1
|
Garai B, Das G, Duncan CM, Nour HF, Benyettou F, Prakasam T, Varghese S, Hamoud HI, El-Roz M, Martinez JI, Gándara F, Olson MA, Trabolsi A. Triple energy conversion cascade in a densely charged redox active covalent organic actuator. Nat Commun 2025; 16:5083. [PMID: 40450006 DOI: 10.1038/s41467-025-60257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 05/19/2025] [Indexed: 06/03/2025] Open
Abstract
Development of efficient actuators and understanding of their mechanisms are crucial for progress in areas such as soft robotics and artificial muscles. Here, we report a self-standing film of an ionic covalent organic framework (V2+-TG) composed of cationic guanidinium and viologen linkers, which shows an instantaneous and reversible photoactuation. Upon UV light exposure, the film deflects by 100 ° in less than 3 s, through a triple energy conversion cascade, where light is first converted into chemical energy via intramolecular charge transfer, then to thermal energy, and finally into mechanical energy, causing the film to bend. The localized heat induces water molecule elimination, creating a hydrogen bonding gradient between the two surfaces of the film, triggering the bending. Actuation property of the film is modulated by varying film thickness, light intensity, and humidity. The film also demonstrates practical potential for applications like lifting payloads, heating, and surface deicing where ice accumulation poses operational risks.
Collapse
Affiliation(s)
- Bikash Garai
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Gobinda Das
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Connor M Duncan
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, USA
| | - Hany F Nour
- Department of Photochemistry, Chemical Industries Research Institute, National Research Centre, Cairo, Egypt
| | - Farah Benyettou
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Thirumurugan Prakasam
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Sabu Varghese
- CTP, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates
| | - Houeida Issa Hamoud
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, Caen, France
| | - Mohamad El-Roz
- Laboratoire Catalyse et Spectrochimie, CNRS, Ensicaen, Université de Caen, Caen, France
| | | | - Felipe Gándara
- Materials Science Institute of Madrid - CSIC, Madrid, Spain
| | - Mark A Olson
- Department of Physical and Environmental Sciences, Texas A&M University Corpus Christi, Corpus Christi, TX, USA.
| | - Ali Trabolsi
- Chemistry Program, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates.
- NYUAD Water Research Center, New York University Abu Dhabi (NYUAD), Saadiyat Island, United Arab Emirates.
| |
Collapse
|
2
|
Wang M, Ma TY, Wu ZH, Liu Y, Li S, Cheng Z, Wu XQ, Sun B, Jiang Z, Li DS. Construction of Local-Ion Trap in Phase-Reversed Mixed Matrix COF Membranes for Ultrahigh Ion Selectivity. Angew Chem Int Ed Engl 2025; 64:e202504990. [PMID: 40125931 DOI: 10.1002/anie.202504990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 03/25/2025]
Abstract
Artificial molecular/ion traps afford grand potential in membrane-based separation processes. However, the existing trap-based architectures often confer over-strong binding forces, which severely impede the release of bound solutes during their transmembrane diffusion processes. Herein, we propose an unprecedented local-ion trap bearing moderate binding force and additional repulsion force in a type of phase-reversed mixed matrix covalent organic framework (PRCOF) membrane. By implementing COF as a continuous phase and polymer as a dispersed phase at the molecular level, the local-ion trap is formed in the COF channels equipped with free amino groups from polyethyleneimine (PEI). This unique local-ion trap built by electronegative COF nano-domains and electropositive PEI nano-domains offers appropriate interaction toward Li+, which allows the precise recognition and rapid transport of Li+ in the membrane channels. By tuning the microenvironments of local-ion trap, the optimum PRCOF-1 membrane exhibits considerably high actual selectivity of 190 along with a rapid Li+ permeation rate of 0.262 mol h-1 m-2 in dealing with a Li+/Mg2+ binary mixture. This work provides in-depth insights into the design of high-performance membranes with appropriate chemical interactions.
Collapse
Affiliation(s)
- Meidi Wang
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| | - Tian-Yu Ma
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| | - Zhuo-Hao Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| | - Yawei Liu
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Shuang Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| | - Zixuan Cheng
- Beijing Key Laboratory of Solid State Battery and Energy Storage Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Mesoscience and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P.R. China
| | - Xue-Qian Wu
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| | - Bojing Sun
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| | - Zhongyi Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, P.R. China
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University, Yichang, 443002, P.R. China
- Hubei Three Gorges Laboratory, Yichang, Hubei, 443002, P.R. China
| |
Collapse
|
3
|
Zhang Q, Huang Y, Dai Z, Li Y, Li Z, Lai R, Wei F, Shao F. Covalent Organic Framework Membranes: Synthesis Strategies and Separation Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27605-27628. [PMID: 40305289 DOI: 10.1021/acsami.5c02556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as highly promising materials for membrane separations due to their high porosity, tunable pore sizes, ordered crystalline structures, and exceptional chemical stability. With these features, COF membranes possess greater selectivity and permeability than conventional materials, making them the preferred choice in various fields, including membrane separations. Fascinating research endeavors have emerged encompassing fabrication strategies for COF-based membranes and their diverse separation applications. Hence, this review summarizes the latest advancements in COF synthesis, including COF powders and continuous COF-based membranes and their applications in separation membranes. Special consideration was given to regulation strategies for the performance optimization of COF membranes in separation applications, such as pore size, hydrophilicity/hydrophobicity, surface charge, crystallinity, and stability. Furthermore, applications of COF membranes in water treatment, metal ion separation, organic solvent nanofiltration, and gas separation are comprehensively reviewed. Finally, the research results and future prospects for the development of COF membranes are discussed. Future research may be focused on the following key directions: (1) single-crystal COF fabrication, (2) cost-effective membrane preparation, (3) subnanometer pore engineering, (4) advanced characterization techniques, and (5) AI-assisted development.
Collapse
Affiliation(s)
- Qingqing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Yu Huang
- Suzhou Laboratory, Suzhou 215100, China
| | - Zhendong Dai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | - Youqi Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| | | | | | - Facai Wei
- Suzhou Laboratory, Suzhou 215100, China
| | - Feng Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
- Suzhou Laboratory, Suzhou 215100, China
| |
Collapse
|
4
|
Gupta KM, Aitipamula S, Chin X, Chow PS. Synergistic Computational and Experimental Investigation of Covalent Organic Frameworks for Efficient Alcohol Dehydration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:26551-26564. [PMID: 40273888 DOI: 10.1021/acsami.5c01219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Covalent organic frameworks (COFs), a promising class of nanoporous materials, have received significant attention for membrane separation. Currently, several COFs are reported for alcohol dehydration, but they are not efficient owing to the pervasive challenge to separate small-sized molecular mixture. Herein, first we have computationally explored a series of COFs with different functionality and aperture size as pervaporation (PV) membrane and identified a novel COF for efficient dehydration of water/alcohol mixtures (90 wt % IPA, 90 wt % n-butanol and 90 wt % t-butanol). Subsequently, the best-performing COF was experimentally synthesized and characterized, and its sorption properties were correlated with computational results. Molecular dynamics (MD) simulations revealed that solvent permeation fluxes are predominantly influenced by the pore aperture of COFs, and larger pore aperture exhibits higher flux. Conversely, the separation factor is primarily determined by the polarity of the pore functional groups. Among the tested COF membranes, TpPa-1-OC3H6OCH3 demonstrated superior performance, surpassing the current state-of-the-art membranes. The activation energy (Ea) for water permeation in alcohol mixtures through TpPa-1-OC3H6OCH3 is mostly governed by water-alcohol interactions. Furthermore, experimental evaluation of the COFs indicated a plate-like morphology for TpPa-1-OC3H6OCH3 which ascertained a 2D-sheet-like structure. TpPa-1 showed greater sorption than TpPa-1-OC3H6OCH3 with all of the solvents tested owing to the inability of the solvent molecules to enter the relatively small pores in the later COF. This is in accordance with the MD simulation predictions, which indicated that the solvent molecules cannot penetrate the small pores of TpPa-1-OC3H6OCH3. This work synergistically integrates computational and experimental approaches to develop novel COFs with superior performance compared to previously reported PV membranes, paving the way for advanced membranes for sustainable solvent recovery.
Collapse
Affiliation(s)
- Krishna M Gupta
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, J&K, India
| | - Srinivasulu Aitipamula
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Xavier Chin
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| | - Pui Shan Chow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore
| |
Collapse
|
5
|
Tang J, Liao Y, Pan Z, Fang S, Tang M, Shao L, Han G. Interface-Confined Catalytic Synthesis of Anisotropic Covalent Organic Framework Nanofilm for Ultrafast Molecular Sieving. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415520. [PMID: 39976115 PMCID: PMC12005809 DOI: 10.1002/advs.202415520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/17/2025] [Indexed: 02/21/2025]
Abstract
Covalent organic frameworks (COFs) have emerged as prominent membrane materials for efficiently fractionating organic molecules and ions due to their unique pore structure. However, the fabrication of free-standing COF nanofilms with high crystallinity remains an arduous undertaking, and feasible methods that can enable precise control over the film microstructure are barely reported. This work conceives an exquisite interface-confined catalytic strategy to prepare Tp-BD(OH)2 COF nanofilm with an anisotropic structure analogously to conventional polymeric membranes. Experimental data and molecular simulations reveal that the hydroxyl groups on the framework substantially capture and anchor the acid catalyst through hydrogen bonding interactions at the incipient stage of interfacial polycondensation, instigating confined catalysis and self-termination reaction at the interface. The distinctive asymmetric structure endows the Tp-BD(OH)2 COF nanofilm with a record-breaking pure water permeance of 525.3 L m-2 h-1 bar-1 and unprecedented dye/salt selectivity of 648.6, surpassing other reported COF films and state-of-the-art nanofiltration membranes, as well as enduring structural durability and chemical stability. The implemented interface-confined catalysis strategy opens up a new avenue for regulating the COF nanofilm microstructure and holds broad prospects for the rational design of high-performance membranes for sustainable water purification and treatment.
Collapse
Affiliation(s)
- Jiahao Tang
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Yu Liao
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Zhenxiang Pan
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Songjun Fang
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Mingxiu Tang
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and StorageState Key Laboratory of Urban Water Resource and Environment (SKLUWRE)School of Chemistry and Chemical EngineeringHarbin Institute of TechnologyHarbin150001China
| | - Gang Han
- College of Environmental Science and EngineeringTianjin Key Laboratory of Environmental Remediation and Pollution ControlNankai University38 Tongyan RoadTianjin300350China
| |
Collapse
|
6
|
Xu Y, Ai S, Wu T, Zhou C, Huang Q, Li B, Tian D, Bu XH. Bioinspired Photo-Thermal Catalytic System Using Covalent Organic Framework-Based Aerogel for Synchronous Seawater Desalination and H 2O 2 Production. Angew Chem Int Ed Engl 2025; 64:e202421990. [PMID: 39803982 DOI: 10.1002/anie.202421990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/28/2024] [Accepted: 01/13/2025] [Indexed: 01/29/2025]
Abstract
Efficient utilization of solar energy is widely regarded as a crucial solution to addressing the energy crisis and reducing reliance on fossil fuels. Coupling photothermal and photochemical conversion can effectively improve solar energy utilization yet remains challenging. Here, inspired by the photosynthesis system in green plants, we report herein an artificial solar energy converter (ASEC) composed of light-harvesting units as solar collector and oriented ionic hydrophilic channels as reactors and transporters. Based on such architecture, the obtained ASEC (namely ASEC-NJFU-1) can efficiently realize parallel production of freshwater and H2O2 from natural seawater under natural light. The total solar energy conversion (SEC) of ASEC-NJFU-1 reaches up to 8047 kJ m-2 h-1, corresponding to production rates of freshwater and H2O2 are 3.56 kg m-2-1 h-1 and 19 mM m-2 h-1, respectively, which is a record-high value among all photothermal-photocatalytic systems reported to date. Mechanism investigation of combining spectrum and experimental studies indicated that the high SEC performance for ASEC-NJFU-1 was attributed to the presence of plant bioinspired architecture with carbon nanotubes as solar-harvestor and COF-based oriented aerogel as reactors and transporters. Our work thus establishes a novel artificial photosynthesis system for highly efficient solar energy utilization.
Collapse
Affiliation(s)
- Yaning Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials and Science Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Shiyan Ai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials and Science Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Tiantian Wu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials and Science Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Chengxu Zhou
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials and Science Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Qing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials and Science Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Baiyan Li
- School of Materials Science and Engineering, National Institute for, Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| | - Dan Tian
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials and Science Engineering, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for, Advanced Materials, TKL of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin, 300350, P. R. China
| |
Collapse
|
7
|
Aslam AA, Amjad S, Irshad A, Kokab O, Ullah MS, Farid A, Mehmood RA, Hassan SU, Nazir MS, Ahmed M. From Fundamentals to Synthesis: Covalent Organic Frameworks as Promising Materials for CO 2 Adsorption. Top Curr Chem (Cham) 2025; 383:10. [PMID: 39987291 DOI: 10.1007/s41061-025-00494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 02/01/2025] [Indexed: 02/24/2025]
Abstract
Covalent organic frameworks (COFs) are highly crystalline polymers that possess exceptional porosity and surface area, making them a subject of significant research interest. COF materials are synthesized by chemically linking organic molecules in a repetitive arrangement, creating a highly effective porous crystalline structure that adsorbs and retains gases. They are highly effective in removing impurities, such as CO2, because of their desirable characteristics, such as durability, high reactivity, stable porosity, and increased surface area. This study offers a background overview, encompassing a concise discussion of the current issue of excessive carbon emissions, and a synopsis of the materials most frequently used for CO2 collection. This review provides a detailed overview of COF materials, particularly emphasizing their synthesis methods and applications in carbon capture. It presents the latest research findings on COFs synthesized using various covalent bond formation techniques. Moreover, it discusses emerging trends and future prospects in this particular field.
Collapse
Affiliation(s)
- Awais Ali Aslam
- Department of Chemical Organic Technology and Petrochemistry, Silesian University of Technology, Krzywoustego 4, 44-100, Gliwice, Poland.
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan.
| | - Sania Amjad
- Department of Chemistry, Government College Women University, Sialkot, Pakistan
| | - Adnan Irshad
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
- Department of Chemical Engineering, University of New South Wales, Sydney, Australia
| | - Osama Kokab
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | - Mudassar Sana Ullah
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan
| | - Awais Farid
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Rana Adeel Mehmood
- Department of Chemistry, University of Education Lahore, Vehari, 61100, Pakistan
| | - Sadaf Ul Hassan
- Department of Chemistry, COMSATS University Islamabad, Lahore, 58000, Pakistan
| | | | - Mahmood Ahmed
- Department of Chemistry, Division of Science and Technology, University of Education, College Road, Lahore, 54770, Pakistan.
| |
Collapse
|
8
|
Li X, Zuo P, Ge X, Yang Z, Xu T. Constructing new-generation ion exchange membranes under confinement regime. Natl Sci Rev 2025; 12:nwae439. [PMID: 39830406 PMCID: PMC11737391 DOI: 10.1093/nsr/nwae439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 09/29/2024] [Accepted: 11/27/2024] [Indexed: 01/22/2025] Open
Abstract
Ion exchange membranes (IEMs) enable fast and selective ion transport and the partition of electrode reactions, playing an important role in the fields of precise ion separation, renewable energy storage and conversion, and clean energy production. Traditional IEMs form ion channels at the nanometer-scale via the assembly of flexible polymeric chains, which are trapped in the permeability/conductivity and selectivity trade-off dilemma due to a high swelling propensity. New-generation IEMs have shown great potential to break this intrinsic limitation by using microporous framework channels for ion transport under a confinement regime. In this Review, we first describe the fundamental principles of ion transport in charged channels from nanometer to sub-nanometer scale. Then, we focus on the construction of new-generation IEMs and highlight the microporous confinement effects from sub-2-nm to sub-1-nm and further to ultra-micropores. The enhanced ion transport properties brought by the intense size sieving and channel interaction are elucidated, and the corresponding applications including lithium separation, flow battery, water electrolysis, and ammonia synthesis are introduced. Finally, we prospect the future development of new-generation IEMs with respect to the intricate microstructure observation, in-situ ion transport visualization, and large-scale membrane fabrication.
Collapse
Affiliation(s)
- Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Peipei Zuo
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaolin Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Zhengjin Yang
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
9
|
Li X, Ji X, Zhang X, Chen X, Li H, Zhang S, Huo F, Zhang W. Construction of functional covalent organic framework films by modulator and solvent induced polymerization. Nat Commun 2025; 16:1223. [PMID: 39890837 PMCID: PMC11785801 DOI: 10.1038/s41467-024-55114-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 12/02/2024] [Indexed: 02/03/2025] Open
Abstract
Covalent organic frameworks are attractive candidates for the next generation films in technical applications. However, due to their crystallization nature, insolubility in common solvents as well as infusible at high temperatures make it challenging to grow them spontaneously or process them into films. Herein, we report an efficient strategy to fabricate covalent organic framework films based on a modulator-solvent induced polymerization process. The addition of modulator slows down the nucleation rate during the initial stages of covalent organic framework growth, resulting in the formation of fluidic precursors that are easy to process. Subsequently, a suitable drying process is introduced to balance the evaporation rate of solvent and the crystallization rate of modulator induced, resulting in the formation of covalent organic framework films with a mixture of amorphous and crystalline structures. This strategy is universal for the fabrication of several types of covalent organic framework films with large-scale and freestanding state. Moreover, covalent organic framework films with asymmetric structure can function as organic vapor-triggered actuators, offering excellent repeatability and reversibility. By introducing functional molecules such as fluorescence, chirality and catalyst during the nucleation process, versatile functional covalent organic framework films can be easily fabricated, which endow them with broader application prospects.
Collapse
Affiliation(s)
- Xuerong Li
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xingyue Ji
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinglong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xinyi Chen
- CNPC Tubular Goods Research Institute, Xi'an, 710077, China
| | - Hongfeng Li
- School of Intelligent Manufacturing, Huzhou College, Huzhou, 313000, China
| | - Suoying Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Fengwei Huo
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| | - Weina Zhang
- Key Laboratory of Flexible Electronics (KLOFE) & School of Flexible Electronics (Future Technologies) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China.
| |
Collapse
|
10
|
Wang J, Zhang X, Shen R, Yuan Q, Yang Y. Staggered-Stacking Two-Dimensional Covalent Organic Framework Membranes for Molecular and Ionic Sieving. ACS NANO 2024; 18:34698-34707. [PMID: 39658459 DOI: 10.1021/acsnano.4c10274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
Two-dimensional covalent organic frameworks (2D COFs), a family of crystalline materials with abundant porous structures offering nanochannels for molecular transport, have enormous potential in the applications of separation, energy storage, and catalysis. However, 2D COFs remain limited by relatively large pore sizes (>1 nm) and weak interlayer interactions between 2D nanosheets, making it difficult to achieve efficient membranes to meet the selective sieving requirements for water molecules (0.3 nm) and hydrated salt ions (>0.7 nm). Here, we report a high-performance 2D COF membrane with narrowed channels (0.7 × 0.4 nm2) and excellent mechanical performance constructed by the staggered stacking of cationic and anionic 2D COF nanosheets for selectively sieving of water molecules and hydrated salt ions. The mechanical performance has been improved by two times than that of single-phase 2D COF membranes due to the enhanced interlayer interactions between nanosheets. The stacked 2D COF membranes exhibit significantly improved monovalent salt ions rejection ratio (up to 77.9%) compared with single-phase COF membranes (∼49.2%), while maintaining comparable water permeability. The design of stacked 2D COF membranes provides a potential strategy for constructing high-performance nanoporous membranes to achieve precise molecular and ionic sieving.
Collapse
Affiliation(s)
- Jingfeng Wang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Xiaoming Zhang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| | - Ruichen Shen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, Key Laboratory of Biomedical Polymers of Ministry of Education, Institute of Molecular Medicine, Renmin Hospital of Wuhan University, School of Microelectronics, Wuhan University, Wuhan 430072, China
| |
Collapse
|
11
|
Zhang J, Li X, Yang F, Ouyang Z, He P, Jia Z, Long H, He N, Zhang Y, Zou Y, Jiang B, Han Z, Tao G, Liu N, Li Y, Ma L. Interlaced Composite Membranes by Charge-Induced Alternating Assembly of Monolayer Cationic COF and GO. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68306-68315. [PMID: 39618049 DOI: 10.1021/acsami.4c14803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
The efficient preparation of two-dimensional large-sized monolayer covalent organic framework (COF) nanosheets for highly permeable membranes has posed a long-standing challenge in the COF field. While the self-exfoliation of charged COFs represents a promising method for nanosheet production, its efficiency requires further enhancement. In this study, we present a novel finding that the presence of hydroxyl groups on the monomer significantly influences the self-exfoliation efficiency of charged COFs. Through precise regulation of hydroxyl group numbers on the monomers, we successfully achieved the efficient fabrication of large monolayer cationic COF nanosheets with impressive solubilities in common organic solvents. By virtue of their positive charge, COF monolayer nanosheets rapidly interacted with negatively charged monolayer graphene oxide (GO) in solution, facilitating their assembly into interlaced composite membranes through electrostatic interactions. The composite membranes benefited from the strong Coulombic attraction between the COF and GO nanosheets, leading to enhanced membrane stability, while the shielding effect of GO on the COF pores contributed to improved size sieving efficiency. This innovative strategy enabled the composite membranes to achieve highly selective separation of ReO4- and MoO42-, with a remarkable 100% interception rate for MoO42-.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Xiaofeng Li
- Institute of Materials, China Academy of Engineering Physics, Mianyang 621907, P.R. China
| | - Feng Yang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Zhengdong Ouyang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Pan He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Zhimin Jia
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Honghan Long
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Ningning He
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Yingdan Zhang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Yingdi Zou
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Bo Jiang
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Ziqian Han
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Guohong Tao
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Ning Liu
- Institute of Nuclear Science and Technology, Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Sichuan University, Chengdu 610064, P. R. China
| | - Yang Li
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| | - Lijian Ma
- College of Chemistry, Key Laboratory of Radiation Physics & Technology, Ministry of Education, Sichuan University, Chengdu 610064, P.R. China
| |
Collapse
|
12
|
Xu S, Lin H, Li G, Han Q, Wang J, Liu F. Heterogeneous Covalent Organic Framework Membranes Mediated by Polycations for Efficient Ions Separation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405539. [PMID: 39478106 DOI: 10.1002/advs.202405539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/10/2024] [Indexed: 12/28/2024]
Abstract
Precise ions sieving at angstrom-scale is gaining tremendous attention thanks to its significant impact at the water-energy nexus. Herein, a novel polycation-modulated interfacial polymerization (IP) strategy is developed to prepare a heterogeneously charged covalent organic frameworks (COFs) membrane. Cationic poly(diallyldimethylammonium chloride) (PDDA) regulates the growth and assembly of anionic COFs nanosheets, which thus provides a negative, smooth top surface and positive, rough bottom surface, indicating the presence of heterogeneously charged angstrom-scale channels through the membrane. Experiments and simulations are conducted to understand the facilitated ions transport behavior relative to specific interactions raised by heterogeneously charged channels and angstrom-scale steric hinderance as well, rendering the membrane with robust mono-/divalent cations sieving capabilities. The selectivity (61.6) of Li+ to Mg2+ in mixed saline under the continuous cross-flow filtration mode is superior to most of the reported nanofiltration membranes. This polycation-mediated interfacial polymerization strategy offers a compelling opportunity to develop versatile heterogeneously charged COF membranes for exquisite ion sieving.
Collapse
Affiliation(s)
- Shuting Xu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Haibo Lin
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guiliang Li
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiu Han
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianqiang Wang
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fu Liu
- Zhejiang International Joint Laboratory of Advanced Membrane Materials & Processes, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- Ningbo College of Materials Technology & Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
13
|
Vatanpour V, Tuncay G, Teber OO, Paziresh S, Tavajohi N, Koyuncu İ. Introducing the SNW-1 Covalent Organic Framework to the Polyamide Layer of the TFC-RO Membrane with Enhanced Permeability and Desalination Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65194-65210. [PMID: 39539192 DOI: 10.1021/acsami.4c14923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
This study investigates the synthesis and characterization of Schiff base network-1 (SNW-1) covalent organic framework (COF) nanomaterials and their application in the fabrication of thin-film nanocomposite (TFN) membranes. The embedding of SNW-1 COF in reverse osmosis (RO) membranes with a polysulfone (PSf) substrate was done using the interfacial polymerization method. The result of the study demonstrated that the porous and hydrophilic structure of the COF increased the hydrophilic properties of the produced RO membranes. When the COF was embedded with a concentration of 0.02 wt %, the hydrophilicity of the RO membrane was higher than that of the other membranes, with a contact angle value of 45.2°. Pure water flux, saline solution flux, and humic acid (HA)/sodium chloride (NaCl) foulant solution flux were measured to determine the membrane performance, and it was found that as the COF ratio increased, the fluxes increased up to a certain concentration rate. The RO membrane with a SNW-1 concentration of 0.005 wt % had the highest values of pure water flux and saline solution flux with high salt rejection (34.2 and 32.2 LMH, 97.1%, respectively) and was the most resistant membrane against fouling. This study presents the potential of the SNW-1 COF with precise design capabilities and controlled unique properties as an additive for desalination applications.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Gizem Tuncay
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Oğuz Orhun Teber
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- Nano Science and Nano Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Shadi Paziresh
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Naser Tavajohi
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - İsmail Koyuncu
- Environmental Engineering Department, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| |
Collapse
|
14
|
Dong X, Zheng Y, Deng H, Pang X, Wu T, Zhu S, Zhang R, Jiang Z. Bubble Drainage Assisted Fabrication of Polyamide Membranes with Crater-like Structures for Efficient Desalination. NANO LETTERS 2024; 24:14389-14397. [PMID: 39498839 DOI: 10.1021/acs.nanolett.4c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Bubble drainage (BD) occurs in various natural phenomena and industrial activities, in which bubbles rise toward the water surface and create a progressively thinned two-sided liquid film, called a lamella. Surfactant, as an important regulator in the BD process, not only assembles on both sides of the lamellae, generating a configuration of lamellae sandwiched by monolayers of surfactants (lamellae/MS), but also induces interfacial deformation by lowering interfacial tension. Herein, we developed a strategy of BD assisted interfacial polymerization for the fabrication of polyamide (PA) membranes. The regulated interfacial deformation at the water-oil interface produced a membrane with crater-like structures, which greatly increased the surface area of the PA membrane. Moreover, the lamellae/MS configuration served as a reservoir to spontaneously enrich amine monomers and thus modulate the diffusion-reaction kinetics. The resulting PA membranes exhibited superior separation performance with a water permeance of 44.7 L m-2 h-1 bar-1 and a Na2SO4 rejection of 99.2%.
Collapse
Affiliation(s)
- Xu Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hao Deng
- Department Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiao Pang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tao Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shiyi Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Department Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
15
|
Xu F, Zhao S, Song J, Peng Y, Su B. Organic Solvent Nanofiltration Membrane with In Situ Constructed Covalent Organic Frameworks as Separation Layer. MEMBRANES 2024; 14:234. [PMID: 39590620 PMCID: PMC11596232 DOI: 10.3390/membranes14110234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Organic solvent nanofiltration (OSN) technology is advantageous for separating mixtures of organic solutions owing to its low energy consumption and environmental friendliness. Covalent organic frameworks (COFs) are good candidates for enhancing the efficiency of solvent transport and ensuring precise molecular sieving of OSN membranes. In this study, p-phenylenediamine (Pa) and 1,3,5-trimethoxybenzene (Tp) are used to construct, in situ, a TpPa COF skin layer via interfacial polymerization (IP) on a polyimide substrate surface. After subsequent crosslinking and activation steps, a kind of TpPa/polyimide (PI) OSN membrane is obtained. Under optimized fabrications, this OSN membrane exhibits an ethanol permeance of 58.0 LMH/MPa, a fast green FCF (FGF) rejection of 96.2%, as well as a pure n-hexane permeance of 102.0 LMH/MPa. Furthermore, the TpPa/PI OSN membrane exhibits good solvent resistance, which makes it suitable for the separation, purification, and concentration of organic solvents.
Collapse
Affiliation(s)
- Fangyi Xu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (F.X.); (S.Z.); (J.S.)
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Shuxin Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (F.X.); (S.Z.); (J.S.)
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Junjie Song
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (F.X.); (S.Z.); (J.S.)
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Yu Peng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (F.X.); (S.Z.); (J.S.)
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| | - Baowei Su
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, 238 Songling Road, Qingdao 266100, China; (F.X.); (S.Z.); (J.S.)
- College of Chemistry & Chemical Engineering, Ocean University of China, 238 Songling Road, Qingdao 266100, China
| |
Collapse
|
16
|
Zhang H, Shao T, Cheng Z, Dong J, Wang Z, Jiang H, Zhao X, Xiaoteng Liu T, Zhu G, Zou X. Assembly-Dissociation-Reconstruction Synthesis of Covalent Organic Framework Membranes with High Continuity for Efficient CO 2 Separation. Angew Chem Int Ed Engl 2024; 63:e202411724. [PMID: 38973233 DOI: 10.1002/anie.202411724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
Covalent organic frameworks (COFs), at the forefront of porous materials, hold tremendous potential in membrane separation; however, achieving high continuity in COF membranes remains crucial for efficient gas separation. Here, we present a unique approach termed assembly-dissociation-reconstruction for fabricating COF membranes tailored for CO2/N2 separation. A parent COF is designed from two-node aldehyde and three-node amine monomers and dissociated to high-aspect-ratio nanosheets. Subsequently, COF nanosheets are orderly reconstructed into a crack-free membrane by surface reaction under water evaporation. The membrane exhibits high crystallinity, open pores and a strong affinity for CO2 adsorption over N2, resulting in CO2 permeance exceeding 1060 GPU and CO2/N2 selectivity surpassing 30.6. The efficacy of this strategy offers valuable guidance for the precise fabrication of gas-separation membranes.
Collapse
Affiliation(s)
- Hao Zhang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Tianci Shao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zeliang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Junchao Dong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xu Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Terence Xiaoteng Liu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
17
|
Zheng Y, Li Z, Yang Z, Shen J, Yang C, Wang H, Xu K, Cheng L, Hu Y, Zhao Y, Zhang R, Jiang Z. Tailor-Made Heterocharged Covalent Organic Framework Membrane for Efficient Ion Separation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403300. [PMID: 38966902 DOI: 10.1002/smll.202403300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Pore size sieving, Donnan exclusion, and their combined effects seriously affect ion separation of membrane processes. However, traditional polymer-based membranes face some challenges in precisely controlling both charge distribution and pore size on the membrane surface, which hinders the ion separation performance, such as heavy metal ion removal. Herein, the heterocharged covalent organic framework (COF) membrane is reported by assembling two kinds of ionic COF nanosheets with opposite charges and different pore sizes. By manipulating the stacking quantity and sequence of two kinds of nanosheets, the impact of membrane surface charge and pore size on the separation performance of monovalent and multivalent ions is investigated. For the separation of anions, the effect of pore size sieving is dominant, while for the separation of cations, the effect of Donnan exclusion is dominant. The heterocharged TpEBr/TpPa-SO3H membrane with a positively charged upper layer and a negatively charged bottom layer exhibits excellent rejection of multivalent anions and cations (Ni2+, Cd2+, Cr2+, CrO4 2-, SeO3 2-, etc). The strategy provides not only high-performance COF membranes for ion separation but also an inspiration for the engineering of heterocharged membranes.
Collapse
Affiliation(s)
- Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - ZhiChao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Zixu Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jianliang Shen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chao Yang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hui Wang
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Kai Xu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Lijuan Cheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
| | - Yihui Hu
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Yuxuan Zhao
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Ningbo Key Laboratory of Green Petrochemical Carbon Emission Reduction Technology and Equipment, Zhejiang Institute of Tianjin University, Ningbo, Zhejiang, 315201, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, 300192, China
| |
Collapse
|
18
|
Mandal W, Fajal S, Majumder D, Sengupta A, Let S, Urkude RR, Shirolkar MM, Torris A, Ghosh SK. A nanotrap infused ultrathin hybrid composite material for rapid and highly selective entrapment of 99TcO 4. Chem Sci 2024:d4sc04010d. [PMID: 39430929 PMCID: PMC11485004 DOI: 10.1039/d4sc04010d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/05/2024] [Indexed: 10/22/2024] Open
Abstract
99Tc is one of the potentially toxic radioactive substances owing to its long half-life and a high degree of environmental mobility. Hence, the sequestration of 99Tc from radioactive waste has become enormously important and a contemporary research priority. However, selective extraction of this species in its stable oxoanionic form (99TcO4 -) is very challenging on account of bottlenecks such as low charge density, less hydrophilic nature, etc. Herein, an ultrathin hybrid composite material has been strategically designed and fabricated by covalent anchoring of a chemically stable amino functionalized nanosized cationic metal-organic polyhedron with a positively charged robust ionic covalent organic framework. The resulting thin-layer-based hybrid composite presented multiple exfoliated exposed interactive sites, including a Zr(iv)-secondary building unit, amine and triaminoguanidine functional groups, which can selectively interact with TcO4 - oxoanions through a synergistic combination of electrostatic, H-bonding and various other supramolecular interactions. Thus synthesized function-tailored composite, by virtue of its multiple unique characteristics, manifested an ultrafast and very selective, high distribution coefficient (∼106 mL g-1), as well as recyclable entrapment of TcO4 - oxoanions from the complex mixture of superfluous (∼5000-fold) other interfering anions in both high and ultra-trace concentrations along with simulated nuclear waste and from different water systems. Dynamic flow-through experiments were conducted with the membrane of the hybrid material in simulated wastewater, which reduced the concentration of ReO4 - (surrogate of radioactive TcO4 -) to below the WHO permissible level with rapid sequestration kinetics and excellent selectivity over excessive competing anions.
Collapse
Affiliation(s)
- Writakshi Mandal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Sahel Fajal
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Dipanjan Majumder
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Arijit Sengupta
- Radiochemistry Division, Bhabha Atomic Research Centre Mumbai 400085 India
- Homi Bhabha National Institute Mumbai 400094 India
| | - Sumanta Let
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
| | - Rajashri R Urkude
- Beamline Development and Application Section Bhabha Atomic Research Centre Mumbai 400085 India
| | - Mandar M Shirolkar
- Advanced Bio-Agro Tech Pvt. Ltd Baner Pune 411045 India
- Norel Nutrient Bio-Agro Tech Pvt. Ltd Baner 411045 India
| | - Arun Torris
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory Dr Homi Bhabha Road Pune 411008 India
| | - Sujit K Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhaba Road, Pashan Pune 411 008 India
- Centre for Water Research (CWR), Indian Institute of Science Education and Research (IISER) Pune Dr Homi Bhabha Road, Pashan Pune 411 008 India
| |
Collapse
|
19
|
Ning D, Lu Z, Hua L, Zhang X, Li N, Huang K, E S. Designing Nanofluidic Channels of Boron Nitride Nanosheets/Aramid Nanofibers/Covalent Organic Frameworks Nanofiltration Membrane for Ultrafast Mass Transport. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402284. [PMID: 38801397 DOI: 10.1002/smll.202402284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/10/2024] [Indexed: 05/29/2024]
Abstract
2D lamellar nanofiltration membrane is considered to be a promising approach for desalinating seawater/brackish water and recycling sewage. However, its practical feasibility is severely constrained by the lack of durability and stability. Herein, a ternary nanofiltration membrane via a mixed-dimensional assembly of 2D boron nitride nanosheets (BNNS) is fabricated, 1D aramid nanofibers (ANF), and 2D covalent organic frameworks (COF). The abundant 2D and 1D nanofluid channels endow the BNNS/ANF/COF membrane with a high flux of 194 L·m‒2·h‒1. By the synergies of the size sieving and Donnan effect, the BNNS/ANF/COF membrane demonstrates high rejection (among 98%) for those dyes whose size exceeds 1.0 nm. Moreover, the BNNS/ANF/COF membrane also exhibits remarkable durability and mechanical stability, which are attributed to the strong adhesion and interactions between BNNS, ANF, and COF, as well as the superior mechanical robustness of ANF. This work provides a novel strategy to develop robust and durable 2D lamellar nanofiltration membranes with high permeance and selectivity simultaneously.
Collapse
Affiliation(s)
- Doudou Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Zhaoqing Lu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Li Hua
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Xinyi Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Nan Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Kaiyue Huang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| | - Songfeng E
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, 710021, China
| |
Collapse
|
20
|
Guo H, Fang Y, Li J, Feng W, Fang C, Zhu L. Continuous Covalent Organic Framework Membranes with Ordered Nanochannels as Tunable Transport Layers for Fast Butanol/Water Separation. NANO LETTERS 2024; 24:11438-11445. [PMID: 39240764 DOI: 10.1021/acs.nanolett.4c02458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/08/2024]
Abstract
Polymeric membranes with high permselective performance are desirable for energy-saving bioalcohol separations. However, it remains challenging to design membrane microstructures with low-resistance channels and a thin thickness for fast alcohol transport. Herein, we demonstrate highly crystalline covalent organic framework (COF) membranes with ordered nanochannels as tunable transport layers for efficient butanol/water separation. The thickness was well-regulated by altering the concentration and molar ratio of two aldehyde monomers with different reactivity. The surface-integrated poly(dimethylsiloxane) produced defect-free and hydrophobic COF membranes. The membrane with continuous transport channels exhibited an exceptional flux of up to 18.8 kg m-2 h-1 and a pervaporation separation index of 217.7 kg m-2 h-1 for separating 5 wt % n-butanol/water. The separation efficiency exceeded that of analogous membranes. The calculated mass-transfer coefficient of butanol followed an inverse relationship with the COF membrane thickness. Consequently, this work reveals the great potential of crystalline polymeric membranes with high-density nanopores for biofuel recovery.
Collapse
Affiliation(s)
- Hukang Guo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yijie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jiaqi Li
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Weilin Feng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chuanjie Fang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liping Zhu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310058, People's Republic of China
- MOE Engineering Research Center of Membrane and Water Treatment Technology, Zhejiang University, Hangzhou 310058, People's Republic of China
- Center for Healthcare Materials, Shaoxing Institute, Zhejiang University, Shaoxing 312000, China
| |
Collapse
|
21
|
Tang X, Zhang K, Xue R, Zheng Y, Chen S, Zheng S, Fan J, Zhang Y, Ye W, Zhang W, Cai S, Liu Y. Self-Standing Chiral Covalent Organic Framework Thin Films with Full-Color Tunable Guest-Induced Circularly Polarized Luminescence. Angew Chem Int Ed Engl 2024:e202413171. [PMID: 39193661 DOI: 10.1002/anie.202413171] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Exploring self-standing chiral covalent organic framework (COF) thin films with controllable circularly polarized luminescence (CPL) is of paramount significance but remains a challenging task. Herein, we demonstrate the first example of self-standing chiral COF films employing a polymerization-dispersion-filtration strategy. Pristine, low-quality chiral COF films were produced by interfacial polymerization and then re-dispersed into COF colloidal solutions. Via vacuum assisted assembly, these COF colloids were densely stacked and assembled into self-standing, pure chiral COF films (L-/D-CCOF-F) that were transparent, smooth, crack-free and highly crystalline. These films were tunable in thicknesses, areas, and roughness, along with strong diffuse reflectance circular dichroism (DRCD) and cyan CPL signals, showing an intrinsic luminescence asymmetric factor (glum) of ~4.3×10-3. Furthermore, these COF films served as host adsorbents to load various achiral organic dye guests through adsorption. The effective chiral transfer and energy transfer between CCOF-F and achiral fluorescent dyes endowed the dyes with strong chirality and tunable DRCD, resulting in intense, full-color-tunable solid-state CPL. Notably, the ordered arrangement of dye guest molecules within the preferentially oriented chiral pores of CCOF-F contributed to an amplified |glum| factor of up to 7.2×10-2, which is state-of-the-art for COF-based CPL materials. This work provides new insights into the design and fabrication of self-standing chiral COF films, demonstrating their great potential for chiroptical applications.
Collapse
Affiliation(s)
- Xihao Tang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Kai Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | | | - Yuexin Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Simin Chen
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Shengrun Zheng
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Jun Fan
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Yuwei Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Weiping Ye
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
| | - Weiguang Zhang
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Songliang Cai
- GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, School of Chemistry, South China Normal University, 510006, Guangzhou, P. R. China
- SCNU Qingyuan Institute of Science and Technology Innovation Co., Ltd., 511517, Qingyuan, P. R. China
| | - Yi Liu
- The Molecular Foundry, Lawrence Berkeley National Laboratory, 94720, Berkeley, California, United States
| |
Collapse
|
22
|
Siow WJS, Chong JY, Ong JH, Kraft M, Wang R, Xu R. Vapor/Vapor-Solid Interfacial Growth of Covalent Organic Framework Membranes on Alumina Hollow Fiber for Advanced Molecular Separation. Angew Chem Int Ed Engl 2024; 63:e202406830. [PMID: 38787808 DOI: 10.1002/anie.202406830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 05/26/2024]
Abstract
Covalent organic frameworks (COFs), known for their chemical stability and porous crystalline structure, hold promises as advanced separation membranes. However, fabricating high-quality COF membranes, particularly on industrial-preferred hollow fiber substrates, remains challenging. This study introduces a novel vapor/vapor-solid (V/V-S) method for growing ultrathin crystalline TpPa-1 COF membranes on the inner lumen surface of alumina hollow fibers (TpPa-1/Alumina). Through vapor-phase monomer introduction onto polydopamine-modified alumina at 170 °C and 1 atm, efficient polymerization and crystallization occur at the confined V-S interface. This enables one-step growth within 8 h, producing 100 nm thick COF membranes with strong substrate adhesion. TpPa-1/Alumina exhibits exceptional stability and performance over 80 h in continuous cross-flow organic solvent nanofiltration (OSN), with methanol permeance of about 200 L m-2 h-1 bar-1 and dye rejection with molecular weight cutoff (MWCO) of approximately 700 Da. Moreover, the versatile V/V-S method synthesizes two additional COF membranes (TpPa2Cl/Alumina and TpHz/Alumina) with different pore sizes and chemical environments. Adjusting the COF membrane thickness between 100-500 nm is achievable easily by varying the growth cycle numbers. Notably, TpPa2Cl/Alumina demonstrates excellent OSN performance in separating the model active pharmaceutical ingredient glycyrrhizic acid (GA) from dimethyl sulfoxide (DMSO), highlighting the method's potential for large-scale industrial applications.
Collapse
Affiliation(s)
- Wei Jian Samuel Siow
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
- Nanyang Environment and Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, 61 Nanyang Drive, Singapore, 637335, Singapore
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Jia Hui Ong
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Nanyang Environment and Water Research Institute, Interdisciplinary Graduate Programme, Nanyang Technological University, 61 Nanyang Drive, Singapore, 637335, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
| | - Markus Kraft
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Carbon Reduction in Chemical Technologies, Campus for Research Excellence and Technological Enterprise, National Research Foundation, CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
- Department of Chemical Engineering and Biotechnology, University of Cambridge, West Cambridge, Philippa Fawcett Drive, Cambridge, CB3 0AS, United Kingdom
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore, 637141, Singapore
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Rong Xu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore
- Cambridge Centre for Carbon Reduction in Chemical Technologies, Campus for Research Excellence and Technological Enterprise, National Research Foundation, CREATE Tower, 1 Create Way, Singapore, 138602, Singapore
| |
Collapse
|
23
|
Miller K, Gayle JM, Roy S, Abdellah MH, Hardian R, Cseri L, Demingos PG, Nadella HR, Lee F, Tripathi M, Gupta S, Guo G, Bhattacharyya S, Wang X, Dalton AB, Garg A, Singh CV, Vajtai R, Szekely G, Ajayan P. Tunable 2D Conjugated Porous Organic Polymer Films for Precise Molecular Nanofiltration and Optoelectronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401269. [PMID: 38687141 DOI: 10.1002/smll.202401269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/13/2024] [Indexed: 05/02/2024]
Abstract
Structural design of 2D conjugated porous organic polymer films (2D CPOPs), by tuning linkage chemistries and pore sizes, provides great adaptability for various applications, including membrane separation. Here, four free-standing 2D CPOP films of imine- or hydrazone-linked polymers (ILP/HLP) in combination with benzene (B-ILP/HLP) and triphenylbenzene (TPB-ILP/HLP) aromatic cores are synthesized. The anisotropic disordered films, composed of polymeric layered structures, can be exfoliated into ultrathin 2D-nanosheets with layer-dependent electrical properties. The bulk CPOP films exhibit structure-dependent optical properties, triboelectric nanogenerator output, and robust mechanical properties, rivaling previously reported 2D polymers and porous materials. The exfoliation energies of the 2D CPOPs and their mechanical behavior at the molecular level are investigated using density function theory (DFT) and molecular dynamics (MD) simulations, respectively. Exploiting the structural tunability, the comparative organic solvent nanofiltration (OSN) performance of six membranes having different pore sizes and linkages to yield valuable trends in molecular weight selectivity is investigated. Interestingly, the OSN performances follow the predicted transport modeling values based on theoretical pore size calculations, signifying the existence of permanent porosity in these materials. The membranes exhibit excellent stability in organic solvents at high pressures devoid of any structural deformations, revealing their potential in practical OSN applications.
Collapse
Affiliation(s)
- Kristen Miller
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Jessica M Gayle
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Soumyabrata Roy
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Mohamed H Abdellah
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Rifan Hardian
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Levente Cseri
- Department of Chemical Engineering & Analytical Science, School of Engineering, The University of Manchester, The Mill, Sackville Street, Manchester, M1 3BB, UK
- Department of Chemistry, Femtonics Ltd., Tuzolto u. 58, Budapest, 1094, Hungary
| | - Pedro G Demingos
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Hema Rajesh Nadella
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Frank Lee
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Manoj Tripathi
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Sashikant Gupta
- Department of Materials Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Galio Guo
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Sohini Bhattacharyya
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Xu Wang
- Shared Equipment Authority, Rice University, Houston, Texas, 77005, USA
| | - Alan B Dalton
- Department of Physics and Astronomy, University of Sussex, Brighton, BN1 9RH, UK
| | - Ashish Garg
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Chandra Veer Singh
- Department of Material Science and Engineering, University of Toronto, Ontario, ON M5S 1A1, Canada
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| | - Gyorgy Szekely
- Advanced Membranes and Porous Materials Center, Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- Chemical Engineering Program, Physical Science and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Pulickel Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, Texas, 77005, USA
| |
Collapse
|
24
|
Yang SS, Jiang YH, Zhang X, Liu LH, Liu S, Zhang H. Triazine-structured covalent organic framework nanosheets with inherent hydrophilicity for the highly efficient and selective enrichment of glycosylated peptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5304-5310. [PMID: 39028021 DOI: 10.1039/d4ay01068j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Protein glycosylation plays a crucial role in various biological processes and is related to various diseases. Highly specific enrichment of glycopeptides before mass spectrometry detection is crucial for comprehensive glycoproteomic analysis. However, it still remains a great challenge due to the absence of affinity materials with excellent enrichment efficiency. In this work, a triazine structure linked by a -NH- bond of two-dimensional (2-D) covalent organic framework (COF) nanosheets was synthesized as an affinity adsorbent for the selective capture of glycopeptides. In particular, by introducing hydrophilic monomers via a bottom-up approach, the 2-D COF (denoted as NENP-1) nanosheets were provided with abundant amino groups and inherent hydrophilicity. Owing to the specific surface area and excessive accessible sites for hydrophilicity, the resulting NENP-1 nanosheets exhibited an outstanding glycopeptide enrichment efficiency from standard samples with a superior detection sensitivity (1 × 10-10 M), good enrichment selectivity (1 : 800, HRP tryptic digest to BSA protein), excellent binding capacity (100 mg g-1), great reusability, and recovery (60.2%). Furthermore, using the NENP-1 nanosheet adsorbent, twenty-four endogenous glycopeptides in the serum of patients with gastric cancer were successfully identified by LC-MS/MS technology, which illustrates a promising prospective of hydrophilic COF nanosheets in glycoproteomics research.
Collapse
Affiliation(s)
- Shi-Shu Yang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Yu-Heng Jiang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Xuan Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Li-Hong Liu
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| | - Si Liu
- Department of Epidemiology and Health Statistics, School of Public Health, Fujian Medical University, Fuzhou, 350122, P. R. China
| | - Hua Zhang
- Henan Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, P. R. China.
| |
Collapse
|
25
|
Kang Y, Wang Y, Zhang H, Wang Z, Zhang X, Wang H. Functionalized 2D membranes for separations at the 1-nm scale. Chem Soc Rev 2024; 53:7939-7959. [PMID: 38984392 DOI: 10.1039/d4cs00272e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The ongoing evolution of two-dimensional (2D) material-based membranes has prompted the realization of mass separations at the 1-nm scale due to their well-defined selective nano- and subnanochannels. Strategic membrane functionalization is further found to be key to augmenting channel accuracy and efficiency in distinguishing ions, gases and molecules within this range and is thus trending as a research focus in energy-, resource-, environment- and pharmaceutical-related applications. In this review, we present the fundamentals underpinning functionalized 2D membranes in various separations, elucidating the critical "method-interaction-property" relationship. Starting with an introduction to various functionalization strategies, we focus our discussion on functionalization-induced channel-species interactions and reveal how they shape the transport- and operation-related features of the membrane in different scenarios. We also highlight the limitations and challenges of current functionalized 2D membranes and outline the necessary breakthroughs needed to apply them as reliable and high-performance separation units across industries in the future.
Collapse
Affiliation(s)
- Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Yuqi Wang
- School of Materials Science and Engineering, Zhejiang University, 310058, China
| | - Hao Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Zhouyou Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St. Lucia, 4072, Australia.
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, 3800, Australia.
| |
Collapse
|
26
|
Fionah A, Oluk I, Brady L, Byrne DM, Escobar IC. Performance and Environmental Assessment of Biochar-Based Membranes Synthesized from Traditional and Eco-Friendly Solvents. MEMBRANES 2024; 14:153. [PMID: 39057661 PMCID: PMC11279014 DOI: 10.3390/membranes14070153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
Water contamination resulting from coal spills is one of the largest environmental problems affecting communities in the Appalachia Region of the United States. This coal slurry contains potentially toxic substances, such as hydrocarbons, heavy metals, and coal cleaning chemicals, and its leakage into water bodies (lakes, rivers, and aquifers) can lead to adverse health effects not only for freshwater bodies and plant life but also for humans. This study focused on two major experiments. The first experiment involved the use of biochar to create a biochar-polysulfone (BC-PSf) flat-sheet multifunctional membrane to remove organic contaminants, and the other major experiment compared eco-friendly (gamma-valerolactone-GVL; Rhodiasolv® PolarClean-PC) and petroleum-derived solvents (i.e., N-methyl-pyrrolidone-NMP) in the fabrication of the biochar-polysulfone membranes. The resulting membranes were tested for their efficiency in removing both positively and negatively charged organic contaminants from the collected water at varying pH values. A comparative life cycle assessment (LCA) with accompanying uncertainty and sensitivity analyses was carried out to understand the global environmental impacts of incorporating biochar, NMP, GVL, and PC in the synthesis of PSf/NMP, BC-PSf/NMP, PSf/GVL, BC-PSf/GVL, PSf/PC, and BC-PSf/PC membranes at a set surface area of 1000 m2. The results showed that the addition of biochar to the membrane matrix increased the surface area of the membranes and improved both their adsorptive and mechanical properties. The membranes with biochar incorporated in their matrix showed a higher potential for contaminant removal than those without biochar. The environmental impacts normalized to the BC-PSf/GVL membrane showed that the addition of biochar increased global warming impacts, eutrophication, and respiratory impacts by over 100% in all the membrane configurations with biochar. The environmental impacts were highly sensitive to biochar addition (Spearman's coefficient > 0.8). The BC/PSf membrane with Rhodiasolv® PolarClean had the lowest associated global environmental impacts among all the membranes with biochar. Ultimately, this study highlighted potential tradeoffs between functional performance and global environmental impacts regarding choices for membrane fabrication.
Collapse
Affiliation(s)
- Abelline Fionah
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA;
| | - Isaac Oluk
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA; (I.O.); (D.M.B.)
| | - Laura Brady
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| | - Diana M. Byrne
- Department of Civil Engineering, University of Kentucky, Lexington, KY 40506, USA; (I.O.); (D.M.B.)
| | - Isabel C. Escobar
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40506, USA;
| |
Collapse
|
27
|
Wang D, Yuan S, Zhang N, Wang Z, Zhu J, Wang Z. Thin-Film Composite Membranes Interlayered with Amphiphilic MoS 2 Nanosheets via Controllable Interfacial Polymerization for Enhanced Desalination Performance. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:11855-11863. [PMID: 38875312 DOI: 10.1021/acs.est.4c04063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
Polyamide (PA)-based nanofiltration (NF) membranes have demonstrated extensive applications for a sustainable water-energy-environment nexus. A rational control of interfacial polymerization (IP) is highly efficacious to enhance NF separation performance yet remains a technical challenge. Herein, we proposed a regulation strategy of constructing amphiphilic molybdenum disulfide/cetyltrimethylammonium bromide interlayer atop the Kevlar hydrogel substrate. The amphiphilic nanosheet interlayered NF membrane exhibited a crumpled PA surface with an elevated cross-linking degree of 76.9%, leading to an excellent water permeance (16.8 L m-2 h-1 bar-1) and an impressive Na2SO4 rejection (99.1%). Meanwhile, the selectivity coefficient of Na2SO4/NaCl of the optimized TFC membrane reached 91, surpassing those of the recently reported NF membranes. Moreover, the optimized membrane exhibited a desirable rejection of over 90% against Mn2+ and Cu2+ in actual textile wastewater. Importantly, the underlying NF membrane formation mechanism was elucidated via both experiments and molecular simulations. The synchronous control of mass and heat transfer of IP process offers a new methodology for the state-of-the-art membrane fabrication, which opens more avenues in softening of brackish water and purification of industrial wastewater containing heavy metal ions.
Collapse
Affiliation(s)
- Dong Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Shideng Yuan
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Na Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Ziming Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Zhining Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, P. R. China
| |
Collapse
|
28
|
Lei Z, Chen H, Huang S, Wayment LJ, Xu Q, Zhang W. New Advances in Covalent Network Polymers via Dynamic Covalent Chemistry. Chem Rev 2024; 124:7829-7906. [PMID: 38829268 DOI: 10.1021/acs.chemrev.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Covalent network polymers, as materials composed of atoms interconnected by covalent bonds in a continuous network, are known for their thermal and chemical stability. Over the past two decades, these materials have undergone significant transformations, gaining properties such as malleability, environmental responsiveness, recyclability, crystallinity, and customizable porosity, enabled by the development and integration of dynamic covalent chemistry (DCvC). In this review, we explore the innovative realm of covalent network polymers by focusing on the recent advances achieved through the application of DCvC. We start by examining the history and fundamental principles of DCvC, detailing its inception and core concepts and noting its key role in reversible covalent bond formation. Then the reprocessability of covalent network polymers enabled by DCvC is thoroughly discussed, starting from the significant milestones that marked the evolution of these polymers and progressing to their current trends and applications. The influence of DCvC on the crystallinity of covalent network polymers is then reviewed, covering their bond diversity, synthesis techniques, and functionalities. In the concluding section, we address the current challenges faced in the field of covalent network polymers and speculates on potential future directions.
Collapse
Affiliation(s)
- Zepeng Lei
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Hongxuan Chen
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Shaofeng Huang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Lacey J Wayment
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Qiucheng Xu
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Wei Zhang
- Department of Chemistry, University of Colorado Boulder, Boulder, Colorado 80309, United States
| |
Collapse
|
29
|
Fu Q, Li H, An M, Sun X, Zhang S, Zhang T, Yang W, Li Y, Waterhouse GIN, Liu X, Ai S. Dialdehyde cellulose films covalently crosslinked with porphyrin-based covalent organic polymers for photodynamic sterilization. Int J Biol Macromol 2024; 272:132893. [PMID: 38838883 DOI: 10.1016/j.ijbiomac.2024.132893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/23/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Foodborne pathogens result in a great harm to human, which is an urgent problem to be addressed. Herein, a novel cellulose-based packaging films with excellent anti-bacterial properties under visible light were prepared. A porphyrin-based covalent organic polymer (Por-COPs) was constructed, then covalently grafted onto dialdehyde cellulose (DAC). The addition of Por-COPs enhanced the mechanical, hydrophobicity, and water resistance of the DAC-based composite films. DAC/Por-COP-2.5 film exhibited outstanding properties for the photodynamic inactivation of bacteria under visible light irradiation, delivering inactivation efficiencies of 99.90 % and 99.45 % towards Staphylococcus aureus and Escherichia coli within 20 min. The DAC/Por-COPs films efficiently generated •O2- and 1O2 under visible light, thereby causing oxidative stress to cell membranes for bacterial inactivation. The prepared composite film forms a protective barrier against bacterial contamination. Results guide the development of high performance and more sustainable packaging films for the food sector.
Collapse
Affiliation(s)
- Quanbin Fu
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271000, PR China; College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China
| | - Houshen Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271000, PR China.
| | - Mouzhen An
- Taian Maternal and Child Health Hospital, Taian 271000, PR China
| | - Xin Sun
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271000, PR China
| | - Shikai Zhang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271000, PR China; College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China
| | - Tingting Zhang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271000, PR China
| | - Wenjing Yang
- College of Food Science and Engineering, Shandong Agricultural University, Taian 271000, PR China; College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China
| | - Yijing Li
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271000, PR China
| | | | - Xiaonan Liu
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, PR China; National Engineering Laboratory of Circular Economy, Zigong 643000, PR China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian 271000, PR China; Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, Taian 271000, PR China.
| |
Collapse
|
30
|
Liu S, Sun M, Wu C, Zhu K, Hu Y, Shan M, Wang M, Wu K, Wu J, Xie Z, Tang H. Fabrication of Loose Nanofiltration Membrane by Crosslinking TEMPO-Oxidized Cellulose Nanofibers for Effective Dye/Salt Separation. Molecules 2024; 29:2246. [PMID: 38792108 PMCID: PMC11123938 DOI: 10.3390/molecules29102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Dye/salt separation has gained increasing attention in recent years, prompting the quest to find cost-effective and environmentally friendly raw materials for synthesizing high performance nanofiltration (NF) membrane for effective dye/salt separation. Herein, a high-performance loose-structured NF membrane was fabricated via a simple vacuum filtration method using a green nanomaterial, 2,2,6,6-tetramethylpiperidine-1-oxide radical (TEMPO)-oxidized cellulose nanofiber (TOCNF), by sequentially filtrating larger-sized and finer-sized TOCNFs on a microporous substrate, followed by crosslinking with trimesoyl chloride. The resulting TCM membrane possessed a separating layer composed entirely of pure TOCNF, eliminating the need for other polymer or nanomaterial additives. TCM membranes exhibit high performance and effective dye/salt selectivity. Scanning Electron Microscope (SEM) analysis shows that the TCM membrane with the Fine-TOCNF layer has a tight layered structure. Further characterizations via Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD) confirmed the presence of functional groups and chemical bonds of the crosslinked membrane. Notably, the optimized TCM-5 membrane exhibits a rejection rate of over 99% for various dyes (Congo red and orange yellow) and 14.2% for NaCl, showcasing a potential candidate for efficient dye wastewater treatment.
Collapse
Affiliation(s)
- Shasha Liu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Mei Sun
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Can Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Kaixuan Zhu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Ying Hu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Meng Shan
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Meng Wang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Kai Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Jingyi Wu
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| | - Zongli Xie
- CSIRO Manufacturing, Private Bag 10, Clayton South, VIC 3169, Australia
| | - Hai Tang
- School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu 241000, China; (S.L.); (M.S.); (C.W.); (K.Z.); (Y.H.); (M.S.); (M.W.); (K.W.); (J.W.)
| |
Collapse
|
31
|
Lin TW, Sing CE. Effect of penetrant-polymer interactions and shape on the motion of molecular penetrants in dense polymer networks. J Chem Phys 2024; 160:114905. [PMID: 38511661 DOI: 10.1063/5.0197140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024] Open
Abstract
The diffusion of dilute molecular penetrants within polymers plays a crucial role in the advancement of material engineering for applications such as coatings and membrane separations. The potential of highly cross-linked polymer networks in these applications stems from their capacity to adjust the size and shape selectivity through subtle changes in network structures. In this paper, we use molecular dynamics simulation to understand the role of penetrant shape (aspect ratios) and its interaction with polymer networks on its diffusivity. We characterize both local penetrant hopping and the long-time diffusive motion for penetrants and consider different aspect ratios and penetrant-network interaction strengths at a variety of cross-link densities and temperatures. The shape affects the coupling of penetrant motion to the cross-link density- and temperature-dependent structural relaxation of networks and also affects the way a penetrant experiences the confinement from the network meshes. The attractive interaction between the penetrant and network primarily affects the former since only the system of dilute limit is of present interest. These results offer fundamental insights into the intricate interplay between penetrant characteristics and polymer network properties and also suggest future directions for manipulating polymer design to enhance the separation efficiency.
Collapse
Affiliation(s)
- Tsai-Wei Lin
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles E Sing
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
32
|
Asif M, Kim S, Nguyen TS, Mahmood J, Yavuz CT. Covalent Organic Framework Membranes and Water Treatment. J Am Chem Soc 2024; 146:3567-3584. [PMID: 38300989 PMCID: PMC10870710 DOI: 10.1021/jacs.3c10832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024]
Abstract
Covalent organic frameworks (COFs) are an emerging class of highly porous crystalline organic polymers comprised entirely of organic linkers connected by strong covalent bonds. Due to their excellent physicochemical properties (e.g., ordered structure, porosity, and stability), COFs are considered ideal materials for developing state-of-the-art separation membranes. In fact, significant advances have been made in the last six years regarding the fabrication and functionalization of COF membranes. In particular, COFs have been utilized to obtain thin-film, composite, and mixed matrix membranes that could achieve effective rejection (mostly above 80%) of organic dyes and model organic foulants (e.g., humic acid). COF-based membranes, especially those prepared by embedding into polyamide thin-films, obtained adequate rejection of salts in desalination applications. However, the claims of ordered structure and separation mechanisms remain unclear and debatable. In this perspective, we analyze critically the design and exploitation of COFs for membrane fabrication and their performance in water treatment applications. In addition, technological challenges associated with COF properties, fabrication methods, and treatment efficacy are highlighted to redirect future research efforts in realizing highly selective separation membranes for scale-up and industrial applications.
Collapse
Affiliation(s)
- Muhammad
Bilal Asif
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Seokjin Kim
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Thien S. Nguyen
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Javeed Mahmood
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment (ONE) Laboratory,
Chemistry Program, Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
- Advanced
Membranes & Porous Materials (AMPM) Center, Physical Science &
Engineering (PSE), King Abdullah University
of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
- KAUST
Catalysis Center (KCC), Physical Science & Engineering (PSE), King Abdullah University of Science and Technology
(KAUST), Thuwal 23955, Saudi Arabia
| |
Collapse
|
33
|
Liu X, Wang J, Shang Y, Yavuz CT, Khashab NM. Ionic Covalent Organic Framework-Based Membranes for Selective and Highly Permeable Molecular Sieving. J Am Chem Soc 2024; 146:2313-2318. [PMID: 38232075 PMCID: PMC10835733 DOI: 10.1021/jacs.3c11542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/06/2024] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Two-dimensional covalent organic frameworks (COFs) with uniform pores and large surface areas are ideal candidates for constructing advanced molecular sieving membranes. However, a fabrication strategy to synthesize a free-standing COF membrane with a high permselectivity has not been fully explored yet. Herein, we prepared a free-standing TpPa-SO3H COF membrane with vertically aligned one-dimensional nanochannels. The introduction of the sulfonic acid groups on the COF membrane provides abundant negative charge sites in its pore wall, which achieve a high water flux and an excellent sieving performance toward water-soluble drugs and dyes with different charges and sizes. Furthermore, the COF membrane exhibited long-term stability, fouling resistance, and recyclability in rejection performance. We envisage that this work provides new insights into the effect of ionic ligands on the design of a broad range of COF membranes for advanced separation applications.
Collapse
Affiliation(s)
- Xin Liu
- Smart
Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous
Materials Center, Department of Chemistry, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jinrong Wang
- Smart
Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous
Materials Center, Department of Chemistry, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Yuxuan Shang
- Oxide
& Organic Nanomaterials for Energy & Environment Laboratory,
Advanced Membranes and Porous Materials Center, Department of Chemistry, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Cafer T. Yavuz
- Oxide
& Organic Nanomaterials for Energy & Environment Laboratory,
Advanced Membranes and Porous Materials Center, Department of Chemistry, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | - Niveen M. Khashab
- Smart
Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous
Materials Center, Department of Chemistry, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
34
|
Kumar A, Chang DW. Optimized Polymeric Membranes for Water Treatment: Fabrication, Morphology, and Performance. Polymers (Basel) 2024; 16:271. [PMID: 38257070 PMCID: PMC10819000 DOI: 10.3390/polym16020271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Conventional polymers, endowed with specific functionalities, are extensively utilized for filtering and extracting a diverse set of chemicals, notably metals, from solutions. The main structure of a polymer is an integral part for designing an efficient separating system. However, its chemical functionality further contributes to the selectivity, fabrication process, and resulting product morphology. One example would be a membrane that can be employed to selectively remove a targeted metal ion or chemical from a solution, leaving behind the useful components of the solution. Such membranes or products are highly sought after for purifying polluted water contaminated with toxic and heavy metals. An efficient water-purifying membrane must fulfill several requirements, including a specific morphology attained by the material with a specific chemical functionality and facile fabrication for integration into a purifying module Therefore, the selection of an appropriate polymer and its functionalization become crucial and determining steps. This review highlights the attempts made in functionalizing various polymers (including natural ones) or copolymers with chemical groups decisive for membranes to act as water purifiers. Among these recently developed membrane systems, some of the materials incorporating other macromolecules, e.g., MOFs, COFs, and graphene, have displayed their competence for water treatment. Furthermore, it also summarizes the self-assembly and resulting morphology of the membrane materials as critical for driving the purification mechanism. This comprehensive overview aims to provide readers with a concise and conclusive understanding of these materials for water purification, as well as elucidating further perspectives and challenges.
Collapse
Affiliation(s)
| | - Dong Wook Chang
- Department of Industrial Chemistry, ECS Core Research Institute, Pukyong National University, Busan 48513, Republic of Korea;
| |
Collapse
|
35
|
Elmerhi N, Kumar S, Abi Jaoude M, Shetty D. Covalent Organic Framework-derived Composite Membranes for Water Treatment. Chem Asian J 2024; 19:e202300944. [PMID: 38078624 DOI: 10.1002/asia.202300944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/11/2023] [Indexed: 12/29/2023]
Abstract
Water treatment has experienced a surge in the adoption of membrane separation technology. Covalent organic frameworks (COFs), a class of metal-free and open-framework materials, have emerged as potential membrane materials owing to their interconnected periodic porosity, tunability, and chemical stability. However, the challenges associated with processing COF powders into self-standing membranes have spurred the emergence of COF composite membranes. This review article highlights the rationale behind developing COF composite membranes and their categories, including mixed matrix membranes (MMMs) and thin film composite (TFC) membranes. The common fabrication techniques of each category are presented. In addition, the influence of COF additives on the performance of the resultant composite membranes is systematically discussed, with a focus on the recent progress in applying COF composite membranes in the separation of different categories of water pollutants, including organic ions/molecules, toxic solvents, proteins, toxic heavy metals, and radionuclides.
Collapse
Affiliation(s)
- Nada Elmerhi
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Sushil Kumar
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Maguy Abi Jaoude
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Dinesh Shetty
- Department of Chemistry, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
- Center for Catalysis and Separation (CeCaS), Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| |
Collapse
|
36
|
Zhu L, Ye P, Zhang L, Ren Y, Liu J, Lei J, Wang L. Bioinspired Heterogeneous Construction of Lignocellulose-Reinforced COF Membranes for Efficient Proton Conduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304575. [PMID: 37675819 DOI: 10.1002/smll.202304575] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/17/2023] [Indexed: 09/08/2023]
Abstract
The exponential interest in covalent organic frameworks (COFs) arises from the direct correlation between their diverse and intriguing properties and the modular design principle. However, the insufficient interlamellar interaction among COF nanosheets greatly hinders the formation of defect-free membranes. Therefore, developing a methodology for the facile fabrication of these materials remains an enticing and highly desirable objective. Herein, ultrahigh proton conductivity and superior stability are achieved by taking advantage of COF composite membranes where 2D TB-COF nanosheets are linked by 1D lignocellulosic nanofibrils (LCNFs) through π-π and electrostatic interactions to form a robust and ordered structure. Notably, the high concentration of -SO3 H groups within the COF pores and the abundant proton transport paths at COFs-LCNFs interfaces impart composite membranes ultrahigh proton conductivity (0.348 S cm-1 at 80 °C and 100% RH). Moreover, the directional migration of protons along the stacked nanochannels of COFs is facilitated by oxygen atoms on the keto groups, as demonstrated by density functional theory (DFT) calculations. The simple design concept and reliable operation of the demonstrated mixed-dimensional composite membrane are expected to provide an ideal platform for next-generation conductive materials.
Collapse
Affiliation(s)
- Liyu Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Peng Ye
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Limei Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Yuting Ren
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jing Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Jiandu Lei
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, P. R. China
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| | - Luying Wang
- MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Forestry University, Beijing, 100083, P. R. China
| |
Collapse
|
37
|
Ju T, Liu M, Shi X, Xiao A, Zhang Z, Wang J, Zhang Y, Wang Y. Chemically Asymmetric Polymers Manipulate the Crystallization of Two-Dimensional Covalent Organic Frameworks to Synthesize Processable Nanosheets. ACS NANO 2023. [PMID: 37976399 DOI: 10.1021/acsnano.3c07743] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nanosheets derived from two-dimensional covalent organic frameworks (2D COFs) are increasingly desirable in various fields. While breakthroughs in the chemical and physical delamination of 2D COFs are rising, precisely regulating the growth of the COF nanosheets has not been realized yet. Herein, we report an effective strategy of polymer-manipulated crystallization to accurately control the growth of COF nanosheets. Chemically asymmetric polyvinylpyrrolidone (PVP) is developed as the manipulator that selectively interacts with the aldehydes and (100) facet to induce anisotropic growth of COFs. The number of PVP constitutional units determines this specific interaction, leading to molecularly thin but thickness-controllable nanosheets with excellent dispersity. We process these nanosheets into robust A4-sized membranes for ultraselective molecular separation. The membrane intercalated with long-chain PVP demonstrates largely improved performance, surpassing the reported COF membranes. This work reports a strategy for anisotropically crystallizing 2D COFs to yield processable nanosheets toward practical applications.
Collapse
Affiliation(s)
- Tong Ju
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ming Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Xiansong Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Ankang Xiao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zhe Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Jingtao Wang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yatao Zhang
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, Henan, P. R. China
| | - Yong Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| |
Collapse
|
38
|
Meng QW, Wu D, Wang S, Sun Q. Function-Led Design of Covalent-Organic-Framework Membranes for Precise Ion Separation. Chemistry 2023; 29:e202302460. [PMID: 37605607 DOI: 10.1002/chem.202302460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Insufficient access to clean water and resources has emerged as one of the most pressing issues affecting people globally. Membrane-based ion separation has become a focal point of research for the generation of fresh water and the extraction of energy elements. This Review encapsulates recent advancements in the selective ion transport of covalent organic framework (COF) membranes, accomplished by strategically pairing diverse monomers to create membranes with various pore sizes and environments for specific purposes. We first discuss the merits of using COF materials as a basis for fabricating membranes for ion separation. We then explore the development of COF membranes in areas such as desalination, acid recovery, and energy element extraction, with a particular emphasis on the fundamental principles of membrane design. Lastly, we address both theoretical and practical challenges, as well as potential opportunities in the targeted design of ion-selective membranes. The goal of this Review is to stimulate future investigative efforts in this field, which is of significant scientific and strategic importance.
Collapse
Affiliation(s)
- Qing-Wei Meng
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Sai Wang
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of, Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, P.R. China
| |
Collapse
|
39
|
Xia Y, Zhang W, Yang S, Wang L, Yu G. Research Progress in Donor-Acceptor Type Covalent Organic Frameworks. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301190. [PMID: 37094607 DOI: 10.1002/adma.202301190] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Covalent organic frameworks (COFs) are new organic porous materials constructed by covalent bonds, with the advantages of pre-designable topology, adjustable pore size, and abundant active sites. Many research studies have shown that COFs exhibit great potential in gas adsorption, molecular separation, catalysis, drug delivery, energy storage, etc. However, the electrons and holes of intrinsic COF are prone to compounding in transport, and the carrier lifetime is short. The donor-acceptor (D-A) type COFs, which are synthesized by introducing D and A units into the COFs backbone, combine separated electron and hole migration pathway, tunable band gap and optoelectronic properties of D-A type polymers with the unique advantages of COFs and have made great progress in related research in recent years. Here, the synthetic strategies of D-A type COFs are first outlined, including the rational design of linkages and D-A units as well as functionalization approaches. Then the applications of D-A type COFs in catalytic reactions, photothermal therapy, and electronic materials are systematically summarized. In the final section, the current challenges, and new directions for the development of D-A type COFs are presented.
Collapse
Affiliation(s)
- Yeqing Xia
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Weifeng Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shuai Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Liping Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Gui Yu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
40
|
Sun X, Di M, Liu J, Gao L, Yan X, He G. Continuous Covalent Organic Frameworks Membranes: From Preparation Strategies to Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303757. [PMID: 37381640 DOI: 10.1002/smll.202303757] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Indexed: 06/30/2023]
Abstract
Covalent organic frameworks (COFs) are porous crystalline polymeric materials formed by the covalent bonding of organic units. The abundant organic units library gives the COFs species diversity, easily tuned pore channels, and pore sizes. In addition, the periodic arrangement of organic units endows COFs regular and highly connected pore channels, which has led to the rapid development of COFs in membrane separations. Continuous defect-free and high crystallinity of COF membranes is the key to their application in separations, which is the most important issue to be addressed in the research. This review article describes the linkage types of covalent bonds, synthesis methods, and pore size regulation strategies of COFs materials. Further, the preparation strategies of continuous COFs membranes are highlighted, including layer-by-layer (LBL) stacking, in situ growth, interfacial polymerization (IP), and solvent casting. The applications in separation fields of continuous COFs membranes are also discussed, including gas separation, water treatment, organic solvent nanofiltration, ion conduction, and energy battery membranes. Finally, the research results are summarized and the future prospect for the development of COFs membranes are outlined. More attention may be paid to the large-scale preparation of COFs membranes and the development of conductive COFs membranes in future research.
Collapse
Affiliation(s)
- Xiaojun Sun
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Mengting Di
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Jie Liu
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Li Gao
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Xiaoming Yan
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, School of Chemical Engineering, Dalian University of Technology, Dalian, 116023, China
| |
Collapse
|
41
|
Zhang Y, Wang H, Guo J, Cheng X, Han G, Lau CH, Lin H, Liu S, Ma J, Shao L. Ice-confined synthesis of highly ionized 3D-quasilayered polyamide nanofiltration membranes. Science 2023; 382:202-206. [PMID: 37824644 DOI: 10.1126/science.adi9531] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 10/14/2023]
Abstract
Existing polyamide (PA) membrane synthesis protocols are underpinned by controlling diffusion-dominant liquid-phase reactions that yield subpar spatial architectures and ionization behavior. We report an ice-confined interfacial polymerization strategy to enable the effective kinetic control of the interfacial reaction and thermodynamic manipulation of the hexagonal polytype (Ih) ice phase containing monomers to rationally synthesize a three-dimensional quasilayered PA membrane for nanofiltration. Experiments and molecular simulations confirmed the underlying membrane formation mechanism. Our ice-confined PA nanofiltration membrane features high-density ionized structure and exceptional transport channels, realizing superior water permeance and excellent ion selectivity.
Collapse
Affiliation(s)
- Yanqiu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Hao Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Jing Guo
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Xiquan Cheng
- School of Marine Science and Technology, Sino-European Membrane Technology Research Institute, Harbin Institute of Technology, Weihai 264209, China
| | - Gang Han
- College of Environmental Science and Engineering, Nankai University, Jinnan District, Tianjin 300350, China
| | - Cher Hon Lau
- School of Engineering, The University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Haiqing Lin
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Shaomin Liu
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University Perth, Perth, Western Australia
| | - Jun Ma
- School of Environment, Harbin Institute of Technology, Harbin 150009, China
| | - Lu Shao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
42
|
Zhang Y, Zhang G, Li B, Wu L. Non-Stop Switching Separation of Superfine Solid/Liquid Dispersed Phases in Oil and Water Systems Using Polymer-Assisted Framework Fiber Membranes. SMALL METHODS 2023; 7:e2201455. [PMID: 36908003 DOI: 10.1002/smtd.202201455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/20/2023] [Indexed: 06/09/2023]
Abstract
Fabricating filtration membranes with wide applicability and high efficiency is always a challenge in the precise separation of small colloidal particles under mild conditions. For this purpose, a strategy mixing supramolecular framework fiber with polymer is adopted. The fibrous assembly in the gel state provides uniform nanopores for both channel and interception and controlled wettability for lyophilic/lyophobic switching. The used polymer fills the gaps between fiber assemblies and improves the mechanical property. The composite membrane shows both under-oil superhydrophobic and underwater superoleophobic nature, which allows the conversions via in situ modulation of joystick solvents. Based on surface wetting and size-sieving, ultrafine hard nanoparticles dispersing in both hydrophobic organic solvents and water are selectively sieved. In addition, on-demand separation of water-in-oil and oil-in-water microemulsions without and with surfactants as systems containing soft droplets are realized. The smallest cut-off size of ≈3 nm is achieved for both hard and soft emulsions, while separation efficiency maintains during sustained in situ reversible switches.
Collapse
Affiliation(s)
- Yue Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guohua Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Bao Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Lixin Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
43
|
Yang H, Xu J, Cao H, Wu J, Zhao D. Recovery of homogeneous photocatalysts by covalent organic framework membranes. Nat Commun 2023; 14:2726. [PMID: 37169759 PMCID: PMC10175538 DOI: 10.1038/s41467-023-38424-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 05/03/2023] [Indexed: 05/13/2023] Open
Abstract
Transition metal-based homogeneous photocatalysts offer a wealth of opportunities for organic synthesis. The most versatile ruthenium(II) and iridium(III) polypyridyl complexes, however, are among the rarest metal complexes. Moreover, immobilizing these precious catalysts for recycling is challenging as their opacity may obstruct light transmission. Recovery of homogeneous catalysts by conventional polymeric membranes is promising but limited, as the modulation of their pore structure and tolerance of polar organic solvents are challenging. Here, we report the effective recovery of homogeneous photocatalysts using covalent organic framework (COF) membranes. An array of COF membranes with tunable pore sizes and superior organic solvent resistance were prepared. Ruthenium and iridium photoredox catalysts were recycled for 10 cycles in various types of photochemical reactions, constantly achieving high catalytical performance, high recovery rates, and high permeance. We successfully recovered the photocatalysts at gram-scale. Furthermore, we demonstrated a cascade isolation of an iridium photocatalyst and purification of a small organic molecule product with COF membranes possessing different pore sizes. Our results indicate an intriguing potential to shift the paradigm of the pharmaceutical and fine chemical synthesis campaign.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore
| | - Jinhui Xu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Hui Cao
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore
| | - Jie Wu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore, Singapore.
| | - Dan Zhao
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore, Singapore.
| |
Collapse
|
44
|
Ji Y, Li H, Dong J, Lin J, Lin Z. Super-hydrophilic sulfonate-modified covalent organic framework nanosheets for efficient separation and enrichment of glycopeptides. J Chromatogr A 2023; 1699:464020. [PMID: 37104947 DOI: 10.1016/j.chroma.2023.464020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023]
Abstract
Highly efficient extraction of glycopeptides prior to mass spectrometry detection is extremely crucial for glycoproteomic research, especially in disease biomarker research. Reported here is the first time by applying two-dimensional (2D) covalent organic framework (COFs) nanosheets for highly efficient enrichment of glycopeptides. Particularly, by incorporating hydrophilic monomers through a bottom-up strategy, the 2D COF nanosheets (denoted as NUS-9) displayed an ultra-high graft density of sulfonic groups and super-hydrophilicity. In addition, because of the large surface area, low steric hindrance, high chemical stability, and abundant accessibility sites of 2D COF nanosheets, NUS-9 exhibited remarkable efficiency for glycopeptide enrichment, involving excellent detection sensitivity (0.01 fmol μL-1), outstanding enrichment capability, and good enrichment selectivity (1:1500, horseradish peroxidase (HRP) tryptic digest to bovine serum albumin (BSA) tryptic digest), and recovery (92.2 ± 2.0%). Moreover, the NUS-9 was able to unambiguously detect 631 endogenous glycopeptides from human saliva, demonstrating an unparalleled high efficiency in glycopeptide enrichment. Gene ontology analyses of proteins from human saliva enriched by NUS-9 demonstrated its potential for comprehensive glycoproteome analysis.
Collapse
Affiliation(s)
- Yin Ji
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Heming Li
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jinghan Dong
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Jiashi Lin
- College of Physical Education, Jimei University, Xiamen, Fujian, 361021, China.
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, China.
| |
Collapse
|
45
|
Xu M, Zhu X, Zhu J, Wei S, Cong X, Wang Z, Yan Q, Weng L, Wang L. The recent advance of precisely designed membranes for sieving. NANOTECHNOLOGY 2023; 34:232003. [PMID: 36848663 DOI: 10.1088/1361-6528/acbf56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Developing new membranes with both high selectivity and permeability is critical in membrane science since conventional membranes are often limited by the trade-off between selectivity and permeability. In recent years, the emergence of advanced materials with accurate structures at atomic or molecular scale, such as metal organic framework, covalent organic framework, graphene, has accelerated the development of membranes, which benefits the precision of membrane structures. In this review, current state-of-the-art membranes are first reviewed and classified into three different types according to the structures of their building blocks, including laminar structured membranes, framework structured membranes and channel structured membranes, followed by the performance and applications for representative separations (liquid separation and gas separation) of these precisely designed membranes. Last, the challenges and opportunities of these advanced membranes are also discussed.
Collapse
Affiliation(s)
- Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xianhu Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Jihong Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Siyuan Wei
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Xuelong Cong
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Zhangyu Wang
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Qiang Yan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, People's Republic of China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
- School of Geographic and Biologic Information, Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, People's Republic of China
| |
Collapse
|
46
|
Li J, Cheng Z, Wang Z, Dong J, Jiang H, Wang W, Zou X, Zhu G. Ultramicroporous Covalent Organic Framework Nanosheets with Functionality Pair for Membrane C 2 H 2 /C 2 H 4 Separation. Angew Chem Int Ed Engl 2023; 62:e202216675. [PMID: 36624052 DOI: 10.1002/anie.202216675] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/05/2023] [Accepted: 01/09/2023] [Indexed: 01/11/2023]
Abstract
Gas separation efficiency of covalent organic framework (COF) membrane can be greatly elevated through precise functionalization. A pair-functionalized COF membrane of 1,3,5-triformylphloroglucinol (TP) and isoquinoline-5,8-diamine (IQD) monomers in two and three nodes is designed and synthesized. TP-IQD is crystallized in a two-dimensional structure with a pore size of 6.5 Å and a surface area of 289 m2 g-1 . This COF possesses N-O paired groups which cooperatively interact with C2 H2 instead of C2 H4 . TP-IQD nanosheets of ≈10 μm in width and ≈4 nm in thickness are prepared by mechanical exfoliation; they are further processed with 6FDA-ODA polymer into a hybrid membrane. High porosity and functionality pair of TP-IQD offer the membrane with significantly increased C2 H2 permeability and C2 H2 /C2 H4 selectivity which are 160 % and 430 % higher of pure 6FDA-ODA. The boosted performance demonstrates high efficiency of the pair-functionality strategy for the synthesis of separation-led COFs.
Collapse
Affiliation(s)
- Jialu Li
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Zeliang Cheng
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Ziyang Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Junchao Dong
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Haicheng Jiang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Wenjian Wang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Xiaoqin Zou
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| | - Guangshan Zhu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P. R. China
| |
Collapse
|
47
|
Polyamide membranes with nanoscale ordered structures for fast permeation and highly selective ion-ion separation. Nat Commun 2023; 14:1112. [PMID: 36849434 PMCID: PMC9971196 DOI: 10.1038/s41467-023-36848-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/20/2023] [Indexed: 03/01/2023] Open
Abstract
Fast permeation and effective solute-solute separation provide the opportunities for sustainable water treatment, but they are hindered by ineffective membranes. We present here the construction of a nanofiltration membrane with fast permeation, high rejection, and precise Cl-/SO42- separation by spatial and temporal control of interfacial polymerization via graphitic carbon nitride (g-C3N4). The g-C3N4 nanosheet binds preferentially with piperazine and tiles the water-hexane interface as revealed by molecular dynamics studies, thus lowering the diffusion rate of PIP by one order of magnitude and restricting its diffusion pathways towards the hexane phase. As a result, membranes with nanoscale ordered hollow structure are created. Transport mechanism across the structure is clarified using computational fluid dynamics simulation. Increased surface area, lower thickness, and a hollow ordered structure are identified as the key contributors to the water permeance of 105 L m2·h-1·bar-1 with a Na2SO4 rejection of 99.4% and a Cl-/SO42- selectivity of 130, which is superior to state-of-the-art NF membranes. Our approach for tuning the membrane microstructure enables the development of ultra-permeability and excellent selectivity for ion-ion separation, water purification, desalination, and organics removal.
Collapse
|
48
|
Supramolecular framework membrane for precise sieving of small molecules, nanoparticles and proteins. Nat Commun 2023; 14:975. [PMID: 36810849 PMCID: PMC9944550 DOI: 10.1038/s41467-023-36684-w] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/13/2023] [Indexed: 02/24/2023] Open
Abstract
Synthetic framework materials have been cherished as appealing candidates for separation membranes in daily life and industry, while the challenges still remain in precise control of aperture distribution and separation threshold, mild processing methods, and extensive application aspects. Here, we show a two-dimensional (2D) processible supramolecular framework (SF) by integrating directional organic host-guest motifs and inorganic functional polyanionic clusters. The thickness and flexibility of the obtained 2D SFs are tuned by the solvent modulation to the interlayer interactions, and the optimized SFs with limited layers but micron-sized areas are used to fabricate the sustainable membranes. The uniform nanopores allow the membrane composed of layered SF to exhibit strict size retention for substrates with the rejection value of 3.8 nm, and the separation accuracy within 5 kDa for proteins. Furthermore, the membrane performs high charge selectivity for charged organics, nanoparticles, and proteins, due to the insertion of polyanionic clusters in the framework skeletons. This work displays the extensional separation potentials of self-assembled framework membranes comprising of small-molecules and provides a platform for the preparation of multifunctional framework materials due to the conveniently ionic exchange of the counterions of the polyanionic clusters.
Collapse
|
49
|
Huang W, Liu Q, Zhang X, Chen Z, Zheng B, Wu D. Amphiphilically Modified Porous Polymeric Nanosandwich-Based Membranes for Rapid and Efficient Water Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205714. [PMID: 36509641 DOI: 10.1002/smll.202205714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Low removal efficiency, long treatment time, and high energy consumption hinder advanced and eco-friendly use of traditional adsorbents and separation membranes. Here, a class of amphiphilically modified 2D porous polymeric nanosandwich is designed and is subsequently assembled into adsorptive membranes. The 2D nanosandwich is gifted with high porosity and excellent pore accessibility, demonstrating rapid adsorption kinetics. The as-assembled membrane integrates unimpeded interlayer channels and well-developed, amphiphilic, and highly accessible intralayer nanopores, leading to ultrafast water permeation (1.2 × 104 L m-2 h-1 bar-1 ), high removal efficiency, and easy regeneration. The family of the membrane can be expanded by changing amphiphilic functional groups, further providing treatment of a wide-spectrum of pollutants, including aromatic compounds, pesticide, and pharmaceuticals. It is believed that the novel amphiphilically modified adsorptive membrane offers a distinct water treatment strategy with ultrahigh water permeation and efficient pollutants removal performances, and provides a multiple-in-one solution to the detection and elimination of pollutants.
Collapse
Affiliation(s)
- Wen Huang
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Sun Yat-sen University Cancer Center, Guangzhou, 510060, P. R. China
| | - Qiantong Liu
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Xingcai Zhang
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Zirun Chen
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Bingna Zheng
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| | - Dingcai Wu
- PCFM Lab and GD HPPC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, P. R. China
| |
Collapse
|
50
|
Pore functionalization of cationic covalent organic frameworks membrane: A case towards acid recovery. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|