plasma. Those were the conjugates of CEES with glutathione (GSH-CEES), cysteine (Cys-CEES) and N-acetyl-cysteine (NAC-CEES), as well as the guanine adduct (N7Gua-CEES). In brain, N7Gua-CEES could be detected both in DNA and in organ extracts. Similarly, GSH-CEES, Cys-CEES and NAC-CEES were present in the extracts until day14. Altogether, these results, based on novel exposure markers, confirm the ability of vesicants to induce internal damage following dermal exposure. The observation of alkylation damage to glutathione and DNA in brain provides an additional mechanism to the neurological insult of SM.
Collapse
Affiliation(s)
- Marie Gilardoni
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Daniel Léonço
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Fanny Caffin
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Fanny Gros-Désormeaux
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Camille Eldin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France
| | - Sadia Ouzia
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Christophe Junot
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - François Fenaille
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, F-91191, Gif sur Yvette, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées (IRBA), Place Général Valérie André, BP 73, 91223, Brétigny-sur-Orge Cedex, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, F-38000, Grenoble, France.
| |
Collapse
|
34
|
Schultheiss UT, Kosch R, Kotsis F, Altenbuchinger M, Zacharias HU. Chronic Kidney Disease Cohort Studies: A Guide to Metabolome Analyses. Metabolites 2021; 11:460. [PMID: 34357354 PMCID: PMC8304377 DOI: 10.3390/metabo11070460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 12/14/2022] Open
Abstract
Kidney diseases still pose one of the biggest challenges for global health, and their heterogeneity and often high comorbidity load seriously hinders the unraveling of their underlying pathomechanisms and the delivery of optimal patient care. Metabolomics, the quantitative study of small organic compounds, called metabolites, in a biological specimen, is gaining more and more importance in nephrology research. Conducting a metabolomics study in human kidney disease cohorts, however, requires thorough knowledge about the key workflow steps: study planning, sample collection, metabolomics data acquisition and preprocessing, statistical/bioinformatics data analysis, and results interpretation within a biomedical context. This review provides a guide for future metabolomics studies in human kidney disease cohorts. We will offer an overview of important a priori considerations for metabolomics cohort studies, available analytical as well as statistical/bioinformatics data analysis techniques, and subsequent interpretation of metabolic findings. We will further point out potential research questions for metabolomics studies in the context of kidney diseases and summarize the main results and data availability of important studies already conducted in this field.
Collapse
Affiliation(s)
- Ulla T. Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (U.T.S.); (F.K.)
- Department of Medicine IV—Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Robin Kosch
- Computational Biology, University of Hohenheim, 70599 Stuttgart, Germany;
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany; (U.T.S.); (F.K.)
- Department of Medicine IV—Nephrology and Primary Care, Faculty of Medicine and Medical Center, University of Freiburg, 79106 Freiburg, Germany
| | - Michael Altenbuchinger
- Institute of Medical Bioinformatics, University Medical Center Göttingen, 37077 Göttingen, Germany;
| | - Helena U. Zacharias
- Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
35
|
Rabbani N, Thornalley PJ. Protein glycation - biomarkers of metabolic dysfunction and early-stage decline in health in the era of precision medicine. Redox Biol 2021; 42:101920. [PMID: 33707127 PMCID: PMC8113047 DOI: 10.1016/j.redox.2021.101920] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 02/16/2021] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Protein glycation provides a biomarker in widespread clinical use, glycated hemoglobin HbA1c (A1C). It is a biomarker for diagnosis of diabetes and prediabetes and of medium-term glycemic control in patients with established diabetes. A1C is an early-stage glycation adduct of hemoglobin with glucose; a fructosamine derivative. Glucose is an amino group-directed glycating agent, modifying N-terminal and lysine sidechain amino groups. A similar fructosamine derivative of serum albumin, glycated albumin (GA), finds use as a biomarker of glycemic control, particularly where there is interference in use of A1C. Later stage adducts, advanced glycation endproducts (AGEs), are formed by the degradation of fructosamines and by the reaction of reactive dicarbonyl metabolites, such as methylglyoxal. Dicarbonyls are arginine-directed glycating agents forming mainly hydroimidazolone AGEs. Glucosepane and pentosidine, an intense fluorophore, are AGE covalent crosslinks. Cellular proteolysis of glycated proteins forms glycated amino acids, which are released into plasma and excreted in urine. Development of diagnostic algorithms by artificial intelligence machine learning is enhancing the applications of glycation biomarkers. Investigational glycation biomarkers are in development for: (i) healthy aging; (ii) risk prediction of vascular complications of diabetes; (iii) diagnosis of autism; and (iv) diagnosis and classification of early-stage arthritis. Protein glycation biomarkers are influenced by heritability, aging, decline in metabolic, vascular, renal and skeletal health, and other factors. They are applicable to populations of differing ethnicities, bridging the gap between genotype and phenotype. They are thereby likely to find continued and expanding clinical use, including in the current era of developing precision medicine, reporting on multiple pathogenic processes and supporting a precision medicine approach.
Collapse
Affiliation(s)
- Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar; Biomedical & Pharmaceutical Research Unit, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| | - Paul J Thornalley
- Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
36
|
Gonçalves-Dias C, Sequeira CO, Vicente JB, Correia MJ, Coelho NR, Morello J, Antunes AMM, Soto K, Monteiro EC, Pereira SA. A Mechanistic-Based and Non-invasive Approach to Quantify the Capability of Kidney to Detoxify Cysteine-Disulfides. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1306:109-120. [PMID: 33959909 DOI: 10.1007/978-3-030-63908-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Our general goal was to non-invasively evaluate kidney tubular dysfunction. We developed a strategy based on cysteine (Cys) disulfide stress mechanism that underlies kidney dysfunction. There is scarce information regarding the fate of Cys-disulfides (CysSSX), but evidence shows they might be detoxified in proximal tubular cells by the action of N-acetyltransferase 8 (NAT8). This enzyme promotes the addition of an N-acetyl moiety to cysteine-S-conjugates, forming mercapturates that are eliminated in urine. Therefore, we developed a strategy to quantify mercapturates of CysSSX in urine as surrogate of disulfide stress and NAT8 activity in kidney tubular cells. We use a reduction agent for the selective reduction of disulfide bonds. The obtained N-acetylcysteine moiety of the mercapturates from cysteine disulfides was monitored by fluorescence detection. The method was applied to urine from mice and rat as well as individuals with healthy kidney and kidney disease.
Collapse
Affiliation(s)
- Clara Gonçalves-Dias
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Catarina O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - João B Vicente
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal
| | - M João Correia
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Nuno R Coelho
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Judit Morello
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Alexandra M M Antunes
- Centro de Química Estrutural (CQE), Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Karina Soto
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Hospital Prof. Dr. Fernando da Fonseca, EPE, Amadora, Portugal
| | - Emília C Monteiro
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Sofia A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
| |
Collapse
|
37
|
Ngo-Bitoungui VJ, Belinga S, Mnika K, Masekoameng T, Nembaware V, Essomba RG, Ngo-Sack F, Awandare G, Mazandu GK, Wonkam A. Investigations of Kidney Dysfunction-Related Gene Variants in Sickle Cell Disease Patients in Cameroon (Sub-Saharan Africa). Front Genet 2021; 12:595702. [PMID: 33790942 PMCID: PMC8005585 DOI: 10.3389/fgene.2021.595702] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/19/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Renal dysfunctions are associated with increased morbidity and mortality in sickle cell disease (SCD). Early detection and subsequent management of SCD patients at risk for renal failure and dysfunctions are essential, however, predictors that can identify patients at risk of developing renal dysfunction are not fully understood. METHODS In this study, we have investigated the association of 31 known kidney dysfunctions-related variants detected in African Americans from multi-ethnic genome wide studies (GWAS) meta-analysis, to kidney-dysfunctions in a group of 413 Cameroonian patients with SCD. Systems level bioinformatics analyses were performed, employing protein-protein interaction networks to further interrogate the putative associations. RESULTS Up to 61% of these patients had micro-albuminuria, 2.4% proteinuria, 71% glomerular hyperfiltration, and 5.9% had renal failure. Six variants are significantly associated with the two quantifiable phenotypes of kidney dysfunction (eGFR and crude-albuminuria): A1CF-rs10994860 (P = 0.02020), SYPL2-rs12136063 (P = 0.04208), and APOL1 (G1)-rs73885319 (P = 0.04610) are associated with eGFR; and WNT7A-rs6795744 (P = 0.03730), TMEM60-rs6465825 (P = 0.02340), and APOL1 (G2)-rs71785313 (P = 0.03803) observed to be protective against micro-albuminuria. We identified a protein-protein interaction sub-network containing three of these gene variants: APOL1, SYPL2, and WNT7A, connected to the Nuclear factor NF-kappa-B p105 subunit (NFKB1), revealed to be essential and might indirectly influence extreme phenotypes. Interestingly, clinical variables, including body mass index (BMI), systolic blood pressure, vaso-occlusive crisis (VOC), and haemoglobin (Hb), explain better the kidney phenotypic variations in this SCD population. CONCLUSION This study highlights a strong contribution of haematological indices (Hb level), anthropometric variables (BMI, blood pressure), and clinical events (i.e., vaso-occlusive crisis) to kidney dysfunctions in SCD, rather than known genetic factors. Only 6/31 characterised gene-variants are associated with kidney dysfunction phenotypes in SCD samples from Cameroon. The data reveal and emphasise the urgent need to extend GWAS studies in populations of African ancestries living in Africa, and particularly for kidney dysfunctions in SCD.
Collapse
Affiliation(s)
- Valentina J. Ngo-Bitoungui
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon-Accra, Ghana
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Microbiology Haematology and Immunology, University of Dschang, Yaoundé, Cameroon
| | | | - Khuthala Mnika
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Tshepiso Masekoameng
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Victoria Nembaware
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon-Accra, Ghana
| | - René G. Essomba
- National Public Health Laboratory, Yaoundé, Cameroon
- Department of Microbiology, Parasitology, Haematology, Immunology and Infectious Diseases, Faculty of Medicine and Biomedical Sciences, University of Yaounde 1, Yaounde, Cameroon
| | - Francoise Ngo-Sack
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala, Cameroon
| | - Gordon Awandare
- West African Centre for Cell Biology of Infectious Pathogens, University of Ghana, Legon-Accra, Ghana
| | - Gaston K. Mazandu
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- African Institute for Mathematical Sciences, Muizenberg, Cape Town, South Africa
| | - Ambroise Wonkam
- Division of Human Genetics, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
38
|
Reynolds RJ, Irvin MR, Bridges SL, Kim H, Merriman TR, Arnett DK, Singh JA, Sumpter NA, Lupi AS, Vazquez AI. Genetic correlations between traits associated with hyperuricemia, gout, and comorbidities. Eur J Hum Genet 2021; 29:1438-1445. [PMID: 33637890 DOI: 10.1038/s41431-021-00830-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 12/06/2020] [Accepted: 02/10/2021] [Indexed: 01/26/2023] Open
Abstract
Hypertension, obesity, chronic kidney disease and type 2 diabetes are comorbidities that have very high prevalence among persons with hyperuricemia (serum urate > 6.8 mg/dL) and gout. Here we use multivariate genetic models to test the hypothesis that the co-association of traits representing hyperuricemia and its comorbidities is genetically based. Using Bayesian whole-genome regression models, we estimated the genetic marker-based variance and the covariance between serum urate, serum creatinine, systolic blood pressure (SBP), blood glucose and body mass index (BMI) from two independent family-based studies: The Framingham Heart Study-FHS and the Hypertension Genetic Epidemiology Network study-HyperGEN. The main genetic findings that replicated in both FHS and HyperGEN, were (1) creatinine was genetically correlated only with urate and (2) BMI was genetically correlated with urate, SBP, and glucose. The environmental covariance among the traits was generally highest for trait pairs involving BMI. The genetic overlap of traits representing the comorbidities of hyperuricemia and gout appears to cluster in two separate axes of genetic covariance. Because creatinine is genetically correlated with urate but not with metabolic traits, this suggests there is one genetic module of shared loci associated with hyperuricemia and chronic kidney disease. Another module of shared loci may account for the association of hyperuricemia and metabolic syndrome. This study provides a clear quantitative genetic basis for the clustering of comorbidities with hyperuricemia.
Collapse
Affiliation(s)
- Richard J Reynolds
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.
| | - M Ryan Irvin
- Department of Epidemiology, UAB, Birmingham, AL, USA
| | - S Louis Bridges
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Hwasoon Kim
- Duke Clinical Research Institute, Durham, NC, USA
| | - Tony R Merriman
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Donna K Arnett
- College of Public Health, University of Kentucky, Lexington, KY, USA
| | - Jasvinder A Singh
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA.,Birmingham VA Medical Center, Birmingham, AL, USA
| | - Nicholas A Sumpter
- Department of Medicine, Division of Clinical Immunology and Rheumatology, University of Alabama at Birmingham (UAB), Birmingham, AL, USA
| | - Alexa S Lupi
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
| | - Ana I Vazquez
- Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, USA. .,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
39
|
Roser M, Béal D, Eldin C, Gudimard L, Caffin F, Gros-Désormeaux F, Léonço D, Fenaille F, Junot C, Piérard C, Douki T. Glutathione conjugates of the mercapturic acid pathway and guanine adduct as biomarkers of exposure to CEES, a sulfur mustard analog. Anal Bioanal Chem 2021; 413:1337-1351. [PMID: 33410976 DOI: 10.1007/s00216-020-03096-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/23/2020] [Accepted: 11/25/2020] [Indexed: 12/20/2022]
Abstract
Sulfur mustard (SM), a chemical warfare agent, is a strong alkylating compound that readily reacts with numerous biomolecules. The goal of the present work was to define and validate new biomarkers of exposure to SM that could be easily accessible in urine or plasma. Because investigations using SM are prohibited by the Organisation for the Prohibition of Chemical Weapons, we worked with 2-chloroethyl ethyl sulfide (CEES), a monofunctional analog of SM. We developed an ultra-high-pressure liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) approach to the conjugate of CEES to glutathione and two of its metabolites: the cysteine and the N-acetylcysteine conjugates. The N7-guanine adduct of CEES (N7Gua-CEES) was also targeted. After synthesizing the specific biomarkers, a solid-phase extraction protocol and a UHPLC-MS/MS method with isotopic dilution were optimized. We were able to quantify N7Gua-CEES in the DNA of HaCaT keratinocytes and of explants of human skin exposed to CEES. N7Gua-CEES was also detected in the culture medium of these two models, together with the glutathione and the cysteine conjugates. In contrast, the N-acetylcysteine conjugate was not detected. The method was then applied to plasma from mice cutaneously exposed to CEES. All four markers could be detected. Our present results thus validate both the analytical technique and the biological relevance of new, easily quantifiable biomarkers of exposure to CEES. Because CEES behaves very similar to SM, the results are promising for application to this toxic of interest.
Collapse
Affiliation(s)
- Marie Roser
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - David Béal
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Camille Eldin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Leslie Gudimard
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France
| | - Fanny Caffin
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Fanny Gros-Désormeaux
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Daniel Léonço
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - François Fenaille
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Christophe Junot
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, 91191, Gif-sur-Yvette, France
| | - Christophe Piérard
- Institut de Recherche Biomédicale des Armées (IRBA), 91223, Brétigny-sur-Orge, France
| | - Thierry Douki
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SyMMES, 38000, Grenoble, France.
| |
Collapse
|
40
|
Luo S, Surapaneni A, Zheng Z, Rhee EP, Coresh J, Hung AM, Nadkarni GN, Yu B, Boerwinkle E, Tin A, Arking DE, Steinbrenner I, Schlosser P, Köttgen A, Grams ME. NAT8 Variants, N-Acetylated Amino Acids, and Progression of CKD. Clin J Am Soc Nephrol 2020; 16:37-47. [PMID: 33380473 PMCID: PMC7792648 DOI: 10.2215/cjn.08600520] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 11/04/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND AND OBJECTIVES Genetic variants in NAT8, a liver- and kidney-specific acetyltransferase encoding gene, have been associated with eGFR and CKD in European populations. Higher circulating levels of two NAT8-associated metabolites, N-δ-acetylornithine and N-acetyl-1-methylhistidine, have been linked to lower eGFR and higher risk of incident CKD in the Black population. We aimed to expand upon prior studies to investigate associations between rs13538, a missense variant in NAT8, N-acetylated amino acids, and kidney failure in multiple, well-characterized cohorts. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS We conducted analyses among participants with genetic and/or serum metabolomic data in the African American Study of Kidney Disease and Hypertension (AASK; n=962), the Atherosclerosis Risk in Communities (ARIC) study (n=1050), and BioMe, an electronic health record-linked biorepository (n=680). Separately, we evaluated associations between rs13538, urinary N-acetylated amino acids, and kidney failure in participants in the German CKD (GCKD) study (n=1624). RESULTS Of 31 N-acetylated amino acids evaluated, the circulating and urinary levels of 14 were associated with rs13538 (P<0.05/31). Higher circulating levels of five of these N-acetylated amino acids, namely, N-δ-acetylornithine, N-acetyl-1-methylhistidine, N-acetyl-3-methylhistidine, N-acetylhistidine, and N2,N5-diacetylornithine, were associated with kidney failure, after adjustment for confounders and combining results in meta-analysis (combined hazard ratios per two-fold higher amino acid levels: 1.48, 1.44, 1.21, 1.65, and 1.41, respectively; 95% confidence intervals: 1.21 to 1.81, 1.22 to 1.70, 1.08 to 1.37, 1.29 to 2.10, and 1.17 to 1.71, respectively; all P values <0.05/14). None of the urinary levels of these N-acetylated amino acids were associated with kidney failure in the GCKD study. CONCLUSIONS We demonstrate significant associations between an NAT8 gene variant and 14 N-acetylated amino acids, five of which had circulation levels that were associated with kidney failure.
Collapse
Affiliation(s)
- Shengyuan Luo
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | - Aditya Surapaneni
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | - Zihe Zheng
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eugene P. Rhee
- Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | - Adriana M. Hung
- Geriatric Research Education Clinical Center, Veteran Administration Tennessee Valley Health Care System, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Girish N. Nadkarni
- The Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
- BioMe Phenomics Center, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Sciences Center at Houston School of Public Health, Houston, Texas
| | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics and Environmental Sciences, University of Texas Health Sciences Center at Houston School of Public Health, Houston, Texas
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Pascal Schlosser
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Anna Köttgen
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Morgan E. Grams
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
- Welch Center for Prevention, Epidemiology, and Clinical Research, Johns Hopkins University, Baltimore, Maryland
- Division of Nephrology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
41
|
Perkins BA, Rabbani N, Weston A, Adaikalakoteswari A, Lee JA, Lovblom LE, Cardinez N, Thornalley PJ. High fractional excretion of glycation adducts is associated with subsequent early decline in renal function in type 1 diabetes. Sci Rep 2020; 10:12709. [PMID: 32728119 PMCID: PMC7391737 DOI: 10.1038/s41598-020-69350-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 06/10/2020] [Indexed: 12/18/2022] Open
Abstract
Increased protein glycation, oxidation and nitration is linked to the development of diabetic nephropathy. We reported levels of serum protein glycation, oxidation and nitration and related hydrolysis products, glycation, oxidation and nitration free adducts in patients with type 1 diabetes (T1DM) during onset of microalbuminuria (MA) from the First Joslin Kidney Study, a prospective case-control study of patients with T1DM with and without early decline in GFR. Herein we report urinary excretion of the latter analytes and related fractional excretion values, exploring the link to MA and early decline in GFR. We recruited patients with T1DM and normoalbuminuria (NA) (n = 30) or new onset MA with and without early GFR decline (n = 22 and 33, respectively) for this study. We determined urinary protein glycation, oxidation and nitration free adducts by stable isotopic dilution analysis liquid chromatography-tandem mass spectrometry (LC-MS/MS) and deduced fractional excretion using reported plasma levels and urinary and plasma creatinine estimates. We found urinary excretion of pentosidine was increased ca. twofold in patients with MA, compared to normoalbuminuria (0.0442 vs 0.0103 nmol/mg creatinine, P < 0.0001), and increased ca. threefold in patients with early decline in GFR, compared to patients with stable GFR (0.0561 vs 0.0176 nmol/mg creatinine, P < 0.01). Urinary excretion of all other analytes was unchanged between the study groups. Remarkably, fractional excretions of 6 lysine and arginine-derived glycation free adducts were higher in patients with early decline in GFR, compared to those with stable GFR. Impaired tubular reuptake of glycation free adducts by lysine and arginine transporter proteins in patients with early GFR decline is likely involved. We conclude that higher fractional excretions of glycation adducts are potential biomarkers for early GFR decline in T1DM and MA. Measurement of these analytes could provide the basis for identifying patients at risk of early decline in renal function to target and intensify renoprotective treatment.
Collapse
Affiliation(s)
- Bruce A Perkins
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Naila Rabbani
- Department of Basic Medical Science, College of Medicine, QU Health, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Andrew Weston
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK.,University College London School of Pharmacy, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Antonysunil Adaikalakoteswari
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK.,School of Science and Technology, Nottingham Trent University, Clifton Lane, Nottingham, NG11 8NS, UK
| | - Justin A Lee
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Leif E Lovblom
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Nancy Cardinez
- Division of Endocrinology and Metabolism, Department of Medicine, University of Toronto, Mount Sinai Hospital, Toronto, ON, Canada
| | - Paul J Thornalley
- Clinical Sciences Research Institute, Warwick Medical School, University of Warwick, Coventry, UK. .,Diabetes Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O. Box 34110, Doha, Qatar.
| |
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW Uromodulin (UMOD), also known as Tamm-Horsfall protein, is the most abundant protein in human urine. UMOD has multiple functions such as protection against urinary tract infections and nephrolithiasis. This review outlines recent progress made in UMOD's role in renal physiology, tubular transport, and mineral metabolism. RECENT FINDINGS UMOD is mostly secreted in the thick ascending limb (TAL) and to a lesser degree in the distal convoluted tubule (DCT). UMOD secretion is regulated by the calcium-sensing receptor. UMOD upregulates ion channels [e.g., renal outer medullary potassium channel, transient receptor potential cation channel subfamily V member 5, and transient receptor potential melastatin 6 (TRPM6)] and cotransporters [e.g., Na,K,2Cl cotransporter (NKCC2) and sodium-chloride cotransporter (NCC)] in the TAL and DCT. Higher serum UMOD concentrations have been associated with higher renal function and preserved renal reserve. Higher serum UMOD has also been linked to a lower risk of cardiovascular disease and diabetes mellitus. SUMMARY With better serum UMOD detection assays the extent of different functions for UMOD is still expanding. Urinary UMOD regulates different tubular ion channels and cotransporters. Variations of urinary UMOD secretion can so contribute to common disorders such as hypertension or nephrolithiasis.
Collapse
|
43
|
Fazzini F, Lamina C, Raschenberger J, Schultheiss UT, Kotsis F, Schönherr S, Weissensteiner H, Forer L, Steinbrenner I, Meiselbach H, Bärthlein B, Wanner C, Eckardt KU, Köttgen A, Kronenberg F. Results from the German Chronic Kidney Disease (GCKD) study support association of relative telomere length with mortality in a large cohort of patients with moderate chronic kidney disease. Kidney Int 2020; 98:488-497. [PMID: 32641227 DOI: 10.1016/j.kint.2020.02.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/12/2020] [Accepted: 02/20/2020] [Indexed: 02/08/2023]
Abstract
Telomere length is known to be inversely associated with aging and has been proposed as a marker for aging-related diseases. Telomere attrition can be accelerated by oxidative stress and inflammation, both commonly present in patients with chronic kidney disease. Here, we investigated whether relative telomere length is associated with mortality in a large cohort of patients with chronic kidney disease stage G3 and A1-3 or G1-2 with overt proteinuria (A3) at enrollment. Relative telomere length was quantified in peripheral blood by a quantitative PCR method in 4,955 patients from the GCKD study, an ongoing prospective observational cohort. Complete four-year follow-up was available from 4,926 patients in whom we recorded 354 deaths. Relative telomere length was a strong and independent predictor of all-cause mortality. Each decrease of 0.1 relative telomere length unit was highly associated with a 14% increased risk of death (hazard ratio1.14 [95% confidence interval 1.06-1.22]) in a model adjusted for age, sex, baseline eGFR, urine albumin/creatinine ratio, diabetes mellitus, prevalent cardiovascular disease, LDL-cholesterol, HDL-cholesterol, smoking, body mass index, systolic and diastolic blood pressure, C-reactive protein and serum albumin. This translated to a 75% higher risk for those in the lowest compared to the highest quartile of relative telomere length. The association was mainly driven by 117 cardiovascular deaths (1.20 [1.05-1.35]) as well as 67 deaths due to infections (1.27 [1.07-1.50]). Thus, our findings support an association of shorter telomere length with all-cause mortality, cardiovascular mortality and death due to infections in patients with moderate chronic kidney disease.
Collapse
Affiliation(s)
- Federica Fazzini
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Claudia Lamina
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Julia Raschenberger
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ulla T Schultheiss
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Fruzsina Kotsis
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany; Renal Division, Department of Medicine IV, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Sebastian Schönherr
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hansi Weissensteiner
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Lukas Forer
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Inga Steinbrenner
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Heike Meiselbach
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Barbara Bärthlein
- Medical Centre for Information and Communication Technology (MIK), University Hospital Erlangen, Erlangen, Germany
| | - Christoph Wanner
- Division of Nephrology, Department of Internal Medicine I, University Hospital Würzburg, Würzburg, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Department of Nephrology and Medical Intensive Care, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Florian Kronenberg
- Institute of Genetic Epidemiology, Department of Genetics and Pharmacology, Medical University of Innsbruck, Innsbruck, Austria.
| | | |
Collapse
|
44
|
Abstract
The mercapturic acid pathway is a major route for the biotransformation of xenobiotic and endobiotic electrophilic compounds and their metabolites. Mercapturic acids (N-acetyl-l-cysteine S-conjugates) are formed by the sequential action of the glutathione transferases, γ-glutamyltransferases, dipeptidases, and cysteine S-conjugate N-acetyltransferase to yield glutathione S-conjugates, l-cysteinylglycine S-conjugates, l-cysteine S-conjugates, and mercapturic acids; these metabolites constitute a "mercapturomic" profile. Aminoacylases catalyze the hydrolysis of mercapturic acids to form cysteine S-conjugates. Several renal transport systems facilitate the urinary elimination of mercapturic acids; urinary mercapturic acids may serve as biomarkers for exposure to chemicals. Although mercapturic acid formation and elimination is a detoxication reaction, l-cysteine S-conjugates may undergo bioactivation by cysteine S-conjugate β-lyase. Moreover, some l-cysteine S-conjugates, particularly l-cysteinyl-leukotrienes, exert significant pathophysiological effects. Finally, some enzymes of the mercapturic acid pathway are described as the so-called "moonlighting proteins," catalytic proteins that exert multiple biochemical or biophysical functions apart from catalysis.
Collapse
Affiliation(s)
- Patrick E Hanna
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, MN, USA
| | - M W Anders
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
45
|
Genetic Variants Associated with Chronic Kidney Disease in a Spanish Population. Sci Rep 2020; 10:144. [PMID: 31924810 PMCID: PMC6954113 DOI: 10.1038/s41598-019-56695-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 12/11/2019] [Indexed: 12/12/2022] Open
Abstract
Chronic kidney disease (CKD) patients have many affected physiological pathways. Variations in the genes regulating these pathways might affect the incidence and predisposition to this disease. A total of 722 Spanish adults, including 548 patients and 174 controls, were genotyped to better understand the effects of genetic risk loci on the susceptibility to CKD. We analyzed 38 single nucleotide polymorphisms (SNPs) in candidate genes associated with the inflammatory response (interleukins IL-1A, IL-4, IL-6, IL-10, TNF-α, ICAM-1), fibrogenesis (TGFB1), homocysteine synthesis (MTHFR), DNA repair (OGG1, MUTYH, XRCC1, ERCC2, ERCC4), renin-angiotensin-aldosterone system (CYP11B2, AGT), phase-II metabolism (GSTP1, GSTO1, GSTO2), antioxidant capacity (SOD1, SOD2, CAT, GPX1, GPX3, GPX4), and some other genes previously reported to be associated with CKD (GLO1, SLC7A9, SHROOM3, UMOD, VEGFA, MGP, KL). The results showed associations of GPX1, GSTO1, GSTO2, UMOD, and MGP with CKD. Additionally, associations with CKD related pathologies, such as hypertension (GPX4, CYP11B2, ERCC4), cardiovascular disease, diabetes and cancer predisposition (ERCC2) were also observed. Different genes showed association with biochemical parameters characteristic for CKD, such as creatinine (GPX1, GSTO1, GSTO2, KL, MGP), glomerular filtration rate (GPX1, GSTO1, KL, ICAM-1, MGP), hemoglobin (ERCC2, SHROOM3), resistance index erythropoietin (SOD2, VEGFA, MTHFR, KL), albumin (SOD1, GSTO2, ERCC2, SOD2), phosphorus (IL-4, ERCC4 SOD1, GPX4, GPX1), parathyroid hormone (IL-1A, IL-6, SHROOM3, UMOD, ICAM-1), C-reactive protein (SOD2, TGFB1,GSTP1, XRCC1), and ferritin (SOD2, GSTP1, SLC7A9, GPX4). To our knowledge, this is the second comprehensive study carried out in Spanish patients linking genetic polymorphisms and CKD.
Collapse
|
46
|
Thio CHL, van der Most PJ, Nolte IM, van der Harst P, Bültmann U, Gansevoort RT, Snieder H. Evaluation of a genetic risk score based on creatinine-estimated glomerular filtration rate and its association with kidney outcomes. Nephrol Dial Transplant 2019; 33:1757-1764. [PMID: 29294079 DOI: 10.1093/ndt/gfx337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 10/27/2017] [Indexed: 01/03/2023] Open
Abstract
Background Meta-analysis of cross-sectional genome-wide association studies (GWAS) on creatinine-estimated glomerular filtration rate (eGFRcrea) identified 53 single-nucleotide polymorphisms (SNPs). These SNP effects can be aggregated into a genetic risk score (GRS) for chronic kidney disease (CKD). To assess its clinical utility, we examined associations with creatinine-estimated kidney outcomes, both cross-sectionally and longitudinally. Additionally, we examined associations with cystatin C-estimated kidney outcomes to verify that a GRS based on eGFRcrea SNPs represents the genetics underlying kidney function. Methods In the community-based Prevention of REnal and Vascular ENdstage Disease (PREVEND) study, we assessed eGFRcrea and eGFRcysc at baseline and four follow-up examinations. The GRS comprised 53 SNPs for eGFRcrea weighted for reported effect-sizes. We adjusted for baseline demographics and renal risk factors. Results We included 3649 subjects (median age 49 years, 52% male, median follow-up 11 years, n = 85 baseline CKD, n = 154 incident CKD). At baseline, a higher GRS associated with lower eGFRcrea {adjusted B [95% confidence interval (CI)] = -2.05 (-2.45 to - 1.65) mL/min/1.73 m2, P < 0.001} and higher CKD prevalence [adjusted odds ratio (95% CI) = 1.41 (1.12-1.77), P = 0.002]. During follow-up, a higher GRS associated with higher CKD incidence [adjusted hazard ratio (95% CI) = 1.28 (1.09-1.50), P = 0.004], but no longer significantly after adjustment for baseline eGFR. No significant association with eGFRcrea decline was found. Associations with cystatin C-estimated outcomes were similar. Conclusions The GRS robustly associated with baseline CKD and eGFR, independent of known risk factors. Associations with incident CKD were likely due to low baseline eGFR, not accelerated eGFR decline. The GRS for eGFRcrea likely represents the genetics underlying kidney function, not creatinine metabolism or underlying aetiologies. To improve the clinical utility of GWAS results for CKD, these need to specifically address eGFR decline and CKD incidence.
Collapse
Affiliation(s)
- Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ute Bültmann
- Department of Health Sciences, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Ron T Gansevoort
- Department of Nephrology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Centre Groningen, Groningen, The Netherlands
| |
Collapse
|
47
|
van der Wijst J, Belge H, Bindels RJM, Devuyst O. Learning Physiology From Inherited Kidney Disorders. Physiol Rev 2019; 99:1575-1653. [PMID: 31215303 DOI: 10.1152/physrev.00008.2018] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The identification of genes causing inherited kidney diseases yielded crucial insights in the molecular basis of disease and improved our understanding of physiological processes that operate in the kidney. Monogenic kidney disorders are caused by mutations in genes coding for a large variety of proteins including receptors, channels and transporters, enzymes, transcription factors, and structural components, operating in specialized cell types that perform highly regulated homeostatic functions. Common variants in some of these genes are also associated with complex traits, as evidenced by genome-wide association studies in the general population. In this review, we discuss how the molecular genetics of inherited disorders affecting different tubular segments of the nephron improved our understanding of various transport processes and of their involvement in homeostasis, while providing novel therapeutic targets. These include inherited disorders causing a dysfunction of the proximal tubule (renal Fanconi syndrome), with emphasis on epithelial differentiation and receptor-mediated endocytosis, or affecting the reabsorption of glucose, the handling of uric acid, and the reabsorption of sodium, calcium, and magnesium along the kidney tubule.
Collapse
Affiliation(s)
- Jenny van der Wijst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Hendrica Belge
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - René J M Bindels
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| | - Olivier Devuyst
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center , Nijmegen , The Netherlands ; Institute of Physiology, University of Zurich , Zurich , Switzerland ; and Division of Nephrology, Institute of Experimental and Clinical Research (IREC), Medical School, Université catholique de Louvain, Brussels, Belgium
| |
Collapse
|
48
|
Cyrus C, Chathoth S, Vatte C, Alrubaish N, Almuhanna O, Borgio JF, Al-Mueilo S, Al Muhanna F, Al Ali AK. Novel Haplotype Indicator for End-Stage Renal Disease Progression among Saudi Patients. Int J Nephrol 2019; 2019:1095215. [PMID: 31534799 PMCID: PMC6724424 DOI: 10.1155/2019/1095215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND End-stage renal disease (ESRD) is the result of hypertensive nephrosclerosis and chronic glomerular diseases and is associated with high morbidity and mortality. There are strong heritable components in the manifestation of the disease with a genetic predisposition to renal disorders, including focal segmental glomerulosclerosis and arterionephrosclerosis. Recent studies in genetics have examined modifiable risk factors that contribute to renal disease, and this has provided a deep insight into progressive kidney disease. Single-nucleotide polymorphisms at the proximity of SHROOM3, CST3, SLC7A9, and MYH9 genes have been associated with an increased risk of developing CKD and ESRD. METHODS A total of 160 CKD patients and 189 control subjects of Saudi origin participated in the study. Eight polymorphisms (SHROOM3-rs9992101, rs17319721; SLC7A9-rs4805834; MYH9-rs4821480, rs4821481, rs2032487, rs3752462; CST3-rs13038305) were genotyped using TaqMan assay, and the haplotype analysis was done using the HaploView 4.2 software. RESULTS Haplotype analysis revealed a novel haplotype "E6"-GTTT to be associated significantly with an increased risk for ESRD (p=0.0001) and CKD (p=0.03). CONCLUSION CKD is often silent until symptomatic uremia during the advanced stages of the disease. The newly identified haplotype will help recognize patients at risk for a rapid progression of CKD to ESRD. Accurate detection and mapping of the genetic variants facilitates improved risk stratification and development of improved and targeted therapeutic management for CKD.
Collapse
Affiliation(s)
- Cyril Cyrus
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Shahanas Chathoth
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Chittibabu Vatte
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nafie Alrubaish
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al-Khobar, Saudi Arabia
| | - Othman Almuhanna
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al-Khobar, Saudi Arabia
| | - J. Francis Borgio
- Institute for Research and Medical Consultation, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Samir Al-Mueilo
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al-Khobar, Saudi Arabia
| | - Fahd Al Muhanna
- Department of Internal Medicine, King Fahd Hospital of the University, Imam Abdulrahman Bin Faisal University, Al-Khobar, Saudi Arabia
| | - Amein K. Al Ali
- Department of Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| |
Collapse
|
49
|
Yasukochi Y, Sakuma J, Takeuchi I, Kato K, Oguri M, Fujimaki T, Horibe H, Yamada Y. Evolutionary history of disease-susceptibility loci identified in longitudinal exome-wide association studies. Mol Genet Genomic Med 2019; 7:e925. [PMID: 31402603 PMCID: PMC6732299 DOI: 10.1002/mgg3.925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 06/12/2019] [Accepted: 07/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Our longitudinal exome‐wide association studies previously detected various genetic determinants of complex disorders using ~26,000 single‐nucleotide polymorphisms (SNPs) that passed quality control and longitudinal medical examination data (mean follow‐up period, 5 years) in 4884–6022 Japanese subjects. We found that allele frequencies of several identified SNPs were remarkably different among four ethnic groups. Elucidating the evolutionary history of disease‐susceptibility loci may help us uncover the pathogenesis of the related complex disorders. Methods In the present study, we conducted evolutionary analyses such as extended haplotype homozygosity, focusing on genomic regions containing disease‐susceptibility loci and based on genotyping data of our previous studies and datasets from the 1000 Genomes Project. Results Our evolutionary analyses suggest that derived alleles of rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs closely located at 12q24.1 associated with type 2 diabetes mellitus, obesity, dyslipidemia, and three complex disorders (hypertension, hyperuricemia, and dyslipidemia), respectively, rapidly expanded after the human dispersion from Africa (Out‐of‐Africa). Allele frequencies of GGA3 and six SNPs at 12q24.1 appeared to have remarkably changed in East Asians, whereas the derived alleles of rs34902660 of SLC17A3 and rs7656604 at 4q13.3 might have spread across Japanese and non‐Africans, respectively, although we cannot completely exclude the possibility that allele frequencies of disease‐associated loci may be affected by demographic events. Conclusion Our findings indicate that derived allele frequencies of nine disease‐associated SNPs (rs78338345 of GGA3, rs7656604 at 4q13.3, rs34902660 of SLC17A3, and six SNPs at 12q24.1) identified in the longitudinal exome‐wide association studies largely increased in non‐Africans after Out‐of‐Africa.
Collapse
Affiliation(s)
- Yoshiki Yasukochi
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Jun Sakuma
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,Computer Science Department, College of Information Science, University of Tsukuba, Tsukuba, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ichiro Takeuchi
- CREST, Japan Science and Technology Agency, Kawaguchi, Japan.,RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.,Department of Computer Science, Nagoya Institute of Technology, Nagoya, Japan
| | - Kimihiko Kato
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Internal Medicine, Meitoh Hospital, Nagoya, Japan
| | - Mitsutoshi Oguri
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,Department of Cardiology, Kasugai Municipal Hospital, Kasugai, Japan
| | - Tetsuo Fujimaki
- Department of Cardiovascular Medicine, Inabe General Hospital, Inabe, Japan
| | - Hideki Horibe
- Department of Cardiovascular Medicine, Gifu Prefectural Tajimi Hospital, Tajimi, Japan
| | - Yoshiji Yamada
- Department of Human Functional Genomics, Advanced Science Research Promotion Center, Mie University, Tsu, Japan.,CREST, Japan Science and Technology Agency, Kawaguchi, Japan
| |
Collapse
|
50
|
Wuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A, Kirsten H, Giri A, Chai JF, Sveinbjornsson G, Tayo BO, Nutile T, Fuchsberger C, Marten J, Cocca M, Ghasemi S, Xu Y, Horn K, Noce D, van der Most PJ, Sedaghat S, Yu Z, Akiyama M, Afaq S, Ahluwalia TS, Almgren P, Amin N, Ärnlöv J, Bakker SJL, Bansal N, Baptista D, Bergmann S, Biggs ML, Biino G, Boehnke M, Boerwinkle E, Boissel M, Bottinger EP, Boutin TS, Brenner H, Brumat M, Burkhardt R, Butterworth AS, Campana E, Campbell A, Campbell H, Canouil M, Carroll RJ, Catamo E, Chambers JC, Chee ML, Chee ML, Chen X, Cheng CY, Cheng Y, Christensen K, Cifkova R, Ciullo M, Concas MP, Cook JP, Coresh J, Corre T, Sala CF, Cusi D, Danesh J, Daw EW, de Borst MH, De Grandi A, de Mutsert R, de Vries APJ, Degenhardt F, Delgado G, Demirkan A, Di Angelantonio E, Dittrich K, Divers J, Dorajoo R, Eckardt KU, Ehret G, Elliott P, Endlich K, Evans MK, Felix JF, Foo VHX, Franco OH, Franke A, Freedman BI, Freitag-Wolf S, Friedlander Y, Froguel P, Gansevoort RT, Gao H, Gasparini P, Gaziano JM, Giedraitis V, Gieger C, et alWuttke M, Li Y, Li M, Sieber KB, Feitosa MF, Gorski M, Tin A, Wang L, Chu AY, Hoppmann A, Kirsten H, Giri A, Chai JF, Sveinbjornsson G, Tayo BO, Nutile T, Fuchsberger C, Marten J, Cocca M, Ghasemi S, Xu Y, Horn K, Noce D, van der Most PJ, Sedaghat S, Yu Z, Akiyama M, Afaq S, Ahluwalia TS, Almgren P, Amin N, Ärnlöv J, Bakker SJL, Bansal N, Baptista D, Bergmann S, Biggs ML, Biino G, Boehnke M, Boerwinkle E, Boissel M, Bottinger EP, Boutin TS, Brenner H, Brumat M, Burkhardt R, Butterworth AS, Campana E, Campbell A, Campbell H, Canouil M, Carroll RJ, Catamo E, Chambers JC, Chee ML, Chee ML, Chen X, Cheng CY, Cheng Y, Christensen K, Cifkova R, Ciullo M, Concas MP, Cook JP, Coresh J, Corre T, Sala CF, Cusi D, Danesh J, Daw EW, de Borst MH, De Grandi A, de Mutsert R, de Vries APJ, Degenhardt F, Delgado G, Demirkan A, Di Angelantonio E, Dittrich K, Divers J, Dorajoo R, Eckardt KU, Ehret G, Elliott P, Endlich K, Evans MK, Felix JF, Foo VHX, Franco OH, Franke A, Freedman BI, Freitag-Wolf S, Friedlander Y, Froguel P, Gansevoort RT, Gao H, Gasparini P, Gaziano JM, Giedraitis V, Gieger C, Girotto G, Giulianini F, Gögele M, Gordon SD, Gudbjartsson DF, Gudnason V, Haller T, Hamet P, Harris TB, Hartman CA, Hayward C, Hellwege JN, Heng CK, Hicks AA, Hofer E, Huang W, Hutri-Kähönen N, Hwang SJ, Ikram MA, Indridason OS, Ingelsson E, Ising M, Jaddoe VWV, Jakobsdottir J, Jonas JB, Joshi PK, Josyula NS, Jung B, Kähönen M, Kamatani Y, Kammerer CM, Kanai M, Kastarinen M, Kerr SM, Khor CC, Kiess W, Kleber ME, Koenig W, Kooner JS, Körner A, Kovacs P, Kraja AT, Krajcoviechova A, Kramer H, Krämer BK, Kronenberg F, Kubo M, Kühnel B, Kuokkanen M, Kuusisto J, La Bianca M, Laakso M, Lange LA, Langefeld CD, Lee JJM, Lehne B, Lehtimäki T, Lieb W, Lim SC, Lind L, Lindgren CM, Liu J, Liu J, Loeffler M, Loos RJF, Lucae S, Lukas MA, Lyytikäinen LP, Mägi R, Magnusson PKE, Mahajan A, Martin NG, Martins J, März W, Mascalzoni D, Matsuda K, Meisinger C, Meitinger T, Melander O, Metspalu A, Mikaelsdottir EK, Milaneschi Y, Miliku K, Mishra PP, Mohlke KL, Mononen N, Montgomery GW, Mook-Kanamori DO, Mychaleckyj JC, Nadkarni GN, Nalls MA, Nauck M, Nikus K, Ning B, Nolte IM, Noordam R, O'Connell J, O'Donoghue ML, Olafsson I, Oldehinkel AJ, Orho-Melander M, Ouwehand WH, Padmanabhan S, Palmer ND, Palsson R, Penninx BWJH, Perls T, Perola M, Pirastu M, Pirastu N, Pistis G, Podgornaia AI, Polasek O, Ponte B, Porteous DJ, Poulain T, Pramstaller PP, Preuss MH, Prins BP, Province MA, Rabelink TJ, Raffield LM, Raitakari OT, Reilly DF, Rettig R, Rheinberger M, Rice KM, Ridker PM, Rivadeneira F, Rizzi F, Roberts DJ, Robino A, Rossing P, Rudan I, Rueedi R, Ruggiero D, Ryan KA, Saba Y, Sabanayagam C, Salomaa V, Salvi E, Saum KU, Schmidt H, Schmidt R, Schöttker B, Schulz CA, Schupf N, Shaffer CM, Shi Y, Smith AV, Smith BH, Soranzo N, Spracklen CN, Strauch K, Stringham HM, Stumvoll M, Svensson PO, Szymczak S, Tai ES, Tajuddin SM, Tan NYQ, Taylor KD, Teren A, Tham YC, Thiery J, Thio CHL, Thomsen H, Thorleifsson G, Toniolo D, Tönjes A, Tremblay J, Tzoulaki I, Uitterlinden AG, Vaccargiu S, van Dam RM, van der Harst P, van Duijn CM, Velez Edward DR, Verweij N, Vogelezang S, Völker U, Vollenweider P, Waeber G, Waldenberger M, Wallentin L, Wang YX, Wang C, Waterworth DM, Bin Wei W, White H, Whitfield JB, Wild SH, Wilson JF, Wojczynski MK, Wong C, Wong TY, Xu L, Yang Q, Yasuda M, Yerges-Armstrong LM, Zhang W, Zonderman AB, Rotter JI, Bochud M, Psaty BM, Vitart V, Wilson JG, Dehghan A, Parsa A, Chasman DI, Ho K, Morris AP, Devuyst O, Akilesh S, Pendergrass SA, Sim X, Böger CA, Okada Y, Edwards TL, Snieder H, Stefansson K, Hung AM, Heid IM, Scholz M, Teumer A, Köttgen A, Pattaro C. A catalog of genetic loci associated with kidney function from analyses of a million individuals. Nat Genet 2019; 51:957-972. [PMID: 31152163 PMCID: PMC6698888 DOI: 10.1038/s41588-019-0407-x] [Show More Authors] [Citation(s) in RCA: 555] [Impact Index Per Article: 92.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
Chronic kidney disease (CKD) is responsible for a public health burden with multi-systemic complications. Through trans-ancestry meta-analysis of genome-wide association studies of estimated glomerular filtration rate (eGFR) and independent replication (n = 1,046,070), we identified 264 associated loci (166 new). Of these, 147 were likely to be relevant for kidney function on the basis of associations with the alternative kidney function marker blood urea nitrogen (n = 416,178). Pathway and enrichment analyses, including mouse models with renal phenotypes, support the kidney as the main target organ. A genetic risk score for lower eGFR was associated with clinically diagnosed CKD in 452,264 independent individuals. Colocalization analyses of associations with eGFR among 783,978 European-ancestry individuals and gene expression across 46 human tissues, including tubulo-interstitial and glomerular kidney compartments, identified 17 genes differentially expressed in kidney. Fine-mapping highlighted missense driver variants in 11 genes and kidney-specific regulatory variants. These results provide a comprehensive priority list of molecular targets for translational research.
Collapse
Affiliation(s)
- Matthias Wuttke
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
- Renal Division, Department of Medicine IV, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Yong Li
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Man Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah, Salt Lake City, USA
| | - Karsten B Sieber
- Target Sciences-Genetics, GlaxoSmithKline, Collegeville, PA, USA
| | - Mary F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Mathias Gorski
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Adrienne Tin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Welch Center for Prevention, Epidemiology and Clinical Research, Baltimore, MD, USA
| | - Lihua Wang
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Anselm Hoppmann
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Holger Kirsten
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Ayush Giri
- Division of Quantitative Sciences, Department of Obstetrics & Gynecology, Vanderbilt Genetics Institute, Vanderbilt Epidemiology Center, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
- Biomedical Laboratory Research and Development, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Jin-Fang Chai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | | | - Bamidele O Tayo
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso'-CNR, Naples, Italy
| | - Christian Fuchsberger
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Jonathan Marten
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Massimiliano Cocca
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Sahar Ghasemi
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Yizhe Xu
- Division of Nephrology and Hypertension, Department of Medicine, University of Utah, Salt Lake City, USA
| | - Katrin Horn
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Damia Noce
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Peter J van der Most
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Sanaz Sedaghat
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Zhi Yu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Masato Akiyama
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Ophthalmology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Saima Afaq
- Department of Epidemiology and Biostatistics, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
- Institute of Public Health & Social Sciences, Khyber Medical University, Peshawar, Pakistan
| | | | - Peter Almgren
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan Ärnlöv
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- School of Health and Social Studies, Dalarna University, Stockholm, Sweden
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Nisha Bansal
- Division of Nephrology, University of Washington, Seattle, WA, USA
- Kidney Research Institute, University of Washington, Seattle, WA, USA
| | | | - Sven Bergmann
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Mary L Biggs
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia, Italy
| | - Michael Boehnke
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Eric Boerwinkle
- Human Genetics Center, University of Texas Health Science Center, Houston, TX, USA
| | - Mathilde Boissel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Erwin P Bottinger
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Digital Health Center, Hasso Plattner Institute and University of Potsdam, Potsdam, Germany
| | - Thibaud S Boutin
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Marco Brumat
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Ralph Burkhardt
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Adam S Butterworth
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Eric Campana
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Archie Campbell
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Harry Campbell
- Center for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Mickaël Canouil
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eulalia Catamo
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - John C Chambers
- Department of Epidemiology and Biostatistics, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Miao-Ling Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Miao-Li Chee
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Xu Chen
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Ching-Yu Cheng
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Ophthalmology and Visual Sciences Academic Clinical Program (Eye ACP), Duke-NUS Medical School, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Yurong Cheng
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany
| | - Kaare Christensen
- Unit of Epidemiology, Biostatistics and Biodemography, Department of Public Health, Southern Denmark University, Odense, Denmark
| | - Renata Cifkova
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic
- Department of Medicine II, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Marina Ciullo
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso'-CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Maria Pina Concas
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - James P Cook
- Department of Biostatistics, University of Liverpool, Liverpool, UK
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Tanguy Corre
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Daniele Cusi
- Institute of Biomedical Technologies, National Research Council of Italy, Milan, Italy
- Bio4Dreams-Business Nursery for Life Sciences, Milan, Italy
| | - John Danesh
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - E Warwick Daw
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Martin H de Borst
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Alessandro De Grandi
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Renée de Mutsert
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
| | - Aiko P J de Vries
- Section of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Frauke Degenhardt
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Graciela Delgado
- Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Ayse Demirkan
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Emanuele Di Angelantonio
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Katalin Dittrich
- Department of Women and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Center for Pediatric Research, University of Leipzig, Leipzig, Germany
| | - Jasmin Divers
- Public Health Sciences-Biostatistics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Rajkumar Dorajoo
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Kai-Uwe Eckardt
- Intensive Care Medicine, Charité, Berlin, Germany
- Department of Nephrology and Hypertension, Friedrich Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Georg Ehret
- Cardiology, Geneva University Hospitals, Geneva, Switzerland
| | - Paul Elliott
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
- Imperial College NIHR Biomedical Research Center, Imperial College London, London, UK
- Dementia Research Institute, Imperial College London, London, UK
- Health Data Research UK-London, London, UK
| | - Karlhans Endlich
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | - Michele K Evans
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Baltimore, MD, USA
| | - Janine F Felix
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Valencia Hui Xian Foo
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Oscar H Franco
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Bern, Switzerland
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Barry I Freedman
- Section on Nephrology, Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Sandra Freitag-Wolf
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Yechiel Friedlander
- School of Public Health and Community Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Philippe Froguel
- CNRS UMR 8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, University of Lille, Lille, France
- Department of Genomics of Common Disease, Imperial College London, London, UK
| | - Ron T Gansevoort
- Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - He Gao
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Paolo Gasparini
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - J Michael Gaziano
- Massachusetts Veterans Epidemiology Research and Information Center, VA Cooperative Studies Program, VA Boston Healthcare System, Boston, MA, USA
| | - Vilmantas Giedraitis
- Molecular Geriatrics, Department of Public Health and Caring Sciences, Uppsala University, Uppsala, Sweden
| | - Christian Gieger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giorgia Girotto
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Franco Giulianini
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Martin Gögele
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Scott D Gordon
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | | | - Vilmundur Gudnason
- Icelandic Heart Association, Kopavogur, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Toomas Haller
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Pavel Hamet
- Montreal University Hospital Research Center, CHUM, Montreal, Quebec, Canada
- Medpharmgene, Montreal, Quebec, Canada
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Bethesda, MD, USA
| | - Catharina A Hartman
- Interdisciplinary Center of Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Caroline Hayward
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Jacklyn N Hellwege
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
| | - Chew-Kiat Heng
- Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore, Singapore
| | - Andrew A Hicks
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Edith Hofer
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
- Institute for Medical Informatics, Statistics and Documentation, Medical University of Graz, Graz, Austria
| | - Wei Huang
- Department of Genetics, Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center, Shanghai, China
- Shanghai Industrial Technology Institute, Shanghai, China
| | - Nina Hutri-Kähönen
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Department of Pediatrics, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Shih-Jen Hwang
- NHLBI's Framingham Heart Study, Framingham, MA, USA
- The Center for Population Studies, NHLBI, Framingham, MA, USA
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Olafur S Indridason
- Division of Nephrology, Internal Medicine Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Erik Ingelsson
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
- Molecular Epidemiology and Science for Life Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Stanford Diabetes Research Center, Stanford University, Stanford, CA, USA
| | - Marcus Ising
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Vincent W V Jaddoe
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | | | - Jost B Jonas
- Department of Ophthalmology, Medical Faculty Mannheim, University Heidelberg, Mannheim, Germany
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Peter K Joshi
- Center for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Navya Shilpa Josyula
- Geisinger Research, Biomedical and Translational Informatics Institute, Rockville, MD, USA
| | - Bettina Jung
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital, Tampere, Finland
- Department of Clinical Physiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Yoichiro Kamatani
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Kyoto-McGill International Collaborative School in Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Candace M Kammerer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Masahiro Kanai
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mika Kastarinen
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
| | - Shona M Kerr
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Chiea-Chuen Khor
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
| | - Wieland Kiess
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Women and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Center for Pediatric Research, University of Leipzig, Leipzig, Germany
| | - Marcus E Kleber
- Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Wolfgang Koenig
- Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Epidemiology and Biostatistics, University of Ulm, Ulm, Germany
| | - Jaspal S Kooner
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Imperial College Healthcare NHS Trust, Imperial College London, London, UK
- MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
- National Heart and Lung Institute, Imperial College London, London, UK
| | - Antje Körner
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Department of Women and Child Health, Hospital for Children and Adolescents, University of Leipzig, Leipzig, Germany
- Center for Pediatric Research, University of Leipzig, Leipzig, Germany
| | - Peter Kovacs
- Integrated Research and Treatment Center Adiposity Diseases, University of Leipzig, Leipzig, Germany
| | - Aldi T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Alena Krajcoviechova
- Center for Cardiovascular Prevention, Charles University in Prague, First Faculty of Medicine and Thomayer Hospital, Prague, Czech Republic
- Department of Medicine II, Charles University in Prague, First Faculty of Medicine, Prague, Czech Republic
| | - Holly Kramer
- Department of Public Health Sciences, Loyola University Chicago, Maywood, IL, USA
- Division of Nephrology and Hypertension, Loyola University Chicago, Chicago, IL, USA
| | - Bernhard K Krämer
- Department of Medicine (Nephrology, Hypertensiology, Rheumatology, Endocrinology, Diabetology), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Florian Kronenberg
- Division of Genetic Epidemiology, Department of Medical Genetics, Molecular and Clinical Pharmacology, Medical University of Innsbruck, Innsbruck, Austria
| | - Michiaki Kubo
- RIKEN Center for Integrative Medical Sciences (IMS), Yokohama (Kanagawa), Japan
| | - Brigitte Kühnel
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Mikko Kuokkanen
- The Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
- Diabetes and Obesity Research Program, University of Helsinki, Helsinki, Finland
| | - Johanna Kuusisto
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Martina La Bianca
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | - Markku Laakso
- Department of Medicine, Kuopio University Hospital, Kuopio, Finland
- Institute of Clinical Medicine, Internal Medicine, University of Eastern Finland, Kuopio, Finland
| | - Leslie A Lange
- Division of Biomedical Informatics and Personalized Medicine, School of Medicine, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO, USA
| | - Carl D Langefeld
- Public Health Sciences-Biostatistics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Jeannette Jen-Mai Lee
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Benjamin Lehne
- Department of Epidemiology and Biostatistics, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank Popgen, Kiel University, Kiel, Germany
| | - Su-Chi Lim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Diabetes Center, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Lars Lind
- Cardiovascular Epidemiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Cecilia M Lindgren
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Jun Liu
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jianjun Liu
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Markus Loeffler
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Ruth J F Loos
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Mary Ann Lukas
- Target Sciences-Genetics, GlaxoSmithKline, Albuquerque, NM, USA
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Reedik Mägi
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Patrik K E Magnusson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Anubha Mahajan
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK
- Oxford Center for Diabetes, Endocrinology and Metabolism, University of Oxford, Oxford, UK
| | - Nicholas G Martin
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Jade Martins
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Winfried März
- Synlab Academy, Synlab Holding Deutschland GmbH, Mannheim, Germany
- Clinical Institute of Medical and Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
- Medical Clinic V, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Deborah Mascalzoni
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Koichi Matsuda
- Laboratory of Clinical Genome Sequencing, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Christa Meisinger
- Independent Research Group Clinical Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Epidemiology, Ludwig- Maximilians-Universität München at UNIKA-T Augsburg, Augsburg, Germany
| | - Thomas Meitinger
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Institute of Human Genetics, Helmholtz Zentrum München, Neuherberg, Germany
- Institute of Human Genetics, Technische Universität München, Munich, Germany
| | - Olle Melander
- Hypertension and Cardiovascular Disease, Department of Clincial Sciences Malmö, Lund University, Malmö, Sweden
| | - Andres Metspalu
- Estonian Genome Center, Institute of Genomics, University of Tartu, Tartu, Estonia
| | | | - Yuri Milaneschi
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Kozeta Miliku
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Pashupati P Mishra
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Nina Mononen
- Department of Clinical Chemistry, Fimlab Laboratories, Tampere, Finland
- Department of Clinical Chemistry, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
| | - Grant W Montgomery
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Queensland, Australia
| | - Dennis O Mook-Kanamori
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, the Netherlands
- Department of Public Health and Primary Care, Leiden University Medical Center, Leiden, the Netherlands
| | - Josyf C Mychaleckyj
- Center for Public Health Genomics, University of Virginia, Charlottesville, Charlottesville, VA, USA
| | - Girish N Nadkarni
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Glen Echo, MD, USA
| | - Matthias Nauck
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Institute of Clinical Chemistry and Laboratory Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Kjell Nikus
- Department of Cardiology, Heart Center, Tampere University Hospital, Tampere, Finland
- Department of Cardiology, Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Life Sciences, Tampere University, Tampere, Finland
| | - Boting Ning
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Ilja M Nolte
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Raymond Noordam
- Section of Gerontology and Geriatrics, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Michelle L O'Donoghue
- Cardiovascular Division, Brigham and Women's Hospital, Boston, MA, USA
- TIMI Study Group, Boston, MA, USA
| | - Isleifur Olafsson
- Department of Clinical Biochemistry, Landspitali University Hospital, Reykjavik, Iceland
| | - Albertine J Oldehinkel
- Interdisciplinary Center of Psychopathology and Emotion Regulation (ICPE), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Marju Orho-Melander
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden
| | - Willem H Ouwehand
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Sandosh Padmanabhan
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | | | - Runolfur Palsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Division of Nephrology, Internal Medicine Services, Landspitali-The National University Hospital of Iceland, Reykjavik, Iceland
| | - Brenda W J H Penninx
- Department of Psychiatry, VU University Medical Center, Amsterdam, the Netherlands
| | - Thomas Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Markus Perola
- National Institute for Health and Welfare, Helsinki, Finland
| | - Mario Pirastu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Li Punti, Sassari, Italy
| | - Nicola Pirastu
- Center for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Giorgio Pistis
- Department of Psychiatry, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Ozren Polasek
- Faculty of Medicine, University of Split, Split, Croatia
- Gen-info Ltd, Zagreb, Croatia
| | - Belen Ponte
- Service de Néphrologie, Geneva University Hospitals, Geneva, Switzerland
| | - David J Porteous
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Center for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
| | - Tanja Poulain
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Peter P Pramstaller
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy
| | - Michael H Preuss
- Charles Bronfman Institute for Personalized Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bram P Prins
- MRC/BHF Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Ton J Rabelink
- Section of Nephrology, Department of Internal Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory of Experimental Vascular Research, Leiden University Medical Center, Leiden, the Netherlands
| | - Laura M Raffield
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, Turku, Finland
- Research Center of Applied and Preventive Cardiovascular Medicine, University of Turku, Turku, Finland
| | | | - Rainer Rettig
- Institute of Physiology, University Medicine Greifswald, Karlsburg, Germany
| | - Myriam Rheinberger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Kenneth M Rice
- Department of Biostatistics, University of Washington, Seattle, WA, USA
| | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Fernando Rivadeneira
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Federica Rizzi
- Department of Health Sciences, University of Milan, Milano, Italy
- ePhood Scientific Unit, ePhood SRL, Milano, Italy
| | - David J Roberts
- NHS Blood and Transplant, BRC Oxford Haematology Theme; Nuffield Division of Clinical Laboratory Sciences; University of Oxford, Oxford, UK
| | - Antonietta Robino
- Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy
| | | | - Igor Rudan
- Center for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Rico Rueedi
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Daniela Ruggiero
- Institute of Genetics and Biophysics 'Adriano Buzzati-Traverso'-CNR, Naples, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Kathleen A Ryan
- Division of Endocrinology, Diabetes and Nutrition, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Yasaman Saba
- Molecular Biology and Biochemistry, Gottfried Schatz Research Center for Cell Signaling, Metabolism and Aging, Medical University of Graz, Graz, Austria
| | | | - Veikko Salomaa
- National Institute for Health and Welfare, Helsinki, Finland
| | - Erika Salvi
- Department of Health Sciences, University of Milan, Milano, Italy
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico 'Carlo Besta', Milan, Italy
| | - Kai-Uwe Saum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Helena Schmidt
- Institute of Molecular Biology and Biochemistry, Center for Molecular Medicine, Medical University of Graz, Graz, Austria
| | - Reinhold Schmidt
- Clinical Division of Neurogeriatrics, Department of Neurology, Medical University of Graz, Graz, Austria
| | - Ben Schöttker
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Network Aging Research, University of Heidelberg, Heidelberg, Germany
| | - Christina-Alexandra Schulz
- Diabetes and Cardiovascular Disease-Genetic Epidemiology, Department of Clincial Sciences in Malmö, Lund University, Malmö, Sweden
| | - Nicole Schupf
- Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Gertrude H. Sergievsky Center, Columbia University Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, USA
| | - Christian M Shaffer
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yuan Shi
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Albert V Smith
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | | | | | - Konstantin Strauch
- Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Chair of Genetic Epidemiology, IBE, Faculty of Medicine, Ludwig-Maximilians-Universität München, München, Germany
| | - Heather M Stringham
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Michael Stumvoll
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Per O Svensson
- Department of Clinical Science and Education, Karolinska Institutet, Södersjukhuset, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Silke Szymczak
- Institute of Medical Informatics and Statistics, Kiel University, University Hospital Schleswig-Holstein, Kiel, Germany
| | - E-Shyong Tai
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Salman M Tajuddin
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Baltimore, MD, USA
| | - Nicholas Y Q Tan
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Andrej Teren
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Heart Center Leipzig, Leipzig, Germany
| | - Yih-Chung Tham
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
| | - Joachim Thiery
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University of Leipzig, Leipzig, Germany
| | - Chris H L Thio
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Hauke Thomsen
- Division of Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | - Anke Tönjes
- Department of Endocrinology and Nephrology, University of Leipzig, Leipzig, Germany
| | - Johanne Tremblay
- Montreal University Hospital Research Center, CHUM, Montreal, Quebec, Canada
- CRCHUM, Montreal, Canada
| | - Ioanna Tzoulaki
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Hygiene and Epidemiology, University of Ioannina Medical School, Ioannina, Greece
| | - André G Uitterlinden
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Simona Vaccargiu
- Institute of Genetic and Biomedical Research, National Research Council of Italy, UOS of Sassari, Li Punti, Sassari, Italy
| | - Rob M van Dam
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Pim van der Harst
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
- Durrer Center for Cardiovascular Research, The Netherlands Heart Institute, Utrecht, the Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Digna R Velez Edward
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Department of Obstetrics and Gynecology, Institute for Medicine and Public Health, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Niek Verweij
- Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Suzanne Vogelezang
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Uwe Völker
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Peter Vollenweider
- Internal Medicine, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Gerard Waeber
- Internal Medicine, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Melanie Waldenberger
- Research Unit of Molecular Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Institute of Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Lars Wallentin
- Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Ya Xing Wang
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Chaolong Wang
- Genome Institute of Singapore, Agency for Science Technology and Research, Singapore, Singapore
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | | | - Wen Bin Wei
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Harvey White
- Green Lane Cardiovascular Service, Auckland City Hospital and University of Auckland, Auckland, New Zealand
| | - John B Whitfield
- QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Sarah H Wild
- Center for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - James F Wilson
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
- Center for Global Health Research, Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Charlene Wong
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Tien-Yin Wong
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Department of Ophthalmology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore, Singapore
| | - Liang Xu
- Beijing Institute of Ophthalmology, Beijing Key Laboratory of Ophthalmology and Visual Sciences, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Qiong Yang
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Masayuki Yasuda
- Singapore Eye Research Institute, Singapore National Eye Center, Singapore, Singapore
- Department of Ophthalmology, Tohoku University Graduate School of Medicine, Miyagi, Japan
| | | | - Weihua Zhang
- Department of Cardiology, Ealing Hospital, Middlesex, UK
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Alan B Zonderman
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, Intramural Research Program, US National Institutes of Health, Baltimore, MD, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, USA
- Department of Medicine, Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Murielle Bochud
- Institute of Social and Preventive Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, Department of Epidemiology, Department of Health Service, University of Washington, Seattle, WA, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, USA
| | - Veronique Vitart
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - James G Wilson
- Department of Physiology and Biophysics, University of Mississippi Medical Center, Jackson, MS, USA
| | - Abbas Dehghan
- Department of Epidemiology and Biostatistics, Faculty of Medicine, School of Public Health, Imperial College London, London, UK
- Department of Epidemiology and Biostatistics, MRC-PHE Center for Environment and Health, School of Public Health, Imperial College London, London, UK
| | - Afshin Parsa
- Division of Kidney, Urologic and Hematologic Diseases, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Kevin Ho
- Kidney Health Research Institute (KHRI), Geisinger, Danville, PA, USA
- Department of Nephrology, Geisinger, Danville, PA, USA
| | - Andrew P Morris
- Department of Biostatistics, University of Liverpool, Liverpool, UK
- Wellcome Trust Center for Human Genetics, University of Oxford, Oxford, UK
| | - Olivier Devuyst
- Institute of Physiology, University of Zurich, Zurich, Switzerland
| | - Shreeram Akilesh
- Kidney Research Institute, University of Washington, Seattle, WA, USA
- Anatomic Pathology, University of Washington Medical Center, Seattle, WA, USA
| | - Sarah A Pendergrass
- Geisinger Research, Biomedical and Translational Informatics Institute, Danville, PA, USA
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Carsten A Böger
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
- Department of Nephrology and Rheumatology, Kliniken Südostbayern, Regensburg, Germany
| | - Yukinori Okada
- Laboratory for Statistical Analysis, RIKEN Center for Integrative Medical Sciences (IMS), Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Todd L Edwards
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Division of Epidemiology, Department of Medicine, Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Harold Snieder
- Department of Epidemiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Adriana M Hung
- Department of Veteran's Affairs, Tennessee Valley Healthcare System (626)/Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Medical Center, Division of Nephrology & Hypertension, Nashville, TN, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg, Germany
| | - Markus Scholz
- Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Leipzig, Germany
- LIFE Research Center for Civilization Diseases, University of Leipzig, Leipzig, Germany
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- DZHK (German Center for Cardiovascular Research), partner site Greifswald, Greifswald, Germany
| | - Anna Köttgen
- Institute of Genetic Epidemiology, Department of Biometry, Epidemiology and Medical Bioinformatics, Faculty of Medicine and Medical Center-University of Freiburg, Freiburg, Germany.
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Cristian Pattaro
- Eurac Research, Institute for Biomedicine (affiliated with the University of Lübeck), Bolzano, Italy.
| |
Collapse
|