1
|
Andrade-Feraud CM, Acanda de la Rocha AM, Berlow NE, Duque S, Velazco A, Castillo D, Holcomb B, Coats ER, Ghurani YR, Lucey CM, Pearson B, Guilarte TR, Azzam DJ. Chronic arsenic exposure of ovarian surface and fallopian tube cultures induces giant and/or multinucleated cells with phagocytosis-like properties and an inflammatory phenotype. Toxicol Appl Pharmacol 2025; 500:117394. [PMID: 40368219 DOI: 10.1016/j.taap.2025.117394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 05/05/2025] [Accepted: 05/09/2025] [Indexed: 05/16/2025]
Abstract
Chronic exposure to arsenic, a toxic metalloid frequently found in groundwater and food, represents a significant environmental health risk and has been implicated in the etiology of several cancers, including ovarian cancer. However, the precise pathways through which arsenic exerts its toxic impact on the ovary are not fully understood. This study investigates the impact of chronic arsenic exposure at environmentally relevant concentrations (75 ppb or μg/L) on primary human ovarian surface (OCE1) and fallopian tube (FNE1) cultures derived from the same donor. These heterogeneous cultures provide a unique, human-relevant platform to investigate how chronic arsenic exposure influences distinct cell types within a shared microenvironment. Prolonged arsenic exposure induced significant cytotoxicity and promoted the formation of giant and/or multinucleated cells in both cultures. These cells exhibited phagocytosis-like properties, actively engulfing apoptotic debris. Transcriptomic analyses and pathway enrichment revealed robust activation of pro-inflammatory signaling, notably the canonical NF-κB pathway. This was marked by nuclear translocation of the NF-κB p65 subunit and elevated expression and secretion of pro-inflammatory cytokines, including TNFα, IL-6, and IL-8, driving a sustained inflammatory response. Moreover, arsenic-exposed cells displayed persistent DNA damage, as indicated by increased γ-H2AX foci, accompanied by nuclear structural alterations and elevated expression of cancer stem cell markers, including OCT2, CD133, and ALDH1. These findings suggest that arsenic-induced inflammation and genomic instability converge to promote a tumor-supportive microenvironment, highlighting the potential role of chronic arsenic exposure in ovarian carcinogenesis, particularly in the context of inflammation-driven carcinogenesis.
Collapse
Affiliation(s)
- Cristina M Andrade-Feraud
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Arlet M Acanda de la Rocha
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Noah E Berlow
- First Ascent Biomedical, Inc., United States of America
| | - Santiago Duque
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Alexander Velazco
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Diego Castillo
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Baylee Holcomb
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Ebony R Coats
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Yasmin R Ghurani
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Catherine M Lucey
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, United States of America
| | - Brandon Pearson
- Environmental and Molecular Toxicology, Oregon State University, OR, United States of America
| | - Tomás R Guilarte
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America
| | - Diana J Azzam
- Department of Environmental Health Sciences, Robert Stempel College of Public Health & Social Work, Florida International University, Miami, FL, United States of America.
| |
Collapse
|
2
|
El Baba R, Haidar Ahmad S, Vanhulle C, Vreux L, Plant E, Van Lint C, Herbein G. Formation of polyploid giant cancer cells and the transformative role of human cytomegalovirus IE1 protein. Cancer Lett 2025:217824. [PMID: 40436261 DOI: 10.1016/j.canlet.2025.217824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/20/2025] [Accepted: 05/24/2025] [Indexed: 06/02/2025]
Abstract
Human cytomegalovirus (HCMV) infection has been linked to various cancers, including glioblastoma (GB), breast cancer (BC), and ovarian epithelial cancer (OC) especially high grade serous ovarian cancer (HGSOC). HCMV gene products control tumorigenic cellular pathways and processes associated with all the hallmarks of cancer. Among the suspected HCMV proteins involved in cellular transformation, the immediate early-1 (IE1) protein stands out as a significant player. Herein, we presented the experimental evidence supporting HCMV-IE1 role as a reprogramming factor that induces the transformation of human ovarian epithelial cells (OECs) resulting in the generation of "CMV transformed ovarian epithelial cells-IE1″ or CTO-IE1. These transformed cells exhibit similarities to those previously reported by our group, following infection with the high-risk oncogenic HCMV strain DB. HCMV-IE1-DB protein triggered distinct cellular and molecular mechanisms in stably transduced OECs. This included downregulation of Rb/p53 and upregulation of Myc/EZH2, concurrent with the emergence of polyploid giant cancer cells (PGCCs) and giant cell cycling in the culture. HCMV-IE1-DB silencing limited cellular transformation and stemness. In HGSOC, PGCCs were detected in the presence of IE1; the latter positively correlated with Myc. In addition, HCMV IE1 exhibits transforming capabilities in human mammary epithelial cells (HMECs) and human astrocytes (HAs) in vitro, reflecting its potential role in the transformation observed in vivo. This highlights the tumorigenic properties of Myc/EZH2 in the context of IE1-mediated transformation parallel to PGCCs appearance.
Collapse
Affiliation(s)
- Ranim El Baba
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France; Apex Center for Medical Research, Besançon, France
| | - Sandy Haidar Ahmad
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France
| | - Caroline Vanhulle
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), Gosselies, 6041, Belgium
| | - Laure Vreux
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), Gosselies, 6041, Belgium
| | - Estelle Plant
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), Gosselies, 6041, Belgium
| | - Carine Van Lint
- Service of Molecular Virology, Department of Molecular Biology, Université Libre de Bruxelles (ULB), Gosselies, 6041, Belgium
| | - Georges Herbein
- Department of Pathogens & Inflammation-EPILAB Laboratory EA4266, University of Franche-Comté, Besançon, France; Apex Center for Medical Research, Besançon, France; Department of Virology, CHU Besançon, Besançon, France.
| |
Collapse
|
3
|
Wang L, Yang Z, Xing S, Zhao S, Ouyang M, Yu H. miR-1246 enhances chemo-resistance of polyploid giant cancer cells in H1299 cells by targeting GSK3β/β-catenin. Discov Oncol 2025; 16:901. [PMID: 40411667 PMCID: PMC12103447 DOI: 10.1007/s12672-025-02756-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 05/19/2025] [Indexed: 05/26/2025] Open
Abstract
Non-small cell lung cancer (NSCLC) is characterized by a high mortality rate. Chemotherapy has been observed to potentially increase the prevalence of polyploid giant cancer cells (PGCCs), which may play a role in the development of chemo-resistance in NSCLC. The dysregulated expression of miR-1246 has been implicated in the modulation of gene expression related to drug resistance. Therefore, the objective of this study is to examine the role of miRNA-1246 in PGCCs and to elucidate its regulatory mechanisms. H1299 cells were treated with 100 nM docetaxel (Doc) for 24 h, then allowed to recover for 3 days to form polyploid giant cancer cells (PGCCs). The miRNA profiles of these PGCCs were analyzed, focusing on miR-1246. Transfection with miR-1246 mimics or inhibitors was performed, and various assays were used to assess the effects of miR-1246 inn PGCCs. The study found miR-1246 levels were significantly higher in PGCCs than in the original cells, affecting chemo-resistance, apoptosis, migration, and epithelial-mesenchymal transition. These findings suggested that NSCLC H1299 cells may employ polyploidy formation as a survival mechanism in response to docetaxel-based treatment, mediated by the miR-1246/GSK3β/β-catenin axis, ultimately leading to enhanced chemo-resistance.
Collapse
Affiliation(s)
- Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, 110016, Liaoning, China
| | - Zien Yang
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, 110016, Liaoning, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, 110016, Liaoning, China
| | - Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, 110016, Liaoning, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, 110016, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theatre Command, Shenyang, 110016, Liaoning, China.
| |
Collapse
|
4
|
Song Q, Gao M, Weng Y, Zhuang X, Wu Y, Cui H, Ding N, Wang L, Bi S, Zhang L, Zhang W, Cui Y. Evolutionary adaptation and asymmetric inheritance of polyploid giant cancer cells in esophageal squamous cell carcinoma. Cancer Lett 2025:217818. [PMID: 40414521 DOI: 10.1016/j.canlet.2025.217818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 05/27/2025]
Abstract
Polyploid Giant Cancer Cells (PGCCs) play a critical role in tumor progression due to their distinctive biological behaviors. However, the mechanisms by which PGCCs regulate their composition and structure to adapt to dynamic environments during their formation remain poorly understood. In this study, we used multicolor labeling of major organelles in esophageal squamous cell carcinoma (ESCC) cells combined with high- and super-resolution time-lapse imaging to monitor induced PGCCs in three dimensions. In addition to abnormal PGCC division, we observed nuclear dynamics and transient cell-in-cell formations. PGCCs exhibited cell cycle abnormalities, including prolonged G1/S transitions, asynchronous micronuclei, and intranuclear mitosis. Notably, early progeny continued dividing despite cell cycle dysregulation, resulting in asymmetric offspring. Quantitative analysis of subcellular structures revealed asymmetric inheritance of organelles, particularly mitochondria and the Golgi apparatus, in recurrent cells. These adaptive mechanisms in PGCCs may also be relevant in the context of anticancer treatments, contributing to the heterogeneity of recurrent tumors arising from early PGCC progeny populations.
Collapse
Affiliation(s)
- Qiqin Song
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Mingwei Gao
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China
| | - Yongjia Weng
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Xuehan Zhuang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China
| | - Yueguang Wu
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Heyang Cui
- Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, 999077, SAR, Hong Kong, China
| | - Ning Ding
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Longlong Wang
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Shanshan Bi
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Li Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China
| | - Weimin Zhang
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China; State Key Laboratory of Molecular Oncology, Beijing Key Laboratory of Carcinogenesis and Translational Research, Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100142, P. R. China.
| | - Yongping Cui
- Cancer Institute, Shenzhen Peking University-the Hong Kong University of Science and Technology (PKU-HKUST) Medical Center, Shenzhen, 518035, P. R. China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518000, P. R. China.
| |
Collapse
|
5
|
Bhartiya D, Sharma N, Tripathi A, Tripathi A. Do PGCCs in Solid Tumors Appear Due to Treatment-related Stress or Clonal Expansion of CSCs that Survive Oncotherapy? Stem Cell Rev Rep 2025:10.1007/s12015-025-10891-y. [PMID: 40338514 DOI: 10.1007/s12015-025-10891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2025] [Indexed: 05/09/2025]
Abstract
Dedifferentiation of epithelial cells during epithelial-mesenchymal transition (EMT) results in circulating tumor cells (CTCs) that are mobilized singly or in clusters in association with blood cells and results in metastasis. However, lineage tracing studies have failed to delineate any role of EMT during metastasis. Research is also focused on polyploid giant cancer cells (PGCCs) in solid tumors which appear in response to oncotherapy-related stress for their role in metastasis. But how to explain PGCCs role in metastatic tumors in treatment-naïve patients? Studies done using mouse models and clinical samples suggest that cancer initiates due to dysfunctions of tissue-resident, pluripotent very small embryonic-like stem cells (VSELs). VSELs are the most primitive and pluripotent stem cells that exist at top of cellular hierarchy in multiple tissues. They are normally quiescent and undergo asymmetrical cell divisions to give rise to two cells of different sizes and fates including smaller cells to self-renew and bigger tissue-specific progenitors. Progenitors undergo symmetrical cell divisions and clonal expansion (rapid proliferation, endoduplication with incomplete cytokinesis) to form giant cells that further breakdown and differentiate into tissue-specific cell types. Oncotherapy destroys actively dividing cells, but CSCs survive. We hypothesize that excessive self-renewal and clonal expansion of cancer stem cells (CSCs, dysfunctional VSELs) result in multinucleated giant cells (PGCCs) that accumulate as further differentiation into tissue-specific cell types is blocked in cancerous conditions. PGCCS are being reported by multiple groups whereas CSCs remain elusive due to small size and low abundance and actually contribute to both cancer initiation and metastasis.
Collapse
Affiliation(s)
- Deepa Bhartiya
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India.
| | - Nripen Sharma
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India
| | - Anish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India
| | - Ashish Tripathi
- Epigeneres Biotech Pvt Ltd, Todi Mill Compound, Senapati Bapat Marg, Lower Parel, Mumbai, 400013, India
- TZAR Labs, 23Ikigai Pte Ltd., 30 Cecil Street, #21-08 Prudential Tower, Singapore, 049712, Singapore
| |
Collapse
|
6
|
Mahaddalkar T, Banerjee A, Ketkar M, Thorat R, Gardi N, Dutt S. Aurora Kinase A and B inhibition abrogates 'Neosis', a non-mitotic cell division of GBM residual cells and prevents GBM recurrence. Oncogene 2025:10.1038/s41388-025-03372-6. [PMID: 40195468 DOI: 10.1038/s41388-025-03372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/09/2025]
Abstract
Glioblastoma (GBM) has a dismal median survival of 15 months owing to therapy resistance and inevitable recurrence. Using our cellular models of GBM radiation resistance, we had shown that GBM recurrence is due to survival and proliferation of residual disease cells enriched in multinucleated giant cells (MNGCs). However, MNGC division mechanism remained elusive. Here, using live-cell imaging we found daughter cells emerge from MNGCs by cytoplasmic pinching. Lack of DNA condensation, absence of spindle poles and acto-myosin contractile ring in dividing-MNGCs confirmed non-mitotic division of MNGCs. Furthermore, MNGCs harboured DNA damage, senescence phenotype, repeated atypical division after radiation exposure, characteristics of unconventional division called 'Neosis'. Molecularly, WGCNA co-expression network analysis of RNA-Sequencing from parent, non-dividing MNGCs and dividing-MNGCs identified significantly high expression of aurora kinases (AurA and AurB) specifically in dividing-MNGCs. Pharmacological and genetic inhibition of aurora kinases abrogated MNGC neosis, preventing GBM recurrence in vitro and in vivo in an orthotopic GBM mouse model. Together, this study demonstrates that MNGCs divide by neosis, an atypical division mediated by AurA and AurB and identify aurora kinases as a potential molecular target to inhibit neosis and prevent GBM recurrence.
Collapse
Affiliation(s)
- Tejashree Mahaddalkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Archisman Banerjee
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Madhura Ketkar
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India
| | - Nilesh Gardi
- Department of Medical Oncology, Tata Memorial Centre, Navi Mumbai, India
| | - Shilpee Dutt
- Shilpee Dutt Laboratory, Advanced Centre for Treatment, Research and Education in Cancer, Tata Memorial Centre, Navi Mumbai, India.
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai, India.
- Shilpee Dutt Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi, India.
| |
Collapse
|
7
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Zhang Y, Brown DD, Oesterreich S, Lee AV, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening To Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. Anal Chem 2025; 97:5498-5506. [PMID: 40040372 PMCID: PMC11923954 DOI: 10.1021/acs.analchem.4c05138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/27/2025] [Accepted: 02/28/2025] [Indexed: 03/06/2025]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirical testing of all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated five compounds as potent PGCC inhibitors using cell lines and patient-derived models. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Chien-Hung Shih
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
| | - Jinxiong Cheng
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
| | - Hsiao-Chun Chen
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Li-Ju Wang
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
| | - Yanhao Tan
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Division
of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
| | - Yuan Zhang
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Immunology, University of Pittsburgh, 5051 Centre Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Daniel D. Brown
- Institute
for Precision Medicine, University of Pittsburgh, 5051 Centre Ave, Pittsburgh, Pennsylvania 15213, United States
| | - Steffi Oesterreich
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, 4200 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Adrian V. Lee
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Institute
for Precision Medicine, University of Pittsburgh, 5051 Centre Ave, Pittsburgh, Pennsylvania 15213, United States
- Department
of Pharmacology and Chemical Biology, University
of Pittsburgh, 4200 Fifth
Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yu-Chiao Chiu
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
- Division
of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, Pennsylvania 15232, United States
- CMU-Pitt
Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Yu-Chih Chen
- UPMC
Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, Pennsylvania 15232, United States
- Department
of Computational and Systems Biology, University
of Pittsburgh, 3420 Forbes
Avenue, Pittsburgh, Pennsylvania 15260, United States
- Department
of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, Pennsylvania 15260, United States
- CMU-Pitt
Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Huang YT, Calvi BR. Activation of a Src-JNK pathway in unscheduled endocycling cells of the Drosophila wing disc induces a chronic wounding response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.12.642788. [PMID: 40161657 PMCID: PMC11952448 DOI: 10.1101/2025.03.12.642788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The endocycle is a specialized cell cycle during which cells undergo repeated G / S phases to replicate DNA without division, leading to large polyploid cells. The transition from a mitotic cycle to an endocycle can be triggered by various stresses, which results in unscheduled, or induced endocycling cells (iECs). While iECs can be beneficial for wound healing, they can also be detrimental by impairing tissue growth or promoting cancer. However, the regulation of endocycling and its role in tissue growth remain poorly understood. Using the Drosophila wing disc as a model, we previously demonstrated that iEC growth is arrested through a Jun N-Terminal Kinase (JNK)-dependent, reversible senescence-like response. However, it remains unclear how JNK is activated in iECs and how iECs impact overall tissue structure. In this study, we performed a genetic screen and identified the Src42A-Shark-Slpr pathway as an upstream regulator of JNK in iECs, leading to their senescence-like arrest. We found that tissues recognize iECs as wounds, releasing wound-related signals that induce a JNK-dependent developmental delay. Similar to wound closure, this response triggers Src-JNK-mediated actomyosin remodeling, yet iECs persist rather than being eliminated. Our findings suggest that the tissue response to iECs shares key signaling and cytoskeletal regulatory mechanisms with wound healing and dorsal closure, a developmental process during Drosophila embryogenesis. However, because iECs are retained within the tissue, they create a unique system that may serve as a model for studying chronic wounds and tumor progression.
Collapse
Affiliation(s)
- Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
| | - Brian R. Calvi
- Department of Biology, Indiana University, Bloomington, Indiana, 47405 USA
- Melvin and Bren Simon Comprehensive Cancer Center, Indiana University, Indianapolis, 46202 USA
| |
Collapse
|
9
|
Mallin MM, Rolle LT, Schmidt MJ, Priyadarsini Nair S, Zurita AJ, Kuhn P, Hicks J, Pienta KJ, Amend SR. Cells in the Polyaneuploid Cancer Cell State Are Prometastatic. Mol Cancer Res 2025; 23:219-235. [PMID: 39656186 PMCID: PMC11873732 DOI: 10.1158/1541-7786.mcr-24-0689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/26/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Our research aims to understand the adaptive-ergo potentially metastatic-responses of prostate cancer to changing microenvironments. Emerging evidence implicates a role of the polyaneuploid cancer cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study revealed that PACC presence in patient prostate tumors at the time of radical prostatectomy was predictive of future metastasis. To test for a causative relationship between PACC state biology and metastasis in prostate cancer, we leveraged a novel method designed for flow cytometric detection of circulating tumor cells (CTC) and disseminated tumor cells (DTC) from animal models. This approach provides both quantitative and qualitative information about the number and PACC status of recovered CTCs and DTCs. Specifically, we applied this approach to the analysis of subcutaneous, caudal artery, and intracardiac murine models. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. Furthermore, in vivo colonization assays proved that PACC populations can regain proliferative capacity at metastatic sites. Additional in vitro analyses revealed a PACC-specific partial epithelial-to-mesenchymal transition phenotype and a prometastatic secretory profile, together providing preliminary evidence of prometastatic mechanisms specific to the PACC state. Implications: Considering that many anticancer agents induce the PACC state, our data position the increased metastatic competency of PACC state cells as an important unforeseen ramification of neoadjuvant regimens, which may help explain clinical correlations between chemotherapy and metastatic progression.
Collapse
Affiliation(s)
- Mikaela M. Mallin
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Louis T.A. Rolle
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
| | - Shilpa Priyadarsini Nair
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, California
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kenneth J. Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| | - Sarah R. Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, Maryland
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Wu TP, Li X, Ba S, Jones P, Hansel DE, Liu J. Meeting report: 1st international conference on polyploid giant cancer cells-biology, clinical applications, and the birth of a new field in cancer research. Cancer Lett 2025; 612:217447. [PMID: 39793754 DOI: 10.1016/j.canlet.2025.217447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 01/04/2025] [Indexed: 01/13/2025]
Affiliation(s)
- Tao P Wu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Xiaoran Li
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, USA
| | - Sujuan Ba
- National Foundation of Cancer Research, 5515 Security Lane, Suite 1105, Rockville, MD, 20852, USA
| | - Phil Jones
- Department of Experimental Therapeutics, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77005, USA
| | - Donna E Hansel
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, USA
| | - Jinsong Liu
- Department of Anatomic Pathology, Division of Pathology and Laboratory Medicine, USA.
| |
Collapse
|
11
|
Niu L, Liu S, Shen J, Chang J, Li X, Zhang L. ATF3 regulates CDC42 transcription and influences cytoskeleton remodeling, thus inhibiting the proliferation, migration and invasion of malignant skin melanoma cells. Melanoma Res 2025; 35:37-49. [PMID: 39591541 DOI: 10.1097/cmr.0000000000001011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cutaneous malignant melanoma (CMM) is one of the most aggressive and lethal types of skin cancer. Cytoskeletal remodeling is a key factor in the progression of CMM. Previous research has shown that activating transcription factor 3 (ATF3) inhibits metastasis in bladder cancer by regulating actin cytoskeleton remodeling through gelsolin. However, whether ATF3 plays a similar role in cytoskeletal remodeling in CMM cells remains unknown. Various gene and protein expression analyses were performed using techniques such as reverse transcription quantitative PCR, western blot, immunofluorescent staining, and immunohistochemical staining. CMM viability, migration, and invasion were examined through cell counting kit-8 and transwell assays. The interactions between cell division cycle 42 (CDC42) and ATF3 were investigated using chromatin immunoprecipitation and dual-luciferase reporter assays. CDC42 was upregulated in CMM tissues and cells. Cytoskeletal remodeling of CMM cells, as well as CMM cell proliferation, migration, and invasion, were inhibited by CDC42 or ATF3. ATF3 targeted the CDC42 promoter region to regulate its transcriptional activity. ATF3 suppresses cytoskeletal remodeling in CMM cells, thereby inhibiting CMM progression and metastasis through CDC42. This research may provide a foundation for using ATF3 as a therapeutic target for CMM.
Collapse
Affiliation(s)
- Liang Niu
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Shuo Liu
- Department of Stomatology, Handan First Hospital
| | - Jiuxiao Shen
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Jin Chang
- Medical Cosmetic Center, Affiliated Hospital of Hebei Engineering University, Handan City, Hebei Province, China
| | - Xiaojing Li
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| | - Ling Zhang
- Department of Dermatology, Affiliated Hospital of Hebei Engineering University
| |
Collapse
|
12
|
Liu B, Lv M, Duan Y, Lin J, Dai L, Yu J, Liao J, Li Y, Wu Z, Li J, Sun Y, Liao H, Zhang J, Duan Y. Genetically engineered CD276-anchoring biomimetic nanovesicles target senescent escaped tumor cells to overcome chemoresistant and immunosuppressive breast cancer. Biomaterials 2025; 313:122796. [PMID: 39226654 DOI: 10.1016/j.biomaterials.2024.122796] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/13/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.
Collapse
Affiliation(s)
- Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Minchao Lv
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Li Dai
- Department of Otolaryngology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Jian Yu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yuanyuan Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiping Li
- Department of Otolaryngology, Ren ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Hongze Liao
- Research Center for Marine Drugs, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China.
| | - Jiali Zhang
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Liu Z, Wang Y, Peng Z, Li H, Wang H, Wu Y, Jiang X, Fu P. Fusion of tumor cells and mesenchymal stem/stroma cells: a source of tumor heterogeneity, evolution and recurrence. Med Oncol 2025; 42:52. [PMID: 39838167 DOI: 10.1007/s12032-024-02595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 12/28/2024] [Indexed: 01/23/2025]
Abstract
The heterogeneity and evolution of tumors remain significant obstacles in cancer treatment, contributing to both therapy resistance and relapse. Mesenchymal stem/stromal cells (MSCs) are multipotent stromal cells within the tumor microenvironment that interact with tumor cells through various mechanisms, including cell fusion. While previous research has largely focused on the effects of MSC-tumor cell fusion on tumor proliferation, migration, and tumorigenicity, emerging evidence indicates that its role in tumor maintenance, evolution, and recurrence, particularly under stress conditions, may be even more pivotal. This review examines the connection between MSC-tumor cell fusion and several critical factors like tumor heterogeneity, cancer stem cells, and therapy resistance, highlighting the crucial role of cell fusion in tumor survival, evolution, and recurrence. Additionally, we explore potential therapeutic strategies aimed at targeting this process.
Collapse
Affiliation(s)
- Zhen Liu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yihao Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zesheng Peng
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hui Li
- Department of Cataract, Nanyang Eye Hospital, Nanyang, 473000, China
| | - Haofei Wang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yuyi Wu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xiaobing Jiang
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Peng Fu
- Department of Neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
14
|
Larrea Murillo L, Sugden CJ, Ozsvari B, Moftakhar Z, Hassan GS, Sotgia F, Lisanti MP. ALDH High Breast Cancer Stem Cells Exhibit a Mesenchymal-Senescent Hybrid Phenotype, with Elevated Metabolic and Migratory Activities. Cells 2024; 13:2059. [PMID: 39768151 PMCID: PMC11674378 DOI: 10.3390/cells13242059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Cancer stem cells (CSCs) account for 0.01 to 2% of the total tumor mass; however, they play a key role in tumor progression, metastasis and resistance to current cancer therapies. The generation and maintenance of CSCs are usually linked to the epithelial-mesenchymal transition (EMT), a dynamic process involved in reprogramming cancer cells towards a more aggressive and motile phenotype with increased stemness potential. Cells that undergo an EMT process have shown to be more resistant to conventional chemo/radiotherapies. In this context, aldehyde dehydrogenase (ALDH) enzymes, known for their role in the cellular detoxification of aldehydes and enhancement of cell survival, are often upregulated in cancer cells, promoting their resistance to conventional cancer treatments. Indeed, high ALDH levels have become a hallmark biomarker of CSCs and are often used to isolate this sub-population from the more abundant cancer cell populations. Herein, we isolated human breast cancer epithelial cells with higher ALDH abundance (ALDHHigh) and compared them to those with low ALDH abundance (ALDHLow). ALDHHigh sub-populations exhibited more characteristic EMT biomarkers by adopting a more mesenchymal phenotype with increased stemness and enhanced migratory potential. Furthermore, ALDHHigh sub-populations displayed elevated senescent markers. Moreover, these cells also demonstrated higher levels of mitochondria DNA/mass, as well as greater mitochondrial and glycolytic metabolic function. Conversely, ALDHLow sub-populations showed a higher efficiency of mammosphere/colony formation and an increased proliferative capacity. Therefore, we demonstrated that these ALDH sub-populations have distinct characteristics, underscoring their role in EMT, the formation of tumors and the mechanisms of metastasis.
Collapse
Affiliation(s)
- Luis Larrea Murillo
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Conor J. Sugden
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Bela Ozsvari
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Zahra Moftakhar
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
| | - Ghada S. Hassan
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Federica Sotgia
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| | - Michael P. Lisanti
- Translational Medicine, School of Science, Engineering and Environment (SEE), University of Salford, Greater Manchester, Salford M5 4WT, UK; (L.L.M.); (B.O.); (Z.M.)
- Lunella Biotech, 1145 Carling Avenue, Ottawa, ON K1Z 7K4, Canada
| |
Collapse
|
15
|
Shultes PV, Tadele DS, Durmaz A, Weaver DT, Barker-Clarke R, Dinh MN, Liu S, Alemu EA, Rayner S, Scott JG. Cell-Cell Fusion in NSCLC Confers a Fitness Benefit Under Drug Selection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.02.626399. [PMID: 39677818 PMCID: PMC11642803 DOI: 10.1101/2024.12.02.626399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Cell-cell fusion has been implicated in various physiological and pathological processes, including cancer progression. This study investigated the role of cell-cell fusion in non-small cell lung cancer (NSCLC), focusing on its contribution to chemoresistance and tumor evolution. By co-culturing drug-sensitive and drug-resistant NSCLC cell lines, we observed spontaneous cell-cell fusion events, particularly under gefitinib selection. These fused cells exhibited enhanced fitness and a higher degree of chemoresistance compared to parental lines across a panel of 12 chemotherapeutic agents. Further analysis, including fluorescence imaging and cell cycle analysis, confirmed nuclear fusion and increased DNA content in the fused cells. Bulk RNA sequencing revealed genomic heterogeneity in fused cells, including enrichment of gene sets associated with cell cycle progression and epithelial-mesenchymal transition, hallmarks of cancer malignancy. These findings demonstrate that cell-cell fusion contributes significantly to therapeutic resistance and the promotion of aggressive phenotypes in NSCLC, highlighting its potential as a therapeutic target.
Collapse
|
16
|
Díaz-Carballo D, Safoor A, Saka S, Noa-Bolaño A, D'Souza F, Klein J, Acikelli AH, Malak S, Rahner U, Turki AT, Höppner A, Kamitz A, Song W, Chen YG, Kamada L, Tannapfel A, Brinkmann S, Ochsenfarth C, Strumberg D. The neuroepithelial origin of ovarian carcinomas explained through an epithelial-mesenchymal-ectodermal transition enhanced by cisplatin. Sci Rep 2024; 14:29286. [PMID: 39592661 PMCID: PMC11599565 DOI: 10.1038/s41598-024-76984-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
Acquired resistance to platinum-derived cytostatics poses major challenges in ovarian carcinoma therapy. In this work, we show a shift in the epithelial-mesenchymal transition (EMT) process towards an "ectodermal" conversion of ovarian carcinoma cells in response to cisplatin treatment, a progression we have termed epithelial-mesenchymal-ectodermal transition (EMET). EMET appears to occur via the classical EMT as judged by a) the downregulation of several epithelial markers and b) upregulation of Vimentin, accompanied by various embryonal transcription factors and, importantly, a plethora of neuronal markers, consistent with ectodermal differentiation. Moreover, we isolated cells from ovarian carcinoma cultures exhibiting a dual neural/stemness signature and multidrug resistance (MDR) phenotype. We also found that the epithelial cells differentiate from these neural/stem populations, indicating that the cell of origin in this tumor must in fact be a neural cell type with stemness features. Notably, some transcription factors like PAX6 and PAX9 were not localized in the nucleoplasm of these cells, hinting at altered nuclear permeability. In addition, the neuronal morphology was rapidly established when commercially available and primary ovarian carcinoma cells were cultured in the form of organoids. Importantly, we also identified a cell type in regular ovarian tissues, which possess similar neural/stemness features as observed in 2D or 3D cultures. The signature of this cell type is amplified in ovarian carcinoma tumors, suggesting a neuroepithelial origin of this tumor type. In conclusion, we propose that ovarian carcinomas harbor a small population of cells with an intrinsic neuronal/stemness/MDR phenotype, serving as the cradle from which ovarian carcinoma evolves.
Collapse
Affiliation(s)
- David Díaz-Carballo
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany.
| | - Ayesha Safoor
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Sahitya Saka
- Department of Medical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, USA
| | - Adrien Noa-Bolaño
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Flevy D'Souza
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Jacqueline Klein
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Ali H Acikelli
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Sascha Malak
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Udo Rahner
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Amin T Turki
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Anne Höppner
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Annabelle Kamitz
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| | - Wanlu Song
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Lalitha Kamada
- Clinic of Pediatric Oncology, Hematology and Immunology, Düsseldorf University Hospital , 40225, Düsseldorf, Germany
| | - Andrea Tannapfel
- Institute of Pathology, Ruhr University Bochum, Medical School, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Sebastian Brinkmann
- Department of General and Visceral Surgery, St. Josef-Hospital, Ruhr University Bochum, Medical School, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Crista Ochsenfarth
- Department of Anesthesia, Intensive Care, Pain and Palliative Medicine, Ruhr-University Bochum Medical School, Marien Hospital Herne, 44625, Herne, Germany
| | - Dirk Strumberg
- Institute of Molecular Oncology and Experimental Therapeutics, Division of Hematology and Oncology, Ruhr University Bochum Medical School, Marien Hospital Herne, Düngelstr. 33, 44623, Herne, Germany
| |
Collapse
|
17
|
Yang X, Sun J, Ning Y, Wang J, Xu J, Zhang S. Role of the CTCF/p300 axis in osteochondrogenic-like differentiation of polyploid giant cancer cells with daughter cells. Cell Commun Signal 2024; 22:546. [PMID: 39548585 PMCID: PMC11566548 DOI: 10.1186/s12964-024-01933-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/07/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Polyploid giant cancer cells (PGCCs) have properties of cancer stem cells (CSCs). PGCCs with daughter cells (PDCs) undergo epithelial-mesenchymal transition and show enhanced cellular plasticity. This study aimed to elucidate the mechanisms underlying the osteo/chondrogenic-like differentiation of PDCs, which may be exploited therapeutically by transdifferentiation into post-mitotic and functional cells. METHODS Cobalt chloride was used to induce PGCC formation in MDA-MB-231 and HEY cells, and PDCs were cultured in osteo/chondrogenic differentiation media. Alcian blue staining was used to confirm osteo/chondrogenic differentiation, and the cell cycle was detected using flow cytometry. The expression of osteo/chondrogenic differentiation-related proteins was compared, and a co-immunoprecipitation assay was used to demonstrate the interactions between proteins. Bioinformatic analysis was used to explore the regulatory mechanism of osteo/chondrogenic differentiation, and a dual-luciferase reporter assay was performed to validate the interaction between transcriptional factors and target genes. Animal xenograft models were used to confirm the osteo/chondrogenic differentiation of PDCs. RESULTS When cultured in osteo/chondrogenic medium, the stemness of PDCs decreased, and the expression of osteo/chondrogenic-related markers increased. This osteo/chondrogenic-like process was regulated by the transforming growth factor-β pathway in a time-dependent manner. A concurrent increase in the expression of histone acetyltransferase p300 and the transcription factor CCCTC-binding factor (CTCF) was observed. Co-immunoprecipitation assays revealed that p300 acetylated the osteo/chondrogenic marker RUNT-related transcription factor 2 (RUNX2). Analysis of chromatin immunoprecipitation sequencing datasets revealed that both CTCF and histone H3 lysine 27 acetylation (H3K27ac) were enriched in the promoter region of E1A-associated protein p300 (P300). The four predicted binding sites for CTCF and P300 were validated using dual-luciferase reporter assays. We examined the interaction between CTCF and H3K27ac and found that these two proteins had a combined effect on the transactivation of P300. CONCLUSION CTCF, in synergy with H3K27ac, amplified the expression of P300, facilitating acetyl group transfer to RUNX2. This acetylation stabilized RUNX2 and promoted osteo/chondrogenic differentiation, thereby reducing the incidence of PDC malignancies.
Collapse
Affiliation(s)
- Xiaohui Yang
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Jie Sun
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jing Xu
- Department of General Surgery, Tianjin Union Medical Center, Nankai University, Tianjin, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
18
|
Krotofil M, Tota M, Siednienko J, Donizy P. Emerging Paradigms in Cancer Metastasis: Ghost Mitochondria, Vasculogenic Mimicry, and Polyploid Giant Cancer Cells. Cancers (Basel) 2024; 16:3539. [PMID: 39456632 PMCID: PMC11506636 DOI: 10.3390/cancers16203539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/04/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
The capacity of cancer cells to migrate from a primary tumor, disseminate throughout the body, and eventually establish secondary tumors is a fundamental aspect of metastasis. A detailed understanding of the cellular and molecular mechanisms underpinning this multifaceted process would facilitate the rational development of therapies aimed at treating metastatic disease. Although various hypotheses and models have been proposed, no single concept fully explains the mechanism of metastasis or integrates all observations and experimental findings. Recent advancements in metastasis research have refined existing theories and introduced new ones. This review evaluates several novel/emerging theories, focusing on ghost mitochondria (GM), vasculogenic mimicry (VM), and polyploid giant cancer cells (PGCCs).
Collapse
Affiliation(s)
- Mateusz Krotofil
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Maciej Tota
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
| | - Jakub Siednienko
- Department of Experimental Oncology, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 53-114 Wroclaw, Poland
| | - Piotr Donizy
- Department of Clinical and Experimental Pathology, Wroclaw Medical University, Borowska 213, 50-556 Wroclaw, Poland
- Department of Pathology and Clinical Cytology, Jan Mikulicz-Radecki University Hospital, 50-556 Wroclaw, Poland
| |
Collapse
|
19
|
Ning Y, Zheng M, Zhang Y, Jiao Y, Wang J, Zhang S. RhoA-ROCK2 signaling possesses complex pathophysiological functions in cancer progression and shows promising therapeutic potential. Cancer Cell Int 2024; 24:339. [PMID: 39402585 PMCID: PMC11475559 DOI: 10.1186/s12935-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
The Rho GTPase signaling pathway is responsible for cell-specific processes, including actin cytoskeleton organization, cell motility, cell division, and the transcription of specific genes. The implications of RhoA and the downstream effector ROCK2 in cancer epithelial-mesenchymal transition, migration, invasion, and therapy resistance associated with stem cells highlight the potential of targeting RhoA/ROCK2 signaling in therapy. Tumor relapse can occur due to cancer cells that do not fully respond to adjuvant chemoradiotherapy, targeted therapy, or immunotherapy. Rho signaling-mediated mitotic defects and cytokinesis failure lead to asymmetric cell division, allowing cells to form polyploids to escape cytotoxicity and promote tumor recurrence and metastasis. In this review, we elucidate the significance of RhoA/ROCK2 in the mechanisms of cancer progression and summarize their inhibitors that may improve treatment strategies.
Collapse
Affiliation(s)
- Yidi Ning
- Nankai University School of Medicine, Nankai University, Tianjin, 300071, P.R. China
| | - Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China
| | - Yue Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Yuqi Jiao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Jiangping Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin, 300121, P.R. China.
| |
Collapse
|
20
|
Ma Y, Shih CH, Cheng J, Chen HC, Wang LJ, Tan Y, Chiu YC, Chen YC. High-Throughput Empirical and Virtual Screening to Discover Novel Inhibitors of Polyploid Giant Cancer Cells in Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.614522. [PMID: 39386568 PMCID: PMC11463688 DOI: 10.1101/2024.09.23.614522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Therapy resistance in breast cancer is increasingly attributed to polyploid giant cancer cells (PGCCs), which arise through whole-genome doubling and exhibit heightened resilience to standard treatments. Characterized by enlarged nuclei and increased DNA content, these cells tend to be dormant under therapeutic stress, driving disease relapse. Despite their critical role in resistance, strategies to effectively target PGCCs are limited, largely due to the lack of high-throughput methods for assessing their viability. Traditional assays lack the sensitivity needed to detect PGCC-specific elimination, prompting the development of novel approaches. To address this challenge, we developed a high-throughput single-cell morphological analysis workflow designed to differentiate compounds that selectively inhibit non-PGCCs, PGCCs, or both. Using this method, we screened a library of 2,726 FDA Phase 1-approved drugs, identifying promising anti-PGCC candidates, including proteasome inhibitors, FOXM1, CHK, and macrocyclic lactones. Notably, RNA-Seq analysis of cells treated with the macrocyclic lactone Pyronaridine revealed AXL inhibition as a potential strategy for targeting PGCCs. Although our single-cell morphological analysis pipeline is powerful, empirically testing all existing compounds is impractical and inefficient. To overcome this limitation, we trained a machine learning model to predict anti-PGCC efficacy in silico, integrating chemical fingerprints and compound descriptions from prior publications and databases. The model demonstrated a high correlation with experimental outcomes and predicted efficacious compounds in an expanded library of over 6,000 drugs. Among the top-ranked predictions, we experimentally validated two compounds as potent PGCC inhibitors. These findings underscore the synergistic potential of integrating high-throughput empirical screening with machine learning-based virtual screening to accelerate the discovery of novel therapies, particularly for targeting therapy-resistant PGCCs in breast cancer.
Collapse
Affiliation(s)
- Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chien-Hung Shih
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Jinxiong Cheng
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Hsiao-Chun Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Li-Ju Wang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
| | - Yanhao Tan
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
| | - Yu-Chiao Chiu
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Division of Malignant Hematology and Medical Oncology, Department of Medicine, University of Pittsburgh, 5150 Centre Avenue, Pittsburgh, PA 15232, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
21
|
Chinen LTD, Torres JA, Calsavara VF, Brito ABC, Silva VSE, Novello RGS, Fernandes TC, Decina A, Dachez R, Paterlini-Brechot P. Circulating Polyploid Giant Cancer Cells, a Potential Prognostic Marker in Patients with Carcinoma. Int J Mol Sci 2024; 25:9841. [PMID: 39337327 PMCID: PMC11432346 DOI: 10.3390/ijms25189841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/30/2024] Open
Abstract
Polyploid Giant Cancer Cells (PGCCs) have been recognized as tumor cells that are resistant to anticancer therapies. However, it remains unclear whether their presence in the bloodstream can be consistently detected and utilized as a clinical marker to guide therapeutic anticancer regimens. To address these questions, we conducted a retrospective study involving 228 patients diagnosed with six different types of carcinomas (colon, gastric, NSCLC, breast, anal canal, kidney), with the majority of them (70%) being non-metastatic. Employing a highly sensitive liquid biopsy approach, ISET®, and cytopathological readout, we isolated and detected circulating PGCCs in the patients' blood samples. PGCCs were identified in 46 (20.18%) out of 228 patients, including in 14.47% of 152 non-metastatic and 29.85% of 67 metastatic cases. Patients were subsequently monitored for a mean follow up period of 44.74 months (95%CI: 33.39-55.79 months). Remarkably, the presence of circulating PGCCs emerged as a statistically significant indicator of poor overall survival. Our findings suggest that circulating PGCCs hold promise as a reliable prognostic indicator. They underscore the importance of further extensive investigations into the role of circulating PGCCs as a prognostic marker and the development of anti-PGCC therapeutic strategies to improve cancer management and patient survival.
Collapse
Affiliation(s)
| | | | - Vinicius Fernando Calsavara
- Department of Computational Biomedicine, Biostatistics Shared Resource, Cedars-Sinai Cancer Center, Los Angeles, CA 90069, USA
| | | | - Virgílio Sousa E Silva
- Department of Clinical Oncology, A.C. Camargo Cancer Center, São Paulo 01509-900, Brazil
| | | | | | - Alessandra Decina
- Rarecells Faculté de Médecine Necker, 160 Rue de Vaugirard, 75015 Paris, France
| | - Roger Dachez
- Cytopathology Laboratory Innodiag, F-92100 Boulogne-Billancourt, France
| | | |
Collapse
|
22
|
Mirzayans R, Murray D. Amitotic Cell Division, Malignancy, and Resistance to Anticancer Agents: A Tribute to Drs. Walen and Rajaraman. Cancers (Basel) 2024; 16:3106. [PMID: 39272964 PMCID: PMC11394378 DOI: 10.3390/cancers16173106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
Cell division is crucial for the survival of living organisms. Human cells undergo three types of cell division: mitosis, meiosis, and amitosis. The former two types occur in somatic cells and germ cells, respectively. Amitosis involves nuclear budding and occurs in cells that exhibit abnormal nuclear morphology (e.g., polyploidy) with increased cell size. In the early 2000s, Kirsten Walen and Rengaswami Rajaraman and his associates independently reported that polyploid human cells are capable of producing progeny via amitotic cell division, and that a subset of emerging daughter cells proliferate rapidly, exhibit stem cell-like properties, and can contribute to tumorigenesis. Polyploid cells that arise in solid tumors/tumor-derived cell lines are referred to as polyploid giant cancer cells (PGCCs) and are known to contribute to therapy resistance and disease recurrence following anticancer treatment. This commentary provides an update on some of these intriguing discoveries as a tribute to Drs. Walen and Rajaraman.
Collapse
Affiliation(s)
- Razmik Mirzayans
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - David Murray
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| |
Collapse
|
23
|
Lim RMH, Lee JY, Kannan B, Ko TK, Chan JY. Molecular and immune pathobiology of human angiosarcoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189159. [PMID: 39032539 DOI: 10.1016/j.bbcan.2024.189159] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Angiosarcoma is a rare endothelial-derived malignancy that is extremely diverse in anatomy, aetiology, molecular and immune characteristics. While novel therapeutic approaches incorporating targeted agents and immunotherapy have yielded significant improvements in patient outcomes across several cancers, their impact on angiosarcoma remains modest. Contributed by its heterogeneous nature, there is currently a lack of novel drug targets in this disease entity and no reliable biomarkers that predict response to conventional treatment. This review aims to examine the molecular and immune landscape of angiosarcoma in association with its aetiology, anatomical sites, prognosis and therapeutic options. We summarise current efforts to characterise angiosarcoma subtypes based on molecular and immune profiling. Finally, we highlight promising technologies such as single-cell spatial "omics" that may further our understanding of angiosarcoma and propose strategies that can be similarly applied for the study of other rare cancers.
Collapse
Affiliation(s)
| | - Jing Yi Lee
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore
| | - Bavani Kannan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Tun Kiat Ko
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore
| | - Jason Yongsheng Chan
- Cancer Discovery Hub, National Cancer Centre Singapore, Singapore; Duke-NUS Medical School, Singapore; Division of Medical Oncology, National Cancer Centre Singapore, Singapore.
| |
Collapse
|
24
|
Gou S, Wu A, Luo Z. Integrins in cancer stem cells. Front Cell Dev Biol 2024; 12:1434378. [PMID: 39239559 PMCID: PMC11375753 DOI: 10.3389/fcell.2024.1434378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 08/12/2024] [Indexed: 09/07/2024] Open
Abstract
Integrins are a class of adhesion receptors on cell membranes, consisting of α and β subunits. By binding to the extracellular matrix, integrins activate intracellular signaling pathways, participating in every step of cancer initiation and progression. Tumor stem cells possess self-renewal and self-differentiation abilities, along with strong tumorigenic potential. In this review, we discussed the role of integrins in cancer, with a focus on their impact on tumor stem cells and tumor stemness. This will aid in targeting tumor stem cells as a therapeutic approach, leading to the exploration of novel cancer treatment strategies.
Collapse
Affiliation(s)
- Siqi Gou
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| | - Anqi Wu
- The Second Affiliated Hospital, Department of Clinical Research Center, Hengyang Medical School, University of South China, Hengyang, China
| | - Zhigang Luo
- The Second Affiliated Hospital, Department of urology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
25
|
Go RE, Seong SM, Choi Y, Choi KC. A Fungicide, Fludioxonil, Formed the Polyploid Giant Cancer Cells and Induced Metastasis and Stemness in MDA-MB-231 Triple-Negative Breast Cancer Cells. Int J Mol Sci 2024; 25:9024. [PMID: 39201710 PMCID: PMC11354328 DOI: 10.3390/ijms25169024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/03/2024] Open
Abstract
Fludioxonil, an antifungal agent used as a pesticide, leaves a measurable residue in fruits and vegetables. It has been identified to cause endocrine disruption, interrupt normal development, and cause various diseases such as cancers. In this study, fludioxonil was examined for its effects on the development and metastasis of breast cancer cells. On fludioxonil exposure (10-5 M) for 72 h, mutant p53 (mutp53) MDA-MB-231 triple-negative breast cancer (TNBC) cells significantly inhibited cell viability and developed into polyploid giant cancer cells (PGCCs), with an increase in the number of nuclei and expansion in the cell body size. Fludioxonil exposure disrupted the normal cell cycle phase ratio, resulting in a new peak. In addition, PGCCs showed greater motility than the control and were resistant to anticancer drugs, i.e., doxorubicin, cisplatin, and 5-fluorouracil. Cyclin E1, nuclear factor kappa B (NF-κB), and p53 expressions were remarkably increased, and the expression of cell cycle-, epithelial-mesenchymal-transition (EMT)-, and cancer stemness-related proteins were increased in the PGCCs. The daughter cells obtained from PGCCs had the single nucleus but maintained their enlarged cell size and showed greater cell migration ability and resistance to the anticancer agents. Consequently, fludioxonil accumulated Cyclin E1 and promoted the inflammatory cytokine-enriched microenvironment through the up-regulation of TNF and NF-κB which led to the transformation to PGCCs via abnormal cell cycles such as mitotic delay and mitotic slippage in mutp53 TNBC MDA-MB-231 cells. PGCCs and their daughter cells exhibited significant migration ability, chemo-resistance, and cancer stemness. These results strongly suggest that fludioxonil, as an inducer of potential genotoxicity, may induce the formation of PGCCs, leading to the formation of metastatic and stem cell-like breast cancer cells.
Collapse
Affiliation(s)
| | | | | | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea; (R.-E.G.); (S.-M.S.); (Y.C.)
| |
Collapse
|
26
|
Park C, Lim W, Song R, Han J, You D, Kim S, Lee JE, van Noort D, Mandenius CF, Lee J, Hyun KA, Jung HI, Park S. Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel. Analyst 2024; 149:4496-4505. [PMID: 39049608 DOI: 10.1039/d4an00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.
Collapse
Affiliation(s)
- Chanyong Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jeonghun Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medi-cine, Seoul 06351, Korea
| | - Danny van Noort
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Carl-Fredrik Mandenius
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Kyung-A Hyun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
27
|
Yoon JY, Sharma A, Ligon AH, Ramesh RG, Soong TR, Xian W, Chapel DB, Crum CP. Genomic Catastrophe (Chromothripsis and Polyploidy) Correlates With Tumor Distribution in Extrauterine High-grade Serous Carcinoma. Am J Surg Pathol 2024; 48:1017-1023. [PMID: 38639044 PMCID: PMC11254554 DOI: 10.1097/pas.0000000000002229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Most extrauterine high-grade serous carcinomas (HGSCs) are thought to develop first in the distal fallopian tube. Most models of HGSC assume origin from relatively stable, noninvasive serous tubal intraepithelial carcinomas. However, widespread tumor involvement in the absence of a serous tubal intraepithelial carcinoma could occur after catastrophic genomic events (CGEs; such as chromothripsis or polyploidy). Twenty-six HGSCs assigned to fallopian tube (n = 9, group 1) and/or ovary (n = 9, group 2), and primary peritoneal (n = 8, group 3) were assessed by microarray (Oncoscan). CGEs were identified in 15/26 (57.7%); chromothripsis-like pattern in 13/26 (50.0%) and polyploidy in 6/26 (23.1%). CGE was seen in 4/9 (44.4%), 9/9 (100%), and 2/8 (25%) cases in groups 1. 2, and 3, respectively. Overall, CGEs were seen in 9/9 (100%) cases with grossly evident ovarian parenchymal involvement versus 6/17 (35.3%) without ( P = 0.0024). Ovarian size (measured on the long axis) correlated with CGE positivity ( P = 0.016). CGEs are significantly more common in HGSCs with ovarian parenchymal involvement compared with those limited to the fallopian tube and/or extraovarian tissues. These associations suggest geographically different tumor growth patterns and support the subdivision of HGSCs according to not only the stage but also tumor distribution. They have implications for clinical and pathologic presentation, trajectory of tumor evolution, and in the case of primary peritoneal HGSCs, potentially unique precursors to tumor transitions that could inform or influence cancer prevention efforts.
Collapse
Affiliation(s)
- Ju Yoon Yoon
- Unity Health Toronto, Department of Pathology, Toronto, Canada
| | - Aarti Sharma
- Brigham and Women’s Hospital, Division of Women’s and Perinatal pathology, Department of Pathology, Boston, USA
| | - Azra H. Ligon
- Brigham and Women’s Hospital, Department of Pathology, Division of Clinical Cytogenetics, Boston, USA
| | - Rebecca G. Ramesh
- Hospital of the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Philadelphia, USA
| | - T. Rinda Soong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Wa Xian
- University of Houston, Department of Biology and Biochemistry, Stem Cell Center, Houston TX
| | - David B. Chapel
- University of Michigan Health, Department of Pathology, Ann Arbor Michigan
| | - Christopher P. Crum
- Brigham and Women’s Hospital, Division of Women’s and Perinatal pathology, Department of Pathology, Boston, USA
| |
Collapse
|
28
|
Herbein G, El Baba R. Polyploid Giant Cancer Cells: A Distinctive Feature in the Transformation of Epithelial Cells by High-Risk Oncogenic HCMV Strains. Viruses 2024; 16:1225. [PMID: 39205199 PMCID: PMC11360263 DOI: 10.3390/v16081225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/04/2024] Open
Abstract
Human cytomegalovirus (HCMV) infection is common in tumor tissues across different types of cancer. While HCMV has not been recognized as a cancer-causing virus, numerous studies hint at its potential role in cancer development where its presence in various cancers corresponds with the hallmarks of cancer. Herein, we discuss and demonstrate that high-risk HCMV-DB and BL strains have the potential to trigger transformation in epithelial cells, including human mammary epithelial cells (HMECs), ovarian epithelial cells (OECs), and prostate epithelial cells (PECs), through the generation of polyploid giant cancer cells (PGCCs). A discussion is provided on how HCMV infection creates a cellular environment that promotes oncogenesis, supporting the continuous growth of CMV-transformed cells. The aforementioned transformed cells, named CTH, CTO, and CTP cells, underwent giant cell cycling with PGCC generation parallel to dedifferentiation, displaying stem-like characteristics and an epithelial-mesenchymal transition (EMT) phenotype. Furthermore, we propose that giant cell cycling through PGCCs, increased EZH2 expression, EMT, and the acquisition of malignant traits represent a deleterious response to the cellular stress induced by high-risk oncogenic HCMV strains, the latter being the origin of the transformation process in epithelial cells upon HCMV infection and leading to adenocarcinoma of poor prognosis.
Collapse
Affiliation(s)
- Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
- Department of Virology, CHU Besançon, 250000 Besancon, France
| | - Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UFC, 25000 Besancon, France;
| |
Collapse
|
29
|
Mallin MM, Rolle LT, Schmidt MJ, Nair SP, Zurita AJ, Kuhn P, Hicks J, Pienta KJ, Amend SR. Cells in the Polyaneuploid Cancer Cell State are Pro-Metastatic. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.12.603285. [PMID: 39071340 PMCID: PMC11275908 DOI: 10.1101/2024.07.12.603285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
There remains a large need for a greater understanding of the metastatic process within the prostate cancer field. Our research aims to understand the adaptive - ergo potentially metastatic - responses of cancer to changing microenvironments. Emerging evidence has implicated a role of the Polyaneuploid Cancer Cell (PACC) state in metastasis, positing the PACC state as capable of conferring metastatic competency. Mounting in vitro evidence supports increased metastatic potential of cells in the PACC state. Additionally, our recent retrospective study of prostate cancer patients revealed that PACC presence in the prostate at the time of radical prostatectomy was predictive of future metastatic progression. To test for a causative relationship between PACC state biology and metastasis, we leveraged a novel method designed for flow-cytometric detection of circulating tumor cells (CTCs) and disseminated tumor cells (DTCs) in subcutaneous, caudal artery, and intracardiac mouse models of metastasis. This approach provides both quantitative and qualitative information about the number and PACC-status of recovered CTCs and DTCs. Collating data from all models, we found that 74% of recovered CTCs and DTCs were in the PACC state. In vivo colonization assays proved PACC populations can regain proliferative capacity at metastatic sites following dormancy. Additional direct and indirect mechanistic in vitro analyses revealed a PACC-specific partial Epithelial-to-Mesenchymal-Transition phenotype and a pro-metastatic secretory profile, together providing preliminary evidence that PACCs are mechanistically linked to metastasis.
Collapse
Affiliation(s)
- Mikaela M. Mallin
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Louis T.A. Rolle
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Michael J. Schmidt
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Shilpa Priyadarsini Nair
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Peter Kuhn
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Aerospace and Mechanical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Institute of Urology, Catherine & Joseph Aresty Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - James Hicks
- Convergent Science Institute in Cancer, Michelson Center for Convergent Bioscience, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
- Department of Biological Sciences, Dornsife College of Letters, Arts, and Sciences, University of Southern California, Los Angeles, CA, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kenneth J. Pienta
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah R. Amend
- Cancer Ecology Center, James Buchanan Brady Urological Institute, Johns Hopkins Medical Institute, Baltimore, MD, USA
- Cellular and Molecular Medicine Graduate Training Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
30
|
Liu P, Wang L, Yu H. Polyploid giant cancer cells: origin, possible pathways of formation, characteristics, and mechanisms of regulation. Front Cell Dev Biol 2024; 12:1410637. [PMID: 39055650 PMCID: PMC11269155 DOI: 10.3389/fcell.2024.1410637] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/27/2024] Open
Abstract
Polyploid giant cancer cells (PGCCs) are characterized by the presence of either a single enlarged nucleus or multiple nuclei and are closely associated with tumor progression and treatment resistance. These cells contribute significantly to cellular heterogeneity and can arise from various stressors, including radiation, chemotherapy, hypoxia, and environmental factors. The formation of PGCCs can occur through mechanisms such as endoreplication, cell fusion, cytokinesis failure, mitotic slippage, or cell cannibalism. Notably, PGCCs exhibit traits similar to cancer stem cells (CSCs) and generate highly invasive progeny through asymmetric division. The presence of PGCCs and their progeny is pivotal in conferring resistance to chemotherapy and radiation, as well as facilitating tumor recurrence and metastasis. This review provides a comprehensive analysis of the origins, potential formation mechanisms, stressors, unique characteristics, and regulatory pathways of PGCCs, alongside therapeutic strategies targeting these cells. The objective is to enhance the understanding of PGCC initiation and progression, offering novel insights into tumor biology.
Collapse
Affiliation(s)
- Pan Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
- Beifang Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, Liaoning, China
| |
Collapse
|
31
|
Zhao S, Wang L, Ouyang M, Xing S, Liu S, Sun L, Yu H. Polyploid giant cancer cells induced by Docetaxel exhibit a senescence phenotype with the expression of stem cell markers in ovarian cancer cells. PLoS One 2024; 19:e0306969. [PMID: 38990953 PMCID: PMC11239069 DOI: 10.1371/journal.pone.0306969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Docetaxel (Doc) plays a crucial role in clinical antineoplastic practice. However, it is continuously documented that tumors frequently develop chemoresistance and relapse, which may be related to polyploid giant cancer cells (PGCCs). The aim of this study was investigate the formation mechanism and biological behavior of PGCCs induced by Doc. Ovarian cancer cells were treated with Doc, and then the effect of Doc on cellular viability was evaluated by MTT assay and microscopic imaging analysis. The biological properties of PGCCs were further evaluated by Hoechst 33342 staining, cell cycle and DNA content assay, DNA damage response (DDR) signaling detection, β-galactosidase staining, mitochondrial membrane potential detection, and reverse transcription-quantitative polymerase chain reaction. The results indicated that Doc reduced cellular viability; however, many cells were still alive, and were giant and polyploid. Doc increased the proportion of cells stayed in the G2/M phase and reduced the number of cells. In addition, the expression of γ-H2A.X was constantly increased after Doc treatment. PGCCs showed senescence-associated β-galactosidase activity and an increase in the monomeric form of JC-1. The mRNA level of octamer-binding transcription factor 4 (OCT4) and krüppel-like factor 4 (KLF4) was significantly increased in PGCCs. Taken together, our results suggest that Doc induces G2/M cell cycle arrest, inhibits the proliferation and activates persistent DDR signaling to promote the formation of PGCCs. Importantly, PGCCs exhibit a senescence phenotype and express stem cell markers.
Collapse
Affiliation(s)
- Song Zhao
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lili Wang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Mingyue Ouyang
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Sining Xing
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Shuo Liu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Lingyan Sun
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
32
|
Donati M, Kazakov DV. Beyond typical histology of BAP1-inactivated melanocytoma. Pathol Res Pract 2024; 259:155162. [PMID: 38326181 DOI: 10.1016/j.prp.2024.155162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/05/2024] [Accepted: 01/20/2024] [Indexed: 02/09/2024]
Abstract
BAP1-inactivated melanocytoma (BIM) is a novel subgroup of melanocytic neoplasm listed in the 5th edition of WHO classification of skin tumor. BIM is characterized by two molecular alterations, including a mitogenic driver mutation (usually BRAF gene) and the loss of function of BAP1, a tumor suppressor gene located on chromosome 3p21, which encodes for BRCA1-associated protein (BAP1). The latter represents a nuclear-localized deubiquitinase involved in several cellular processes including cell cycle regulation, chromatin remodeling, DNA damage response, differentiation, senescence and cell death. BIMs are histologically characterized by a population of large epithelioid melanocytes with well-demarcated cytoplasmic borders and copious eosinophilic cytoplasm, demonstrating loss of BAP1 nuclear expression by immunohistochemistry. Recently, we have published a series of 50 cases, extending the morphological spectrum of the neoplasm and highlighting some new microscopic features. In the current article, we focus on some new histological features, attempting to explain and link them to certain mechanisms of tumor development, including senescence, endoreplication, endocycling, asymmetric cytokinesis, entosis and others. In light of the morphological and molecular findings observed in BIM, we postulated that this entity unmasks a fine mechanism of tumor in which both clonal/stochastic and hierarchical model can be unified.
Collapse
Affiliation(s)
- Michele Donati
- Department of Pathology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy; Department of Pathology, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21 - 00128 Roma, Italy.
| | - Dmitry V Kazakov
- IDP Dermatohistopathologie Institut, Pathologie Institut Enge, Zurich, Switzerland
| |
Collapse
|
33
|
Yaghoubi Naei V, Ivanova E, Mullally W, O'Leary CG, Ladwa R, O'Byrne K, Warkiani ME, Kulasinghe A. Characterisation of circulating tumor-associated and immune cells in patients with advanced-stage non-small cell lung cancer. Clin Transl Immunology 2024; 13:e1516. [PMID: 38835954 PMCID: PMC11147668 DOI: 10.1002/cti2.1516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
Objectives Globally, non-small cell lung cancer (NSCLC) is the most prevalent form of lung cancer and the leading cause of cancer-related deaths. Tumor-associated circulating cells in NSCLC can have a wide variety of morphological and phenotypic characteristics, including epithelial, immunological or hybrid subtypes. The distinctive characteristics and potential clinical significance of these cells in patients with NSCLC are explored in this study. Methods We utilised a spiral microfluidic device to enrich large cells and cell aggregates from the peripheral blood samples of NSCLC patients. These cells were characterised through high-resolution immunofluorescent imaging and statistical analysis, correlating findings with clinical information from our patient cohort. Results We have identified varied populations of heterotypic circulating tumor cell clusters with differing immune cell composition that included a distinct class of atypical tumor-associated macrophages that exhibits unique morphology and cell size. This subtype's prevalence is positively correlated with the tumor stage, progression and metastasis. Conclusions Our study reveals a heterogeneous landscape of circulating tumor cells and their clusters, underscoring the complexity of NSCLC pathobiology. The identification of a unique subtype of atypical tumor-associatedmacrophages that simultaneously express both tumor and immune markers and whose presence correlates with late disease stages, poor clinical outcomes and metastatic risk infers the potential of these cells as biomarkers for NSCLC staging and prognosis. Future studies should focus on the role of these cells in the tumor microenvironment and their potential as therapeutic targets. Additionally, longitudinal studies tracking these cell types through disease progression could provide further insights into their roles in NSCLC evolution and response to treatment.
Collapse
Affiliation(s)
- Vahid Yaghoubi Naei
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| | - Ekaterina Ivanova
- Cancer and Ageing Research Program, Centre for Genomics and Personalised HealthQueensland University of TechnologyWoolloongabbaQLDAustralia
| | | | | | - Rahul Ladwa
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Ken O'Byrne
- The Princess Alexandra HospitalBrisbaneQLDAustralia
| | - Majid E Warkiani
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNSWAustralia
| | - Arutha Kulasinghe
- Frazer Institute, Faculty of MedicineThe University of QueenslandBrisbaneQLDAustralia
| |
Collapse
|
34
|
Zhao Y, He S, Zhao M, Huang Q. Surviving the Storm: The Role of Poly- and Depolyploidization in Tissues and Tumors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306318. [PMID: 38629780 PMCID: PMC11199982 DOI: 10.1002/advs.202306318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 03/18/2024] [Indexed: 06/27/2024]
Abstract
Polyploidization and depolyploidization are critical processes in the normal development and tissue homeostasis of diploid organisms. Recent investigations have revealed that polyaneuploid cancer cells (PACCs) exploit this ploidy variation as a survival strategy against anticancer treatment and for the repopulation of tumors. Unscheduled polyploidization and chromosomal instability in PACCs enhance malignancy and treatment resistance. However, their inability to undergo mitosis causes catastrophic cellular death in most PACCs. Adaptive ploid reversal mechanisms, such as multipolar mitosis, centrosome clustering, meiosis-like division, and amitosis, counteract this lethal outcome and drive cancer relapse. The purpose of this work is to focus on PACCs induced by cytotoxic therapy, highlighting the latest discoveries in ploidy dynamics in physiological and pathological contexts. Specifically, by emphasizing the role of "poly-depolyploidization" in tumor progression, the aim is to identify novel therapeutic targets or paradigms for combating diseases associated with aberrant ploidies.
Collapse
Affiliation(s)
- Yucui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologySecond Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Sijia He
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| | - Minghui Zhao
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Department of Radiation OncologyFirst Affiliated Hospital of Nanjing Medical UniversityNanjing210029China
| | - Qian Huang
- Cancer CenterShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
- Shanghai Key Laboratory of Pancreatic DiseasesShanghai General HospitalShanghai Jiao Tong University School of MedicineShanghai201620China
| |
Collapse
|
35
|
Patra S, Naik PP, Mahapatra KK, Alotaibi MR, Patil S, Patro BS, Sethi G, Efferth T, Bhutia SK. Recent advancement of autophagy in polyploid giant cancer cells and its interconnection with senescence and stemness for therapeutic opportunities. Cancer Lett 2024; 590:216843. [PMID: 38579893 DOI: 10.1016/j.canlet.2024.216843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/11/2024] [Accepted: 04/01/2024] [Indexed: 04/07/2024]
Abstract
Recurrent chemotherapy-induced senescence and resistance are attributed to the polyploidization of cancer cells that involve genomic instability and poor prognosis due to their unique form of cellular plasticity. Autophagy, a pre-dominant cell survival mechanism, is crucial during carcinogenesis and chemotherapeutic stress, favouring polyploidization. The selective autophagic degradation of essential proteins associated with cell cycle progression checkpoints deregulate mitosis fidelity and genomic integrity, imparting polyploidization of cancer cells. In connection with cytokinesis failure and endoreduplication, autophagy promotes the formation, maintenance, and generation of the progeny of polyploid giant cancer cells. The polyploid cancer cells embark on autophagy-guarded elevation in the expression of stem cell markers, along with triggered epithelial and mesenchymal transition and senescence. The senescent polyploid escapers represent a high autophagic index than the polyploid progeny, suggesting regaining autophagy induction and subsequent autophagic degradation, which is essential for escaping from senescence/polyploidy, leading to a higher proliferative phenotypic progeny. This review documents the various causes of polyploidy and its consequences in cancer with relevance to autophagy modulation and its targeting for therapeutic intervention as a novel therapeutic strategy for personalized and precision medicine.
Collapse
Affiliation(s)
- Srimanta Patra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India
| | - Prajna Paramita Naik
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India; Department of Zoology Panchayat College, Bargarh, 768028, Odisha, India
| | - Kewal Kumar Mahapatra
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India; Department of Agriculture and Allied Sciences (Zoology), C. V. Raman Global University, Bhubaneswar, 752054, Odisha, India
| | - Moureq Rashed Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Shankargouda Patil
- College of Dental Medicine, Roseman University of Health Sciences, South Jordan, UT, 84095, USA
| | - Birija Sankar Patro
- Chemical Biology Section, Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, 55128, Mainz, Germany
| | - Sujit Kumar Bhutia
- Cancer and Cell Death Laboratory, Department of Life Science, National Institute of Technology Rourkela, Rourkela, 769008, Odisha, India.
| |
Collapse
|
36
|
Silva AO, Bitencourt TC, Vargas JE, Fraga LR, Filippi-Chiela E. Modulation of tumor plasticity by senescent cells: Deciphering basic mechanisms and survival pathways to unravel therapeutic options. Genet Mol Biol 2024; 47Suppl 1:e20230311. [PMID: 38805699 PMCID: PMC11132560 DOI: 10.1590/1678-4685-gmb-2023-0311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/21/2024] [Indexed: 05/30/2024] Open
Abstract
Senescence is a cellular state in which the cell loses its proliferative capacity, often irreversibly. Physiologically, it occurs due to a limited capacity of cell division associated with telomere shortening, the so-called replicative senescence. It can also be induced early due to DNA damage, oncogenic activation, oxidative stress, or damage to other cellular components (collectively named induced senescence). Tumor cells acquire the ability to bypass replicative senescence, thus ensuring the replicative immortality, a hallmark of cancer. Many anti-cancer therapies, however, can lead tumor cells to induced senescence. Initially, this response leads to a slowdown in tumor growth. However, the longstanding accumulation of senescent cells (SnCs) in tumors can promote neoplastic progression due to the enrichment of numerous molecules and extracellular vesicles that constitutes the senescence-associated secretory phenotype (SASP). Among other effects, SASP can potentiate or unlock the tumor plasticity and phenotypic transitions, another hallmark of cancer. This review discusses how SnCs can fuel mechanisms that underlie cancer plasticity, like cell differentiation, stemness, reprogramming, and epithelial-mesenchymal transition. We also discuss the main molecular mechanisms that make SnCs resistant to cell death, and potential strategies to target SnCs. At the end, we raise open questions and clinically relevant perspectives in the field.
Collapse
Affiliation(s)
- Andrew Oliveira Silva
- Faculdade Estácio, Porto Alegre, RS, Brazil
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
| | - Thais Cardoso Bitencourt
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Biologia Celular e Molecular, Porto Alegre, RS, Brazil
| | - Jose Eduardo Vargas
- Universidade Federal do Paraná, Departamento de Biologia Celular,
Curitiba, PR, Brazil
| | - Lucas Rosa Fraga
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação
em Medicina: Ciências Médicas, Porto Alegre, RS, Brazil
| | - Eduardo Filippi-Chiela
- Centro de Pesquisa Experimental, Hospital de Clínicas de Porto
Alegre, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Departamento de Ciências
Morfológicas, Porto Alegre, RS, Brazil
- Universidade Federal do Rio Grande do Sul, Centro de Biotecnologia,
Porto Alegre, RS, Brazil
| |
Collapse
|
37
|
Vicente JJ, Khan K, Tillinghast G, McFaline-Figueroa JL, Sancak Y, Stella N. The microtubule targeting agent ST-401 triggers cell death in interphase and prevents the formation of polyploid giant cancer cells. J Transl Med 2024; 22:441. [PMID: 38730481 PMCID: PMC11084142 DOI: 10.1186/s12967-024-05234-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/24/2024] [Indexed: 05/12/2024] Open
Abstract
Microtubule targeting agents (MTAs) are commonly prescribed to treat cancers and predominantly kill cancer cells in mitosis. Significantly, some MTA-treated cancer cells escape death in mitosis, exit mitosis and become malignant polyploid giant cancer cells (PGCC). Considering the low number of cancer cells undergoing mitosis in tumor tissues, killing them in interphase may represent a favored antitumor approach. We discovered that ST-401, a mild inhibitor of microtubule (MT) assembly, preferentially kills cancer cells in interphase as opposed to mitosis, a cell death mechanism that avoids the development of PGCC. Single cell RNA sequencing identified mRNA transcripts regulated by ST-401, including mRNAs involved in ribosome and mitochondrial functions. Accordingly, ST-401 induces a transient integrated stress response, reduces energy metabolism, and promotes mitochondria fission. This cell response may underly death in interphase and avoid the development of PGCC. Considering that ST-401 is a brain-penetrant MTA, we validated these results in glioblastoma cell lines and found that ST-401 also reduces energy metabolism and promotes mitochondria fission in GBM sensitive lines. Thus, brain-penetrant mild inhibitors of MT assembly, such as ST-401, that induce death in interphase through a previously unanticipated antitumor mechanism represent a potentially transformative new class of therapeutics for the treatment of GBM.
Collapse
Affiliation(s)
- Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington, Health Sciences Building G424, 1705 NE Pacific Str., Seattle, WA, 98195-7280, USA.
| | - Kainat Khan
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA
| | - Grant Tillinghast
- Department of Biomedical Engineering, Columbia University, New York, NY, 10025, USA
| | | | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Health Sciences Center F404A, 1959 NE Pacific Str., Seattle, WA, 98195-7280, USA.
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
38
|
Ghosh S, Choudhury D, Ghosh D, Mondal M, Singha D, Malakar P. Characterization of polyploidy in cancer: Current status and future perspectives. Int J Biol Macromol 2024; 268:131706. [PMID: 38643921 DOI: 10.1016/j.ijbiomac.2024.131706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Various cancers frequently exhibit polyploidy, observed in a condition where a cell possesses more than two sets of chromosomes, which is considered a hallmark of the disease. The state of polyploidy often leads to aneuploidy, where cells possess an abnormal number or structure of chromosomes. Recent studies suggest that oncogenes contribute to aneuploidy. This finding significantly underscores its impact on cancer. Cancer cells exposed to certain chemotherapeutic drugs tend to exhibit an increased incidence of polyploidy. This occurrence is strongly associated with several challenges in cancer treatment, including metastasis, resistance to chemotherapy and the recurrence of malignant tumors. Indeed, it poses a significant hurdle to achieve complete tumor eradication and effective cancer therapy. Recently, there has been a growing interest in the field of polyploidy related to cancer for developing effective anti-cancer therapies. Polyploid cancer cells confer both advantages and disadvantages to tumor pathogenicity. This review delineates the diverse characteristics of polyploid cells, elucidates the pivotal role of polyploidy in cancer, and explores the advantages and disadvantages it imparts to cancer cells, along with the current approaches tried in lab settings to target polyploid cells. Additionally, it considers experimental strategies aimed at addressing the outstanding questions within the realm of polyploidy in relation to cancer.
Collapse
Affiliation(s)
- Srijonee Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Debopriya Choudhury
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Dhruba Ghosh
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Meghna Mondal
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Didhiti Singha
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India
| | - Pushkar Malakar
- Department of Biomedical Science and Technology, School of Biological Sciences, Ramakrishna Mission Vivekananda Educational Research Institute (RKMVERI), Kolkata, India.
| |
Collapse
|
39
|
Zheng M, Tian S, Zhou X, Yan M, Zhou M, Yu Y, Zhang Y, Wang X, Li N, Ren L, Zhang S. MITF regulates the subcellular location of HIF1α through SUMOylation to promote the invasion and metastasis of daughter cells derived from polyploid giant cancer cells. Oncol Rep 2024; 51:63. [PMID: 38456491 PMCID: PMC10940875 DOI: 10.3892/or.2024.8722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/23/2024] [Indexed: 03/09/2024] Open
Abstract
High concentrations of cobalt chloride (CoCl2) can induce the formation of polyploid giant cancer cells (PGCCs) in various tumors, which can produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric division. To study the role of hypoxia‑inducible factor (HIF) 1α in the formation of PGCCs, colon cancer cell lines Hct116 and LoVo were used as experimental subjects. Western blotting, nuclear and cytoplasmic protein extraction and immunocytochemical experiments were used to compare the changes in the expression and subcellular localization of HIF1α, microphthalmia‑associated transcription factor (MITF), protein inhibitor of activated STAT protein 4 (PIAS4) and von Hippel‑Lindau disease tumor suppressor (VHL) after treatment with CoCl2. The SUMOylation of HIFα was verified by co‑immunoprecipitation assay. After inhibiting HIF1α SUMOylation, the changes in proliferation, migration and invasion abilities of Hct116 and LoVo were compared by plate colony formation, wound healing and Transwell migration and invasion. In addition, lysine sites that led to SUMOylation of HIF1α were identified through site mutation experiments. The results showed that CoCl2 can induce the formation of PGCCs with the expression level of HIF1α higher in treated cells than in control cells. HIF1α was primarily located in the cytoplasm of control cell. Following CoCl2 treatment, the subcellular localization of HIF1α was primarily in the nuclei of PGCCs with daughter cells (PDCs). After treatment with SUMOylation inhibitors, the nuclear HIF1α expression in PDCs decreased. Furthermore, their proliferation, migration and invasion abilities also decreased. After inhibiting the expression of MITF, the expression of HIF1α decreased. MITF can regulate HIF1α SUMOylation. Expression and subcellular localization of VHL and HIF1α did not change following PIAS4 knockdown. SUMOylation of HIF1α occurs at the amino acid sites K391 and K477 in PDCs. After mutation of the two sites, nuclear expression of HIF1α in PDCs was reduced, along with a significant reduction in the proliferation, migration and invasion abilities. In conclusion, the post‑translation modification regulated the subcellular location of HIF1α and the nuclear expression of HIF1α promoted the proliferation, migration and invasion abilities of PDCs. MITF could regulate the transcription and protein levels of HIF1α and participate in the regulation of HIF1α SUMOylation.
Collapse
Affiliation(s)
- Minying Zheng
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Shifeng Tian
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Xinyue Zhou
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Man Yan
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Mingming Zhou
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Yongjun Yu
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Yue Zhang
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| | - Xiaorui Wang
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Na Li
- Graduate School, Tianjin Medical University, Tianjin 300070, P.R. China
| | - Li Ren
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institution and Hospital, Tianjin 300090, P.R. China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
40
|
White-Gilbertson S, Lu P, Saatci O, Sahin O, Delaney JR, Ogretmen B, Voelkel-Johnson C. Transcriptome analysis of polyploid giant cancer cells and their progeny reveals a functional role for p21 in polyploidization and depolyploidization. J Biol Chem 2024; 300:107136. [PMID: 38447798 PMCID: PMC10979113 DOI: 10.1016/j.jbc.2024.107136] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 02/03/2024] [Accepted: 02/15/2024] [Indexed: 03/08/2024] Open
Abstract
Polyploid giant cancer cells (PGCC) are frequently detected in tumors and are increasingly recognized for their roles in chromosomal instability and associated genome evolution that leads to cancer recurrence. We previously reported that therapy stress promotes polyploidy, and that acid ceramidase plays a role in depolyploidization. In this study, we used an RNA-seq approach to gain a better understanding of the underlying transcriptomic changes that occur as cancer cells progress through polyploidization and depolyploidization. Our results revealed gene signatures that are associated with disease-free and/or overall survival in several cancers and identified the cell cycle inhibitor CDKN1A/p21 as the major hub in PGCC and early progeny. Increased expression of p21 in PGCC was limited to the cytoplasm. We previously demonstrated that the sphingolipid enzyme acid ceramidase is dispensable for polyploidization upon therapy stress but plays a crucial role in depolyploidization. The current study demonstrates that treatment of cells with ceramide is not sufficient for p53-independent induction of p21 and that knockdown of acid ceramidase, which hydrolyzes ceramide, does not interfere with upregulation of p21. In contrast, blocking the expression of p21 with UC2288 prevented the induction of acid ceramidase and inhibited both the formation of PGCC from parental cells as well as the generation of progeny from PGCC. Taken together, our data suggest that p21 functions upstream of acid ceramidase and plays an important role in polyploidization and depolyploidization.
Collapse
Affiliation(s)
- Shai White-Gilbertson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ping Lu
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozge Saatci
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Ozgur Sahin
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Joe R Delaney
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Besim Ogretmen
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Christina Voelkel-Johnson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, South Carolina, USA; Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA.
| |
Collapse
|
41
|
Adico MD, Bayala B, Zoure AA, Lagarde A, Bazie JT, Traore L, Buñay J, Yonli AT, Djigma F, Bambara HA, Baron S, Simporé J, Lobaccaro JMA. In vitro activities and mechanisms of action of anti-cancer molecules from African medicinal plants: a systematic review. Am J Cancer Res 2024; 14:1376-1401. [PMID: 38590420 PMCID: PMC10998760 DOI: 10.62347/auhb5811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 07/27/2023] [Indexed: 04/10/2024] Open
Abstract
Cancer is one of the leading causes of death worldwide. In recent years, African countries have been faced with a rapid increase in morbidity and mortality due to this pathology. Management is often complicated by the high treatment costs, side effects and the increasing occurrence of resistance to treatments. The identification of new active ingredients extracted from endemic medicinal plants is definitively an interesting approach for the implementation of new therapeutic strategies: their extraction is often lower cost; their identification is based on an ethnobotanical history and a tradipratic approach; their use by low-income populations is simpler; this can help in the development of new synthetic molecules that are more active, more effective and with fewer side effects. The objective of this review is to document the molecules derived from African medicinal plants whose in vitro anti-cancer activities and the mechanisms of molecular actions have been identified. From the scientific databases Science Direct, PubMed and Google Scholar, we searched for publications on compounds isolated from African medicinal plants and having activity on cancer cells in culture. The data were analyzed in particular with regard to the cytotoxicity of the compounds and their mode of action. A total of 90 compounds of these African medicinal plants were selected. They come from nine chemical groups: alkaloids, flavonoids, polyphenols, quinones, saponins, steroids, terpenoids, xanthones and organic sulfides. These compounds have been associated with several cellular effects: i) Cytotoxicity, including caspase activation, alteration of mitochondrial membrane potential, and/or induction of reactive oxygen species (ROS); ii) Anti-angiogenesis; iii) Anti-metastatic properties. This review points out that the cited African plants are rich in active ingredients with anticancer properties. It also stresses that screening of these anti-tumor active ingredients should be continued at the continental scale. Altogether, this work provides a rational basis for the selection of phytochemical compounds for use in clinical trials.
Collapse
Affiliation(s)
- Marc Dw Adico
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Bagora Bayala
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Ecole Normale Supérieure Koudougou, Burkina Faso
| | - Abdou A Zoure
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Laboratoire de recherches Biomédicales (LaReBio), Département de santé publique et biomédicale, Institut de Recherche en Sciences de la Santé (IRSS/CNRST) Ouagadougou, Burkina Faso
| | - Aurélie Lagarde
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| | - Jean Tv Bazie
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Département des Substances Naturelles (DSN), Institut de Recherche en Sciences et Technologies Appliquées (IRSAT) Ouagadougou, Burkina Faso
| | - Lassina Traore
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Julio Buñay
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| | - Albert T Yonli
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Florencia Djigma
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
| | - Hierrhum A Bambara
- Service d'oncologie, Centre hospitalier universitaire BOGODOGO, Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
| | - Silvère Baron
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| | - Jacques Simporé
- Laboratoire de Biologie Moléculaire et Génétique (LABIOGENE), Université Joseph KI-ZERBO Ouagadougou, Burkina Faso
- Centre de Recherche Biomoléculaire Pietro Annigoni (CERBA) Ouagadougou, Burkina Faso
- Faculté de médecine, Université Saint Thomas d'Aquin (USTA) Ouagadougou, Burkina Faso
| | - Jean-Marc A Lobaccaro
- Institute Génétique, Reproduction, Développement, UMR CNRS 6293, INSERM U1103, Université Clermont Auvergne 28, Place Henri Dunant, BP38, F63001, Clermont-Ferrand, France
| |
Collapse
|
42
|
Herriage HC, Huang YT, Calvi BR. The antagonistic relationship between apoptosis and polyploidy in development and cancer. Semin Cell Dev Biol 2024; 156:35-43. [PMID: 37331841 PMCID: PMC10724375 DOI: 10.1016/j.semcdb.2023.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/23/2023] [Accepted: 05/30/2023] [Indexed: 06/20/2023]
Abstract
One of the important functions of regulated cell death is to prevent cells from inappropriately acquiring extra copies of their genome, a state known as polyploidy. Apoptosis is the primary cell death mechanism that prevents polyploidy, and defects in this apoptotic response can result in polyploid cells whose subsequent error-prone chromosome segregation are a major contributor to genome instability and cancer progression. Conversely, some cells actively repress apoptosis to become polyploid as part of normal development or regeneration. Thus, although apoptosis prevents polyploidy, the polyploid state can actively repress apoptosis. In this review, we discuss progress in understanding the antagonistic relationship between apoptosis and polyploidy in development and cancer. Despite recent advances, a key conclusion is that much remains unknown about the mechanisms that link apoptosis to polyploid cell cycles. We suggest that drawing parallels between the regulation of apoptosis in development and cancer could help to fill this knowledge gap and lead to more effective therapies.
Collapse
Affiliation(s)
- Hunter C Herriage
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Yi-Ting Huang
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Brian R Calvi
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| |
Collapse
|
43
|
Xie B, Fan M, Wang CX, Zhang Y, Xu S, Mizenko R, Lin TY, Duan Y, Zhang Y, Huang J, Berg JI, Wu D, Li A, Hao D, Gao K, Sun Y, Tepper CG, Carney R, Li Y, Wang A, Gong Q, Daly M, Jao LE, Monjazeb AM, Fierro FA, Li JJ. Post-death Vesicles of Senescent Bone Marrow Mesenchymal Stromal Polyploids Promote Macrophage Aging and Breast Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583755. [PMID: 38496556 PMCID: PMC10942423 DOI: 10.1101/2024.03.06.583755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Potential systemic factors contributing to aging-associated breast cancer (BC) remain elusive. Here, we reveal that the polyploid giant cells (PGCs) that contain more than two sets of genomes prevailing in aging and cancerous tissues constitute 5-10% of healthy female bone marrow mesenchymal stromal cells (fBMSCs). The PGCs can repair DNA damage and stimulate neighboring cells for clonal expansion. However, dying PGCs in advanced-senescent fBMSCs can form "spikings" which are then separated into membraned mtDNA-containing vesicles (Senescent PGC-Spiking Bodies; SPSBs). SPSB-phagocytosed macrophages accelerate aging with diminished clearance on BC cells and protumor M2 polarization. SPSB-carried mitochondrial OXPHOS components are enriched in BC of elder patients and associated with poor prognosis. SPSB-incorporated breast epithelial cells develop aggressive characteristics and PGCs resembling the polyploid giant cancer cells (PGCCs) in clonogenic BC cells and cancer tissues. These findings highlight an aging BMSC-induced BC risk mediated by SPSB-induced macrophage dysfunction and epithelial cell precancerous transition. SIGNIFICANCE Mechanisms underlying aging-associated cancer risk remain unelucidated. This work demonstrates that polyploid giant cells (PGCs) in bone marrow mesenchymal stromal cells (BMSCs) from healthy female bone marrow donors can boost neighboring cell proliferation for clonal expansion. However, the dying-senescent PGCs in the advanced-senescent fBMSCs can form "spikings" which are separated into mitochondrial DNA (mtDNA)-containing spiking bodies (senescent PGC-spiking bodies; SPSBs). The SPSBs promote macrophage aging and breast epithelial cell protumorigenic transition and form polyploid giant cancer cells. These results demonstrate a new form of ghost message from dying-senescent BMSCs, that may serve as a systemic factor contributing to aging-associated immunosuppression and breast cancer risk. Graphic Abstract
Collapse
|
44
|
Buss JH, Begnini KR, Lenz G. The contribution of asymmetric cell division to phenotypic heterogeneity in cancer. J Cell Sci 2024; 137:jcs261400. [PMID: 38334041 DOI: 10.1242/jcs.261400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Cells have evolved intricate mechanisms for dividing their contents in the most symmetric way during mitosis. However, a small proportion of cell divisions results in asymmetric segregation of cellular components, which leads to differences in the characteristics of daughter cells. Although the classical function of asymmetric cell division (ACD) in the regulation of pluripotency is the generation of one differentiated daughter cell and one self-renewing stem cell, recent evidence suggests that ACD plays a role in other physiological processes. In cancer, tumor heterogeneity can result from the asymmetric segregation of genetic material and other cellular components, resulting in cell-to-cell differences in fitness and response to therapy. Defining the contribution of ACD in generating differences in key features relevant to cancer biology is crucial to advancing our understanding of the causes of tumor heterogeneity and developing strategies to mitigate or counteract it. In this Review, we delve into the occurrence of asymmetric mitosis in cancer cells and consider how ACD contributes to the variability of several phenotypes. By synthesizing the current literature, we explore the molecular mechanisms underlying ACD, the implications of phenotypic heterogeneity in cancer, and the complex interplay between these two phenomena.
Collapse
Affiliation(s)
- Julieti Huch Buss
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| | - Karine Rech Begnini
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Instituto do Cérebro (INSCER), Pontifícia Universidade Católica RS (PUCRS), Porto Alegre, RS 90610-000, Brazil
| | - Guido Lenz
- Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS 91509-900, Brazil
| |
Collapse
|
45
|
Chao S, Yan H, Bu P. Asymmetric division of stem cells and its cancer relevance. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:5. [PMID: 38411768 PMCID: PMC10897644 DOI: 10.1186/s13619-024-00188-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 01/30/2024] [Indexed: 02/28/2024]
Abstract
Asymmetric division is a fundamental process for generating cell diversity and maintaining the stem cell population. During asymmetric division, proteins, organelles, and even RNA are distributed unequally between the two daughter cells, determining their distinct cell fates. The mechanisms orchestrating this process are extremely complex. Dysregulation of asymmetric division can potentially trigger cancer progression. Cancer stem cells, in particular, undergo asymmetric division, leading to intra-tumoral heterogeneity, which contributes to treatment refractoriness. In this review, we delve into the cellular and molecular mechanisms that govern asymmetric division and explore its relevance to tumorigenesis.
Collapse
Affiliation(s)
- Shanshan Chao
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiwen Yan
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pengcheng Bu
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing, 100101, China.
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
46
|
Jiao Y, Yu Y, Zheng M, Yan M, Wang J, Zhang Y, Zhang S. Dormant cancer cells and polyploid giant cancer cells: The roots of cancer recurrence and metastasis. Clin Transl Med 2024; 14:e1567. [PMID: 38362620 PMCID: PMC10870057 DOI: 10.1002/ctm2.1567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 02/17/2024] Open
Abstract
Tumour cell dormancy is critical for metastasis and resistance to chemoradiotherapy. Polyploid giant cancer cells (PGCCs) with giant or multiple nuclei and high DNA content have the properties of cancer stem cell and single PGCCs can individually generate tumours in immunodeficient mice. PGCCs represent a dormant form of cancer cells that survive harsh tumour conditions and contribute to tumour recurrence. Hypoxic mimics, chemotherapeutics, radiation and cytotoxic traditional Chinese medicines can induce PGCCs formation through endoreduplication and/or cell fusion. After incubation, dormant PGCCs can recover from the treatment and produce daughter cells with strong proliferative, migratory and invasive abilities via asymmetric cell division. Additionally, PGCCs can resist hypoxia or chemical stress and have a distinct protein signature that involves chromatin remodelling and cell cycle regulation. Dormant PGCCs form the cellular basis for therapeutic resistance, metastatic cascade and disease recurrence. This review summarises regulatory mechanisms governing dormant cancer cells entry and exit of dormancy, which may be used by PGCCs, and potential therapeutic strategies for targeting PGCCs.
Collapse
Affiliation(s)
- Yuqi Jiao
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yongjun Yu
- Department of PathologyTianjin Union Medical CenterTianjinChina
| | - Minying Zheng
- Department of PathologyTianjin Union Medical CenterNankai UniversityTianjinChina
| | - Man Yan
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Jiangping Wang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yue Zhang
- School of Integrative MedicineTianjin University of Traditional Chinese MedicineTianjinChina
| | - Shiwu Zhang
- Department of PathologyTianjin Union Medical CenterTianjinChina
| |
Collapse
|
47
|
Schubert I. Macromutations Yielding Karyotype Alterations (and the Process(es) behind Them) Are the Favored Route of Carcinogenesis and Speciation. Cancers (Basel) 2024; 16:554. [PMID: 38339305 PMCID: PMC10854648 DOI: 10.3390/cancers16030554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
It is argued that carcinogenesis and speciation are evolutionary events which are based on changes in the 'karyotypic code' through a phase of 'genome instability', followed by a bottleneck of selection for the viability and adaptability of the initial cells. Genomic (i.e., chromosomal) instability is caused by (massive) DNA breakage and the subsequent mis-repair of DNA double-strand breaks (DSBs) resulting in various chromosome rearrangements. Potential tumor cells are selected for rapid somatic proliferation. Cells eventually yielding a novel species need not only to be viable and proliferation proficient, but also to have a balanced genome which, after passing meiosis as another bottleneck and fusing with an identical gamete, can result in a well-adapted organism. Such new organisms should be genetically or geographically isolated from the ancestral population and possess or develop an at least partial sexual barrier.
Collapse
Affiliation(s)
- Ingo Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), 04644 Gatersleben, Germany
| |
Collapse
|
48
|
Kasperski A, Heng HH. The Digital World of Cytogenetic and Cytogenomic Web Resources. Methods Mol Biol 2024; 2825:361-391. [PMID: 38913321 DOI: 10.1007/978-1-0716-3946-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
The dynamic growth of technological capabilities at the cellular and molecular level has led to a rapid increase in the amount of data on the genes and genomes of organisms. In order to store, access, compare, validate, classify, and understand the massive data generated by different researchers, and to promote effective communication among research communities, various genome and cytogenetic online databases have been established. These data platforms/resources are essential not only for computational analyses and theoretical syntheses but also for helping researchers select future research topics and prioritize molecular targets. Furthermore, they are valuable for identifying shared recurrent genomic patterns related to human diseases and for avoiding unnecessary duplications among different researchers. The website interface, menu, graphics, animations, text layout, and data from databases are displayed by a front end on the screen of a monitor or smartphone. A database front-end refers to the user interface or application that enables accessing tabular, structured, or raw data stored in the database. The Internet makes it possible to reach a greater number of users around the world and gives them quick access to information stored in databases. The number of ways of presenting this data by front-ends increases as well. This requires unifying the ways of operating and presenting information by front-ends and ensuring contextual switching between front-ends of different databases. This chapter aims to present selected cytogenetic and cytogenomic Internet resources in terms of obtaining the needed information and to indicate how to increase the efficiency of access to stored information. Through a brief introduction of these databases and by providing examples of their usage in cytogenetic analyses, we aim to bridge the gap between cytogenetics and molecular genomics by encouraging their utilization.
Collapse
Affiliation(s)
- Andrzej Kasperski
- Institute of Biological Sciences, Department of Biotechnology, Laboratory of Bioinformatics and Control of Bioprocesses, University of Zielona Góra, Zielona Góra, Poland.
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, and Department of Pathology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
49
|
Noubissi FK, Odubanjo OV, Ogle BM, Tchounwou PB. Mechanisms of Cell Fusion in Cancer. Results Probl Cell Differ 2024; 71:407-432. [PMID: 37996688 PMCID: PMC10893907 DOI: 10.1007/978-3-031-37936-9_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
Cell-cell fusion is a normal physiological mechanism that requires a well-orchestrated regulation of intracellular and extracellular factors. Dysregulation of this process could lead to diseases such as osteoporosis, malformation of muscles, difficulties in pregnancy, and cancer. Extensive literature demonstrates that fusion occurs between cancer cells and other cell types to potentially promote cancer progression and metastasis. However, the mechanisms governing this process in cancer initiation, promotion, and progression are less well-studied. Fusogens involved in normal physiological processes such as syncytins and associated factors such as phosphatidylserine and annexins have been observed to be critical in cancer cell fusion as well. Some of the extracellular factors associated with cancer cell fusion include chronic inflammation and inflammatory cytokines, hypoxia, and viral infection. The interaction between these extracellular factors and cell's intrinsic factors potentially modulates actin dynamics to drive the fusion of cancer cells. In this review, we have discussed the different mechanisms that have been identified or postulated to drive cancer cell fusion.
Collapse
Affiliation(s)
- Felicite K Noubissi
- Department of Biology, Jackson State University, Jackson, MS, USA.
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA.
| | - Oluwatoyin V Odubanjo
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Department of Pediatrics, University of Minnesota-Twin Cities, Minneapolis, MN, USA
- Stem Cell Institute, University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Paul B Tchounwou
- Department of Biology, Jackson State University, Jackson, MS, USA
- Research Centers in Minority Institutions (RCMI), Center for Health Disparity Research (RCMI-CHDR), Jackson State University, Jackson, MS, USA
| |
Collapse
|
50
|
Thanedar S, Heng E, Ju D, Zhang K, Heng HH. Studying the Dynamics of Tunneling Tubes and Cellular Spheres. Methods Mol Biol 2024; 2825:333-343. [PMID: 38913319 DOI: 10.1007/978-1-0716-3946-7_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Cancer cytogenetic analyses often involve cell culture. However, many cytogeneticists overlook interesting phenotypes associated with cultured cells. Given that cytogeneticists need to focus more on phenotypes to comprehend the genotypes, the biological significance of seemingly trivial cellular variations deserves attention. One example is the formation of cellular tunneling tubes (TTs) in cultured cancer cells, which likely play a role in cell-to-cell communication and material transport. In this chapter, we describe protocols for studying these TTs as well as cellular spheres. In addition to diverse chromosomal variants, these different types of variations should be considered for understanding cancer heterogeneity and dynamics, as they illustrate the importance of various forms of fuzzy inheritance.
Collapse
Affiliation(s)
- Sanjana Thanedar
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eric Heng
- Stanford University, Stanford, CA, USA
| | - Donghong Ju
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kezhong Zhang
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Henry H Heng
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|