1
|
Khan SN, Zhao M, Fennell PS, Anthony EJ. Construction of Highly Mesoporous Metal-Organic Frameworks via Green Metallic Solvents Assisted Route for Chemical CO 2 Fixation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502624. [PMID: 40211671 DOI: 10.1002/smll.202502624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/26/2025] [Indexed: 05/27/2025]
Abstract
An easy and versatile method of constructing hierarchically micro- and mesoporous metal-organic frameworks (MOFs) using newly synthesized green metallic solvents (GMS) is proposed. This method can generally be applied to several different series of MOFs. For the first time synthesized, GMS are eco-friendly, easily synthesizable, and play multiple roles of pore expanders, structure directing agents, and bring an additional ligand into the MOF structure. Hierarchically assembled MOF materials via MGS-assisted route showed highly improved structural properties and are exceptionally adjustable regarding all important structural parameters. Compared to its pristine MOF, hierarchically constructed relineMg@UiO-66 showed almost 2.5 times higher surface area, 3 times increased total pore volume, and large mesopores (17-31 nm). In addition to 84.65 mg g-1 CO2 adsorption capacity of relineMg@UiO-66, which is almost 243% increase over its pristine UiO-66 (34.89 mg g-1), relineMg@UiO-66 displays long-term cyclic performance with 94.8% capacity retention over ten consecutive cycles. Moreover, relineMg@UiO-66 exhibits outstanding heterogeneous catalytic activity (yield≈97%) in a CO2 cycloaddition reaction with different epoxides. Density functional theory (DFT) calculations reveal that the judicious tuning of Zr-O coordination environment with GMS optimized secondary building unit (SBU) of Zr6(µ3-O)4(µ3-OH)4-(CO2)12 cluster with OH-symmetry in MOF's frameworks assembly for enhanced adsorption and heterogeneous catalysis.
Collapse
Affiliation(s)
- Saleem Nawaz Khan
- School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
| | - Ming Zhao
- School of Environment, Tsinghua University, Beijing, 100084, China
- Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, China
- Beijing Laboratory of Environmental Frontier Technologies, School of Environment, Tsinghua University, Beijing, 100084, P. R. China
- Institute for Carbon Neutrality, Tsinghua University, Beijing, 100084, P. R. China
| | - Paul S Fennell
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2AZ, UK
| | - Edward J Anthony
- Energy and Power Theme, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| |
Collapse
|
2
|
Tian Y, Pei Z, Luan D, Lou XW(D. Anchoring Sn Nanoparticles in Necklace-Like B,N,F-Doped Carbon Fibers Enables Anode-Less 5V-Class Li-Metal Batteries. Angew Chem Int Ed Engl 2025; 64:e202423454. [PMID: 39776119 PMCID: PMC11933526 DOI: 10.1002/anie.202423454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Li metal batteries (LMBs), particularly with a limited Li metal anode and a 5V-class cathode, offer significantly higher energy density compared to the state-of-the-art Li-ion batteries. However, the limited Li anode poses severe challenges to cycling stability due to low efficiency and large volume expansion issues associated with Li. Herein, we design a lightweight and functionalized host composed of Sn nanoparticles embedded into necklace-like B,N,F-doped carbon macroporous fibers (Sn@B/N/F-CMFs) toward anode-less 5V-class LMBs. The macroporous framework can decrease the local current density to homogenize Li deposition and release structural stress to realize high areal capacity of over 40 mAh cm-2. The lithiophilic B,N,F-doped carbon and Sn nanoparticles can function as high-affinity Li+ binding sites to uniformize Li nucleus growth on the internal and external surface of hollow fibers. Accordingly, the Sn@B/N/F-CMFs enable stable dendrite-free Li plating/stripping behaviors for 1700 h even in the carbonate-based electrolyte. When coupled with a 5V-class LiNi0.5Mn1.5O4 cathode, the assembled anode-less pouch cell also displays stable cycling performance even under harsh conditions.
Collapse
Affiliation(s)
- Yuan Tian
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon999077Hong KongChina
| | - Zhihao Pei
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon999077Hong KongChina
| | - Deyan Luan
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon999077Hong KongChina
| | - Xiong Wen (David) Lou
- Department of ChemistryCity University of Hong Kong83 Tat Chee AvenueKowloon999077Hong KongChina
| |
Collapse
|
3
|
Sun X, Yu C, Zhang L, Xie G. Strategy To Enhance Interfacial Properties: Preparation of Porous Polytetrafluoroethylene Fibers and the Adsorption of Initiators/Curing Agents. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:787-794. [PMID: 39716477 DOI: 10.1021/acs.langmuir.4c04086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Polytetrafluoroethylene (PTFE) fibers exhibit high inertness and demonstrate limited interfacial bonding capabilities with other materials. To overcome this limitation, PTFE@ZnO fibers were developed by depositing the porous ZnO layer onto PTFE fibers via a hydrothermal reaction, and porous fibers were adsorbed curing agents or initiators. The interfacial shear strength (ILSS) of the composites demonstrated a significant improvement, particularly in the case of composites containing PTFE/initiator fibers, where the ILSS increased by 104.8% compared to PTFE alone (from 8.3 to 17.0 MPa). The digital image correlation (DIC) method revealed a more uniform stress distribution in the modified fiber composites at the point of fracture. Additionally, nanoscratch tests indicated a significant enhancement in the interfacial bonding between the modified fibers and the resin. The porous structures facilitated mechanical interlocking between the modified fibers and the resin. Furthermore, the presence of an adsorbed initiator/curing agent within the porous structure served as the initiation site for the free radical polymerization of vinyl ester resin 901, thereby enhancing the interfacial bonding between the modified fibers and the resin. The novel strategy presents a general and viable approach for the extensive modification of PTFE fibers, focusing on achieving exceptional interfacial bonding properties.
Collapse
Affiliation(s)
- Xuhui Sun
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | | | - Lin Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Guoxin Xie
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Chen X, Chen Y, Li Y, Guo C, Pu J, Liu Y, Li X, Yao Y, Gong W, Xue P, Han J. 3D Porous Fibers with Spatial Traps and Excellent Zn 2+ Transport Kinetics Enable Stable Zn-Based Aqueous Battery. SMALL METHODS 2024; 8:e2400408. [PMID: 38949412 DOI: 10.1002/smtd.202400408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/22/2024] [Indexed: 07/02/2024]
Abstract
Adverse side reactions and uncontrolled Zn dendrites growth are the dominant factors that have restricted the application of Zn ion batteries. Herein, a 3D self-supporting porous carbon fibers (denoted as PCFs) host is developed with "trap" effect to adjust the Zn deposition. The unique open structural design of N-doped carbon can act as the zincophilic sites to induce uniform deposition and inhibit adverse side reactions. More importantly, the porous hollow PCFs host with "trap" effect can induce Zn deposition in the fiber by adjusting the local electric field and current density, thereby increasing the specific energy density of the battery and inhibiting dendrite growth. In addition, the 3D open frameworks can regulate Zn2+ flux to enable outstanding cycling performance at ultra-high current densities. As expected, the PCFs framework guarantees the uniform Zn plating and stripping with an outstanding stability over 6000 cycles at the current density of 40 mA cm-2. And the Zn@PCFs||MnO2 full battery shows an excellent lifespan over 1300 cycles at 2000 mA g-1.
Collapse
Affiliation(s)
- Xiang Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yuting Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yuanyuan Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Can Guo
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Jun Pu
- College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, China
| | - Yang Liu
- Tianjin Key Laboratory of Pulp and Paper, State Key Laboratory of Biobased Fiber Manufacturing Technology, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Xiaoge Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Yagang Yao
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| | - Wenbin Gong
- School of Physics and Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Pan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| | - Jie Han
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225009, China
| |
Collapse
|
5
|
Zhao J, Sun M, Liu W, Chen H, Huang X, Gao Y, Teng H, Li Z. In-situ sonochemical formation of N-graphyne modulated porous g-C 3N 4 for boosted photocatalysis degradation of pollutants and nitrogen fixation. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124629. [PMID: 38865891 DOI: 10.1016/j.saa.2024.124629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Herein, Nitrogen-doped graphyne/porous g-C3N4 composites are firstly in-situ synthesized via the ultrasound vibration of CaC2, triazine, and porous g-C3N4 in absolute ethanol. A variety of characterizations are performed to investigate the morphology, microstructure, composition, and electrical/optical features of the obtained composites, such as transmission electron microscopy, scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectra, X-ray photoelectron spectroscopy, and so forth. It is found that N-doped graphyne with flexible folds lamellar structure is intimately attached to flake g-C3N4 in the as-prepared composites. An enlargement of 1.68 and 1.44 folds for the photocatalytic degradation of levofloxacin, rhodamine B, Methylene blue, and Tetracycline is realized by N-doped graphyne/g-C3N4 in comparison with that of pristine g-C3N4, respectively. In addition, the highest NH3 production rate attains 1.71 mmol⋅gcat-1⋅h-1 for N-doped graphyne/g-C3N4, which is 5.89 times larger than that of g-C3N4 (0.29 mmol⋅gcat-1⋅h-1). The improved mechanism of photocatalysis including higher photo-response and carrier separation rate is verified by transient photo-current, transient photo-potential, Mott-Schottky plots, Tafel plots, electrochemical impedance spectroscopy, turn-over frequency, photoluminescence spectra, and UV-vis diffuse absorption spectra, etc. Overall, the current study shows that N-doped graphyne synthesized from CaC2 and triazine is a useful decoration to modulate the photocatalytic features of g-C3N4, which can also be widely extended for in-situ modification of other photocatalysts.
Collapse
Affiliation(s)
- Junjie Zhao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Mingxuan Sun
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China.
| | - Wenzhu Liu
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Haohao Chen
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Xiangzhi Huang
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yu Gao
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Huanying Teng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Ziyang Li
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
6
|
Muthukutty B, Sathish Kumar P, Lee D, Lee S. Multichannel Carbon Nanofibers: Pioneering the Future of Energy Storage. ACS NANO 2024; 18:27287-27316. [PMID: 39324479 DOI: 10.1021/acsnano.4c11146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Multichannel carbon nanofibers (MCNFs), characterized by complex hierarchical structures comprising multiple channels or compartments, have attracted considerable attention owing to their high porosity, large surface area, good directionality, tunable composition, and low density. In recent years, electrospinning (ESP) has emerged as a popular synthetic technique for producing MCNFs with exceptional properties from various polymer blends, driven by phase separation between polymers. These interactions, including van der Waals forces, covalent bonding, and ionic interactions, are crucial for MCNF production. Over time, the applications of MCNFs have expanded, making them one of the most intriguing topics in material research. MCNFs with tailored porous channels, controllable dimensions, confined spaces, high surface areas, designed architectures, and easy electrolyte access to active walls are considered optimal for electrochemical energy storage (EES) technologies. This review provides an exhaustive overview of the working principle, synthesis methods, and structural properties of MCNFs, and examines their advantages, limitations, and potential for producing multichannel architectures. Furthermore, this review explores the relationship between the composition of MCNF electrode materials for EES devices (supercapacitors and batteries) and their electrochemical performance. This review also addresses future directions and challenges in the development and utilization of MCNFs and provides insights into potential research avenues for advancing this exciting field.
Collapse
Affiliation(s)
- Balamurugan Muthukutty
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Ponnaiah Sathish Kumar
- Magnetics Initiative Life Care Research Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711873, Republic of Korea
| | - Daeho Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, Gyeonggi 13120, Republic of Korea
| | - Sungwon Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno Jungang-daero, Hyeonpung-myeon, Dalseong-gun, Daegu 711-873, Republic of Korea
| |
Collapse
|
7
|
Fan H, Wang Q, Liu H, Han B, Liu H, Yang G. Surface Engineering of Biochar Toward Simultaneously Generating Superamphiphilicity and Catalytic Activity for Strengthening Pickering Interfacial Catalysis. CHEMSUSCHEM 2024; 17:e202400248. [PMID: 38695866 DOI: 10.1002/cssc.202400248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/25/2024] [Indexed: 06/06/2024]
Abstract
Multifunctional carbon materials have revealed distinctive features and excellent performance in the field of catalysis. However, the facile fabrication of bifunctional carbon materials with special wettability and catalytic activity remains a grand challenge in Pickering emulsion catalysis. Herein, we reported one-step construction of bifunctional biochar with superamphiphilicity and catalytic activity directly from the thermolysis of sawdust and 1-butyl-3-methylimidazolium tetrafluoroborate for enhancing the oxidation of benzyl alcohol in Pickering emulsion. Co-doping of B and F enhanced the hydrophilicity of biochar, and the oleophilicity of biochar was kept simultaneously. Conversion became 4 times using bifunctional biochar compared with blank results during the oxidation of benzyl alcohol. More interestingly, the turnover frequency (TOF) value using bifunctional biochar enhanced 61 % than that employing N-doped superamphiphilic carbon without catalytic activity. Catalytic activities of bifunctional biochar could be ascribed to the existence of different chemical bonds containing the element B. This work paves a path toward rational design of bifunctional biochar materials with special wettability and catalytic activity for greatly enhancing the liquid-liquid biphasic reaction efficiencies.
Collapse
Affiliation(s)
- Honglei Fan
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Qiuxia Wang
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hongliang Liu
- School of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 264006, China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Huizhen Liu
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guanying Yang
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
8
|
Feng PY, Jing X. Novel shish-kebab structured nanofibrous decorating chitosan unidirectional scaffolds to mimic extracellular matrix for tissue engineering. J Mech Behav Biomed Mater 2024; 158:106677. [PMID: 39068847 DOI: 10.1016/j.jmbbm.2024.106677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/11/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Electrospun nanofibrous scaffolds are renowned for their ability to mimic the microstructure of the extracellular matrix (ECM). However, they often fail to replicate the geometry of target tissues, and the biocompatibility of these scaffolds those made from synthetic polymers is always limited due to the lack of cell binding sites. To address these issues, we proposed an innovative approach that combined unidirectional freeze-drying and electrospinning. During this process, electrospun polycaprolactone (PCL) nanofibers were chopped into nanofibrils, which range in size up to several hundred micrometers, and were incorporated into the chitosan scaffolds via unidirectional freeze-drying. In these scaffolds, the chitosan phase was responsible for maintaining the structural integrity at the macroscale, while the embedded nanofibers enhanced the surface topography at the microscale. The resulting scaffolds exhibited a high porosity of 90% and an impressive water uptake capacity of 2500%. Furthermore, 3T3 fibroblast cells showed strong interactions with the scaffolds, characterized by high rates of cell proliferation and viability. The cells also displayed significant orientation along the direction of the pores, suggesting that the scaffolds effectively guided cellular growth.
Collapse
Affiliation(s)
- Pei-Yong Feng
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, Hunan, 412007, China
| | - Xin Jing
- Key Laboratory of Advanced Packaging Materials and Technology of Hunan Province, Hunan University of Technology, Zhuzhou, Hunan, 412007, China.
| |
Collapse
|
9
|
Liu M, Hou R, Zhang P, Li Y, Shao G, Zhang P. A Universal Electronic Structure Modulation Strategy: Is Strong Adsorption Always Correlated with High Catalysis? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402725. [PMID: 38837316 DOI: 10.1002/smll.202402725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 05/13/2024] [Indexed: 06/07/2024]
Abstract
Unveiling the inherent link between polysulfide adsorption and catalytic activity is key to achieving optimal performance in Lithium-sulfur (Li-S) batteries. Current research on the sulfur reaction process mainly relies on the strong adsorption of catalysts to confine lithium polysulfides (LiPSs) to the cathode side, effectively suppressing the shuttle effect of polysulfides. However, is strong adsorption always correlated with high catalysis? The inherent relationship between adsorption and catalytic activity remains unclear, limiting the in-depth exploration and rational design of catalysts. Herein, the correlation between "d-band center-adsorption strength-catalytic activity" in porous carbon nanofiber catalysts embedded with different transition metals (M-PCNF-3, M = Fe, Co, Ni, Cu) is systematically investigated, combining the d-band center theory and the Sabatier principle. Theoretical calculations and experimental analysis results indicate that Co-PCNF-3 electrocatalyst with appropriate d-band center positions exhibits moderate adsorption capability and the highest catalytic conversion activity for LiPSs, validating the Sabatier relationship in Li-S battery electrocatalysts. These findings provide indispensable guidelines for the rational design of more durable cathode catalysts for Li-S batteries.
Collapse
Affiliation(s)
- Mengyu Liu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Ruohan Hou
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Pengpeng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Yukun Li
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
| | - Guosheng Shao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| | - Peng Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
- State Center for International Cooperation on Designer Low-carbon & Environmental Materials (CDLCEM), Zhengzhou University, Zhengzhou, 450001, China
- Zhengzhou Materials Genome Institute (ZMGI), Zhongyuanzhigu, Building 2, Xingyang, 450100, China
| |
Collapse
|
10
|
Liu P, Miao L, Sun Z, Chen X, Jiao L. Sodiophilic Substrate Induces NaF-Rich Solid Electrolyte Interface for Dendrite-Free Sodium Metal Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406058. [PMID: 39097944 DOI: 10.1002/adma.202406058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/05/2024] [Indexed: 08/06/2024]
Abstract
3D substrate with abundant sodiophilic active sites holds promise for implementing dendrite-free sodium metal anodes and high-performance sodium batteries. However, the heightened electrode/electrolyte side reactions stemming from high specific surface area still hinder electrode structure stability and cycling reversibility, particularly under high current densities. Herein, the solid electrolyte interface (SEI) component is regulated and detrimental side reactions are restrained through the uniform loading of Na-Sn alloy onto a porous 3D nanofiber framework (NaSn-PCNF). The strong interaction between Na-Sn alloy and PF6 - anions facilitates the dissociation of sodium salts and releases more free sodium ions for effective charge transfer. Simultaneously, the modulations of the interfacial electrolyte solvation structure and the construction of a high NaF content SEI layer stabilize the electrode/electrolyte interface. NaSn-PCNF symmetrical battery demonstrates stable cycling for over 600 h with an ultralow overpotential of 24.5 mV under harsh condition of 10 mA cm-2 and 10 mAh cm-2. Moreover, the full cells and pouch cells exhibit accelerated reaction kinetics and splendid capacity retention, providing valuable insights into the development of advanced Na substrates for high-energy sodium metal batteries.
Collapse
Affiliation(s)
- Pei Liu
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Licheng Miao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Zhiqin Sun
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Xuchun Chen
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| | - Lifang Jiao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
11
|
Shi X, Wang H, Xie Z, Mao Z, Zhang T, Jin J, He B, Wang R, Gong Y, Fan HJ. A Dual-Carbon Potassium-Ion Capacitor Enabled by Hollow Carbon Fibrous Electrodes with Reduced Graphitization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406794. [PMID: 39032124 DOI: 10.1002/adma.202406794] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/23/2024] [Indexed: 07/22/2024]
Abstract
The large size of K+ ions (1.38 Å) sets a challenge in achieving high kinetics and long lifespan of potassium storage devices. Here, a fibrous ZrO2 membrane is utilized as a reactive template to construct a dual-carbon K-ion capacitor. Unlike graphite, ZrO2-catalyzed graphitic carbon presents a relatively disordered layer arrangement with an expanded interlayer spacing of 0.378 nm to accommodate K+ insertion/extraction. Pyridine-derived nitrogen sites can locally store K-ions without disrupting the formation of stage-1 graphite intercalation compounds (GICs). Consequently, N-doped hollow graphitic carbon fiber achieves a K+-storage capacity (primarily below 1 V), which is 1.5 time that of commercial graphite. Potassium-ion hybrid capacitors are assembled using the hollow carbon fiber electrodes and the ZrO2 nanofiber membrane as the separator. The capacitor exhibits a high power of 40 000 W kg-1, full charge in 8.5 s, 93% capacity retention after 5000 cycles at 2 A g-1, and a low self-discharge rate of 8.6 mV h-1. The scalability and high performance of the lattice-expanded tubular carbon electrodes underscores may advance the practical potassium-ion capacitors.
Collapse
Affiliation(s)
- Xiaojun Shi
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Huanwen Wang
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zeren Xie
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Zhifei Mao
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Taoqiu Zhang
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Jun Jin
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Beibei He
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Rui Wang
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Yansheng Gong
- Faculty of Material and Chemistry, China University of Geosciences, Wuhan, 430074, China
| | - Hong Jin Fan
- School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
12
|
Lang G, Feng B, Chen X, Zhou Z, Zhao Z, Deng Q, Jiang Z, Feng J. Anchoring CeF 3 nanoparticles on porous carbon nanofibers as self-supporting electrodes for highly sensitive detection of nitrite. Talanta 2024; 275:126133. [PMID: 38669957 DOI: 10.1016/j.talanta.2024.126133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/26/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024]
Abstract
Designing a working electrode is crucial for the reliable electrochemistry detection, which is applied to detect toxic and harmful substances sensitively and rapidly. Here we report the polytetrafluoroethylene decomposition-assisted electrospinning, a combination method for creating nanopore and synthesizing CeF3, to prepare the self-supporting electrode of CeF3 nanoparticles-anchored on porous carbon nanofibers (CeF3/PCNFs) for highly sensitive nitrite detection. The CeF3/PCNFs exhibits remarkable electroactivity toward nitrite detection, featuring a wide concentration range (0.5 μM-6 mM), low detection limit (10 nm) and high sensitivity (2093 μA mM-1 cm-2). It also exhibits excellent selectivity, stability and reproducibility, and powerful reliability for nitrite detection in saliva, pickles, sausages, chips, river water and tap water. This study provides a facile strategy to prepare the metal fluoride-based self-supporting electrode, which overcomes the disadvantages of chemically modified electrodes unstable and poorly reproducible, and is significant for clinical diagnosis, food safety and environmental monitoring.
Collapse
Affiliation(s)
- Gang Lang
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Bo Feng
- Southwest Computer Co., Ltd, Chongqing, 400060, PR China
| | - Xiaomei Chen
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhiting Zhou
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhicheng Zhao
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Qin Deng
- School of Science, Xihua University, Chengdu, 610039, PR China
| | - Zhenju Jiang
- School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Yibin Research Institute of Xihua University, Yibin, 644000, PR China
| | - Jing Feng
- School of Science, Xihua University, Chengdu, 610039, PR China; Asymmetric Synthesis and Chiral Technology Key Laboratory of Sichuan Province, Xihua University, Chengdu, 610039, PR China; Research and Application of Small Organic Chiral Molecules Key Laboratory of Yibin City, Yibin Research Institute of Xihua University, Yibin, 644000, PR China.
| |
Collapse
|
13
|
Aydın H, Üstün B, Kurtan Ü, Şahintürk U, Karakuş S. In situ synthesis of europium oxide (Eu 2O 3) nanoparticles in heteroatom doped carbon nanofibers for boosting the cycling stability of supercapacitors. Dalton Trans 2024; 53:12223-12233. [PMID: 38976003 DOI: 10.1039/d4dt01297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Maintaining a high specific energy without losing cycling stability is the focus of the supercapacitor field. In this study, carbon nanofibers including europium oxide nanoparticles (CNF/Eu2O3) have been synthesized in the presence of thiourea via a simple approach and applied for the first time as an electrode for SCs. The CNF/Eu2O3-1 electrode doped with nitrogen and sulfur heteroatoms possessed a favorable specific capacitance of 183.2 F g-1, a specific energy of 9.15 W h kg-1, and an excellent capacitance retention of 94.8% even after 10 000 cycles at 1 A g-1. Such excellent performance is ascribed to the surface functionalities, high surface area, and good interaction of Eu2O3 with CNFs. This strategy will provide guidance for other rare element-based electrodes in the field of energy storage.
Collapse
Affiliation(s)
- Hamide Aydın
- Department of Chemistry, İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye.
| | - Burcu Üstün
- Department of Chemical Engineering, İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye
| | - Ümran Kurtan
- Department of Materials and Materials Processing Technologies, Vocational School of Technical Sciences, 34500, İstanbul, Türkiye
| | - Utkan Şahintürk
- Department of Mechanical and Metal Technologies, İstanbul University-Cerrahpaşa, 34500, İstanbul, Türkiye
| | - Selcan Karakuş
- Department of Chemistry, İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye.
- Health Biotechnology Center for Excellence Joint Practice and Research (SABIOTEK), İstanbul University-Cerrahpaşa, 34320, İstanbul, Türkiye
| |
Collapse
|
14
|
Ma Z, Wang W, Xiong Y, Long Y, Shao Q, Wu L, Wang J, Tian P, Khan AU, Yang W, Dong Y, Yin H, Tang H, Dai J, Tahir M, Liu X, He L. Carbon Micro/Nano Machining toward Miniaturized Device: Structural Engineering, Large-Scale Fabrication, and Performance Optimization. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2400179. [PMID: 39031523 DOI: 10.1002/smll.202400179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/03/2024] [Indexed: 07/22/2024]
Abstract
With the rapid development of micro/nano machining, there is an elevated demand for high-performance microdevices with high reliability and low cost. Due to their outstanding electrochemical, optical, electrical, and mechanical performance, carbon materials are extensively utilized in constructing microdevices for energy storage, sensing, and optoelectronics. Carbon micro/nano machining is fundamental in carbon-based intelligent microelectronics, multifunctional integrated microsystems, high-reliability portable/wearable consumer electronics, and portable medical diagnostic systems. Despite numerous reviews on carbon materials, a comprehensive overview is lacking that systematically encapsulates the development of high-performance microdevices based on carbon micro/nano structures, from structural design to manufacturing strategies and specific applications. This review focuses on the latest progress in carbon micro/nano machining toward miniaturized device, including structural engineering, large-scale fabrication, and performance optimization. Especially, the review targets an in-depth evaluation of carbon-based micro energy storage devices, microsensors, microactuators, miniaturized photoresponsive and electromagnetic interference shielding devices. Moreover, it highlights the challenges and opportunities in the large-scale manufacturing of carbon-based microdevices, aiming to spark further exciting research directions and application prospectives.
Collapse
Affiliation(s)
- Zeyu Ma
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenwu Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yibo Xiong
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yihao Long
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qi Shao
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Leixin Wu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Jiangwang Wang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Peng Tian
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Arif Ullah Khan
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenhao Yang
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yixiao Dong
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - Hongbo Yin
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Hui Tang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Jun Dai
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Muhammad Tahir
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- School of Mechatronical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xiaoyu Liu
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Liang He
- School of Mechanical Engineering, State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, 610065, P. R. China
- Med+X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
- Yibin Industrial Technology Research Institute of Sichuan University, Yibin R&D Park of Sichuan University, Yibin, 644005, P. R. China
| |
Collapse
|
15
|
Merugu S, Kearney LT, Keum JK, Naskar AK, Ansary J, Herbert A, Islam M, Mondal K, Gupta A. Investigating Permselectivity in PVDF Mixed Matrix Membranes Using Experimental Optimization, Machine Learning Segmentation, and Statistical Forecasting. ACS OMEGA 2024; 9:28764-28775. [PMID: 38973877 PMCID: PMC11223206 DOI: 10.1021/acsomega.4c03024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024]
Abstract
This research examines the correlation between interfacial characteristics and membrane distillation (MD) performance of copper oxide (Cu) nanoparticle-decorated electrospun carbon nanofibers (CNFs) polyvinylidene fluoride (PVDF) mixed matrix membranes. The membranes were fabricated by a bottom-up phase inversion method to incorporate a range of concentrations of CNF and Cu + CNF particles in the polymer matrix to tune the porosity, crystallinity, and wettability of the membranes. The resultant membranes were tested for their application in desalination by comparing the water vapor transport and salt rejection rates in the presence of Cu and CNF. Our results demonstrated a 64% increase in water vapor flux and a salt rejection rate of over 99.8% with just 1 wt % loading of Cu + CNF in the PVDF matrix. This was attributed to enhanced chemical heterogeneity, porosity, hydrophobicity, and crystallinity that was confirmed by electron microscopy, tensiometry, and scattering techniques. A machine learning segmentation model was trained on electron microscopy images to obtain the spatial distribution of pores in the membrane. An Autoregressive Integrated Moving Average with Explanatory Variable (ARIMAX) statistical time series model was trained on MD experimental data obtained for various membranes to forecast the membrane performance over an extended duration.
Collapse
Affiliation(s)
- Saketh Merugu
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Logan T. Kearney
- Carbon
and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jong K. Keum
- Center
for Nanophase Materials Science, Oak Ridge
National Laboratory, Bethel Valley Rd, Oak Ridge, Tennessee 37830, United States
| | - Amit K. Naskar
- Carbon
and Composites Group, Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830, United States
| | - Jamal Ansary
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| | - Aidan Herbert
- DigiM
Solution LLC, 500 West
Cummings Park, Suite 3650, Woburn, Massachusetts 01801, United States
| | - Monsur Islam
- IMDEA
Materials Institute, Tecnogetafe, Calle Eric Kandel 2, Getafe, Madrid 28906, Spain
| | - Kunal Mondal
- Nuclear Energy
and Fuel Cycle Division, Oak Ridge National
Laboratory, Bethel Valley
Rd, Oak Ridge, Tennessee 37830, United States
| | - Anju Gupta
- Department
of Mechanical, Industrial and Manufacturing Engineering, The University of Toledo, 2801 West Bancroft Street, Toledo, Ohio 43606, United States
| |
Collapse
|
16
|
Ye C, Zhao L, Yang S, Li X. Recent Research on Preparation and Application of Smart Joule Heating Fabrics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309027. [PMID: 38072784 DOI: 10.1002/smll.202309027] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/10/2023] [Indexed: 05/03/2024]
Abstract
Multifunctional wearable heaters have attracted much attention for their effective applications in personal thermal management and medical therapy. Compared to passive heating, Joule heating offers significant advantages in terms of reusability, reliable temperature control, and versatile coupling. Joule-heated fabrics make wearable electronics smarter. This review critically discusses recent advances in Joule-heated smart fabrics, focusing on various fabrication strategies based on material-structure synergy. Specifically, various applicable conductive materials with Joule heating effect are first summarized. Subsequently, different preparation methods for Joule heating fabrics are compared, and then their various applications in smart clothing, healthcare, and visual indication are discussed. Finally, the challenges faced in developing these smart Joule heating fabrics and their possible solutions are discussed.
Collapse
Affiliation(s)
- Chunfa Ye
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Longqi Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Sihui Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiaoyan Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
17
|
Sun M, Guo W, Zhang H, Zhang Q. Toward Ultrahigh-Rate Energy Storage of 3000 mV s -1 in Hollow Carbon: From Methodology to Surface-to-Bulk Synergy Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308453. [PMID: 38221691 DOI: 10.1002/smll.202308453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/06/2023] [Indexed: 01/16/2024]
Abstract
Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC), with subtly designed Zn(OH)F nanoarrays as the template are presented. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+-adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in the future.
Collapse
Affiliation(s)
- Mingming Sun
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hepeng Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
18
|
Wang X, Li X, Gu N, Shao Y, Guo Y, Deng Y, Chu C, Xue F, Huang L, Tao L, Bai J. pH-responsive, self-sculptured Mg/PLGA composite microfibers for accelerated revascularization and soft tissue regeneration. BIOMATERIALS ADVANCES 2024; 158:213767. [PMID: 38227990 DOI: 10.1016/j.bioadv.2024.213767] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 09/25/2023] [Accepted: 01/08/2024] [Indexed: 01/18/2024]
Abstract
Biodegradable Mg/polymer composite fibers offer a promising therapeutic option for tissue injury because of bioactive Mg2+ and biomimetic microstructure. However, current studies are limited to the contribution of Mg2+ and the single microstructure. In this study, we designed Mg/poly (lactic-co-glycolic acid) (Mg/PLGA) composite microfibers that significantly enhanced angiogenesis and tissue regeneration synergistically by Mg2+ and self-sculptured microstructure, due to spontaneous in situ microphase separation in response to the weakly alkaline microenvironment. Our composite microfiber patch exhibited superior performance in the adhesion, spreading, and angiogenesis functions of human umbilical vein endothelial cells (HUVECs) due to the joint contribution of the hierarchically porous microstructure and Mg2+. Genomics and proteomics analyses revealed that the Mg/PLGA composite microfibers activated the cell focal adhesion and angiogenesis-related signaling pathways. Furthermore, the repair of typical soft tissue defects, including refractory urethral wounds and easily healed skin wounds, validated that our Mg/PLGA composite microfiber patch could provide favorable surface topography and ions microenvironment for tissue infiltration and accelerated revascularization. It could cause rapid urethral tissue regeneration and recovery of rabbit urethral function within 6 weeks and accelerate rat skin wound closure within 16 days. This work provides new insight into soft tissue regeneration through the bioactive alkaline substance/block copolymer composites interactions.
Collapse
Affiliation(s)
- Xianli Wang
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Xiaoyu Li
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Nannan Gu
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Yi Shao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China
| | - Yunfei Guo
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Yongji Deng
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China
| | - Chenglin Chu
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Feng Xue
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China
| | - Liqu Huang
- Department of Urology, Children's Hospital of Nanjing Medical University, 72 Guangzhou Road, Nanjing 210008, Jiangsu, China.
| | - Li Tao
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China.
| | - Jing Bai
- School of Materials Science and Engineering, Southeast University, Jiangning, Nanjing 211189, Jiangsu, China; Jiangsu Key Laboratory for Advanced Metallic Materials, Jiangning, Nanjing 211189, Jiangsu, China; Institute of Medical Devices (Suzhou), Southeast University, Suzhou 215000, China.
| |
Collapse
|
19
|
Zhu Y, Jiang Y, Li H, Zhang D, Tao L, Fu XZ, Liu M, Wang S. Tip-like Fe-N 4 Sites Induced Surface Microenvironments Regulation Boosts the Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2024; 63:e202319370. [PMID: 38224011 DOI: 10.1002/anie.202319370] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/16/2024]
Abstract
Single atom catalysts with defined local structures and favorable surface microenvironments are significant for overcoming slow kinetics and accelerating O2 electroreduction. Here, enriched tip-like FeN4 sites (T-Fe SAC) on spherical carbon surfaces were developed to investigate the change in surface microenvironments and catalysis behavior. Finite element method (FEM) simulations, together with experiments, indicate the strong local electric field of the tip-like FeN4 and the more denser interfacial water layer, thereby enhancing the kinetics of the proton-coupled electron transfer process. In situ spectroelectrochemical studies and the density functional theory (DFT) calculation results indicate the pathway transition on the tip-like FeN4 sites, promoting the dissociation of O-O bond via side-on adsorption model. The adsorbed OH* can be facilely released on the curved surface and accelerate the oxygen reduction reaction (ORR) kinetics. The obtained T-Fe SAC nanoreactor exhibits excellent ORR activities (E1/2 =0.91 V vs. RHE) and remarkable stability, exceeding those of flat FeN4 and Pt/C. This work clarified the in-depth insights into the origin of catalytic activity of tip-like FeN4 sites and held great promise in industrial catalysis, electrochemical energy storage, and many other fields.
Collapse
Affiliation(s)
- Yanwei Zhu
- Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yimin Jiang
- Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - HuangJingWei Li
- School of Physics, State Key Laboratory of Powder Metallurgy, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083, China
- Central South University, Changsha, 410083, P. R. China
| | - Dongcai Zhang
- Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Li Tao
- Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| | - Xian-Zhu Fu
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Min Liu
- School of Physics, State Key Laboratory of Powder Metallurgy, Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, Changsha, 410083, China
- Central South University, Changsha, 410083, P. R. China
| | - Shuangyin Wang
- Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
20
|
Wan Z, Wang L, Zhou Y, Xu S, Zhang J, Chen X, Li S, Ou C, Kong X. A frogspawn inspired twin Mo 2C/Ni composite with a conductive fibrous network as a robust bifunctional catalyst for advanced anion exchange membrane electrolyzers. NANOSCALE 2024. [PMID: 38439677 DOI: 10.1039/d3nr06242b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Anion exchange membrane water electrolysis (AEMWE) is considered one of the most cost-effective methods for producing green hydrogen. However, the performance of AEMWE is still restrained by the slow reaction kinetics and poor ion/electron transport of catalysts. Herein, inspired by frogspawn, Mo2C nanoparticles coupled with Ni were in situ embedded into a N-doped porous carbon nanofiber network (Mo2C/NCNTs@Ni) by chemical crosslinking electrospinning combined with carbonization. The unique bionic structure can guarantee favorable overall structural flexibility and fast ion/electron transport kinetics. As a result of the robust hydrogen binding energy of Mo2C, as well as the synergistic impact between Ni and Mo2C nanoparticles and the conductive network resembling frogspawn, the catalyst developed demonstrates excellent performance in both the HER and OER. When employed as a bifunctional catalyst in water electrolysis, Mo2C/NCNTs@Ni delivers overpotentials of 155 mV and 320 mV at 10 mA cm-2 for the HER and OER, respectively. In addition, the Mo2C/NCNTs@Ni also displays excellent long-term durability during a continuous operation test under different currents for 50 h. The assembled AEMWE electrolyzers with Mo2C/NCNTs@Ni as both the anode and cathode can achieve a current density of 82.5 mA cm-2 at 1.99 V, indicating great potential for industrial water splitting. These results give an insight for the development of advanced bifunctional electrocatalysts for the next generation of green and efficient H2 production by water electrolysis.
Collapse
Affiliation(s)
- Zhongmin Wan
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Linqing Wang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Yuheng Zhou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Siyuan Xu
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Jing Zhang
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Xi Chen
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Shi Li
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Changjie Ou
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| | - Xiangzhong Kong
- College of Mechanical Engineering, Hunan Institute of Science and Technology, Yueyang, 414006, China.
- Institute of New Energy, Hunan Institute of Science and Technology, Yueyang, 414006, China
| |
Collapse
|
21
|
Wang H, Li B, Shen Y, Zhang Z, Sun Y, Zhou W, Liang S, Li W, He J. Ion/Electron Co-Conductive Triple-Phase Interface Enabling Fast Redox Reaction Kinetics in Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38417141 DOI: 10.1021/acsami.3c18080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Lithium-sulfur batteries (LSBs) are promising next-generation energy storage systems because of their high energy densities and high theoretical specific capacities. However, most catalysts in the LSBs are based on carbon materials, which can only improve the conductivity and are unable to accelerate lithium-ion transport. Therefore, it would be worthwhile to develop a catalytic electrode exhibiting both ion and electron conductivity. Herein, a triple-phase interface using lithium lanthanum titanate/carbon (LLTO/C) nanofibers to construct ion/electron co-conductive materials was used to afford enhanced adsorption of lithium polysulfides (LiPSs), high conductivity, and fast ion transport in working LSBs. The triple-phase interface accelerates the kinetics of the soluble LiPSs and promotes uniform Li2S precipitation/dissolution. Additionally, the LLTO/C nanofibers decrease the reaction barrier of the LiPSs, significantly improving the conversion of LiPSs to Li2S and promoting rapid conversion. Specifically, the LLTO promotes ion transport owing to its high ionic conductivity, and the carbon enhances the conductivity to improve the utilization rate of sulfur. Therefore, the LSBs with LLTO/C functional separators deliver stable life cycles, high rates, and good electrocatalytic activities. This strategy is greatly important for designing ion/electron conductivity and interface engineering, providing novel insight for the development of the LSBs.
Collapse
Affiliation(s)
- Huan Wang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Boyu Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Yanlei Shen
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Ziyao Zhang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Yinzhao Sun
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Weitao Zhou
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Shuaitong Liang
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Weitao Li
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| | - Jianxin He
- Textile and Garment Industry of Research Institute, Zhongyuan University of Technology, Zhengzhou 450007, China
- International Joint Laboratory of New Textile Materials and Textiles of Henan Province, Zhengzhou 450007, China
| |
Collapse
|
22
|
Wang S, Liu Q, Li S, Huang F, Zhang H. Joule-Heating-Driven Synthesis of a Honeycomb-Like Porous Carbon Nanofiber/High Entropy Alloy Composite as an Ultralightweight Electromagnetic Wave Absorber. ACS NANO 2024. [PMID: 38286018 DOI: 10.1021/acsnano.3c11408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
High entropy alloys (HEA) have garnered significant attention in electromagnetic wave (EMW) absorption due to their efficient synergism among multiple components and tunable electronic structures. However, their high density and limited chemical stability hinder their progress as lightweight absorbers. Incorporating HEA with carbon offers a promising solution, but synthesizing stable HEA/carbon composite faces challenges due to the propensity for phase separation during conventional heat treatments. Moreover, EMW absorption mechanisms in HEAs may be different from established empirical models due to their high-entropy effect. This underscores the urgent need to synthesize stable and lightweight HEA/carbon absorbers and uncover their intrinsic absorption mechanisms. Herein, we successfully integrated a quinary FeCoNiCuMn HEA into a honeycomb-like porous carbon nanofiber (HCNF) using electrostatic spinning and the Joule-heating method. Leveraging the inherent lattice distortion effects and honeycomb structure, the HCNF/HEA composite demonstrates outstanding EMW absorption properties at an ultralow filler loading of 2 wt %. It achieves a minimum reflection loss of -65.8 dB and boasts a maximum absorption bandwidth of up to 7.68 GHz. This study not only showcases the effectiveness of combining HCNF with HEA, but also underscores the potential of Joule-heating synthesis for developing lightweight HEA-based absorbers.
Collapse
Affiliation(s)
- Shipeng Wang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Qiangchun Liu
- School of Physics and Electronic Information, Huaibei Normal University, Huaibei, 235000, P. R. China
| | - Shikuo Li
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| | - Fangzhi Huang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, 230601, P. R. China
| | - Hui Zhang
- Anhui Key Laboratory of Magnetic Functional Materials and Devices, School of Materials Science and Engineering, Anhui University, Hefei, Anhui, 230601, P. R. China
| |
Collapse
|
23
|
Abbas Z, Hussain N, Kumar S, Mobin SM. In situ growth of a redox-active metal-organic framework on electrospun carbon nanofibers as a free-standing electrode for flexible energy storage devices. NANOSCALE 2024; 16:868-878. [PMID: 38099850 DOI: 10.1039/d3nr04984a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The rational construction of free-standing and flexible electrodes for application in electrochemical energy storage devices and next-generation supercapacitors is an emerging research focus. Herein, we prepared a redox-active ferrocene dicarboxylic acid (Fc)-based nickel metal-organic framework (MOF) on electrospun carbon nanofibers (NiFc-MOF@CNFs) via an in situ approach. This in situ approach avoided the aggregation of the MOF. The NiFc-MOF@CNF flexible electrode showed a high redox-active behavior owing to the presence of ferrocene and flexible carbon nanofibers, which led to unique properties, including high flexibility and lightweight. Furthermore, the prepared electrode was utilized in a supercapacitors (SC) without the use of any binder, which achieved a specific capacity of 460 C g-1 at 1 A g-1 with an excellent cyclic retention of 82.2% after 25 000 cycles and a good rate capability. A flexible asymmetric supercapacitor device was assembled, which delivered a high energy density of 56.25 W h kg-1 and a long-lasting cycling performance. Also, the prepared electrode could be used as a freestanding electrode in flexible devices at different bending angles. The obtained cyclic voltammetry curves showed negligible changes, indicating the high stability and good flexibility of the electrode. Thus, the use of the in situ strategy can lead to the uniform growth of redox-active MOFs or other porous materials on CNFs.
Collapse
Affiliation(s)
- Zahir Abbas
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Nissar Hussain
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
| | - Surender Kumar
- CSIR-Advanced Materials and Processes Research Institute (CSIR-AMPRI), Hoshangabad Road, Near Habibganj Naka, Bhopal - 462026, India
| | - Shaikh M Mobin
- Department of Chemistry, Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India.
- Centre for Advanced Electronics (CAE), Indian Institute of Technology (IIT) Indore, Simrol, Khandwa Road, Indore 453552, India
| |
Collapse
|
24
|
Sun M, Guo W, Zhang H, Zhang Q. Toward Ultrahigh-Rate Energy Storage of 3000 mV s -1 in Hollow Carbon: From Methodology to Surface-to-Bulk Synergy Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2308147. [PMID: 38150664 DOI: 10.1002/smll.202308147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/06/2023] [Indexed: 12/29/2023]
Abstract
Despite great efforts on economical and functionalized carbon materials, their scalable applications are still restricted by the unsatisfying energy storage capability under high-rate conditions. Herein, theoretical and methodological insights for surface-to-bulk engineering of multi-heteroatom-doped hollow porous carbon (HDPC) is presented, with subtly designed Zn(OH)F nanoarrays as the template. This fine-tuned HDPC delivers an ultrahigh-rate energy storage capability even at a scan rate of 3000 mV s-1 (fully charged within 0.34 s). It preserves a superior capacitance of 234 F g-1 at a super-large current density of 100 A g-1 and showcases an ultralong cycling life without capacitance decay after 50 000 cycles. Through dynamic and theoretical analysis, the key role of in situ surface-modified heteroatoms and defects in decreasing the K+ -adsorption/diffusion energy barrier is clarified, which cooperates with the porous conductive highways toward enhanced surface-to-bulk activity and kinetics. In situ Raman further aids in visualizing the reversibly dynamic adsorption/releasing of the electrolyte ions on the tailored carbon structure during the charge/discharge process. The potential of the design concept is further evidenced by the enhanced performances in water-in-salt electrolytes. This surface-to-bulk nanotechnology opens the path for developing high-performance energy materials to better meet the practical requirements in future.
Collapse
Affiliation(s)
- Mingming Sun
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Guo
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hepeng Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiuyu Zhang
- Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, MOE Key Laboratory of Material Physics and Chemistry Under Extraordinary Conditions, School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
25
|
Pei J, Yin K, Wu T, Wang L, Deng Q, Huang Y, Wang K, Arnusch CJ. Multifunctional polyimide-based femtosecond laser micro/nanostructured films with triple Janus properties. NANOSCALE 2023; 15:15708-15716. [PMID: 37728408 DOI: 10.1039/d3nr03701k] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Flexible multifunctional composite films in which opposing surfaces have two or more distinct physical properties are highly applicable for wearable electronic devices, electrical power systems and biomedical engineering. However, fabrication of such "Janus" films can be time consuming, complex or economically not feasible. In this work, Janus polyimide (PI) films were prepared by femtosecond laser direct writing technology, which generated a honeycomb porous structure (HPS) on one side and a lawn-like structure (LLS) on the other. Deposition of silver nanowires (AGNWs) by drop coating on the LLS side (AGNWs@LLS) resulted in a film in which each face possessed highly distinct triple properties. The HPS side was superhydrophobic with a water contact angle (WCA) of ∼153.3° and electrically non-conductive, while the AGNWs@LLS side was superhydrophilic (WCA ∼7.8°) and highly conductive (∼3.8 Ω). Moreover, the AGNWs@LLS face showed ultra-low thermal radiation performance, almost reaching saturation. On a heating table at ∼100 °C, the temperature of the AGNWs@LLS side remained at ∼44.5 °C, while the HPS side exhibited a temperature of ∼93.9 °C. This "triple Janus film" and lasing techniques developed might be useful for designing new materials for the integration and miniaturization of multifunctional electronic equipment.
Collapse
Affiliation(s)
- Jiaqing Pei
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China.
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Tingni Wu
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Lingxiao Wang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Qinwen Deng
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Yin Huang
- Hunan Key Laboratory of Nanophotonics and Devices, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Kai Wang
- School of Electrical Engineering, Weihai Innovation Research Institute, Qingdao University, Qingdao 266000, China
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede-Boqer Campus, Midreshet Ben-Gurion 84990, Israel
| |
Collapse
|
26
|
Yang L, Wang Y, Liu J, Ouyang D, Chen D, Xue X, Xue N, Zhu H, Yin J. Tailoring B, N-Enriched Carbon Nanosheets via a Gelation-Assisted Strategy for High-Capacity and Fast-Response Capacitive Desalination. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40529-40537. [PMID: 37603412 DOI: 10.1021/acsami.3c07630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Designing high-performance carbonous electrodes for capacitive deionization with remarkable salt adsorption capacity (SAC) and outstanding salt adsorption rate (SAR) is quite significant yet challenging for brackish water desalination. Herein, a unique gelation-assisted strategy is proposed to tailor two-dimensional B and N-enriched carbon nanosheets (BNCTs) for efficient desalination. During the synthesis process, boric acid and polyvinyl alcohol were cross-linked to form a gelation template for the carbon precursor (polyethyleneimine), which endows BNCTs with ultrathin thickness (∼2 nm) and ultrahigh heteroatoms doping level (14.5 atom % of B and 14.8 atom % of N) after freeze-drying and pyrolysis. The laminar B, N-doped carbon enables an excellent SAC of 42.5 mg g-1 and fast SAR of 4.25 mg g-1 min-1 in 500 mg L-1 NaCl solution, both of which are four times as much as those of activated carbon. Moreover, the density functional theory (DFT) calculation demonstrates that the dual doping of B and N atoms firmly enhances the adsorption capacity of Na+, leading to a prominent chemical SAC for brackish water. This work paves a new way to rationally integrate both conducive surface morphology and systematic effects of B, N doping to construct high-efficiency carbonaceous electrodes for desalination.
Collapse
Affiliation(s)
- Liuqian Yang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanan Wang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiakai Liu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dandan Ouyang
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
| | - Dongxu Chen
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xueyan Xue
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nan Xue
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiao Yin
- Laboratory of Environmental Sciences and Technology, Xinjiang Technical Institute of Physics & Chemistry, Key Laboratory of Functional Materials and Devices for Special Environments, Chinese Academy of Sciences, Urumqi 830011, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
27
|
Lin B, Zheng Y, Wang J, Tu Q, Tang W, Chen L. Flexible High-Performance and Screen-Printed Symmetric Supercapacitor Using Hierarchical Rodlike V 3O 7 Inks. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2282. [PMID: 37630867 PMCID: PMC10457910 DOI: 10.3390/nano13162282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/04/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
The emergence of the Internet of things stimulates the pursuit of flexible and miniaturized supercapacitors. As an advanced technology, screen printing displays vigor and tremendous potential in fabricating supercapacitors, but the adoption of high-performance ink is a great challenge. Here, hierarchical V3O7 with rodlike texture was prepared via a facile template-solvothermal route; and the morphology, component, and valence bond information are characterized meticulously. Then, the screen-printed inks composed of V3O7, acetylene black, and PVDF are formulated, and the rheological behaviors are studied detailedly. Benefitting from the orderly aligned ink, the optimal screen-printed electrode can exhibit an excellent specific capacitance of 274.5 F/g at 0.3 A/g and capacitance retention of 81.9% after 5000 cycles. In addition, a flexible V3O7 symmetrical supercapacitor (SSC) is screen-printed and assembled on the Ag current collector, exhibiting a decent areal specific capacitance of 322.5 mF/cm2 at 0.5 mA/cm2, outstanding cycling stability of 90.8% even after 5000 cycles, satisfactory maximum energy density of 129.45 μWh/cm2 at a power density of 0.42 mW/cm2, and remarkable flexibility and durability. Furthermore, a single SSC enables the showing of an actual voltage of 1.70 V after charging, and no obvious self-discharge phenomenon is found, revealing the great applied value in supply power. Therefore, this work provides a facile and low-cost reference of screen-printed ink for large-scale fabrication of flexible supercapacitors.
Collapse
Affiliation(s)
| | | | | | | | - Wentao Tang
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (B.L.); (Y.Z.); (J.W.); (Q.T.)
| | - Liangzhe Chen
- School of Electronic Information Engineering, Jingchu University of Technology, Jingmen 448000, China; (B.L.); (Y.Z.); (J.W.); (Q.T.)
| |
Collapse
|
28
|
Wang F, Li Y, Yan C, Ma Q, Yang X, Peng H, Wang H, Du J, Zheng B, Guo Y. Bismuth-Decorated Honeycomb-like Carbon Nanofibers: An Active Electrocatalyst for the Construction of a Sensitive Nitrite Sensor. Molecules 2023; 28:molecules28093881. [PMID: 37175296 PMCID: PMC10180303 DOI: 10.3390/molecules28093881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 04/30/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023] Open
Abstract
The existence of carcinogenic nitrites in food and the natural environment has attracted much attention. Therefore, it is still urgent and necessary to develop nitrite sensors with higher sensitivity and selectivity and expand their applications in daily life to protect human health and environmental safety. Herein, one-dimensional honeycomb-like carbon nanofibers (HCNFs) were synthesized with electrospun technology, and their specific structure enabled controlled growth and highly dispersed bismuth nanoparticles (Bi NPs) on their surface, which endowed the obtained Bi/HCNFs with excellent electrocatalytic activity towards nitrite oxidation. By modifying Bi/HCNFs on the screen-printed electrode, the constructed Bi/HCNFs electrode (Bi/HCNFs-SPE) can be used for nitrite detection in one drop of solution, and exhibits higher sensitivity (1269.9 μA mM-1 cm-2) in a wide range of 0.1~800 μM with a lower detection limit (19 nM). Impressively, the Bi/HCNFs-SPE has been successfully used for nitrite detection in food and environment samples, and the satisfactory properties and recovery indicate its feasibility for further practical applications.
Collapse
Affiliation(s)
- Fengyi Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Ye Li
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Chenglu Yan
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Qiuting Ma
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Xiaofeng Yang
- Institute of Quality Standard and Testing Technology for Agro-Products, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Huaqiao Peng
- Key Laboratory of Aviation Fuel & Chemical Airworthiness and Green Development, The Second Research Institute of Civil Aviation Administration of China, Chengdu 610041, China
| | - Huiyong Wang
- College of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453002, China
| | - Juan Du
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Baozhan Zheng
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| | - Yong Guo
- College of Chemistry, Sichuan University, No. 29 Wangjiang Road, Chengdu 610064, China
| |
Collapse
|
29
|
Nagata Y, Kukobat R, Furuse A, Otsuka H, Hayashi T, Kaneko K. Designed Production of Atomic-Scale Nanowindows in Single-Walled Carbon Nanotubes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5911-5916. [PMID: 37052535 DOI: 10.1021/acs.langmuir.3c00422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The controlled production of nanowindows in graphene layers is desirable for the development of ultrathin membranes. Herein, we propose a single-atom catalytic oxidation method for introducing nanowindows into the graphene layers of single-walled carbon nanotubes (SWCNTs). Using liquid-phase adsorption, copper(II) 2,3,9,10,16,17,23,24-octakis(octyloxy)-29H,31H-phthalocyanine (CuPc) was adsorbed on SWCNT bundles at a surface coverage of 0.9. Subsequently, narrow nanowindows with a number density of 0.13 nm-2 were produced by oxidation above 550 K, which is higher than the decomposition temperature of bulk CuPc. In particular, oxidation of the CuPc-adsorbed SWCNTs at 623 K increased the surface area from 280 to 1690 m2 g-1 owing to the efficient production of nanowindows. The nanowindow size was estimated to be similar to the molecular size of N2 based on the pronounced low-pressure adsorption hysteresis in the N2 adsorption isotherm. In addition, the enthalpy change for the nanowindow-formation equilibrium decreased by 4 kJ mol-1 when CuPc was present, further evidencing the catalytic effect of the Cu atoms supplied by the adsorbed CuPc molecules.
Collapse
Affiliation(s)
- Yuki Nagata
- Department of Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Kotobuki Co., Ltd., Kitakyushu City, Fukuoka 802-8540, Japan
| | - Radovan Kukobat
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
- Department of Chemical Engineering and Technology, Faculty of Technology, University of Banja Luka, V. S. Stepanovica 73, Banja Luka 78000, Bosnia and Herzegovina
| | - Ayumi Furuse
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Hayato Otsuka
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Takuya Hayashi
- Department of Science and Technology, Interdisciplinary Graduate School of Science and Technology, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| | - Katsumi Kaneko
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano 380-8553, Japan
| |
Collapse
|
30
|
Solvent-Evaporation-Induced Synthesis of Graphene Oxide/Peptide Nanofiber (GO/PNF) Hybrid Membranes Doped with Silver Nanoparticles for Antibacterial Application. Polymers (Basel) 2023; 15:polym15051321. [PMID: 36904561 PMCID: PMC10006990 DOI: 10.3390/polym15051321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Designing functional membranes through the collaboration of multi-dimensional nanomaterials is of particular interest in environmental and biomedical applications. Herein, we propose a facile and green synthetic strategy by collaborating with graphene oxide (GO), peptides, and silver nanoparticles (AgNPs) to synthesize functional hybrid membranes with favourable antibacterial effects. GO nanosheets are functionalized with self-assembled peptide nanofibers (PNFs) to form GO/PNFs nanohybrids, in which the PNFs not only improve the biocompatibility and dispersity of GO, but also provide more active sites for growing and anchoring AgNPs. As a result, multifunctional GO/PNFs/AgNP hybrid membranes with adjustable thickness and AgNP density are prepared via the solvent evaporation technique. The structural morphology of the as-prepared membranes is characterized using scanning electron microscopy, transmission electron microscopy, and X-ray photoelectron spectroscopy, and their properties are analyzed by spectral methods. The hybrid membranes are then subjected to antibacterial experiments and their excellent antibacterial performances are demonstrated.
Collapse
|
31
|
Recent Progress of the Preparation and Application of Electrospun Porous Nanofibers. Polymers (Basel) 2023; 15:polym15040921. [PMID: 36850206 PMCID: PMC9961710 DOI: 10.3390/polym15040921] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Electrospun porous nanofibers have gained a lot of interest recently in various fields because of their adjustable porous structure, high specific surface area, and large number of active sites, which can further enhance the performance of materials. This paper provides an overview of the common polymers, preparation, and applications of electrospun porous nanofibers. Firstly, the polymers commonly used to construct porous structures and the main pore-forming methods in porous nanofibers by electrospinning, namely the template method and phase separation method, are introduced. Secondly, recent applications of electrospun porous nanofibers in air purification, water treatment, energy storage, biomedicine, food packaging, sensor, sound and wave absorption, flame retardant, and heat insulation are reviewed. Finally, the challenges and possible research directions for the future study of electrospun porous nanofibers are discussed.
Collapse
|
32
|
Shi S, Wang Y, Meng Q, Lan Z, Liu C, Zhou Z, Sun Q, Shen X. Conductive Cellulose-Derived Carbon Nanofibrous Membranes with Superior Softness for High-Resolution Pressure Sensing and Electrophysiology Monitoring. ACS APPLIED MATERIALS & INTERFACES 2023; 15:1903-1913. [PMID: 36583722 DOI: 10.1021/acsami.2c19643] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Here, a strategy to overcome the stiff and brittle nature of cellulose-derived carbon nanofibrils (CCNFs) is proposed through a facile, low-cost, and scalable approach. Flexible and conformal CCNFs with a low bending rigidity below 55.4 mN and tunable conductivities of 0.14-45.5 S m-1 are developed by introducing silanol as a multieffect additive in the electrospun hybrid nanofibrous network and subsequent carbonization at a relatively high temperature (900 °C) and chemical vapor deposition of polypyrrole (PPy) on the hybrid carbon nanofibril surface. Silica acts as a lubricant in each rigid carbon fiber to improve flexibility of the CCNF structure as well as a template during cellulose carbonization to prevent the melting of carbon nanofibrils. Meanwhile, the uniform coating of PPy leads to an improvement in electrical conductivity while conserving the porous structure and compressibility of the CCNF nets. These conductive hybrid CCNF films are evaluated as mechanoreceptors and physiological sensors, which are demonstrated to be applied in intelligent electronics including electronic skin, human-machine interfaces, and epidermic electrodes. The design or working principles of the hybrid CCNFs for achieving optimum applicable effects when applied in different scenarios are revealed.
Collapse
Affiliation(s)
- Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Qingyu Meng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Zhuyue Lan
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Chencong Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Zhu Zhou
- College of Optical Mechanical and Electrical Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, No. 666 Wusu Street, Hangzhou311300, China
| |
Collapse
|
33
|
Cheng Z, Wang H, Li Z, Yang C, Zhang B, Zhou Y, Wang Y, Jia C, Li L, Wu H. Processing Nomex Nanofibers by Ionic Solution Blow-Spinning for Efficient High-Temperature Exhausts Treatment. ADVANCED FIBER MATERIALS 2022; 5:497-513. [PMID: 36530771 PMCID: PMC9735215 DOI: 10.1007/s42765-022-00231-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/26/2022] [Indexed: 06/17/2023]
Abstract
UNLABELLED Hard-to-dissolve polymers provide next-generation alternatives for high-performance filter materials owing to their intrinsically high chemical stability, superior mechanical performance, and excellent high-temperature resistance. However, the mass production of hard-to-dissolve nanofibers still remains a critical challenge. A simple, scalable, and low-cost ionic solution blow-spinning method has herein been provided for the large-scale preparation of hard-to-dissolve Nomex polymeric nanofibers with an average diameter of nearly 100 nm. After rapidly dissolving Nomex microfibers in the lithium chloride/dimethylacetamide (LiCl/DMAc) solution system, the conductive solution can be stably and conductivity-independently processed into nanofibers. The method optimizes electrospinning and avoids spinnability degradation and potential safety hazards caused by high electrical conductivity. Owing to nanofibrous structure and high dipole moment, Nomex nanofibrous filters show a stable high filtration efficiency of 99.92% for PM0.3 with a low areal density of 4.6 g m-2, as well as a low-pressure drop of 189.47 Pa. Moreover, the flame-retardant filter can work at 250 °C and 280 °C for a long and short time without shrinking or burning, respectively, exhibiting a high filtration efficiency of 99.50% for PM0.3-10.0. The outstanding properties and low cost enable the efficient capture of PM from various high-temperature exhausts, making Nomex nanofibrous membrane an even more ideal industrial-grade air filter than polypropylene, polytetrafluoroethylene, polyimide, and ceramic nanofibrous filters. GRAPHICAL ABSTRACT Hard-to-dissolve nanofibers provide alternatives for high-efficiency and low-resistant air filtration but are limited by the universality and economics of fabrication methods. A scalable and efficient ionic solution blow-spinning strategy has herein been proposed in preparing hard-to-dissolve nanofibrous filters. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s42765-022-00231-x.
Collapse
Affiliation(s)
- Zekun Cheng
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Haiyang Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Ziwei Li
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Chong Yang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Baopu Zhang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Yiqian Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Yuxuan Wang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| | - Chao Jia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620 China
| | - Lei Li
- National Engineering Research Center of Electric Vehicles, Beijing Institute of Technology, Beijing, 100081 China
| | - Hui Wu
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
34
|
Jung A, Lee MJ, Lee SW, Cho J, Son JG, Yeom B. Phase Separation-Controlled Assembly of Hierarchically Porous Aramid Nanofiber Films for High-speed Lithium-Metal Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2205355. [PMID: 36333117 DOI: 10.1002/smll.202205355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The growth of lithium (Li) dendrites reduces the lifespan of Li-metal batteries and causes safety issues. Herein, hierarchically porous aramid nanofiber separators capable of effectively suppressing the Li dendrite growth while maintaining highly stable cycle performances at high charge/discharge rates are reported. A two-step solvent exchange process combined with reprotonation-mediated self-assembly is utilized to control the bimodal porous structure of the separators. In particular, when ethanol and water are used sequentially, aramid nanofibers form hierarchical porous structures containing nanopores in macroporous polymer frameworks to yield a mechanically robust membrane with high porosity of 97% or more. The optimized samples exhibit high ionic conductivities of 1.87-4.04 mS cm-1 and high Li-ion transference numbers of 0.77-0.84 because of the ultrahigh porosity and selective affinity to anions. Li-metal symmetric cells do not show any noticeable presence of dendrites after 100 cycles, and they operate stably for more than 1500 cycles even under extreme conditions with a high current density of >20 mA cm-2 . In addition, the LiFePO4 /Li full cell retains 86.3% of its capacity after 1000 cycles at a charge rate of 30 C.
Collapse
Affiliation(s)
- Arum Jung
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Michael J Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seung Woo Lee
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jinhan Cho
- Department of Chemical and Biological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong Gon Son
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Soft Hybrid Materials Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarangno 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Bongjun Yeom
- Department of Chemical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
35
|
Zhao Y, Yan J, Yu J, Ding B. Advances in Nanofibrous Materials for Stable Lithium-Metal Anodes. ACS NANO 2022; 16:17891-17910. [PMID: 36356218 DOI: 10.1021/acsnano.2c09037] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Lithium metal is regarded as the most potential anode material for improving the energy density of batteries due to its high specific capacity and low electrode potential. However, the practical application of lithium-metal anodes (LMAs) still faces severe challenges such as uncontrollable dendrites growth and large volume expansion. The development of functional nanomaterials has brought opportunities for the revival of LMAs. Among them, nanofibrous materials show great application potential for LMAs protection due to their distinct functional and structural features. Here, the latest research progress in nanofibrous materials for LMAs is systematically outlined. First, the problems existing in the practical application of LMAs are analyzed. Then, prospective strategies and recent research progress toward stable LMAs based on nanofibrous materials are summarized from the aspects of artificial protective layers, three-dimensional frameworks, separators, and solid-state electrolytes. Finally, the future development of nanofibrous materials for the protection of lithium-metal batteries is summarized and prospected. This review establishes a close connection between nanofibrous materials and LMA modification and provides insight for the development of high-safety lithium-metal batteries.
Collapse
Affiliation(s)
- Yun Zhao
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianhua Yan
- Key Laboratory of Textile Science and Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| | - Bin Ding
- Innovation Center for Textile Science and Technology, College of Textiles, Donghua University, Shanghai 200051, China
| |
Collapse
|
36
|
Wang Z, Xiao F, Shen X, Zhang D, Chu W, Zhao H, Zhao G. Electronic Control of Traditional Iron-Carbon Electrodes to Regulate the Oxygen Reduction Route to Scale Up Water Purification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:13740-13750. [PMID: 36130282 DOI: 10.1021/acs.est.2c03673] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Shifting four-electron (4e-) oxygen reduction in fuel cell technology to a two-electron (2e-) pathway with traditional iron-carbon electrodes is a critical step for hydroxyl radical (HO•) generation. Here, we fabricated iron-carbon aerogels with desired dimensions (e.g., 40 cm × 40 cm) as working electrodes containing atomic Fe sites and Fe3C subnanoclusters. Electron-donating Fe3C provides electrons to FeN4 through long-range activation for achieving the ideal electronic configuration, thereby optimizing the binding energy of the *OOH intermediate. With an iron-carbon aerogel benefiting from finely tuned electronic density, the selectivity of 2e- oxygen reduction increased from 10 to 90%. The resultant electrode exhibited unexpectedly efficient HO• production and fast elimination of organics. Notably, the kinetic constant kM for sulfamethoxazole (SMX) removal is 60 times higher than that in a traditional iron-carbon electrode. A flow-through pilot device with the iron-carbon aerogel (SA-Fe0.4NCA) was built to scale up micropolluted water decontamination. The initial total organic carbon (TOC) value of micropolluted water was 4.02 mg L-1, and it declined and maintained at 2.14 mg L-1, meeting the standards for drinking water quality in China. Meanwhile, the generation of emerging aromatic nitrogenous disinfection byproducts (chlorophenylacetonitriles) declined by 99.2%, satisfying the public safety of domestic water. This work provides guidance for developing electrochemical technologies to satisfy the flexible and economic demand for water purification, especially in water-scarce areas.
Collapse
Affiliation(s)
- Zining Wang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Fan Xiao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuqian Shen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Di Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hongying Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
37
|
Yang B, Chang X, Ding X, Ma X, Zhang M. One-dimensional Ni2P/Mn2O3 nanostructures with enhanced oxygen evolution reaction activity. J Colloid Interface Sci 2022; 623:196-204. [DOI: 10.1016/j.jcis.2022.05.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/05/2022] [Accepted: 05/06/2022] [Indexed: 01/08/2023]
|
38
|
Sun J, Wan Y, Jian Q, Fan X, Zhao T. Sponge-Like Microfiber Electrodes for High-Performance Redox Flow Batteries. SMALL METHODS 2022; 6:e2200626. [PMID: 36008155 DOI: 10.1002/smtd.202200626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Fabricating fiber-based electrodes with a large specific surface area while maintaining high flow permeability is a challenging issue in developing high-performance redox flow batteries. Here, a sponge-like microfiber carbon electrode is reported with a specific surface area of as large as 853.6 m2 g-1 while maintaining a fiber diameter in the range of 5-7 µm and a macropore size of ≈26.8 µm. The electrode is developed by electrospinning cross-linked poly(vinyl alcohol)-lignin-polytetrafluoroethylene precursors, followed by oxidation and pyrolysis. Applying the as-synthesized electrodes to a vanadium redox flow battery enables the battery to achieve an energy efficiency of 79.1% at the current density of 400 mA cm-2 and a capacity retention rate of 99.94% over 2000 cycles, representing one of the best battery performances in the open literature. The strategy to fabricate sponge-like porous carbon microfibers holds great promise for versatile applications in redox flow batteries and other energy storage systems.
Collapse
Affiliation(s)
- Jing Sun
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Yuhan Wan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Qinping Jian
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Xinzhuang Fan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
| | - Tianshou Zhao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, 999077, China
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
39
|
Wang X, Sun N, Dong X, Huang H, Qi M. The porous spongy nest structure compressible anode fabricated by gas forming technique toward high performance lithium ions batteries. J Colloid Interface Sci 2022; 623:584-594. [DOI: 10.1016/j.jcis.2022.05.067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 05/07/2022] [Accepted: 05/11/2022] [Indexed: 12/15/2022]
|
40
|
Gu B, Kondic L, Cummings L. Network-based membrane filters: Influence of network and pore size variability on filtration performance. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
41
|
Electrospinning-Based Carbon Nanofibers for Energy and Sensor Applications. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126048] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Carbon nanofibers (CNFs) are the most basic structure of one-dimensional nanometer-scale sp2 carbon. The CNF’s structure provides fast current transfer and a large surface area and it is widely used as an energy storage material and as a sensor electrode material. Electrospinning is a well-known technology that enables the production of a large number of uniform nanofibers and it is the easiest way to mass-produce CNFs of a specific diameter. In this review article, we introduce an electrospinning method capable of manufacturing CNFs using a polymer precursor, thereafter, we present the technologies for manufacturing CNFs that have a porous and hollow structure by modifying existing electrospinning technology. This paper also discusses research on the applications of CNFs with various structures that have recently been developed for sensor electrode materials and energy storage materials.
Collapse
|
42
|
Hu Z, Zhang R, Fan C, Liu X, Gao P, Zhang W, Liu Z, Han S, Liu J, Liu J. Synergistic Effect, Structural and Morphology Evolution, and Doping Mechanism of Spherical Br-Doped Na 3 V 2 (PO 4 ) 2 F 3 /C toward Enhanced Sodium Storage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201719. [PMID: 35506200 DOI: 10.1002/smll.202201719] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/17/2022] [Indexed: 06/14/2023]
Abstract
Na3 V2 (PO4 )2 F3 has attracted wide attention due to its high voltage platform, and stable crystal structure. However, its application is limited by the low electronic conductivity and the ease formation of impurity. In this paper, the spherical Br-doped Na3 V2 (PO4 )2 F3 /C is successfully obtained by a one-step spray drying technology. The hard template polytetrafluoroethylene (PTFE) supplements the loss of fluorine, forming porous structure that accelerates the infiltration of electrolyte. The soft template cetyltrimethylammonium bromide (CTAB) enables doping of bromine and can also control the fluorine content, meanwhile, the self-assembly effect strengthens the structure and refines the size of spherical particles. The loss, compensation, and regulation mechanism of fluorine are investigated. The Br-doped Na3 V2 (PO4 )2 F3 /C sphere exhibits superior rate capability with the capacities of 116.1, 105.1, and 95.2 mAh g-1 at 1, 10, and 30 C, and excellent cyclic performance with 98.3% capacity retention after 1000 cycles at 10 C. The density functional theory (DFT) calculation shows weakened charge localization and enhanced conductivity, meanwhile the diffusion energy barrier of sodium ions is reduced with Br doping. This paper proposes a strategy to construct fluorine-containing polyanions cathode, which enables the precise regulation of structure and morphology, thus leading to superior electrochemical performance.
Collapse
Affiliation(s)
- Zhuang Hu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Ruijie Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Changling Fan
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Xunlin Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Peng Gao
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Weihua Zhang
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Zhixiao Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Shaochang Han
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jinshui Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, P. R. China
| | - Jilei Liu
- College of Materials Science and Engineering, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, Hunan, 410082, P. R. China
- Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, Hunan, 410082, P. R. China
| |
Collapse
|
43
|
Kong Y, Ao X, Huang X, Bai J, Zhao S, Zhang J, Tian B. Ni-CeO 2 Heterostructures in Li-S Batteries: A Balancing Act between Adsorption and Catalytic Conversion of Polysulfide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105538. [PMID: 35415972 PMCID: PMC9189638 DOI: 10.1002/advs.202105538] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Lithium-sulfur (Li-S) batteries have attracted considerable attention over the last two decades because of a high energy density and low cost. However, the wide application of Li-S batteries has been severely impeded due to the poor electrical conductivity of S, shuttling effect of soluble lithium polysulfides (LiPSs), and sluggish redox kinetics of S species, especially under high S loading. To address all these issues, a Ni-CeO2 heterostructure-doped carbon nanofiber (Ni-CeO2 -CNF) is developed as an S host that combines the strong adsorption with the high catalytic activity and the good electrical conductivity, where the LiPSs anchored on the heterostructure surface can directly gain electrons from the current collector and realize a fast conversion between S8 and Li2 S. Therefore, Li-S batteries with S@Ni-CeO2 -CNF cathodes exhibit superior long-term cycling stability, with a capacity decay of 0.046% per cycle over 1000 cycles, even at 2 C. Noteworthy, under a sulfur loading up to 6 mg cm-2 , a high reversible areal capacity of 5.3 mAh cm-2 can be achieved after 50 cycles at 0.1 C. The heterostructure-modified S cathode effectively reconciles the thermodynamic and kinetic characteristics of LiPSs for adsorption and conversion, furthering the development of high-performance Li-S batteries.
Collapse
Affiliation(s)
- Yang Kong
- School of Material and PhysicsChina University of Mining and TechnologyXuzhouJiangsu221008China
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Xin Ao
- School of Materials Science and EngineeringNanchang University999 Xuefu AvenueNanchangJiangxi330031China
| | - Xiao Huang
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Jinglong Bai
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| | - Shangquan Zhao
- School of Materials Science and EngineeringNanchang University999 Xuefu AvenueNanchangJiangxi330031China
| | - Jinyong Zhang
- School of Material and PhysicsChina University of Mining and TechnologyXuzhouJiangsu221008China
| | - Bingbing Tian
- SZU‐NUS Collaborative Innovation Center for Optoelectronic Science and TechnologyInternational Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of EducationInstitute of Microscale OptoelectronicsShenzhen UniversityShenzhen518060China
| |
Collapse
|
44
|
Zhu Y, Wang X, Shi J, Gan L, Huang B, Tao L, Wang S. Neuron-inspired design of hierarchically porous carbon networks embedded with single-iron sites for efficient oxygen reduction. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1285-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
45
|
Wang X, Zhang Y, Li J, Liu G, Gao M, Ren S, Liu B, Zhang L, Han G, Yu J, Zhao H, Rosei F. Platinum Cluster/Carbon Quantum Dots Derived Graphene Heterostructured Carbon Nanofibers for Efficient and Durable Solar-Driven Electrochemical Hydrogen Evolution. SMALL METHODS 2022; 6:e2101470. [PMID: 35212473 DOI: 10.1002/smtd.202101470] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/16/2022] [Indexed: 05/08/2023]
Abstract
Large scale solar-driven hydrogen production is a crucial step toward decarbonizing society. However, the solar-to-hydrogen (STH) conversion efficiency, long-term stability, and cost-effectiveness in hydrogen evolution reaction (HER) still need to be improved. Herein, an efficient approach is demonstrated to produce low-dimensional Pt/graphene-carbon nanofibers (CNFs)-based heterostructures for bias-free, highly efficient, and durable HER. Carbon dots are used as efficient building blocks for the in situ formation of graphene along the CNFs surface. The presence of graphene enhances the electronic conductivity of CNFs to ≈3013.5 S m-1 and simultaneously supports the uniform Pt clusters growth and efficient electron transport during HER. The electrode with a low Pt loading amount (3.4 µg cm-2 ) exhibits a remarkable mass activity of HER in both acidic and alkaline media, which is significantly better than that of commercial Pt/C (31 µg cm-2 of Pt loading). In addition, using a luminescent solar concentrator-coupled solar cell to provide voltage, the bias-free water splitting system exhibits an STH efficiency of 0.22% upon one-sun illumination. These results are promising toward using low-dimensional heterostructured catalysts for future energy storage and conversion applications.
Collapse
Affiliation(s)
- Xiaohan Wang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Yuanming Zhang
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Junzhi Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Guiju Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Mingzhen Gao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Shihuan Ren
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Bingxu Liu
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Lixue Zhang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guangting Han
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
| | - Jianyong Yu
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai, 200051, P. R. China
| | - Haiguang Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Textiles & Clothing, Qingdao University, Qingdao, 266071, P. R. China
- College of Physics, University-Industry Joint Center for Ocean Observation and Broadband Communication, Qingdao University, Qingdao, 266071, P. R. China
| | - Federico Rosei
- Centre for Energy, Materials and Telecommunications, Institut National de la Recherche Scientifique, Varennes, QC J3x1S2, Canada
| |
Collapse
|
46
|
Hong Y, Li L, Huang B, Tang X, Zhai W, Hu T, Yuan K, Chen Y. Deciphering the Precursor-Performance Relationship of Single-Atom Iron Oxygen Electroreduction Catalysts via Isomer Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106122. [PMID: 35048504 DOI: 10.1002/smll.202106122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Single atom Fe-nitrogen-carbon (Fe-N-C) catalysts have high catalytic activity and selectivity for the oxygen reduction reaction (ORR), and are possible alternatives for Pt-based materials. However, the reasonable design and selection of precursors to establish their relationship with Fe-N-C catalyst performance is still a formidable task. Herein, precursors with controllable structures are easily achieved through isomer engineering, with the purpose of regulating the active site density and microscopic morphology of the final electrocatalyst. As-proof-of-concept, phenylenediamine isomers-based polymers are used as precursors to fabricate Fe-N-C catalysts. The Fe-PpPD-800 derived from p-phenylenediamine shows that the best ORR activity with a half-wave potential (E1/2 ) reaches 0.892 V vs reversible hydrogen electrode (RHE), which is better than the counterparts derived from o-phenylenediamine (Fe-PoPD-800) and m-phenylenediamine (Fe-PmPD-800), even surpassing commercial Pt/C (E1/2 = 0.881 V vs RHE). Furthermore, the self-made zinc-air battery based on Fe-PpPD-800 achieves high power density and specific capacity up to 242 mW cm-2 and 873 mA h gZn -1 respectively, a stable open circuit voltage of 1.45 V, and excellent cycling stability. This work not only proves the practicability of adjusting the catalytic activity of single-atom catalysts through isomer engineering, but also provides an approach to understand the relationship between precursors and target catalysts performance.
Collapse
Affiliation(s)
- Yaoshuai Hong
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Longbin Li
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Bingyu Huang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Xiannong Tang
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Weijuan Zhai
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Materials Science and Engineering, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Kai Yuan
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry/Institute of Polymers and Energy Chemistry, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- Institute of Advanced Scientific Research (iASR), Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
47
|
Qiu Z, Xiao X, Yu W, Zhu X, Chu C, Chen B. Selective Separation Catalysis Membrane for Highly Efficient Water and Soil Decontamination via a Persulfate-Based Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3234-3244. [PMID: 35176853 DOI: 10.1021/acs.est.1c06721] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The application of sulfate radical advanced oxidation for organic pollutant removal has been hindered by some shortages such as the recycling difficulty of a powered catalyst, the low utilization efficiency of oxidants, and the secondary pollution (including soil acidification) after reaction. Herein, we fabricate a selective separation catalysis membrane (SSCM) for a highly efficient and environment-friendly persulfate-based advanced oxidation process. The SSCM comprises a top polydimethylsiloxane layer which is selectively penetrable to hydrophobic organic pollutants, followed by a catalyst layer with a magnetic nitrogen-doped porous carbon material, targeting the advanced oxidation of the selected pollutants. Compared with the catalyst in powder form, such SSCM devices significantly reduced the dosage of peroxymonosulfate by more than 40% and the catalyst dosage by 97.8% to achieve 80% removal of phenol with the coexistence of 20 mg L-1 humic acid (HA). The SSCM can extract target pollutants while rejecting HA more than 91.43% for 100 h. The pH value in the receiving solution demonstrated a significant reduction from 7.01 to 3.00. In comparison, the pH value in the feed solution varied from 6.05 to a steady 4.59. The results can be ascribed to the specific functionality for the catalyst anchored, natural organic matter isolation, and reaction compartmentation provided by SSCMs. The developed SSCM technology is beneficial for catalysts reused in remediation practices, saving oxidant dosage, and avoiding acidification of soil and water, thus having tremendous application potential.
Collapse
Affiliation(s)
- Zhen Qiu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xin Xiao
- Department of Materials Science and Engineering, Stanford University, Stanford, 94305, California, United States
| | - Wentao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
- Zhejiang Provincial Key Laboratory of Organic Pollution Process and Control, Hangzhou 310058, China
| |
Collapse
|
48
|
Zhang Y, Zhang X, Silva SRP, Ding B, Zhang P, Shao G. Lithium-Sulfur Batteries Meet Electrospinning: Recent Advances and the Key Parameters for High Gravimetric and Volume Energy Density. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103879. [PMID: 34796682 PMCID: PMC8811819 DOI: 10.1002/advs.202103879] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/06/2021] [Indexed: 05/10/2023]
Abstract
Lithium-sulfur (Li-S) batteries have been regarded as a promising next-generation energy storage technology for their ultrahigh theoretical energy density compared with those of the traditional lithium-ion batteries. However, the practical applications of Li-S batteries are still blocked by notorious problems such as the shuttle effect and the uncontrollable growth of lithium dendrites. Recently, the rapid development of electrospinning technology provides reliable methods in preparing flexible nanofibers materials and is widely applied to Li-S batteries serving as hosts, interlayers, and separators, which are considered as a promising strategy to achieve high energy density flexible Li-S batteries. In this review, a fundamental introduction of electrospinning technology and multifarious electrospinning-based nanofibers used in flexible Li-S batteries are presented. More importantly, crucial parameters of specific capacity, electrolyte/sulfur (E/S) ratio, sulfur loading, and cathode tap density are emphasized based on the proposed mathematic model, in which the electrospinning-based nanofibers are used as important components in Li-S batteries to achieve high gravimetric (WG ) and volume (WV ) energy density of 500 Wh kg-1 and 700 Wh L-1 , respectively. These systematic summaries not only provide the principles in nanofiber-based electrode design but also propose enlightening directions for the commercialized Li-S batteries with high WG and WV .
Collapse
Affiliation(s)
- Yongshang Zhang
- State Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)School of Materials Science and Engineering100 Kexue AvenueZhengzhou UniversityZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)XingyangZhengzhou450100China
| | - Xilai Zhang
- State Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)School of Materials Science and Engineering100 Kexue AvenueZhengzhou UniversityZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)XingyangZhengzhou450100China
| | - S. Ravi P. Silva
- State Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)School of Materials Science and Engineering100 Kexue AvenueZhengzhou UniversityZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)XingyangZhengzhou450100China
- Nanoelectronics CenterAdvanced Technology InstituteUniversity of SurreyGuildfordGU2 7XHUK
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer MaterialsCollege of TextileDonghua UniversityShanghai201620China
| | - Peng Zhang
- State Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)School of Materials Science and Engineering100 Kexue AvenueZhengzhou UniversityZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)XingyangZhengzhou450100China
| | - Guosheng Shao
- State Center for International Cooperation on Designer Low‐Carbon & Environmental Materials (CDLCEM)School of Materials Science and Engineering100 Kexue AvenueZhengzhou UniversityZhengzhou450001China
- Zhengzhou Materials Genome Institute (ZMGI)XingyangZhengzhou450100China
| |
Collapse
|
49
|
Nondestructive CNT chained Fe3O4 anode materials for high-performance Li-ion batteries. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Zhou K, Wang S, Guo X, Zhong G, Liu Z, Ma Y, Wang H, Bao Y, Han D, Niu L. Bismuth Nanoparticles Encapsulated in Nitrogen-Rich Porous Carbon Nanofibers as a High-Performance Anode for Aqueous Alkaline Rechargeable Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105770. [PMID: 35174634 DOI: 10.1002/smll.202105770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/29/2021] [Indexed: 06/14/2023]
Abstract
The aqueous alkaline rechargeable batteries (AARBs) have an attractive potential for electrochemical energy storage devices. In view of the advantages of high theoretical capacity and desirable negative operating window, bismuth (Bi) has been deemed as a hopeful anode material for AARBs. Unfortunately, intensive reported works of Bi anode are still confronted with limited capacity and poor cycling stability. Herein, the designed electrodes of different size Bi nanoparticles embedded in porous carbon nanofibers with a contrasting nitrogen doping content are obtained by electrospinning and thermal treatment processes. The effect of the N dopant in carbon shell is demonstrated on the Bi core, which is in favor of enhancing the capacity of Bi anodes. More importantly, the core structure with highly dispersed ultrasmall Bi nanoparticles (<20 nm) in carbon matrix plays a crucial role in long-term durability. Accordingly, the optimized polydisperse ultrasmall Bi nanoparticles confined in N-rich porous carbon nanofibers electrode (Bi@NPCF) presents an admirable capacity of 196.1 mAh g-1 at 3 A g-1 and outstanding durable lifespan (retain 116.95% after 10 000 cycles). In addition, the fabricated Bi@NPCF//NiCo2 O4 battery exhibits an exceptional energy and power density with durable stability (95.9% after 5000 cycles).
Collapse
Affiliation(s)
- Kai Zhou
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Shuai Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Xinying Guo
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Guixiang Zhong
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Zhenbang Liu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yingming Ma
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Haoyu Wang
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Yu Bao
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Dongxue Han
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| | - Li Niu
- Guangzhou Key Laboratory of Sensing Materials and Devices, Center for Advanced Analytical Science, School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China
| |
Collapse
|