1
|
Bissolo M, Hanke M, Calarco R, Finley JJ, Koblmüller G, Lopes JMJ, Zallo E. Van der Waals Epitaxy of 2D Gallium Telluride on Graphene: Growth Dynamics and Principal Component Analysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503993. [PMID: 40317916 DOI: 10.1002/smll.202503993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2025] [Indexed: 05/07/2025]
Abstract
A scalable epitaxy of 2D layered materials and heterostructures constitutes a crucial step in developing novel optoelectronic applications based on high-crystalline quality 2D materials. Here, the formation of continuous, strain-free, high-crystalline quality 2D hexagonal gallium telluride (h-GaTe) directly on epitaxial graphene using molecular beam epitaxy is demonstrated. Morphological and structural characterizations evidence a coherent layer at the heterostructure interface having an in-plane lattice constant of 4.05 ± 0.01 A ̇ $\dot{\textrm {A}}$ . The few-layer thick graphene determines the epitaxial registry of the h-GaTe with grains of sixfold symmetry and a multilayer-type homoepitaxial growth. Deposition temperature- and time-dependent surface topography indicate that the interlayer diffusion of adatoms plays a crucial role in achieving smooth GaTe films. Contrastive principal component analysis allows for screening large in situ diffraction data as a function of growth parameters. In this way, the trajectory of the 2D h-GaTe growth is mapped through phase space. These results are relevant for integrating epitaxial material in the fabrication of high-performance multifunctional devices.
Collapse
Affiliation(s)
- Michele Bissolo
- Walter-Schottky-Institut and TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Michael Hanke
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Raffaella Calarco
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117, Berlin, Germany
- Institute for Microelectronics and Microsystems (IMM), Consiglio Nazionale delle Ricerche (CNR), Via del Fosso del Cavaliere 100, Rome, 00133, Italy
| | - Jonathan J Finley
- Walter-Schottky-Institut and TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
| | - Gregor Koblmüller
- Walter-Schottky-Institut and TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
- Institute of Solid State Physics, Technical University Berlin, Hardenbergstrasse 36, 10623, Berlin, Germany
| | - J Marcelo J Lopes
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117, Berlin, Germany
| | - Eugenio Zallo
- Walter-Schottky-Institut and TUM School of Natural Sciences, Technische Universität München, Am Coulombwall 4, 85748, Garching, Germany
- Paul-Drude-Institut für Festkörperelektronik, Leibniz-Institut im Forschungsverbund Berlin e.V., Hausvogteiplatz 5-7, 10117, Berlin, Germany
| |
Collapse
|
2
|
Zuo J, Zhai P, Wang L, Jin C, Zhai Q, Wang M, He Q, Li B, Vajtai R, Ajayan PM, Gong Y. Template-Catalyzed Mass Production of Size-Tunable h-BN Nanosheet Powders. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501155. [PMID: 40159864 DOI: 10.1002/adma.202501155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Bulk availability of 2D material powders presents broad opportunities for various industrial applications. Particle size and morphology control are critical factors that govern their properties, and in particular, large-scale size-controlled production of 2D materials nanosheets remains extremely challenging. Herein, a novel 3D template-catalyzed growth (3D-TCG) method is demonstrated that allows the mass production of size-tunable 2D hexagonal boron nitride (h-BN) nanosheet powders, a key material in the 2D materials family. Rather than limiting the nanosheet growth on 2D substrate surfaces, this method provides large numbers of active sites distributed in 3D space, leading to the feasibility of scale-up production with excellent product homogeneity and high efficiency. Ultrathin h-BN nanosheets are synthesized with high throughput (kilogram quantities) and lateral sizes that can be tuned from 100 nm to 10 µm with thicknesses of few layers. Their practical application is demonstrated in lithium metal batteries, where the obtained nanosheet powders are processed and roll-to-roll coated on commercial separators (>10 m2). The prototype pouch cell delivers high energy density (501.8 Wh kg-1) and improved cycling stability. The template-based large-scale production strategy can be used to generically produce various types of bulk pristine 2D nanopowders with potential for many large-scale applications.
Collapse
Affiliation(s)
- Jinghan Zuo
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Pengbo Zhai
- Tianmushan Laboratory, Beihang University, Hangzhou, 311115, China
| | - Lei Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Chunqiao Jin
- Tianmushan Laboratory, Beihang University, Hangzhou, 311115, China
| | - Qingwei Zhai
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Moxuan Wang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Qianqian He
- The Analysis & Testing Center, Beihang University, Beijing, 102206, China
| | - Bixuan Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Beihang University, Hangzhou, 311115, China
| | - Robert Vajtai
- Department of Materials Science and NanoEngineering, Rice University, Houston, 77005, USA
| | - Pulickel M Ajayan
- Department of Materials Science and NanoEngineering, Rice University, Houston, 77005, USA
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
- Tianmushan Laboratory, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
3
|
Hu C, Liang L, Yu J, Cheng L, Zhang N, Wang Y, Wei Y, Fu Y, Wang ZL, Sun Q. Neuromorphic Floating-Gate Memory Based on 2D Materials. CYBORG AND BIONIC SYSTEMS 2025; 6:0256. [PMID: 40264852 PMCID: PMC12012298 DOI: 10.34133/cbsystems.0256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/01/2025] [Accepted: 03/14/2025] [Indexed: 04/24/2025] Open
Abstract
In recent years, the rapid progression of artificial intelligence and the Internet of Things has led to a significant increase in the demand for advanced computing capabilities and more robust data storage solutions. In light of these challenges, neuromorphic computing, inspired by human brain's architecture and operation principle, has surfaced as a promising answer to the growing technological demands. This novel methodology emulates the biological synaptic mechanisms for information processing, enabling efficient data transmission and computation at the identical position. Two-dimensional (2D) materials, distinguished by their atomic thickness and tunable physical properties, exhibit substantial potential in emulating synaptic plasticity and find broad applications in neuromorphic computing. With respect to device architecture, memory devices based on floating-gate (FG) structures demonstrate robust data retention capabilities and have been widely used in the realm of flash memory. This review begins with a succinct introduction to 2D materials and FG transistors, followed by an in-depth discussion on remarkable research progress in the integration of 2D materials with FG transistors for applications in neuromorphic computing and memory. This paper offers a thorough review of the existing research landscape, encapsulating the notable progress in swiftly expanding field. In conclusion, it addresses the constraints encountered by FG transistors using 2D materials and delineates potential future trajectories for investigation and innovation within this area.
Collapse
Affiliation(s)
- Chao Hu
- School of Printing and Packaging Engineering,
Beijing Institute of Graphic Communication, Beijing 102627, P. R. China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Lijuan Liang
- School of Printing and Packaging Engineering,
Beijing Institute of Graphic Communication, Beijing 102627, P. R. China
| | - Jinran Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Liuqi Cheng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Nianjie Zhang
- School of Printing and Packaging Engineering,
Beijing Institute of Graphic Communication, Beijing 102627, P. R. China
| | - Yifei Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Yichen Wei
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Yixuan Fu
- School of Printing and Packaging Engineering,
Beijing Institute of Graphic Communication, Beijing 102627, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Qijun Sun
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| |
Collapse
|
4
|
Wong S, Lin Z, Ho S, Hsu C, Li P, Chen C, Huang Y, Chang K, Hsieh Y, Chen C, Lee M, Chu M, Lin K, Chen T, Chen Y, Hsueh H, Cheng C, Wu C. Epitaxial Ferroelectric Hexagonal Boron Nitride Grown on Graphene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414442. [PMID: 39981786 PMCID: PMC12004907 DOI: 10.1002/adma.202414442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 01/21/2025] [Indexed: 02/22/2025]
Abstract
Ferroelectricity realized in van der Waals (vdW) materials with non-centrosymmetric stacking configurations holds promise for future 2D devices with nonvolatile and reconfigurable functionalities. However, the epitaxial growth of ferroelectric vdW materials often struggles to achieve an energetically unfavorable stacking configuration that enables electric polarization. This challenge is particularly evident when performing heteroepitaxy on another vdW substrate to create versatile and scalable ferroelectric building blocks designed for large-area, atomic-scale thicknesses. Here, epitaxial hexagonal boron nitride (h-BN) multilayer films are successfully grew on single-crystal graphene synthesized on a miscut SiC (0001) substrate. Theoretical calculations illustrate that the moiré-patterned h-BN/graphene hetero-interface intrinsically exhibits polarization, leading to a polarized AB stacking in multilayer h-BN films to minimize the total formation energy, which is validated experimentally by the layer-dependent band dispersions. The as-grown multilayer h-BN layers demonstrated robust, homogeneous ferroelectricity with switchable out-of-plane polarization via interlayer sliding. This study establishes an effective route for stacking-controlled heteroepitaxy, enabling the large-scale integration of vdW materials with ferroelectricity and versatile functionalities, offering a promising platform for next-generation 2D ferroelectric devices.
Collapse
Affiliation(s)
- Sheng‐Shong Wong
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
- National Synchrotron Radiation Research Center (NSRRC)Hsinchu30076Taiwan
| | - Zhen‐You Lin
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Sheng‐Zhu Ho
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Chih‐En Hsu
- Department of PhysicsTamkang UniversityNew Taipei City251301Taiwan
| | - Ping‐Hung Li
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Ching‐Yu Chen
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Yen‐Fu Huang
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
| | - Kuo‐En Chang
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| | - Yu‐Chiang Hsieh
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| | - Chia‐Hao Chen
- National Synchrotron Radiation Research Center (NSRRC)Hsinchu30076Taiwan
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
| | - Ming‐Hao Lee
- The Key Consortium of Electron MicroscopyNational Taiwan UniversityTaipei10617Taiwan
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New MaterialsNational Taiwan UniversityTaipei10617Taiwan
| | - Ming‐Wen Chu
- The Key Consortium of Electron MicroscopyNational Taiwan UniversityTaipei10617Taiwan
- Center for Condensed Matter Sciences and Center of Atomic Initiative for New MaterialsNational Taiwan UniversityTaipei10617Taiwan
| | - Kuang‐I Lin
- Core Facility CenterNational Cheng Kung UniversityTainan701Taiwan
| | - Tse‐Ming Chen
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| | - Yi‐Chun Chen
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| | - Hung‐Chung Hsueh
- Department of PhysicsTamkang UniversityNew Taipei City251301Taiwan
| | - Cheng‐Maw Cheng
- National Synchrotron Radiation Research Center (NSRRC)Hsinchu30076Taiwan
- Department of ElectrophysicsNational Yang Ming Chiao Tung UniversityHsinchu300Taiwan
- Department of PhysicsNational Sun Yat‐sen UniversityKaohsiung80424Taiwan
- Taiwan Consortium of Emergent Crystalline MaterialsNational Science and Technology CouncilTaipei10601Taiwan
| | - Chung‐Lin Wu
- Department of PhysicsNational Cheng Kung UniversityTainan70101Taiwan
- National Synchrotron Radiation Research Center (NSRRC)Hsinchu30076Taiwan
- Center for Quantum Frontiers of Research and Technology (QFort)National Cheng Kung UniversityTainan70101Taiwan
| |
Collapse
|
5
|
Goel N, Kumar R. Physics of 2D Materials for Developing Smart Devices. NANO-MICRO LETTERS 2025; 17:197. [PMID: 40117056 PMCID: PMC11928721 DOI: 10.1007/s40820-024-01635-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 03/23/2025]
Abstract
Rapid industrialization advancements have grabbed worldwide attention to integrate a very large number of electronic components into a smaller space for performing multifunctional operations. To fulfill the growing computing demand state-of-the-art materials are required for substituting traditional silicon and metal oxide semiconductors frameworks. Two-dimensional (2D) materials have shown their tremendous potential surpassing the limitations of conventional materials for developing smart devices. Despite their ground-breaking progress over the last two decades, systematic studies providing in-depth insights into the exciting physics of 2D materials are still lacking. Therefore, in this review, we discuss the importance of 2D materials in bridging the gap between conventional and advanced technologies due to their distinct statistical and quantum physics. Moreover, the inherent properties of these materials could easily be tailored to meet the specific requirements of smart devices. Hence, we discuss the physics of various 2D materials enabling them to fabricate smart devices. We also shed light on promising opportunities in developing smart devices and identified the formidable challenges that need to be addressed.
Collapse
Affiliation(s)
- Neeraj Goel
- Department of Electronics and Communication Engineering, Netaji Subhas University of Technology, Dwarka, New Delhi, 110078, India.
| | - Rahul Kumar
- Institute of Infrastructure Technology Research and Management, Ahmedabad, 380026, India.
| |
Collapse
|
6
|
Chen H, Ji C, Chen Y, Hou H, Li W, Shen J, Cao C, Zhu H, Li H, Kong W. Interfacial Atomic Mechanisms of Single-Crystalline MoS 2 Epitaxy on Sapphire. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414317. [PMID: 39846311 DOI: 10.1002/adma.202414317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/23/2024] [Indexed: 01/24/2025]
Abstract
The epitaxial growth of molybdenum disulfide (MoS₂) on sapphire substrates enables the formation of single-crystalline monolayer MoS₂ with exceptional material properties on a wafer scale. Despite this achievement, the underlying growth mechanisms remain a subject of debate. The epitaxial interface is critical for understanding these mechanisms, yet its exact atomic configuration has previously been unclear. In this study, a monolayer single-crystalline MoS₂ grown on a sapphire substrate is analyzed, decisively visualizing the atomic structure of the epitaxial interface and elucidating its role in epitaxial growth from an atomic perspective. The findings reveal that the interface consists of a periodic molecular MoO3 interlayer, van der Waals epitaxially grown on a single Al-terminated sapphire surface. Additionally, it is discovered that MoO3 coverage enhances surface interactions and introduces a unique atomic arrangement with 1-fold symmetry at the sapphire surface, thereby facilitating the unidirectional alignment of MoS₂. This discovery provides valuable insights into the growth mechanisms leading to single-crystalline MoS₂ formation, and suggests pathways for quantitatively monitoring and controlling growth dynamics, for the improvement of material quality and process repeatability, applicable for single-crystalline MoS₂ or potentially other transition metal dichalcogenides epitaxially grown on sapphire.
Collapse
Affiliation(s)
- Han Chen
- Zhejiang University, Hangzhou, 310027, China
- School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Chen Ji
- School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Yuxuan Chen
- Physics Laboratory, Industrial Training Center, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Hongyu Hou
- Department of Mechanical Engineering, McGill University, Montreal, H3A0C3, Canada
| | - Wenhao Li
- Zhejiang University, Hangzhou, 310027, China
- School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Jichuang Shen
- Zhejiang University, Hangzhou, 310027, China
- School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Changhong Cao
- Department of Mechanical Engineering, McGill University, Montreal, H3A0C3, Canada
| | - Huaze Zhu
- School of Engineering, Westlake University, Hangzhou, 310030, China
| | - Huashan Li
- School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
- Center for Neutron Science and Technology, School of Physics, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Kong
- School of Engineering, Westlake University, Hangzhou, 310030, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, 310030, China
- Zhejiang Key Laboratory of 3D Micro/Nano Fabrication and Characterization Westlake Institute for Optoelectronics, Fuyang, Hangzhou, Zhejiang, 311400, China
| |
Collapse
|
7
|
Jiang H, Zhang X, Chen K, He X, Liu Y, Yu H, Gao L, Hong M, Wang Y, Zhang Z, Zhang Y. Two-dimensional Czochralski growth of single-crystal MoS 2. NATURE MATERIALS 2025; 24:188-196. [PMID: 39794636 DOI: 10.1038/s41563-024-02069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/29/2024] [Indexed: 01/13/2025]
Abstract
Batch production of single-crystal two-dimensional (2D) transition metal dichalcogenides is one prerequisite for the fabrication of next-generation integrated circuits. Contemporary strategies for the wafer-scale high-quality crystallinity of 2D materials centre on merging unidirectionally aligned, differently sized domains. However, an imperfectly merged area with a translational lattice brings about a high defect density and low device uniformity, which restricts the application of the 2D materials. Here we establish a liquid-to-solid crystallization in 2D space that can rapidly grow a centimetre-scale single-crystal MoS2 domain with no grain boundaries. The large MoS2 single crystal obtained shows superb uniformity and high quality with an ultra-low defect density. A statistical analysis of field effect transistors fabricated from the MoS2 reveals a high device yield and minimal variation in mobility, positioning this FET as an advanced standard monolayer MoS2 device. This 2D Czochralski method has implications for fabricating high-quality and scalable 2D semiconductor materials and devices.
Collapse
Affiliation(s)
- He Jiang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Xiankun Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Kuanglei Chen
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Xiaoyu He
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Yihe Liu
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Huihui Yu
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Li Gao
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Mengyu Hong
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Yunan Wang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China
| | - Zheng Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China.
| | - Yue Zhang
- Academy for Advanced Interdisciplinary Science and Technology, Key Laboratory of Advanced Materials and Devices for Post-Moore Chips Ministry of Education, State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing, P. R. China.
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, P. R. China.
| |
Collapse
|
8
|
Zhan L, Pei X, Tang J, Li S, Li S, Li Y, Li L, Wan C, Deng Y, Shi Y, Hao Y, Li S. Highly Oriented WS 2 Monolayers for High-Performance Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414100. [PMID: 39713954 DOI: 10.1002/adma.202414100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/27/2024] [Indexed: 12/24/2024]
Abstract
2D transition-metal dichalcogenide (TMDC) semiconductors represent the most promising channel materials for post-silicon microelectronics due to their unique structure and electronic properties. However, it remains challenging to synthesize wide-bandgap TMDCs monolayers featuring large areas and high performance simultaneously. Herein, highly oriented WS2 monolayers are reproducibly synthesized through a templated growth strategy on vicinal C/A-plane sapphire wafers. Various spectroscopic characterizations confirm the high crystallographic orientation and uniformity across the entire wafers. Electronic measurements for samples transferred onto SiO2/Si substrates reveal high average field-effect mobilities of 62 and 180 cm2V-1s-1 at room temperature and 8 K, respectively. On hexagonal boron nitride substrates, these mobilities increase to 94 and 473 cm2V-1s-1, respectively. A record high saturation current density of 675 µA µm-1 is observed, outperforming the index required for high-density integration circuits in IRDS 2025. This work paves the way for the application of wide-bandgap TMDC monolayers in post-silicon electronics.
Collapse
Affiliation(s)
- Li Zhan
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Xudong Pei
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Jiachen Tang
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Shuaixing Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Shuo Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yuan Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Lintao Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
- State Key Laboratory of Quantum Optics and Quantum Optics Devices, Institute of Opto-Electronics, and Collaborative Innovation Center of Extreme Optics Shanxi University, Taiyuan, 030006, China
| | - Changjin Wan
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yu Deng
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yi Shi
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Yufeng Hao
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| | - Songlin Li
- School of Electronic Science and Engineering, College of Engineering and Applied Sciences, National Laboratory of Solid-State Microstructures, and Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing, 210023, China
| |
Collapse
|
9
|
Huang H, Ren Z, Xue X, Guo H, Chen J, Guo Y, Liu Y, Dong J. Unconventional Near-Equilibrium Nucleation of Graphene on Si-Terminated SiC(0001) Surface. Angew Chem Int Ed Engl 2025; 64:e202417457. [PMID: 39559897 DOI: 10.1002/anie.202417457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/20/2024]
Abstract
The transfer-free character of graphene growth on Silicon Carbide (SiC) makes it compatible with state-of-the-art Si semiconductor technologies for directly fabricating high-end electronics. Although significant progress has been achieved in epitaxial growth of graphene on SiC recently, the underlying nucleation mechanism remains elusive. Here, we present a theoretical study to elucidate graphene near-equilibrium nucleation on Si-terminated hexagonal-SiC(0001) surface. It is found that the ultra-large lattice mismatch between SiC(0001) surface and graphene and the highly localized electron distribution on SiC(0001) surface lead to a distinctive nucleation process: (i) Most of the magic carbon clusters on SiC(0001) show only C1 symmetry and are mainly composed of pentagonal rings; (ii) Two possible nucleation pathways are revealed, i.e., longitudinal and circular modes; (iii) Carbon clusters are more stable on flat terraces than near atomic step edges. Based on above findings, a graphene nucleation diagram on SiC(0001) is established and experimentally observed contradictories for graphene growth on SiC(0001) are answered. Our in-depth understanding on graphene nucleation on SiC(0001) extends nucleation mechanisms of 2D crystals and will benefit high-quality graphene growth on SiC(0001).
Collapse
Affiliation(s)
- Haojie Huang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Zebin Ren
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Xiao Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Haoyuancheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, P. R. China
- University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| |
Collapse
|
10
|
Gupta S, Zhang JJ, Lei J, Yu H, Liu M, Zou X, Yakobson BI. Two-Dimensional Transition Metal Dichalcogenides: A Theory and Simulation Perspective. Chem Rev 2025; 125:786-834. [PMID: 39746214 DOI: 10.1021/acs.chemrev.4c00628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Two-dimensional transition metal dichalcogenides (2D TMDs) are a promising class of functional materials for fundamental physics explorations and applications in next-generation electronics, catalysis, quantum technologies, and energy-related fields. Theory and simulations have played a pivotal role in recent advancements, from understanding physical properties and discovering new materials to elucidating synthesis processes and designing novel devices. The key has been developments in ab initio theory, deep learning, molecular dynamics, high-throughput computations, and multiscale methods. This review focuses on how theory and simulations have contributed to recent progress in 2D TMDs research, particularly in understanding properties of twisted moiré-based TMDs, predicting exotic quantum phases in TMD monolayers and heterostructures, understanding nucleation and growth processes in TMD synthesis, and comprehending electron transport and characteristics of different contacts in potential devices based on TMD heterostructures. The notable achievements provided by theory and simulations are highlighted, along with the challenges that need to be addressed. Although 2D TMDs have demonstrated potential and prototype devices have been created, we conclude by highlighting research areas that demand the most attention and how theory and simulation might address them and aid in attaining the true potential of 2D TMDs toward commercial device realizations.
Collapse
Affiliation(s)
- Sunny Gupta
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Materials Science & Engineering, University of California Berkeley, Berkeley, California 94720, United States
| | - Jun-Jie Zhang
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- School of Physics, Southeast University, Nanjing 211189 China
| | - Jincheng Lei
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Henry Yu
- Quantum Simulation Group, Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Mingjie Liu
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaolong Zou
- Shenzhen Geim Graphene Center & Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Boris I Yakobson
- Department of Materials Science and Nanoengineering, Rice University, Houston, Texas 77005, United States
- Smalley-Curl Institute for Nanoscale Science and Technology, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
11
|
Van On V, Thi Phuong Thuy H, Guerrero-Sanchez J, Hoat DM. Antiferromagnetic semiconductor nature in a GeS 2 monolayer doped with Mn and Fe transition metals. Phys Chem Chem Phys 2025; 27:1631-1639. [PMID: 39714259 DOI: 10.1039/d4cp03570d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
The absence of intrinsic magnetism in two-dimensional (2D) materials demands functionalization as necessary for broadening their applications. In this work, doping with transition metals (Mn and Fe) is proposed to modify the electronic and magnetic properties of a GeS2 monolayer. A pristine monolayer is an indirect gap semiconductor with an energy gap of 0.73(1.47) eV computed by using the PBE(HSE06) functional. Significant magnetism with a total magnetic moment of 1.18μB emerges in the GeS2 monolayer upon creating a single Ge vacancy, which is produced mainly by six nearest neighboring S atoms. In this case, the monolayer is metallized with S-px,y states responsible. Similarly, the magnetization of the GeS2 monolayer is also achieved by doping with Mn and Fe atoms with total magnetic moments of 3.00 and 3.78μB, respectively. The calculated band structures imply that the magnetic semiconductor nature with a spin-up/spin-down gap of 0.72/0.53 eV is induced by Mn impurity, while doping with Fe atoms leads to monolayer metallization. Being surrounded by more electronegative S atoms, Mn and Fe impurities lose charge amounts of 1.19 and 1.11e, respectively. Further investigations on spin coupling indicate the antiferromagnetic semiconductor nature in Mn- and Fe-doped systems, regardless of the distance between impurities. Our results provide important insights into the effects of doping into the GeS2 monolayer, which demonstrate that the doped systems hold promise for spintronic applications.
Collapse
Affiliation(s)
- Vo Van On
- Institute of Innovation in Pharmaceutical and Healhthcare Food, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - Huynh Thi Phuong Thuy
- Center for Forecasting Study, Institute of Southeast Vietnamese Studies, Thu Dau Mot University, Binh Duong Province, Vietnam
| | - J Guerrero-Sanchez
- Universidad Nacional Autónoma de México, Centro de Nanociencias y Nanotecnología, Apartado Postal 14, Ensenada, Baja California Codigo Postal 22800, Mexico
| | - D M Hoat
- Institute of Theoretical and Applied Research, Duy Tan University, Ha Noi 100000, Vietnam.
- Faculty of Natural Sciences, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
12
|
Chen H, Jiang S, Huang L, Man P, Deng Q, Zhao J, Ly TH. Large-Area Aligned Growth of Low-Symmetry 2D ReS 2 on a High-Symmetry Surface. ACS NANO 2024; 18:35029-35038. [PMID: 39658962 DOI: 10.1021/acsnano.4c14162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The large-scale preparation of two-dimensional (2D) materials is pivotal in unlocking their extensive potential for next-generation semiconductor device applications. Wafer-scale single crystals of a high-symmetry 2D material (e.g., graphene and molybdenum disulfide) can be achieved by seamlessly stitching the aligned domains. However, achieving the alignment of low-symmetry 2D materials remains a great challenge and is rarely reported. Rhenium disulfide (ReS2), one of the low-symmetry 2D materials, shows considerable promise for optoelectronics, especially polarization-sensitive applications. Here, we report large-area chemical vapor deposition synthesis of highly oriented, low-symmetry monolayer ReS2 flakes on a high-symmetry Au(111) surface, followed by seamless stitching into a centimeter-scale continuous 2D film. Cross-sectional scanning transmission electron microscopy reveals that the aligned monolayer ReS2 flakes are guided by step edges on Au(111) surfaces along the [011̅] direction. Additionally, 2D ReS2 can flatten Au surfaces during its growth through surface step bunching. The growth of the ReS2 monolayer demonstrates its ability to extend across Au surface steps and facets. Thus, we have established a reliable and robust synthesis route that accommodates different surface roughness conditions. The aligned and scalable film growth of low-symmetry 2D ReS2 significantly contributes to the in-depth understanding of epitaxial growth mechanisms for low-symmetry 2D materials, holding promise for advancing their future applications.
Collapse
Affiliation(s)
- Honglin Chen
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Shan Jiang
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
| | - Lingli Huang
- Department of Chemistry and Center of Super-Diamond & Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Ping Man
- Department of Chemistry and Center of Super-Diamond & Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
| | - Qingming Deng
- Physics Department and Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials, Huaiyin Normal University, Huaian 223300, China
| | - Jiong Zhao
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518000, China
| | - Thuc Hue Ly
- Department of Chemistry and Center of Super-Diamond & Advanced Films, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518000, China
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| |
Collapse
|
13
|
Liu M, Kuang J, Han X, Liu Y, Gao W, Shang S, Wang X, Hong J, Guan B, Zhao X, Guo Y, Dong J, Zhao Z, Zhao Y, Liu C, Liu Y, Chen J. Diffusion limited synthesis of wafer-scale covalent organic framework films for adaptative visual device. Nat Commun 2024; 15:10487. [PMID: 39622830 PMCID: PMC11612170 DOI: 10.1038/s41467-024-54844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
Synthesizing high-crystalline covalent organic framework films is highly desired to advance their applications in two-dimensional optoelectronics, but it remains a great challenge. Here, we report a diffusion-limited synthesis strategy for wafer-scale uniform covalent organic framework films, in which pre-deposited 4,4',4″,4‴-(1,3,6,8-Tetrakis(4-aminophenyl) pyrene is encapsulated on substrate surface with a layer of covalent organic framework prepolymer. The polymer not only prevents the dissolution of precursor, but limits the reaction with terephthalaldehyde dissolved in solution, thereby regulating the polymerization process. The size depends on growth substrates, and 4-inch films have been synthesized on silicon chips. Their structure, thickness, patterning and crystallization degree can be controlled by adjusting building blocks and polymerization chemistries, and molybdenum disulfide have been used as substrates to construct vertical heterostructure. The measurements reveal that using covalent organic framework as a photosensitive layer, the heterojunction displays enhanced photoelectric performance, which can be used to simulate the adaptative function of visual system.
Collapse
Affiliation(s)
- Minghui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junhua Kuang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaocang Han
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Youxing Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wenqiang Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Shengcong Shang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xinyu Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiaxin Hong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bo Guan
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoxu Zhao
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
| | - Yunlong Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| | - Zhiyuan Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai, 200433, P. R. China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yunqi Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jianyi Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
14
|
Li C, Zheng F, Min J, Yang N, Chang Y, Liu H, Zhang Y, Yang P, Yu Q, Li Y, Luo Z, Aljarb A, Shih K, Huang J, Li L, Wan Y. Revisiting the Epitaxial Growth Mechanism of 2D TMDC Single Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404923. [PMID: 39149776 PMCID: PMC11656039 DOI: 10.1002/adma.202404923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/01/2024] [Indexed: 08/17/2024]
Abstract
Epitaxial growth of 2D transition metal dichalcogenides (TMDCs) on sapphire substrates has been recognized as a pivotal method for producing wafer-scale single-crystal films. Both step-edges and symmetry of substrate surfaces have been proposed as controlling factors. However, the underlying fundamental still remains elusive. In this work, through the molybdenum disulfide (MoS2) growth on C/M sapphire, it is demonstrated that controlling the sulfur evaporation rate is crucial for dictating the switch between atomic-edge guided epitaxy and van der Waals epitaxy. Low-concentration sulfur condition preserves O/Al-terminated step edges, fostering atomic-edge epitaxy, while high-concentration sulfur leads to S-terminated edges, preferring van der Waals epitaxy. These experiments reveal that on a 2 in. wafer, the van der Waals epitaxy mechanism achieves better control in MoS2 alignment (≈99%) compared to the step edge mechanism (<85%). These findings shed light on the nuanced role of atomic-level thermodynamics in controlling nucleation modes of TMDCs, thereby providing a pathway for the precise fabrication of single-crystal 2D materials on a wafer scale.
Collapse
Affiliation(s)
- Chenyang Li
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Fangyuan Zheng
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Jiacheng Min
- Department of Civil EngineeringThe University of Hong KongHong Kong999077China
| | - Ni Yang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Yu‐Ming Chang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Haomin Liu
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Yuxiang Zhang
- Department of Electrical and Electronic EngineeringThe University of Hong KongHong Kong999077China
| | - Pengfei Yang
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Qinze Yu
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
| | - Yu Li
- Department of Computer Science and EngineeringThe Chinese University of Hong KongHong Kong SAR999077China
- The CUHK Shenzhen Research InstituteHi‐Tech ParkNanshanShenzhen518057China
| | - Zhengtang Luo
- Department of Chemical and Biological EngineeringThe Hong Kong University of Science and TechnologyHong Kong999077China
| | - Areej Aljarb
- Physical Sciences and Engineering DivisionKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Kingdom of Saudi Arabia
- Department of PhysicsKing Abdulaziz UniversityJeddah21589Kingdom of Saudi Arabia
| | - Kaimin Shih
- Department of Civil EngineeringThe University of Hong KongHong Kong999077China
| | - Jing‐Kai Huang
- Department of Systems EngineeringCity University of Hong KongHong Kong999077China
| | - Lain‐Jong Li
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| | - Yi Wan
- Department of Mechanical EngineeringThe University of Hong KongHong Kong999077China
| |
Collapse
|
15
|
Gong X, Li Q, Dong R, Wang J, Ma L. Mechanism of Thermodynamically Rationalized Selective Growth of a Two-Dimensional Ternary Ferromagnet on Insulating Substrates. J Phys Chem Lett 2024; 15:10918-10926. [PMID: 39446314 DOI: 10.1021/acs.jpclett.4c02699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Two-dimensional (2D) semiconducting ferromagnet Fe3GeTe2 holds great promise for advanced spintronic applications because of its gate-tunable ferromagnetic ordering at room temperature, whereas the controllable growth of large-area single crystals remains very challenging due to its ternary nature and variable stoichiometry inducing many competitive phases. Here, we theoretically probe the mechanism of selective growth of monolayer Fe3GeTe2 on various epitaxial substrates. Thermodynamic analysis shows that the corresponding phase-pure chemical potential windows for the selective growth of Fe3GeTe2 can be reasonably attained in ternary phase space on insulating and chemically inert c-plane sapphire and Ga2O3(0001) substrates by properly modulating the interfacial interaction and employing suitable feedstocks to avoid competitive growth of possible impurity phases with different stoichiometry ratios. It is also revealed that both the weak edge-substrate interaction and interlayer coupling of Fe3GeTe2 together lead to a surface-dominated nucleation behavior and, thereby, energetically favor lateral growth of the monolayer rather than vertical growth of the multilayer. Importantly, straight protocols for the experimentally selective growth of phase-pure ternary Fe3GeTe2 are also provided by establishing the relationship between the feedstock chemical potential and growth parameters on a thermochemical basis. Our insightful study can also be reasonably extended to guide future experimental design for the selective growth of other multicomponent 2D materials.
Collapse
Affiliation(s)
- Xiaoshu Gong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Qiang Li
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
| | - Ruikang Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
- Suzhou Laboratory, Suzhou, Jiangsu 215004, People's Republic of China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
- Suzhou Laboratory, Suzhou, Jiangsu 215004, People's Republic of China
| | - Liang Ma
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, Jiangsu 211189, People's Republic of China
- Suzhou Laboratory, Suzhou, Jiangsu 215004, People's Republic of China
| |
Collapse
|
16
|
Liu L, Gong P, Liu K, Huang B, Zhang Z, Fu Y, Wu Y, Zhao Y, Wang M, Xu Y, Li H, Zhai T. Van der Waals epitaxial growth of single-crystal molecular film. Natl Sci Rev 2024; 11:nwae358. [PMID: 39534245 PMCID: PMC11556342 DOI: 10.1093/nsr/nwae358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/01/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024] Open
Abstract
Epitaxy is the cornerstone of semiconductor technology, enabling the fabrication of single-crystal film. Recent advancements in van der Waals (vdW) epitaxy have opened new avenues for producing wafer-scale single-crystal 2D atomic crystals. However, when it comes to molecular crystals, the overall weak vdW force means that it is a significant challenge for small molecules to form a well-ordered structure during epitaxy. Here we demonstrate that the vdW epitaxy of Sb2O3 molecular crystal, where the whole growth process is governed by vdW interactions, can be precisely controlled. The nucleation is deterministically modulated by epilayer-substrate interactions and unidirectional nuclei are realized through designing the lattice and symmetry matching between epilayer and substrate. Moreover, the growth and coalescence of nuclei as well as the layer-by-layer growth mode are kinetically realized via tackling the Schwoebel-Ehrlich barrier. Such precise control of vdW epitaxy enables the growth of single-crystal Sb2O3 molecular film with desirable thickness. Using the ultrathin highly oriented Sb2O3 film as a gate dielectric, we fabricated MoS2-based field-effect transistors that exhibit superior device performance. The results substantiate the viability of precisely managing molecule alignment in vdW epitaxy, paving the way for large-scale synthesis of single-crystal 2D molecular crystals.
Collapse
Affiliation(s)
- Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Penglai Gong
- Key Laboratory of Optic-Electronic Information and Materials of Hebei Province, College of Physics Science and Technology, Hebei University, Baoding 071000, China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bingrong Huang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhihao Zhang
- Wuhan National High Magnetic Field Center, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yingshuang Fu
- Wuhan National High Magnetic Field Center, School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yu Wu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yinghe Zhao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Meihui Wang
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yongshan Xu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
17
|
Ma L, Gong X, Dong R, Wang J. Mechanisms of Controllable Growth and Ohmic Contact of Two-Dimensional Molybdenum Disulfide: Insight from Atomistic Simulations. Acc Chem Res 2024. [PMID: 39392709 DOI: 10.1021/acs.accounts.4c00495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
ConspectusTwo-dimensional (2D) semiconducting transition metal dichalcogenides (TMDs), in particular molybdenum disulfide (MoS2), have recently attracted huge interest due to their proper bandgap, high mobility at 2D limit, and easy-to-integrate planar structure, which are very promising for extending Moore's law in postsilicon electronics technology. Great effort has been devoted toward such a goal since the demonstration of protype MoS2 devices with high room-temperature on/off current ratios, ultralow standby power consumption, and atomic level scaling capacity down to sub-1-nm technology node. However, there are still several key challenges that need to be addressed prior to the real application of MoS2-based electronics technology. The controllable growth of wafer-scale single-crystal MoS2 on industry-compatible insulating substrates is the prerequisite of application while the currently synthesized MoS2 films mostly are polycrystalline with limited sizes of single-crystal domains and may involve metal substrates. The precise layer-control is also very important for MoS2 growth since its electronic properties are layer-dependent, whereas the layer-by-layer growth of multilayer MoS2 dominated by the van der Waals (vdW) epitaxy leads to poor thickness uniformity and noncontinuously distributed domains. High density up to 1013 cm-2 of sulfur vacancies (SVs) in grown MoS2 can cause unfavorable carrier scatting and electronic properties variations and will inevitably disturb the device performance. The dangling-bond-free surface of MoS2 gives rise to an inherent vdW gap at metal-semiconductor (M-S) contact, which leads to high electrical resistance and poor current-delivery capability at the contact interface and thereby substantially limits the performances of MoS2 devices.In this Account, we briefly review recent experimental and theoretical attempts for addressing the aforementioned challenges and present our own insights from atomistic simulations. We theoretically revealed the vital role of substrate steps for guiding unidirectional nucleation of monolayer MoS2 and uniform nucleation and edge-aligned growth of bilayer MoS2 by advanced simulations. The established thermodynamic mechanisms have successfully directed the experimental works on the controllable growth of 2 in. single-crystal monolayer and centimeter-scale uniform bilayer MoS2. The postgrowth repair mechanism of SV defect in MoS2 via thiol chemistry treatment has been theoretically explored with the consideration of side reaction of surface functionalization to help experimentally reduce SV defect density by 75%. Beyond the atomic level understanding, theoretical simulations proposed the electronic states hybridization mechanism across the semimetal-MoS2 vdW interface, thereby guiding experimental effort for realizing Ohmic contact at the MoS2-Sb(0112) vdW interface with record-low contact resistance.These advances provide a sound basis with an atomic-level understanding for addressing the related issues. However, there are still notable gaps in terms of system size and time scale of dynamics between atomistic simulations and experimental observations for the studies of MoS2 growth and interfaces. The combination of multiscale simulations and artificial intelligence technology is expected to narrow these gaps and provide a more insightful understanding of the controllable growth and interfacial properties modulation of MoS2. We conclude the Account with the standing challenges and outlook on future research directions from the theoretical perspective.
Collapse
Affiliation(s)
- Liang Ma
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215004, China
| | - Xiaoshu Gong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ruikang Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215004, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215004, China
| |
Collapse
|
18
|
Jaroch T, Żurawek-Wyczesany L, Stȩpniak-Dybala A, Krawiec M, Kopciuszyński M, Dróżdż P, Gołȩbiowski M, Zdyb R. Epitaxial Growth of Large-Scale α-Phase Antimonene. NANO LETTERS 2024; 24:12469-12475. [PMID: 39316634 PMCID: PMC11468732 DOI: 10.1021/acs.nanolett.4c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Two-dimensional materials composed of elements from the 15th group of the periodic table remain largely unexplored. The primary challenge in advancing this research is the lack of large-scale layers that would facilitate extensive studies using laterally averaging techniques and enable functionalization for the fabrication of novel electronic, optoelectronic, and spintronic devices. In this report, we present a method for synthesizing large-scale antimonene layers, on the order of cm2. By employing molecular beam epitaxy, we successfully grow a monolayer film of α-phase antimonene on a W(110) surface passivated with a single-atom-thick layer of Sb atoms. The formation of α phase antimonene is confirmed through scanning tunneling microscopy and low-energy electron diffraction measurements. The isolated nature of the α-phase is further evidenced in the electronic structure, with linearly dispersed bands observed through angle-resolved photoelectron spectroscopy and supported by ab initio calculations.
Collapse
Affiliation(s)
| | | | | | - Mariusz Krawiec
- Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Marek Kopciuszyński
- Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Piotr Dróżdż
- Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Mariusz Gołȩbiowski
- Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| | - Ryszard Zdyb
- Institute of Physics, Maria Curie-Sklodowska University, 20-031 Lublin, Poland
| |
Collapse
|
19
|
Yang J, Huang L, Li H, Li X, Song L, Peng Y, Xu R, Wen X, Sun H, Jiang Y, He J, Shi J. Understanding Iron-Doping Modulating Domain Orientation and Improving the Device Performance of Monolayer Molybdenum Disulfide. NANO LETTERS 2024. [PMID: 39373390 DOI: 10.1021/acs.nanolett.4c03264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Domain orientation modulation and controlled doping of two-dimensional (2D) transition-metal dichalcogenides (TMDCs) are two pivotal tasks for synthesizing wafer-scale single crystals and boosting device performances. However, realizing two such targets and uncovering internal physical mechanisms remain daunting challenges. We develop an accurate Fe doping strategy, which enables domain orientation control and electron mobility improvement of monolayer MoS2. By tuning of the Fe dopant dosages, parallel steps with different heights are formed, which induce edge-nucleation of unidirectionally aligned monolayer MoS2. In parallel, Fe doping induces the down shift of the conduction band minimum of monolayer MoS2 and matches well with the work function of an electrode, which reduces Schottky barrier height and delivers ultralow contact resistance (561 Ω μm) and excellent electron mobility (37.5 cm2 V-1 s-1). The modulation mechanism is clarified by combining theory calculations and electronic structure characterizations. This work hereby provides a new paradigm for synthesizing wafer-scale 2D TMDC single crystals and constructing high-performance devices.
Collapse
Affiliation(s)
- Junbo Yang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ling Huang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hui Li
- Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, College of Chemistry and Chemical Engineering, DeZhou University, DeZhou 253023, China
| | - Xiaohui Li
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Luying Song
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yanan Peng
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ruihan Xu
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Xia Wen
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Hang Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Yulin Jiang
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-Structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jianping Shi
- The Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| |
Collapse
|
20
|
Li J, Samad A, Yuan Y, Wang Q, Hedhili MN, Lanza M, Schwingenschlögl U, Abate I, Akinwande D, Liu Z, Tian B, Zhang X. Single-crystal hBN Monolayers from Aligned Hexagonal Islands. Nat Commun 2024; 15:8589. [PMID: 39366956 PMCID: PMC11452510 DOI: 10.1038/s41467-024-52944-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024] Open
Abstract
Hexagonal boron nitride (hBN), as one of the few two-dimensional insulators, holds strategic importance for advancing post-silicon electronic devices and circuits. Achieving wafer-scale, high-quality monolayer hBN is essential for its integration into the semiconductor industry. However, the physical mechanisms behind the chemical vapor deposition (CVD) synthesis of hBN are not yet well understood. Investigating morphology engineering is critical for developing scalable synthetic techniques for the large-scale production of high-quality hBN. In this study, we explored the underlying mechanisms of the CVD growth process of hBN and found that the involvement of a small amount of oxygen effectively modulates the shape of the single-crystal hBN islands. By tuning the oxygen content in the CVD system, we synthesized well-aligned hexagonal hBN islands and achieved a continuous, high-quality single-crystal monolayer hBN film through the merging of these hexagonal islands on conventional single-crystal metal-foil substrates. Density functional theory was used to study the edges of hBN monolayers grown in an oxygen-assisted environment, providing insights into the formation mechanism. This study opens new pathways for controlling the island shape of 2D materials and establishes a foundation for the industrial-scale production of high-quality, large-area, single-crystal hBN.
Collapse
Affiliation(s)
- Junzhu Li
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Abdus Samad
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Yue Yuan
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Qingxiao Wang
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mohamed Nejib Hedhili
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Mario Lanza
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Udo Schwingenschlögl
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Iwnetim Abate
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Deji Akinwande
- Microelectronics Research Center, The University of Texas at Austin, Austin, TX, 78758, USA
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Bo Tian
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
| | - Xixiang Zhang
- Physical Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
21
|
Yoo C, Shin HK, Han SS, Lee S, Lee CW, Song YJ, Bae TS, Yoo SJ, Cao J, Kim JH, Lee HJ, Chung HS, Jung Y. Wafer-Scale Freestanding Monocrystalline Chalcogenide Membranes by Strain-Assisted Epitaxy and Spalling. NANO LETTERS 2024. [PMID: 39356826 DOI: 10.1021/acs.nanolett.4c03127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Monocrystalline chalcogenide thin films in freestanding forms are very much needed in advanced electronics such as flexible phase change memories (PCMs). However, they are difficult to manufacture in a scalable manner due to their growth and delamination challenges. Herein, we report a viable strategy for a wafer-scale epitaxial growth of monocrystalline germanium telluride (GeTe) membranes and their deterministic integrations onto flexible substrates. GeTe films are epitaxially grown on Ge wafers via a tellurization reaction accompanying a formation of confined dislocations along GeTe/Ge interfaces. The as-grown films are subsequently delaminated off the wafers, preserving their wafer-scale structural integrity, enabled by a strain-engineered spalling method that leverages the stress-concentrated dislocations. The versatility of this wafer epitaxy and delamination approach is further expanded to manufacture other chalcogenide membranes, such as germanium selenide (GeSe). These materials exhibit phase change-driven electrical switching characteristics even in freestanding forms, opening up unprecedented opportunities for flexible PCM technologies.
Collapse
Affiliation(s)
- Changhyeon Yoo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Han-Kyun Shin
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Sang Sub Han
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Seohui Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Chemistry, University of Central Florida, Orlando, Florida 32826, United States
| | - Chung Won Lee
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
| | - Yu-Jin Song
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Tae-Sung Bae
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Seung Jo Yoo
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Justin Cao
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
| | - Jung Han Kim
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hyo-Jong Lee
- Department of Materials Science and Engineering, Dong-A University, Busan 49315, Republic of Korea
| | - Hee-Suk Chung
- Research Center for Materials Analysis, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Yeonwoong Jung
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, United States
- Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida 32816, United States
- Department of Electrical and Computer Engineering, University of Central Florida, Orlando, Florida 32816, United States
| |
Collapse
|
22
|
Li J, Yang X, Zhang Z, Yang W, Duan X, Duan X. Towards the scalable synthesis of two-dimensional heterostructures and superlattices beyond exfoliation and restacking. NATURE MATERIALS 2024; 23:1326-1338. [PMID: 39227467 DOI: 10.1038/s41563-024-01989-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024]
Abstract
Two-dimensional transition metal dichalcogenides, which feature atomically thin geometry and dangling-bond-free surfaces, have attracted intense interest for diverse technology applications, including ultra-miniaturized transistors towards the subnanometre scale. A straightforward exfoliation-and-restacking approach has been widely used for nearly arbitrary assembly of diverse two-dimensional (2D) heterostructures, superlattices and moiré superlattices, providing a versatile materials platform for fundamental investigations of exotic physical phenomena and proof-of-concept device demonstrations. While this approach has contributed importantly to the recent flourishing of 2D materials research, it is clearly unsuitable for practical technologies. Capturing the full potential of 2D transition metal dichalcogenides requires robust and scalable synthesis of these atomically thin materials and their heterostructures with designable spatial modulation of chemical compositions and electronic structures. The extreme aspect ratio, lack of intrinsic substrate and highly delicate nature of the atomically thin crystals present fundamental difficulties in material synthesis. Here we summarize the key challenges, highlight current advances and outline opportunities in the scalable synthesis of transition metal dichalcogenide-based heterostructures, superlattices and moiré superlattices.
Collapse
Affiliation(s)
- Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China
| | - Xiangdong Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Zhengwei Zhang
- School of Physics and Electronics, Central South University, Changsha, China
| | - Weiyou Yang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, China.
| | - Xiangfeng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Liu L, Ji Y, Bianchi M, Hus SM, Li Z, Balog R, Miwa JA, Hofmann P, Li AP, Zemlyanov DY, Li Y, Chen YP. A metastable pentagonal 2D material synthesized by symmetry-driven epitaxy. NATURE MATERIALS 2024; 23:1339-1346. [PMID: 39191980 DOI: 10.1038/s41563-024-01987-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 08/01/2024] [Indexed: 08/29/2024]
Abstract
Most two-dimensional (2D) materials experimentally studied so far have hexagons as their building blocks. Only a few exceptions, such as PdSe2, are lower in energy in pentagonal phases and exhibit pentagons as building blocks. Although theory has predicted a large number of pentagonal 2D materials, many of these are metastable and their experimental realization is difficult. Here we report the successful synthesis of a metastable pentagonal 2D material, monolayer pentagonal PdTe2, by symmetry-driven epitaxy. Scanning tunnelling microscopy and complementary spectroscopy measurements are used to characterize this material, which demonstrates well-ordered low-symmetry atomic arrangements and is stabilized by lattice matching with the underlying Pd(100) substrate. Theoretical calculations, along with angle-resolved photoemission spectroscopy, reveal monolayer pentagonal PdTe2 to be a semiconductor with an indirect bandgap of 1.05 eV. Our work opens an avenue for the synthesis of pentagon-based 2D materials and gives opportunities to explore their applications such as multifunctional nanoelectronics.
Collapse
Affiliation(s)
- Lina Liu
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Department of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, Aarhus, Denmark
| | - Yujin Ji
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China
| | - Marco Bianchi
- Department of Physics and Astronomy and Villum Center for Dirac Materials, Aarhus University, Aarhus, Denmark
| | - Saban M Hus
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Zheshen Li
- Department of Physics and Astronomy and Center for Storage Ring Facilities (ISA), Aarhus University, Aarhus, Denmark
| | - Richard Balog
- Department of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, Aarhus, Denmark
| | - Jill A Miwa
- Department of Physics and Astronomy and Villum Center for Dirac Materials, Aarhus University, Aarhus, Denmark
| | - Philip Hofmann
- Department of Physics and Astronomy and Villum Center for Dirac Materials, Aarhus University, Aarhus, Denmark
| | - An-Ping Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Dmitry Y Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
| | - Youyong Li
- Institute of Functional Nano and Soft Materials, Soochow University, Suzhou, China.
| | - Yong P Chen
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA.
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA.
- Department of Physics and Astronomy and Villum Center for Hybrid Quantum Materials and Devices, Aarhus University, Aarhus, Denmark.
- Purdue Quantum Science and Engineering Institute and School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
24
|
Wang J, Lu Y, Quan W, Hu J, Yang P, Song G, Fu J, Peng Y, Tong L, Ji Q, Zhang Y. Epitaxial Growth of Monolayer WS 2 Single Crystals on Au(111) Toward Direct Surface-Enhanced Raman Spectroscopy Detection. ACS NANO 2024. [PMID: 39263972 DOI: 10.1021/acsnano.4c09187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
The epitaxial growth of wafer-scale two-dimensional (2D) semiconducting transition metal dichalcogenides (STMDCs) single crystals is the key premise for their applications in next-generation electronics. Despite significant advancements, some fundamental factors affecting the epitaxy growth have not been fully uncovered, e.g., interface coupling strength, adlayer-substrate lattice matching, substrate step-edge-guiding effects, etc. Herein, we develop a model system to tackle these issues concurrently, and realize the epitaxial growth of wafer-scale monolayer tungsten disulfide (WS2) single crystals on the Au(111) substrate. This epitaxial system is featured with good adlayer-substrate lattice matching, obvious step-edge-guiding effect for the unidirectionally aligned nucleation/growth, and relatively weaker interfacial interaction than that of monolayer MoS2/Au(111), as evidenced by the evolution of a uniform Moiré pattern and an intrinsic band gap, according to on-site scanning tunneling microscopy/spectroscopy (STM/STS) characterizations and density functional theory calculations. Intriguingly, the unidirectionally aligned monolayer WS2 domains along the Au(111) steps can behave as ultrasensitive templates for surface-enhanced Raman scattering detection of organic molecules, due to the obvious charge transfer occurred at substrate step edges. This work should hereby deepen our understanding of the epitaxy mechanism of 2D STMDCs on single-crystal substrates, and propel their wafer-scale production and applications in various cutting-edge fields.
Collapse
Affiliation(s)
- Jialong Wang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yue Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Wenzhi Quan
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Jingyi Hu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Pengfei Yang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Ge Song
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Jiatian Fu
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
| | - You Peng
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| | - Lianming Tong
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Qingqing Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, People's Republic of China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing 100871, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People's Republic of China
| |
Collapse
|
25
|
Kumar Negi S, M B A, Paul S, Pandey V, K Roy A, R Glavin N, Watanabe K, Taniguchi T, Sarkar S, Kochat V. Epitaxial growth of quasi-2D van der Waals ferromagnets on crystalline substrates. NANOTECHNOLOGY 2024; 35:485601. [PMID: 39116894 DOI: 10.1088/1361-6528/ad6ce1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
Intrinsic magnetism in van der Waals materials has instigated interest in exploring magnetism in the 2D limit for potential applications in spintronics and also in understanding novel control of 2D magnetism via variation of layer thickness, gate tunability and magnetoelectric effects. The chromium telluride (CrxTey) family is an interesting subsection of ferromagnetic materials with highTCvalues, also presenting diverse stoichiometry arising from self-intercalation of Cr. Apart from the layered CrTe2system, the other non-layered CrxTeycompounds also offer exceptional magnetic properties, and a novel growth technique to grow thin films of these non-layered compounds offers exciting possibilities for ultra-thin spin-based electronics and magnetic sensors. In this work, we discuss the role of crystalline substrates in chemical vapor deposition growth of non-layered 2D ferromagnets, where the crystal symmetry of the substrate as well as the misfit and strain are the key players governing the growth mechanism of ultra-thin Cr5Te8, a non-layered ferromagnet. The magnetic studies of the as-grown Cr5Te8reveal the signatures of co-existing soft and hard ferromagnetic phases, which makes this system an intriguing system to search for emergent topological phases, such as magnetic skyrmions.
Collapse
Affiliation(s)
- Subhransu Kumar Negi
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Abhijith M B
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Sourav Paul
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Vineet Pandey
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Ajit K Roy
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, United States of America
| | - Nicholas R Glavin
- Air Force Research Laboratory, Wright-Patterson Air Force Base, OH 45433, United States of America
| | - Kenji Watanabe
- Research Centre for Electronic and Optical Materials, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Takashi Taniguchi
- Research Centre for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044, Japan
| | - Suman Sarkar
- Materials Engineering, Indian Institute of Technology Jammu, Jammu & Kashmir 181221, India
| | - Vidya Kochat
- Materials Science Centre, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| |
Collapse
|
26
|
Xue G, Qin B, Ma C, Yin P, Liu C, Liu K. Large-Area Epitaxial Growth of Transition Metal Dichalcogenides. Chem Rev 2024; 124:9785-9865. [PMID: 39132950 DOI: 10.1021/acs.chemrev.3c00851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Over the past decade, research on atomically thin two-dimensional (2D) transition metal dichalcogenides (TMDs) has expanded rapidly due to their unique properties such as high carrier mobility, significant excitonic effects, and strong spin-orbit couplings. Considerable attention from both scientific and industrial communities has fully fueled the exploration of TMDs toward practical applications. Proposed scenarios, such as ultrascaled transistors, on-chip photonics, flexible optoelectronics, and efficient electrocatalysis, critically depend on the scalable production of large-area TMD films. Correspondingly, substantial efforts have been devoted to refining the synthesizing methodology of 2D TMDs, which brought the field to a stage that necessitates a comprehensive summary. In this Review, we give a systematic overview of the basic designs and significant advancements in large-area epitaxial growth of TMDs. We first sketch out their fundamental structures and diverse properties. Subsequent discussion encompasses the state-of-the-art wafer-scale production designs, single-crystal epitaxial strategies, and techniques for structure modification and postprocessing. Additionally, we highlight the future directions for application-driven material fabrication and persistent challenges, aiming to inspire ongoing exploration along a revolution in the modern semiconductor industry.
Collapse
Affiliation(s)
- Guodong Xue
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Biao Qin
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Chaojie Ma
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
| | - Peng Yin
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Can Liu
- Key Laboratory of Quantum State Construction and Manipulation (Ministry of Education), Department of Physics, Renmin University of China, Beijing 100872, China
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing 100871, China
- International Centre for Quantum Materials, Collaborative Innovation Centre of Quantum Matter, Peking University, Beijing 100871, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| |
Collapse
|
27
|
Huang Y, Li M, Hu Z, Hu C, Shen W, Li Y, Sun L. In Situ Studies on the Influence of Surface Symmetry on the Growth of MoSe 2 Monolayer on Sapphire Using Reflectance Anisotropy Spectroscopy and Differential Reflectance Spectroscopy. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1457. [PMID: 39269119 PMCID: PMC11397682 DOI: 10.3390/nano14171457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/23/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
The surface symmetry of the substrate plays an important role in the epitaxial high-quality growth of 2D materials; however, in-depth and in situ studies on these materials during growth are still limited due to the lack of effective in situ monitoring approaches. In this work, taking the growth of MoSe2 as an example, the distinct growth processes on Al2O3 (112¯0) and Al2O3 (0001) are revealed by parallel monitoring using in situ reflectance anisotropy spectroscopy (RAS) and differential reflectance spectroscopy (DRS), respectively, highlighting the dominant role of the surface symmetry. In our previous study, we found that the RAS signal of MoSe2 grown on Al2O3 (112¯0) initially increased and decreased ultimately to the magnitude of bare Al2O3 (112¯0) when the first layer of MoSe2 was fully merged, which is herein verified by the complementary DRS measurement that is directly related to the film coverage. Consequently, the changing rate of reflectance anisotropy (RA) intensity at 2.5 eV is well matched with the dynamic changes in differential reflectance (DR) intensity. Moreover, the surface-dominated uniform orientation of MoSe2 islands at various stages determined by RAS was further investigated by low-energy electron diffraction (LEED) and atomic force microscopy (AFM). By contrast, the RAS signal of MoSe2 grown on Al2O3 (0001) remains at zero during the whole growth, implying that the discontinuous MoSe2 islands have no preferential orientations. This work demonstrates that the combination of in situ RAS and DRS can provide valuable insights into the growth of unidirectional aligned islands and help optimize the fabrication process for single-crystal transition metal dichalcogenide (TMDC) monolayers.
Collapse
Affiliation(s)
- Yufeng Huang
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Mengjiao Li
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Center for Joint Quantum Studies, Tianjin University, Tianjin 300350, China
| | - Zhixin Hu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Department of Physics, Center for Joint Quantum Studies, Tianjin University, Tianjin 300350, China
| | - Chunguang Hu
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wanfu Shen
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Yanning Li
- State Key Laboratory of Precision Measurement Technology and Instruments, School of Precision Instrument and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Lidong Sun
- Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz, Austria
| |
Collapse
|
28
|
Si K, Zhao Y, Zhang P, Wang X, He Q, Wei J, Li B, Wang Y, Cao A, Hu Z, Tang P, Ding F, Gong Y. Quasi-equilibrium growth of inch-scale single-crystal monolayer α-In 2Se 3 on fluor-phlogopite. Nat Commun 2024; 15:7471. [PMID: 39209812 PMCID: PMC11362549 DOI: 10.1038/s41467-024-51322-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024] Open
Abstract
Epitaxial growth of two-dimensional (2D) materials with uniform orientation has been previously realized by introducing a small binding energy difference between the two locally most stable orientations. However, this small energy difference can be easily disturbed by uncontrollable dynamics during the growth process, limiting its practical applications. Herein, we propose a quasi-equilibrium growth (QEG) strategy to synthesize inch-scale monolayer α-In2Se3 single crystals, a semiconductor with ferroelectric properties, on fluor-phlogopite substrates. The QEG facilitates the discrimination of small differences in binding energy between the two locally most stable orientations, realizing robust single-orientation epitaxy within a broad growth window. Thus, single-crystal α-In2Se3 film can be epitaxially grown on fluor-phlogopite, the cleavage surface atomic layer of which has the same 3-fold rotational symmetry with α-In2Se3. The resulting crystalline quality enables high electron mobility up to 117.2 cm2 V-1 s-1 in α-In2Se3 ferroelectric field-effect transistors, exhibiting reliable nonvolatile memory performance with long retention time and robust cycling endurance. In brief, the developed QEG method provides a route for preparing larger-area single-crystal 2D materials and a promising opportunity for applications of 2D ferroelectric devices and nanoelectronics.
Collapse
Affiliation(s)
- Kunpeng Si
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Yifan Zhao
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Materials Science and Energy Engineer, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Peng Zhang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
| | - Xingguo Wang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Qianqian He
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
- The Analysis & Testing Center, Beihang University, Beijing, P. R. China
| | - Juntian Wei
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Bixuan Li
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Yongxi Wang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China
| | - Aiping Cao
- Technical Center for Multifunctional Magneto Optical Spectroscopy (Shanghai), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, P. R. China
| | - Zhigao Hu
- Technical Center for Multifunctional Magneto Optical Spectroscopy (Shanghai), Department of Physics, School of Physics and Electronic Science, East China Normal University, Shanghai, P. R. China
| | - Peizhe Tang
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
- Center for Free-Electron Laser Science, Max Planck Institute for the Structure and Dynamics of Matter, Hamburg, Germany.
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Materials Science and Energy Engineer, Shenzhen University of Advanced Technology, Shenzhen, China.
| | - Yongji Gong
- School of Materials Science and Engineering, Beihang University, Beijing, P. R. China.
- Tianmushan Laboratory Xixi Octagon City, Hangzhou, P. R. China.
- Center for Micro-Nano Innovation of Beihang University, Beijing, P. R. China.
| |
Collapse
|
29
|
Bhatt K, Kandar S, Kumar N, Kapoor A, Singh R. Effective concentration ratio driven phase engineering of MBE-grown few-layer MoTe 2. NANOSCALE 2024; 16:15381-15395. [PMID: 39092858 DOI: 10.1039/d4nr00687a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The polymorphic nature of ultrathin transition metal dichalcogenide (TMDC) materials makes the phase engineering of these materials an interesting field of investigation. Understanding the phase-controlling behavior of different growth parameters is crucial for obtaining large-area growth of a desirable phase. Here, we report a detailed study on the effect of growth parameters for engineering different phases of few-layer MoTe2 on sapphire using molecular beam epitaxy (MBE). Our study shows that the 2H phase of MoTe2 is stabilized in a certain regime of the flux ratio and growth temperature, while on both the lower, as well as, the higher sides of this regime, the 1T' phase is favored. The combined effect of growth parameters is explained using the effective concentration ratio of Te and Mo at the growth surface, which is found to be the primary factor governing the phase selectivity in few-layer MoTe2. XPS and KPFM investigations show the contribution of excess carrier doping in driving the phase change. The effect of the sapphire substrate on the crystallinity and phase-dependent morphological features has also been studied. This knowledge of versatile and controlled phase engineering of few-layer MoTe2 paves the way for fabricating large-scale hetero-phase-based metal-semiconductor heterostructures for future electronic and optoelectronic device applications.
Collapse
Affiliation(s)
- Kamlesh Bhatt
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Santanu Kandar
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Nand Kumar
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Ashok Kapoor
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Rajendra Singh
- Department of Physics, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
- School of Interdisciplinary Research (SIRe), Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Department of Electrical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
30
|
Xu M, Li D, Feng Y, Yuan Y, Wu Y, Zhao H, Kumar RV, Feng G, Xi K. Microporous Materials in Polymer Electrolytes: The Merit of Order. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405079. [PMID: 38922998 DOI: 10.1002/adma.202405079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Solid-state batteries (SSBs) have garnered significant attention in the critical field of sustainable energy storage due to their potential benefits in safety, energy density, and cycle life. The large-scale, cost-effective production of SSBs necessitates the development of high-performance solid-state electrolytes. However, the manufacturing of SSBs relies heavily on the advancement of suitable solid-state electrolytes. Composite polymer electrolytes (CPEs), which combine the advantages of ordered microporous materials (OMMs) and polymer electrolytes, meet the requirements for high ionic conductivity/transference number, stability with respect to electrodes, compatibility with established manufacturing processes, and cost-effectiveness, making them particularly well-suited for mass production of SSBs. This review delineates how structural ordering dictates the fundamental physicochemical properties of OMMs, including ion transport, thermal transfer, and mechanical stability. The applications of prominent OMMs are critically examined, such as metal-organic frameworks, covalent organic frameworks, and zeolites, in CPEs, highlighting how structural ordering facilitates the fulfillment of property requirements. Finally, an outlook on the field is provided, exploring how the properties of CPEs can be enhanced through the dimensional design of OMMs, and the importance of uncovering the underlying "feature-function" mechanisms of various CPE types is underscored.
Collapse
Affiliation(s)
- Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Danyang Li
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yuhe Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yu Yuan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Yutong Wu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Hongyang Zhao
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - R Vasant Kumar
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Guodong Feng
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| | - Kai Xi
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, P. R. China
| |
Collapse
|
31
|
Gao W, Zhi G, Zhou M, Niu T. Growth of Single Crystalline 2D Materials beyond Graphene on Non-metallic Substrates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311317. [PMID: 38712469 DOI: 10.1002/smll.202311317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 03/14/2024] [Indexed: 05/08/2024]
Abstract
The advent of 2D materials has ushered in the exploration of their synthesis, characterization and application. While plenty of 2D materials have been synthesized on various metallic substrates, interfacial interaction significantly affects their intrinsic electronic properties. Additionally, the complex transfer process presents further challenges. In this context, experimental efforts are devoted to the direct growth on technologically important semiconductor/insulator substrates. This review aims to uncover the effects of substrate on the growth of 2D materials. The focus is on non-metallic substrate used for epitaxial growth and how this highlights the necessity for phase engineering and advanced characterization at atomic scale. Special attention is paid to monoelemental 2D structures with topological properties. The conclusion is drawn through a discussion of the requirements for integrating 2D materials with current semiconductor-based technology and the unique properties of heterostructures based on 2D materials. Overall, this review describes how 2D materials can be fabricated directly on non-metallic substrates and the exploration of growth mechanism at atomic scale.
Collapse
Affiliation(s)
- Wenjin Gao
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | | | - Miao Zhou
- Tianmushan Laboratory, Hangzhou, 310023, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
- School of Physics, Beihang University, Beijing, 100191, China
| | - Tianchao Niu
- Hangzhou International Innovation Institute, Beihang University, Hangzhou, 311115, China
| |
Collapse
|
32
|
Óvári L, Farkas AP, Palotás K, Vári G, Szenti I, Berkó A, Kiss J, Kónya Z. Hexagonal boron nitride on metal surfaces as a support and template. SURFACE SCIENCE REPORTS 2024; 79:100637. [DOI: 10.1016/j.surfrep.2024.100637] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
|
33
|
Gong X, Dong R, Wang J, Ma L. Towards the selective growth of two-dimensional ordered C xN y compounds via epitaxial substrate mediation. Sci Bull (Beijing) 2024; 69:2212-2220. [PMID: 38729801 DOI: 10.1016/j.scib.2024.04.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/17/2024] [Accepted: 04/22/2024] [Indexed: 05/12/2024]
Abstract
Two-dimensional (2D) ordered carbon-nitrogen binary compounds (CxNy) show great potential in many fields owing to their diverse structures and outstanding properties. However, the scalable and selective synthesis of 2D CxNy compounds remain a challenge due to the variable C/N stoichiometry induced coexistence of graphitic, pyridinic, and pyrrolic N species and the competitive growth of graphene. Here, this work systematically explored the mechanism of selective growth of a series of 2D ordered CxNy compounds, namely, the g-C3N4, C2N, C3N, and C5N, on various epitaxial substrates via first-principles calculations. By establishing the thermodynamic phase diagram, it is revealed that the individualized surface interaction and symmetry match between 2D CxNy compounds and substrates together enable the selective epitaxial growth of single crystal 2D CxNy compounds within distinct chemical potential windows of feedstock. The kinetics behaviors of the diffusion and attachment of the decomposed feedstock C/N atoms to the growing CxNy clusters further confirmed the feasibility of the substrate mediated selective growth of 2D CxNy compounds. Moreover, the optimal experimental conditions, including the temperature and partial pressure of feedstock, are suggested for the selective growth of targeted 2D CxNy compound on individual epitaxial substrates by carefully considering the chemical potential of carbon/nitrogen as the functional of experimental parameters based on the standard thermochemical tables. This work provides an insightful understanding on the mechanism of selective epitaxial growth of 2D ordered CxNy compounds for guiding the future experimental design.
Collapse
Affiliation(s)
- Xiaoshu Gong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ruikang Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China; Suzhou Laboratory, Suzhou 215004, China
| | - Liang Ma
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China; Suzhou Laboratory, Suzhou 215004, China.
| |
Collapse
|
34
|
Hu L, Liu D, Zheng F, Yang X, Yao Y, Shen B, Huang B. Hybrid van der Waals Epitaxy. PHYSICAL REVIEW LETTERS 2024; 133:046102. [PMID: 39121412 DOI: 10.1103/physrevlett.133.046102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 05/13/2024] [Accepted: 06/12/2024] [Indexed: 08/11/2024]
Abstract
The successful growth of non-van der Waals (vdW) group-III nitride epilayers on vdW substrates not only opens an unprecedented opportunity to obtain high-quality semiconductor thinfilm but also raises a strong debate for its growth mechanism. Here, combining multiscale computational approaches and experimental characterization, we propose that the growth of a nitride epilayer on a vdW substrate, e.g., AlN on graphene, may belong to a previously unknown model, named hybrid vdW epitaxy (HVE). Atomic-scale simulations demonstrate that a unique interfacial hybrid-vdW interaction can be created between AlN and graphene, and, consequently, a first-principles-based continuum growth model is developed to capture the unusual features of HVE. Surprisingly, it is revealed that the in-plane and out-of-plane growth are strongly correlated in HVE, which is absent in existing growth models. The concept of HVE is confirmed by our experimental measurements, presenting a new growth mechanism beyond the current category of material growth.
Collapse
Affiliation(s)
- Lin Hu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Key Lab of Nanophotonics & Ultrafine Optoelectronic Systems, School of Physics, Beijing Institute of Technology, Beijing 100081, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Danshuo Liu
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Nano-optoelectronics Frontier Center of Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | | | - Xuelin Yang
- State Key Laboratory of Artificial Microstructure and Mesoscopic Physics, Nano-optoelectronics Frontier Center of Ministry of Education, School of Physics, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
35
|
Ko H, Choi SH, Park Y, Lee S, Oh CS, Kim SY, Lee YH, Kim SM, Ding F, Kim KK. Atomic sawtooth-like metal films for vdW-layered single-crystal growth. Nat Commun 2024; 15:5848. [PMID: 38992071 PMCID: PMC11239812 DOI: 10.1038/s41467-024-50184-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Atomic sawtooth surfaces have emerged as a versatile platform for growth of single-crystal van der Waals layered materials. However, the mechanism governing the formation of single-crystal atomic sawtooth metal (copper or gold) films on hard substrates (tungsten or molybdenum) remains a puzzle. In this study, we aim to elucidate the formation mechanism of atomic sawtooth metal films during melting-solidification process. Utilizing molecular dynamics, we unveil that the solidification of the liquid copper initiates at a high-index tungsten facet with higher interfacial energy. Subsequent tungsten facets follow energetically favourable pathways of forming single-crystal atomic sawtooth copper film during the solidification process near melting temperature. Formation of atomic sawtooth copper film is guaranteed with a film thickness exceeding the grain size of polycrystalline tungsten substrate. We further demonstrate the successful growth of centimeter-scale single-crystal monolayer hexagonal boron nitride films on atomic sawtooth copper films and explore their potential as efficient oxygen barrier.
Collapse
Affiliation(s)
- Hayoung Ko
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Soo Ho Choi
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Yunjae Park
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Seungjin Lee
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Chang Seok Oh
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea
| | - Sung Youb Kim
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Young Hee Lee
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| | - Soo Min Kim
- Department of Chemistry, Sookmyung Women's University, Seoul, 14072, South Korea.
| | - Feng Ding
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
- Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China.
| | - Ki Kang Kim
- Department of Energy Science, Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Sungkyunkwan University (SKKU), Suwon, 16419, South Korea.
| |
Collapse
|
36
|
Feng Y, Dai Y, Huang B, Ma Y. Sliding Ferroelectricity Engineered Coupling between Spin Hall Effect and Layertronics in 2D Lattice. J Phys Chem Lett 2024; 15:6699-6704. [PMID: 38900495 DOI: 10.1021/acs.jpclett.4c01479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Coupling the spin Hall effect with novel degrees of freedom of electrons is central to the rich phenomena observed in condensed-matter physics. Here, using symmetry analysis and a low-energy k·p model, we report the sliding ferroelectricity engineered coupling between spin Hall effect and emerging layertronics, thereby generating the layer spin Hall effect (LSHE), in a 2D lattice. The physics is rooted in a pair of T-symmetry connected valleys, which experience spin splitting accompanied by large Berry curvature under spin-orbit coupling. The interaction between the out-of-plane ferroelectricity and electronic properties gives rise to the layer-locked Berry curvature and thus layer-polarized spin Hall effect (LP-SHE) in the bilayers. Such LP-SHE is strongly coupled with sliding ferroelectricity, enabling it to be ferroelectrically reversible. Using first-principles calculations, the mechanism is further demonstrated in a series of real bilayer systems, including MoS2, MoTe2, WSe2, MoSi2P4, and MoSi2As4. These phenomena and insights open a new direction for spin Hall effect.
Collapse
Affiliation(s)
- Yangyang Feng
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Ying Dai
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Baibiao Huang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| | - Yandong Ma
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Shandanan Street 27, Jinan 250100, China
| |
Collapse
|
37
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
38
|
Maurtua C, Zide J, Chakraborty C. Molecular beam epitaxy and other large-scale methods for producing monolayer transition metal dichalcogenides. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2024; 36:383003. [PMID: 38901422 DOI: 10.1088/1361-648x/ad5a5d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 06/20/2024] [Indexed: 06/22/2024]
Abstract
Transition metal dichalcogenide (TMD/TMDC) monolayers have gained considerable attention in recent years for their unique properties. Some of these properties include direct bandgap emission and strong mechanical and electronic properties. For these reasons, monolayer TMDs have been considered a promising material for next-generation quantum technologies and optoelectronic devices. However, for the field to make more gainful advancements and be implemented in devices, high-quality TMD monolayers need to be produced at a larger scale with high quality. In this article, some of the current means to produce larger-scale semiconducting monolayer TMDs will be reviewed. An emphasis will be given to the technique of molecular beam epitaxy (MBE) for two main reasons: (1) there is a growing body of research using this technique to grow TMD monolayers and (2) there is yet to be a body of work that has summarized the current research for MBE monolayer growth of TMDs.
Collapse
Affiliation(s)
- Collin Maurtua
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Joshua Zide
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Chitraleema Chakraborty
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| |
Collapse
|
39
|
Choi M, Oh S, Hahn S, Ji Y, Jo MK, Kim J, Ju TS, Kim G, Gyeon M, Lee Y, Do J, Choi S, Kim A, Yang S, Hwang C, Kim KJ, Cho D, Kim C, Kang K, Jeong HY, Song S. Wafer-Scale Synthesis of Highly Oriented 2D Topological Semimetal PtTe 2 via Tellurization. ACS NANO 2024; 18:15154-15166. [PMID: 38808726 DOI: 10.1021/acsnano.4c02863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.
Collapse
Affiliation(s)
- Minhyuk Choi
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Physics and Research Institute for Convergence of Basic Sciences, Hanyang University (HYU), Seoul 04763, Republic of Korea
| | - Saeyoung Oh
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Sungsoo Hahn
- Quantum Technology Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Yubin Ji
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Min-Kyung Jo
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Republic of Korea
| | - Jeongtae Kim
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Tae-Seong Ju
- Quantum Technology Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Gyeongbo Kim
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Graduate Program of Semiconductor Science and Engineering, Yonsei University (YU), Seoul 03722, Republic of Korea
| | - Minseung Gyeon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Republic of Korea
| | - Yuhwa Lee
- Department of High Temperature Materials, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Jeonghyeon Do
- Department of High Temperature Materials, Korea Institute of Materials Science (KIMS), Changwon 51508, Republic of Korea
| | - Seungwook Choi
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Ansoon Kim
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Seungmo Yang
- Quantum Technology Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Chanyong Hwang
- Quantum Technology Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Kab-Jin Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Doohee Cho
- Graduate Program of Semiconductor Science and Engineering, Yonsei University (YU), Seoul 03722, Republic of Korea
- Department of Physics, Yonsei University (YU), Seoul 03722, Republic of Korea
| | - Changyoung Kim
- Department of Physics and Astronomy, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Kibum Kang
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology(KAIST), Daejeon 34141, Republic of Korea
| | - Hu Young Jeong
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungwoo Song
- Strategic Technology Research Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
- Graduate Program of Semiconductor Science and Engineering, Yonsei University (YU), Seoul 03722, Republic of Korea
| |
Collapse
|
40
|
Yu M, Tan C, Yin Y, Tang J, Gao X, Liu H, Ding F, Peng H. Integrated 2D multi-fin field-effect transistors. Nat Commun 2024; 15:3622. [PMID: 38684741 PMCID: PMC11058203 DOI: 10.1038/s41467-024-47974-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/17/2024] [Indexed: 05/02/2024] Open
Abstract
Vertical semiconducting fins integrated with high-κ oxide dielectrics have been at the centre of the key device architecture that has promoted advanced transistor scaling during the last decades. Single-fin channels based on two-dimensional (2D) semiconductors are expected to offer unique advantages in achieving sub-1 nm fin-width and atomically flat interfaces, resulting in superior performance and potentially high-density integration. However, multi-fin structures integrated with high-κ dielectrics are commonly required to achieve higher electrical performance and integration density. Here we report a ledge-guided epitaxy strategy for growing high-density, mono-oriented 2D Bi2O2Se fin arrays that can be used to fabricate integrated 2D multi-fin field-effect transistors. Aligned substrate steps enabled precise control of both nucleation sites and orientation of 2D fin arrays. Multi-channel 2D fin field-effect transistors based on epitaxially integrated 2D Bi2O2Se/Bi2SeO5 fin-oxide heterostructures were fabricated, exhibiting an on/off current ratio greater than 106, high on-state current, low off-state current, and high durability. 2D multi-fin channel arrays integrated with high-κ oxide dielectrics offer a strategy to improve the device performance and integration density in ultrascaled 2D electronics.
Collapse
Affiliation(s)
- Mengshi Yu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Congwei Tan
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Yuling Yin
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Junchuan Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Xiaoyin Gao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Hongtao Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Feng Ding
- Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Faculty of Materials Science and Energy Engineering, Shenzhen University of Advanced Technology, Shenzhen, China.
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing, China.
| |
Collapse
|
41
|
Zhu Y, Zhang J, Cheng T, Tang J, Duan H, Hu Z, Shao J, Wang S, Wei M, Wu H, Li A, Li S, Balci O, Shinde SM, Ramezani H, Wang L, Lin L, Ferrari AC, Yakobson BI, Peng H, Jia K, Liu Z. Controlled Growth of Single-Crystal Graphene Wafers on Twin-Boundary-Free Cu(111) Substrates. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308802. [PMID: 37878366 DOI: 10.1002/adma.202308802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/05/2023] [Indexed: 10/26/2023]
Abstract
Single-crystal graphene (SCG) wafers are needed to enable mass-electronics and optoelectronics owing to their excellent properties and compatibility with silicon-based technology. Controlled synthesis of high-quality SCG wafers can be done exploiting single-crystal Cu(111) substrates as epitaxial growth substrates recently. However, current Cu(111) films prepared by magnetron sputtering on single-crystal sapphire wafers still suffer from in-plane twin boundaries, which degrade the SCG chemical vapor deposition. Here, it is shown how to eliminate twin boundaries on Cu and achieve 4 in. Cu(111) wafers with ≈95% crystallinity. The introduction of a temperature gradient on Cu films with designed texture during annealing drives abnormal grain growth across the whole Cu wafer. In-plane twin boundaries are eliminated via migration of out-of-plane grain boundaries. SCG wafers grown on the resulting single-crystal Cu(111) substrates exhibit improved crystallinity with >97% aligned graphene domains. As-synthesized SCG wafers exhibit an average carrier mobility up to 7284 cm2 V-1 s-1 at room temperature from 103 devices and a uniform sheet resistance with only 5% deviation in 4 in. region.
Collapse
Affiliation(s)
- Yeshu Zhu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Jincan Zhang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Ting Cheng
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
| | - Jilin Tang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Hongwei Duan
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Jiaxin Shao
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Shiwei Wang
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Mingyue Wei
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Ang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Sheng Li
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Osman Balci
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Sachin M Shinde
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Hamideh Ramezani
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Luda Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, School of Integrated Circuits, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Andrea C Ferrari
- Cambridge Graphene Centre, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Boris I Yakobson
- Department of Materials Science & NanoEngineering, Rice University, Houston, TX, 77005, USA
- Department of Chemistry, Rice University, Houston, TX, 77005, USA
| | - Hailin Peng
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Zhongfan Liu
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| |
Collapse
|
42
|
Chen S, Chen G, Zhao Y, Bu S, Hu Z, Mao B, Wu H, Liao J, Li F, Zhou C, Guo B, Liu W, Zhu Y, Lu Q, Hu J, Shang M, Shi Z, Yu B, Zhang X, Zhao Z, Jia K, Zhang Y, Sun P, Liu Z, Lin L, Wang X. Tunable Adhesion for All-Dry Transfer of 2D Materials Enabled by the Freezing of Transfer Medium. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308950. [PMID: 38288661 DOI: 10.1002/adma.202308950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/30/2023] [Indexed: 02/09/2024]
Abstract
The real applications of chemical vapor deposition (CVD)-grown graphene films require the reliable techniques for transferring graphene from growth substrates onto application-specific substrates. The transfer approaches that avoid the use of organic solvents, etchants, and strong bases are compatible with industrial batch processing, in which graphene transfer should be conducted by dry exfoliation and lamination. However, all-dry transfer of graphene remains unachievable owing to the difficulty in precisely controlling interfacial adhesion to enable the crack- and contamination-free transfer. Herein, through controllable crosslinking of transfer medium polymer, the adhesion is successfully tuned between the polymer and graphene for all-dry transfer of graphene wafers. Stronger adhesion enables crack-free peeling of the graphene from growth substrates, while reduced adhesion facilitates the exfoliation of polymer from graphene surface leaving an ultraclean surface. This work provides an industrially compatible approach for transferring 2D materials, key for their future applications, and offers a route for tuning the interfacial adhesion that would allow for the transfer-enabled fabrication of van der Waals heterostructures.
Collapse
Affiliation(s)
- Sensheng Chen
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Ge Chen
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yixuan Zhao
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Saiyu Bu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zhaoning Hu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Boyang Mao
- Department of Engineering, University of Cambridge, Cambridge, CB3 0FA, UK
| | - Haotian Wu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Junhao Liao
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Fangfang Li
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Chaofan Zhou
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Bingbing Guo
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Wenlin Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Yaqi Zhu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qi Lu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Science, China University of Petroleum, Beijing, 102249, P. R. China
| | - Jingyi Hu
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Mingpeng Shang
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Zhuofeng Shi
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Beiming Yu
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xiaodong Zhang
- College of Chemical Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Zhenxin Zhao
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| | - Kaicheng Jia
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
| | - Yanfeng Zhang
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Pengzhan Sun
- Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa, Macau SAR, 999078, P. R. China
| | - Zhongfan Liu
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
| | - Li Lin
- School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China
- Technology Innovation Center of Graphene Metrology and Standardization for State Market Regulation, Beijing Graphene Institute, Beijing, 100095, P. R. China
- Center for Nanochemistry, Beijing Science and Engineering Center for Nanocarbons, Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P. R. China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, P. R. China
| | - Xiaomin Wang
- School of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan, 030002, P. R. China
| |
Collapse
|
43
|
Gautam C, Thakurta B, Pal M, Ghosh AK, Giri A. Wafer scale growth of single crystal two-dimensional van der Waals materials. NANOSCALE 2024; 16:5941-5959. [PMID: 38445855 DOI: 10.1039/d3nr06678a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) van der Waals (vdW) materials, including graphene, hexagonal boron nitride (hBN), and metal dichalcogenides (MCs), form the basis of modern electronics and optoelectronics due to their unique electronic structure, chemical activity, and mechanical strength. Despite many proof-of-concept demonstrations so far, to fully realize their large-scale practical applications, especially in devices, wafer-scale single crystal atomically thin highly uniform films are indispensable. In this minireview, we present an overview on the strategies and highlight recent significant advances toward the synthesis of wafer-scale single crystal graphene, hBN, and MC 2D thin films. Currently, there are five distinct routes to synthesize wafer-scale single crystal 2D vdW thin films: (i) nucleation-controlled growth by suppressing the nucleation density, (ii) unidirectional alignment of multiple epitaxial nuclei and their seamless coalescence, (iii) self-collimation of randomly oriented grains on a molten metal, (iv) surface diffusion and epitaxial self-planarization and (v) seed-mediated 2D vertical epitaxy. Finally, the challenges that need to be addressed in future studies have also been described.
Collapse
Affiliation(s)
- Chetna Gautam
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India.
| | - Baishali Thakurta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India
| | - Monalisa Pal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India
| | - Anup Kumar Ghosh
- Department of Physics, Institute of Science, Banaras Hindu University, Varanasi, UP - 221005, India.
| | - Anupam Giri
- Department of Chemistry, Faculty of Science, University of Allahabad, Prayagraj, UP-211002, India
| |
Collapse
|
44
|
Li L, Wang Q, Wu F, Xu Q, Tian J, Huang Z, Wang Q, Zhao X, Zhang Q, Fan Q, Li X, Peng Y, Zhang Y, Ji K, Zhi A, Sun H, Zhu M, Zhu J, Lu N, Lu Y, Wang S, Bai X, Xu Y, Yang W, Li N, Shi D, Xian L, Liu K, Du L, Zhang G. Epitaxy of wafer-scale single-crystal MoS 2 monolayer via buffer layer control. Nat Commun 2024; 15:1825. [PMID: 38418816 PMCID: PMC10901795 DOI: 10.1038/s41467-024-46170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 02/16/2024] [Indexed: 03/02/2024] Open
Abstract
Monolayer molybdenum disulfide (MoS2), an emergent two-dimensional (2D) semiconductor, holds great promise for transcending the fundamental limits of silicon electronics and continue the downscaling of field-effect transistors. To realize its full potential and high-end applications, controlled synthesis of wafer-scale monolayer MoS2 single crystals on general commercial substrates is highly desired yet challenging. Here, we demonstrate the successful epitaxial growth of 2-inch single-crystal MoS2 monolayers on industry-compatible substrates of c-plane sapphire by engineering the formation of a specific interfacial reconstructed layer through the S/MoO3 precursor ratio control. The unidirectional alignment and seamless stitching of MoS2 domains across the entire wafer are demonstrated through cross-dimensional characterizations ranging from atomic- to centimeter-scale. The epitaxial monolayer MoS2 single crystal shows good wafer-scale uniformity and state-of-the-art quality, as evidenced from the ~100% phonon circular dichroism, exciton valley polarization of ~70%, room-temperature mobility of ~140 cm2v-1s-1, and on/off ratio of ~109. Our work provides a simple strategy to produce wafer-scale single-crystal 2D semiconductors on commercial insulator substrates, paving the way towards the further extension of Moore's law and industrial applications of 2D electronic circuits.
Collapse
Affiliation(s)
- Lu Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinqin Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fanfan Wu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qiaoling Xu
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
- College of Physics and Electronic Engineering, Center for Computational Sciences, Sichuan Normal University, Chengdu, 610068, China
| | - Jinpeng Tian
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhiheng Huang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinghe Wang
- Collaborative Innovation Center of Quantum Matter and School of Physics, Peking University, 100871, Beijing, China
| | - Xuan Zhao
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Qinkai Fan
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xiuzhen Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yalin Peng
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yangkun Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Kunshan Ji
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Aomiao Zhi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Huacong Sun
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Mingtong Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Jundong Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Nianpeng Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Ying Lu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Shuopei Wang
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Xuedong Bai
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Yang Xu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Wei Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Na Li
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Dongxia Shi
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Lede Xian
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China
| | - Kaihui Liu
- Collaborative Innovation Center of Quantum Matter and School of Physics, Peking University, 100871, Beijing, China
| | - Luojun Du
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Guangyu Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, 100190, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Sciences, 100049, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, 523808, Guangdong, China.
| |
Collapse
|
45
|
Zhou J, Zhang G, Wang W, Chen Q, Zhao W, Liu H, Zhao B, Ni Z, Lu J. Phase-engineered synthesis of atomically thin te single crystals with high on-state currents. Nat Commun 2024; 15:1435. [PMID: 38365915 PMCID: PMC10873424 DOI: 10.1038/s41467-024-45940-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/08/2024] [Indexed: 02/18/2024] Open
Abstract
Multiple structural phases of tellurium (Te) have opened up various opportunities for the development of two-dimensional (2D) electronics and optoelectronics. However, the phase-engineered synthesis of 2D Te at the atomic level remains a substantial challenge. Herein, we design an atomic cluster density and interface-guided multiple control strategy for phase- and thickness-controlled synthesis of α-Te nanosheets and β-Te nanoribbons (from monolayer to tens of μm) on WS2 substrates. As the thickness decreases, the α-Te nanosheets exhibit a transition from metallic to n-type semiconducting properties. On the other hand, the β-Te nanoribbons remain p-type semiconductors with an ON-state current density (ION) up to ~ 1527 μA μm-1 and a mobility as high as ~ 690.7 cm2 V-1 s-1 at room temperature. Both Te phases exhibit good air stability after several months. Furthermore, short-channel (down to 46 nm) β-Te nanoribbon transistors exhibit remarkable electrical properties (ION = ~ 1270 μA μm-1 and ON-state resistance down to 0.63 kΩ μm) at Vds = 1 V.
Collapse
Affiliation(s)
- Jun Zhou
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Guitao Zhang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Wenhui Wang
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Qian Chen
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Weiwei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China
| | - Hongwei Liu
- Jiangsu Key Lab on Opto-Electronic Technology, School of Physics and Technology, Nanjing Normal University, 1 Wenyuan Road, Nanjing, 210023, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China.
| | - Zhenhua Ni
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China.
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| | - Junpeng Lu
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing, 211189, China.
- School of Electronic Science and Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
46
|
Gong P, Yuan S, Yu Z, Xiao T, Li H, Ma S, Bao W, Xu Z, Zhou P, Zhang DW, Li Q, Sun Z. Long-Range Epitaxial MOF Electronics for Continuous Monitoring of Human Breath Ammonia. J Am Chem Soc 2024; 146:4036-4044. [PMID: 38291728 DOI: 10.1021/jacs.3c12135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
As an important biomarker, ammonia exhibits a strong correlation with protein metabolism and specific organ dysfunction. Limited by the immobile instrumental structure, invasive and complicated procedures, and unsatisfactory online sensitivity and selectivity, current medical diagnosis fails to monitor this chemical in real time efficiently. Herein, we present the successful synthesis of a long-range epitaxial metal-organic framework on a millimeter domain-sized single-crystalline graphene substrate (LR-epi-MOF). With a perfect 30° epitaxial angle and a mere 2.8% coincidence site lattice mismatch between the MOF and graphene, this long-range-ordered epitaxial structure boosts the charge transfer from ammonia to the MOF and then to graphene, thereby promoting the overall charge delocalization and exhibiting extraordinary electrical global coupling properties. This unique characteristic imparts a remarkable sensitivity of 0.1 ppb toward ammonia. The sub-ppb detecting capability and high anti-interference ability enable continuous information recording of breath ammonia that is strongly correlated with the intriguing human lifestyle. Wearable electronics based on the LR-epi-MOF could accurately portray the active protein metabolism pattern in real time and provide personal assistance in health management.
Collapse
Affiliation(s)
- Peng Gong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Sailin Yuan
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Ziyan Yu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Taishi Xiao
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Hongbin Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Shunli Ma
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - Wenzhong Bao
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - Zihan Xu
- Shenzhen Six Carbon Technology, Shenzhen 518055, P. R. China
| | - Peng Zhou
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - David Wei Zhang
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
| | - Qiaowei Li
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Zhengzong Sun
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
- School of Microelectronics and State Key Laboratory of ASIC and System, Shanghai 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, P. R. China
| |
Collapse
|
47
|
Zhang L, Dong J, Ding F. Substrate Screening for the Epitaxial Growth of a Single-Crystal Graphene Wafer. J Phys Chem Lett 2024; 15:758-765. [PMID: 38226895 DOI: 10.1021/acs.jpclett.3c03355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Epitaxial growth of a two-dimensional (2D) single crystal necessitates the symmetry group of the substrate being a subgroup of that of the 2D material. As a consequence of the theory of 2D material epitaxy, high-index surfaces, which own very low symmetry, have been successfully used to grow various 2D single crystals, while the rule of selecting the best substrates for 2D single crystal growth is still absent. Here, extensive density functional theory calculations were conducted to investigate the growth of graphene on abundant high-index Cu substrates. Although step edges are commonly regarded as the most active sites for graphene nucleation, our study reveals that, in some cases, graphene nucleation on terraces is superior than that near a step edge. To achieve parallel alignments of graphene islands, it is essential to either suppress terrace nucleation or ensure consistent orientations templated by both the terrace and step edge. In agreement with most experimental observations, we show that Cu substrates for the growth of single-crystalline graphene include vicinal Cu(111) surfaces, vicinal Cu(110) surfaces with Miller indices of (nn1) (n > 3), and vicinal Cu(100) surfaces with Miller indices of (n11) (n > 3).
Collapse
Affiliation(s)
- Leining Zhang
- Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jichen Dong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Feng Ding
- Faculty of Materials Science and Engineering/Institute of Technology for Carbon Neutrality, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, People's Republic of China
| |
Collapse
|
48
|
Chen L, Cheng Z, He S, Zhang X, Deng K, Zong D, Wu Z, Xia M. Large-area single-crystal TMD growth modulated by sapphire substrates. NANOSCALE 2024; 16:978-1004. [PMID: 38112240 DOI: 10.1039/d3nr05400d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Transition metal dichalcogenides (TMDs) have recently attracted extensive attention due to their unique physical and chemical properties; however, the preparation of large-area TMD single crystals is still a great challenge. Chemical vapor deposition (CVD) is an effective method to synthesize large-area and high-quality TMD films, in which sapphires as suitable substrates play a crucial role in anchoring the source material, promoting nucleation and modulating epitaxial growth. In this review, we provide an insightful overview of different epitaxial mechanisms and growth behaviors associated with the atomic structure of sapphire surfaces and the growth parameters. First, we summarize three epitaxial growth mechanisms of TMDs on sapphire substrates, namely, van der Waals epitaxy, step-guided epitaxy, and dual-coupling-guided epitaxy. Second, we introduce the effects of polishing, cutting, and annealing processing of the sapphire surface on the TMD growth. Finally, we discuss the influence of other growth parameters, such as temperature, pressure, carrier gas, and substrate position, on the growth kinetics of TMDs. This review might provide deep insights into the controllable growth of large-area single-crystal TMDs on sapphires, which will propel their practical applications in high-performance nanoelectronics and optoelectronics.
Collapse
Affiliation(s)
- Lina Chen
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Zhaofang Cheng
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China
| | - Shaodan He
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Xudong Zhang
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Kelun Deng
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Dehua Zong
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Zipeng Wu
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
| | - Minggang Xia
- Department of Applied Physics, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China.
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China
- Shaanxi Province Key Laboratory of Quantum Information and Optoelectronic Quantum Devices, School of Physics, Xi'an Jiaotong University, 710049, People's Republic of China
| |
Collapse
|
49
|
Zhang H, Liu Q, Deng L, Ma Y, Daneshmandi S, Cen C, Zhang C, Voyles PM, Jiang X, Zhao J, Chu CW, Gai Z, Li L. Room-Temperature Ferromagnetism in Epitaxial Bilayer FeSb/SrTiO 3(001) Terminated with a Kagome Lattice. NANO LETTERS 2024; 24:122-129. [PMID: 37913524 PMCID: PMC10786153 DOI: 10.1021/acs.nanolett.3c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/03/2023]
Abstract
Two-dimensional (2D) magnets exhibit unique physical properties for potential applications in spintronics. To date, most 2D ferromagnets are obtained by mechanical exfoliation of bulk materials with van der Waals interlayer interactions, and the synthesis of single- or few-layer 2D ferromagnets with strong interlayer coupling remains experimentally challenging. Here, we report the epitaxial growth of 2D non-van der Waals ferromagnetic bilayer FeSb on SrTiO3(001) substrates stabilized by strong coupling to the substrate, which exhibits in-plane magnetic anisotropy and a Curie temperature above 390 K. In situ low-temperature scanning tunneling microscopy/spectroscopy and density-functional theory calculations further reveal that an Fe Kagome layer terminates the bilayer FeSb. Our results open a new avenue for further exploring emergent quantum phenomena from the interplay of ferromagnetism and topology for application in spintronics.
Collapse
Affiliation(s)
- Huimin Zhang
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
- State
Key Laboratory of Structural Analysis, Optimization and CAE Software
for Industrial Equipment, Dalian University
of Technology, Dalian, 116024, China
| | - Qinxi Liu
- Key
Laboratory of Materials Modification by Laser, Ion and Electron Beams
(Dalian University of Technology), Ministry
of Education, Dalian 116024, China
| | - Liangzi Deng
- Department
of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas, 77204, United States
| | - Yanjun Ma
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
| | - Samira Daneshmandi
- Department
of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas, 77204, United States
| | - Cheng Cen
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
- Beijing National
Laboratory for Condensed Matter Physics and Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Chenyu Zhang
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Paul M. Voyles
- Department
of Materials Science and Engineering, University
of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Xue Jiang
- State
Key Laboratory of Structural Analysis, Optimization and CAE Software
for Industrial Equipment, Dalian University
of Technology, Dalian, 116024, China
- Key
Laboratory of Materials Modification by Laser, Ion and Electron Beams
(Dalian University of Technology), Ministry
of Education, Dalian 116024, China
| | - Jijun Zhao
- State
Key Laboratory of Structural Analysis, Optimization and CAE Software
for Industrial Equipment, Dalian University
of Technology, Dalian, 116024, China
- Key
Laboratory of Materials Modification by Laser, Ion and Electron Beams
(Dalian University of Technology), Ministry
of Education, Dalian 116024, China
| | - Ching-Wu Chu
- Department
of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas, 77204, United States
| | - Zheng Gai
- Center
for Nanophase Materials Sciences, Oak Ridge
National Laboratory, Oak Ridge, Tennessee, 37831 United States
| | - Lian Li
- Department
of Physics and Astronomy, West Virginia
University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
50
|
Xu M, Dong R, Gong X, Ma L. Mechanism of Controllable Growth of Large-Area Single-Crystal Hexagonal Boron Nitride on Preoxidized Copper Substrate. J Phys Chem Lett 2023; 14:11665-11672. [PMID: 38109335 DOI: 10.1021/acs.jpclett.3c02764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Two-dimensional (2D) hexagonal boron nitride (h-BN) exhibits promising properties for electronic and photoelectric devices, while the growth of high-quality h-BN remains challenging. Here we theoretically explored the mechanism of epitaxial growth of high-quality h-BN by using the preoxidized and hydrogen-annealed copper substrate, i.e., Cu2O. It is revealed thermodynamically that the unidirectional nucleation of h-BN can be rationalized on the symmetry-matched Cu2O(111) surface rather than the antiparallel nucleation on the Cu(111) surface. Kinetically, the dehydrogenation of feedstock of h-BN on the Cu2O(111) surface is also much easier than that on the Cu(111) surface. Both the B and N atoms are energetically more preferred to stay on the surface rather than inside the body of Cu2O, which leads to a surface-diffusion-based growth behavior on the Cu2O(111) surface instead of the precipitation-diffusion mixed case on the Cu(111) surface. Our work may guide future experimental design for the controllable growth of wafer-scale single-crystal h-BN.
Collapse
Affiliation(s)
- Mingxia Xu
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ruikang Dong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China
| | - Xiaoshu Gong
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Liang Ma
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215004, China
| |
Collapse
|