1
|
Mao JH, Shen ZH, Wang J, Liu RL, Liu XF, Lan Y, Zhou M, Jiang JY, Shen Y, Nan CW. Machine Learning-Enabled Emotion Recognition by Multisource Throat Signals. ACS NANO 2025; 19:18397-18408. [PMID: 40329705 DOI: 10.1021/acsnano.5c01451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Emotion monitoring plays a crucial role in mental health management. However, traditional methods of emotion recognition predominantly rely on subjective questionnaires or facial expression analyses, which are often inadequate for continuous and highly accurate monitoring. In this study, we propose a high-precision, fine-grained emotion recognition system based on multisource throat physiological signals. The system collects signals through optimized flexible multiporous skin sensors and analyzes them using machine learning models capable of efficiently capturing complex feature interactions. First, we adopt a two-step cross-linking strategy to modulate the porous structure of the sensitive layer to enable accurate detection of the diverse and weak physiological signals in the throat. By extracting four-dimensional features from the input of 7025 samples, the platform based on the Light Gradient Boosting Machine (LightGBM) efficiently captures their nonlinear interactions, ultimately achieving precise classification of five emotional states (relaxation, surprise, disgust, fear, and neutral) with an accuracy of 98.9%. Further validation on an independent data set reveals an average emotion recognition accuracy of 99.3%, demonstrating the system's robustness and reliability in real-world applications. This work provides a viable technological solution for real-time and continuous emotion monitoring, offering significant potential in mental health management and related fields.
Collapse
Affiliation(s)
- Jing-Hui Mao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Zhong-Hui Shen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Jian Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Run-Lin Liu
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Xiao-Fei Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | - Ying Lan
- School of Materials and Microelectronics, Wuhan University of Technology, Wuhan 430070, China
| | - Mengjun Zhou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center of Smart Materials and Devices, Wuhan University of Technology, Wuhan 430070, China
| | | | - Yang Shen
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| | - Ce-Wen Nan
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
2
|
Li Y, Wang M, Meng Y, Wang Q, Fu Q, Yu C, Zhu L, Cai L, Chen C, Xia C, Wang S. Nanocellulose Hybrid Membranes for Green Flexible Electronics: Interface Design and Functional Assemblies. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40372239 DOI: 10.1021/acsami.5c04027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Flexible electronics have garnered significant attention in recent years. The emergence of membrane electronics addresses several limitations of rigid counterparts, such as high Young's modulus, poor biocompatibility, and poor responsiveness. Nevertheless, the development of traditional polymer and semiconductor membranes faces serious limitations. Nanocellulose (NC), known for its multifunctionality, biocompatibility, biodegradability, high mechanical strength, structural flexibility, and reinforcing capabilities, presents an excellent possibility to develop flexible electronics depending on the self-assembly behavior. Meanwhile, the combination of NC and functional fillers enables the fabrication of high-performance membranes with amplification capabilities, making them suitable for application in conductive materials for sensing and energy storage applications. The creation includes preparation strategies and potential applications. Moreover, the interface reaction mechanism and micro/nano scale morphology structure of carbon-based materials, polymers, and metal oxides combined with NC hybrid membranes are summarized from a molecular perspective. We discuss the design strategies and performance trends for improving mechanical properties, thermal conductivity, heat resistance, optical performance, and electrical conductivity of NC hybrid membranes. The recent advancements in nanocellulose for flexible sensors, thermal management, supercapacitors, and solar cells are evaluated along with perspectives on the current challenges and future directions in the development of NC membrane-based multifunctional flexible electronics. It will help improve the development of green flexible electronics, thereby advancing future investigations of this field.
Collapse
Affiliation(s)
- Yuhang Li
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Min Wang
- College of Material Science and Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Yuan Meng
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Quanliang Wang
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Qiliang Fu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chenkai Yu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Longxiao Zhu
- College of Mechanical and Electrical Engineering, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Liping Cai
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Chunxia Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, Heilongjiang 150040, China
| | - Changlei Xia
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
3
|
Wang HX, Zhu X, Liu M. Emergent chiral and topological nanoarchitectonics in self-assembled supramolecular systems. Chem Soc Rev 2025. [PMID: 40309872 DOI: 10.1039/d2cs00259k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The fabrication of structures with designated topologies at the nanoscale is an intriguing issue, attributed to the possibility of both imparting unique properties to functional materials and unravelling the codes that lie in many natural systems. As a significant bottom-up approach, the self-assembly strategy is potent in formulating various exquisite structures. While the building of common types of miniaturized structures such as tubes, twists and spheres has been investigated in depth to gain insight into the intrinsic principles that dictate their formation and functions, the preparation of peculiar topological nanostructures is still scattered and unsystematic. In parallel, chirality is among the most ubiquitous phenomena of fundamental significance in nature and is in close relationship with the origin of life. Essentially, chirality represents a type of orderliness and thus may interplay with peculiar topologies in an orchestrated and serendipitous way. In this review, we describe the development of constructing emergent chiral and topological nanoarchitectures via the self-assembly method, mainly focusing on structures including toroids, catenanes, Möbius strips, spirals and fractals. In addition, other types involving toruloids/kebabs, trumpets and bamboos, screws, dendritic and lamellar twists are also exemplified. The design of building blocks and various self-assembling strategies towards these target architectures are highlighted in this review, in an effort to provide an overview of the feasible approaches that facilitate the tailored construction of mesoscopic structures.
Collapse
Affiliation(s)
- Han-Xiao Wang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Xuefeng Zhu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China.
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
4
|
Xu M, Song Z, Peng Q, Xu Q, Du Z, Ruan T, Yang B, Liu Q, Liu X, Hou X, Qin M, Liu J. Catheter-Integrated Fractal Microelectronics for Low-Voltage Ablation and Minimally Invasive Sensing. ACS Sens 2025; 10:2779-2789. [PMID: 40190250 DOI: 10.1021/acssensors.4c03477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Pulse field ablation (PFA) has become a popular technique for treating tens of millions of patients with atrial fibrillation, as it avoids many complications associated with traditional radiofrequency ablation. However, currently, limited studies have used millimeter-scale rigid electrodes modified from radiofrequency ablation to apply electrical pulses of thousands of volts without integrated sensing capabilities. Herein, we combine fractal microelectronics with biomedical catheters for low-voltage PFA, detection of electrode-tissue contact, and interventional electrocardiogram recording. The fractal configuration increases the ratio of the microelectrode insulating edge to area, which facilitates the transfer of current from the microelectrode to the tissue, increasing the ablation depth by 38.6% at 300 V (a 10-fold reduction compared to current technology). In vivo ablation experiments on living beagles successfully block electrical conduction, as demonstrated by voltage mapping and electrical pacing. More impressively, this study provides the first evidence that microelectrodes can selectively ablate cardiomyocytes without damaging nerves and blood vessels, greatly improving the safety of PFA. These results are essential for the clinical translation of PFA in the field of cardiac electrophysiology.
Collapse
Affiliation(s)
- Mengfei Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziliang Song
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Quan Peng
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingda Xu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhiyuan Du
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tao Ruan
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
- DCI Joint Team, Collaborative Innovation Center of IFSA, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bin Yang
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingkun Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xu Liu
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Xumin Hou
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Mu Qin
- Department of Cardiology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingquan Liu
- National Key Laboratory of Advanced Micro and Nano Manufacture Technology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
5
|
Hu Z, Chen Y, Xu J, Hao J, Bao H, Li X, You R, Xiong Z, Yang H, Xu H. In-situ generation and stabilization of gas bubbles for multiphase catalysis. J Colloid Interface Sci 2025; 683:300-311. [PMID: 39681019 DOI: 10.1016/j.jcis.2024.12.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/28/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024]
Abstract
Introducing stable gas bubbles in liquid is important for the industrial synthesis of chemicals and intermediates via multiphase reactions because of limited solubility of gaseous reactants such as H2 and O2. Herein, a bubble-stabilized system is constructed via in-situ nucleation of bubbles at the surfaces of various polymer nanofibers that circumvents the repulsive interactions between gas-liquid interfaces and nanofibers. During bubble growth processes, nanofibers are self-assembled and interwoven to build spatial nanofiber network surrounding bubbles, firmly trapping bubbles in the liquid phase. Surprisingly, the immobilization of bubbles in liquid can be sustained up to 20 h. These trapped bubbles can serve as gas storage vessels to remarkably boost the multiphase reactions because of the adequate gas-liquid-solid contact sites as demonstrated by the multiphase nitroarenes reduction in contrast to the bubble-free system. Furthermore, the immobilized bubbles are almost completely utilized (98.9 %) in multiphase reactions. This work provides an enlightenment for capturing and storing bubbles in liquid towards industrial multiphase reactions.
Collapse
Affiliation(s)
- Zhengsong Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yiquan Chen
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Jie Xu
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Jiajia Hao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiufang Li
- State Key Laboratory of New Textile Materials and Advanced Processing Technology, Key Laboratory for New Textile Materials and Applications of Hubei Province, School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Renchuan You
- School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ze Xiong
- Wireless and Smart Bioelectronics Lab, School of Biomedical Engineering, ShanghaiTech University, Shanghai 201210, China
| | - Hengquan Yang
- Shanxi Key Laboratory of Coal-based Value-added Chemicals Green Catalysis Synthesis, School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, China.
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, SA 5095, Australia.
| |
Collapse
|
6
|
Kalulu M, Chilikwazi B, Hu J, Fu G. Soft Actuators and Actuation: Design, Synthesis, and Applications. Macromol Rapid Commun 2025; 46:e2400282. [PMID: 38850266 DOI: 10.1002/marc.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/31/2024] [Indexed: 06/10/2024]
Abstract
Soft actuators are one of the most promising technological advancements with potential solutions to diverse fields' day-to-day challenges. Soft actuators derived from hydrogel materials possess unique features such as flexibility, responsiveness to stimuli, and intricate deformations, making them ideal for soft robotics, artificial muscles, and biomedical applications. This review provides an overview of material composition and design techniques for hydrogel actuators, exploring 3D printing, photopolymerization, cross-linking, and microfabrication methods for improved actuation. It examines applications of hydrogel actuators in biomedical, soft robotics, bioinspired systems, microfluidics, lab-on-a-chip devices, and environmental, and energy systems. Finally, it discusses challenges, opportunities, advancements, and regulatory aspects related to hydrogel actuators.
Collapse
Affiliation(s)
- Mulenga Kalulu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Bright Chilikwazi
- Department of Chemistry, School of Natural Sciences, The University of Zambia, Lusaka, 10101, Zambia
| | - Jun Hu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning, Nanjing, Jiangsu Province, 211189, P. R. China
| |
Collapse
|
7
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
8
|
Zhou Y, Chen J, Lu Z, Qi L, Zhou J, Xu C, Chen L, Huang J, Wang S, Wang Z, Ghani A, Tan G, Lu C, Liu Z, Pang Z, Deng H, Chen C. Super-strong hydrogel reinforced by an interconnected hollow microfiber network via regulating the water-cellulose-copolymer interplay. Sci Bull (Beijing) 2025; 70:923-933. [PMID: 39863486 DOI: 10.1016/j.scib.2025.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025]
Abstract
The discontinuous fiber reinforced hydrogels are easy to fail due to the fracture of the fiber matrix during load-bearing. Here, we propose a novel strategy based on the synergistic reinforcement of interconnected natural fiber networks at multiple scales to fabricate hydrogels with extraordinary mechanical properties. Specifically, the P(AA-AM)/Cel (P(AA-AM), poly(acrylic acid-acrylamide); Cel, cellulose) hydrogel is synthesized by copolymerizing AA and AM on a substrate of paper with an interconnected hollow cellulose microfiber network. This innovative design achieves a collaborative improvement of mechanical properties, including a 253-times increase in strength (27.8 vs. 0.11 MPa), 137-times increase in work of fracture (3.59 vs. 0.026 MJ m-3), and 235-times increase in fracture energy (16.48 vs. 0.07 kJ m-2). These outstanding mechanical properties benefit from the P(AA-AM) network formed by the copolymerization, which fills both the inside and outside of the hollow cellulose fibers, thus establishing abundant strong hydrogen bonds with the fibers and welding the fiber junctions. Consequently, the hydrogel exhibits enhanced resistance to the slippage and fracture of fibers. This strategy demonstrates the mechanical strengthening effectiveness of a variety of hydrogels by regulating the water-cellulose-copolymer interplay, representing a practical and universal route for designing super-strong hydrogels.
Collapse
Affiliation(s)
- Yifang Zhou
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Junqing Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Ziyang Lu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Luhe Qi
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jie Zhou
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Chao Xu
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Lu Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Jing Huang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Sijun Wang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Zhiqiang Wang
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China
| | - Awais Ghani
- Department of Architecture, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Gang Tan
- Department of Architecture, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Cai Lu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Ze Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Zhenqian Pang
- Department of Architecture, College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310027, China; Smart Materials for Architecture Research Lab, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China.
| | - Hongbing Deng
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| | - Chaoji Chen
- Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Hubei Provincial Engineering Research Center of Emerging Functional Coating Materials, School of Resource and Environmental Sciences, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
9
|
Khan WU, Shen Z, Mugo SM, Wang H, Zhang Q. Implantable hydrogels as pioneering materials for next-generation brain-computer interfaces. Chem Soc Rev 2025; 54:2832-2880. [PMID: 40035554 DOI: 10.1039/d4cs01074d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Use of brain-computer interfaces (BCIs) is rapidly becoming a transformative approach for diagnosing and treating various brain disorders. By facilitating direct communication between the brain and external devices, BCIs have the potential to revolutionize neural activity monitoring, targeted neuromodulation strategies, and the restoration of brain functions. However, BCI technology faces significant challenges in achieving long-term, stable, high-quality recordings and accurately modulating neural activity. Traditional implantable electrodes, primarily made from rigid materials like metal, silicon, and carbon, provide excellent conductivity but encounter serious issues such as foreign body rejection, neural signal attenuation, and micromotion with brain tissue. To address these limitations, hydrogels are emerging as promising candidates for BCIs, given their mechanical and chemical similarities to brain tissues. These hydrogels are particularly suitable for implantable neural electrodes due to their three-dimensional water-rich structures, soft elastomeric properties, biocompatibility, and enhanced electrochemical characteristics. These exceptional features make them ideal for signal recording, neural modulation, and effective therapies for neurological conditions. This review highlights the current advancements in implantable hydrogel electrodes, focusing on their unique properties for neural signal recording and neuromodulation technologies, with the ultimate aim of treating brain disorders. A comprehensive overview is provided to encourage future progress in this field. Implantable hydrogel electrodes for BCIs have enormous potential to influence the broader scientific landscape and drive groundbreaking innovations across various sectors.
Collapse
Affiliation(s)
- Wasid Ullah Khan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhenzhen Shen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- CAS Applied Chemistry Science & Technology Co., Ltd, Changchun, Jilin 130022, P. R. China
| |
Collapse
|
10
|
Chen Z, Yu C, Zhong W. Preparation of Mechanically Strong Aramid Nanofiber Gel Film with Surprising Entanglements and Orientation Structure Through Aprotic Donor Solvent Exchange. MATERIALS (BASEL, SWITZERLAND) 2025; 18:1142. [PMID: 40077367 PMCID: PMC11901970 DOI: 10.3390/ma18051142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025]
Abstract
Aramid nanofiber (ANF), a nanoscale building block with a prominently complex structure, can be prepared by splitting poly(p-phenylene terephthalamide) (PPTA) fibers into negatively charged ANFs in a deprotonating manner in a DMSO/KOH solvent system, followed by a subsequent re-protonation process using a proton-donor reagent. There are rare reports regarding the utilization of an aprotic donor reagent to convert deprotonated ANF dispersion into film or gel with a controllable structure and high mechanical properties. In this work, dichloromethane, as an anhydrous aprotic donor solvent, has been introduced into the deprotonated ANF dispersion to replace DMSO, containing PPTA molecules and hydroxyl ions, leading to the gelation of deprotonated ANF dispersions, forming a film (ANFDCM) possessing a surprisingly highly entangled and oriented structure, as proven by SEM results. Due to the attenuation of electrostatic repulsion in the dispersion, partially deprotonated ANFs intertwined and cross-linked through π-π conjugation among a large number of benzene rings in PPTA molecules. After treating ANFDCM with water for re-protonation, the as-prepared film (ANFDCM-W) exhibited high tensile strength (307.7 MPa) and toughness (74.7 MJ m-3).
Collapse
Affiliation(s)
| | | | - Wenbin Zhong
- College of Materials Science and Engineering, Hunan University, Changsha 410082, China; (Z.C.); (C.Y.)
| |
Collapse
|
11
|
Shin Y, Lee HS, Kim JU, An YH, Kim YS, Hwang NS, Kim DH. Functional-hydrogel-based electronic-skin patch for accelerated healing and monitoring of skin wounds. Biomaterials 2025; 314:122802. [PMID: 39255530 DOI: 10.1016/j.biomaterials.2024.122802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/05/2024] [Accepted: 09/01/2024] [Indexed: 09/12/2024]
Abstract
Conductive hydrogels feature reasonable electrical performance as well as tissue-like mechanical softness, thus positioning them as promising material candidates for soft bio-integrated electronics. Despite recent advances in materials and their processing technologies, however, facile patterning and monolithic integration of functional hydrogels (e.g., conductive, low-impedance, adhesive, and insulative hydrogels) for all-hydrogel-based soft bioelectronics still poses significant challenges. Here, we report material design, fabrication, and integration strategies for an electronic-skin (e-skin) patch based on functional hydrogels. The e-skin patch was fabricated by using photolithography-compatible functional hydrogels, such as poly(2-hydroxyethyl acrylate) (PHEA) hydrogel (substrate), Ag flake hydrogel (interconnection; conductivity: ∼571.43 S/cm), poly(3,4-ethylenedioxythiophene:polystyrene) (PEDOT:PSS) hydrogel (working electrode; impedance: ∼69.84 Ω @ 1 Hz), polydopamine (PDA) hydrogel (tissue adhesive; shear strength: ∼725.1 kPa), and poly(vinyl alcohol) (PVA) hydrogel (encapsulation). The properties of these functional hydrogels closely resemble those of human tissues in terms of water content and Young's modulus, enabling stable tissue-device interfacing in dynamically changing physiological environments. We demonstrated the efficacy of the e-skin patch through its application to accelerated healing and monitoring of skin wounds in mouse models - efficient fibroblast migration, proliferation, and differentiation promoted by electric field (EF) stimulation and iontophoretic drug delivery, and monitoring of the accelerated healing process through impedance mapping. The all-hydrogel-based e-skin patch is expected to create new opportunities for various clinically-relevant tissue interfacing applications.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong-Uk Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young-Hyeon An
- BioMax/N-Bio Institute, Institute of Bio Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ye-Sol Kim
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nathaniel S Hwang
- School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea; BioMax/N-Bio Institute, Institute of Bio Engineering, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Engineering Research, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea; School of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
12
|
Zhao J, Chen Y, Qin Y, Li Y, Lu X, Xie C. Adhesive and Conductive Hydrogels for the Treatment of Myocardial Infarction. Macromol Rapid Commun 2025; 46:e2400835. [PMID: 39803789 DOI: 10.1002/marc.202400835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/27/2024] [Indexed: 05/02/2025]
Abstract
Myocardial infarction (MI) is a leading cause of mortality among cardiovascular diseases. Following MI, the damaged myocardium is progressively being replaced by fibrous scar tissue, which exhibits poor electrical conductivity, ultimately resulting in arrhythmias and adverse cardiac remodeling. Due to their extracellular matrix-like structure and excellent biocompatibility, hydrogels are emerging as a focal point in cardiac tissue engineering. However, traditional hydrogels lack the necessary conductivity to restore electrical signal transmission in the infarcted regions. Imparting conductivity to hydrogels while also enhancing their adhesive properties enables them to adhere closely to myocardial tissue, establish stable electrical connections, and facilitate synchronized contraction and myocardial tissue repair within the infarcted area. This paper reviews the strategies for constructing conductive and adhesive hydrogels, focusing on their application in MI repair. Furthermore, the challenges and future directions in developing adhesive and conductive hydrogels for MI repair are discussed.
Collapse
Affiliation(s)
- Jialiang Zhao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Ying Chen
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuanyuan Qin
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yongqi Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- Key Lab of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
13
|
Tu M, Zhao T, Guo H, Zhang C, Liu M, Zhang Z, Wang B, Yu H. Functional Hydrogels for Implantable Bioelectronic Devices. LUMINESCENCE 2025; 40:e70148. [PMID: 40099618 DOI: 10.1002/bio.70148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 03/20/2025]
Abstract
In recent years, with the rapid development of flexible electronics, implantable electronic devices have received increasing attention, and they provide new solutions for medical diagnosis and treatment. To ensure the long-term and stable operation of electronic devices in the internal environment, materials with conductivity, flexibility, biocompatibility, and other properties are in high demand. Hydrogels are polymers with three-dimensional network structures that not only have physical and chemical properties similar to those of biological tissues but can be also modulated by introducing functional groups to regulate the conductivity, adhesion, self-healing, and other functions. Therefore, hydrogel-based implantable bioelectronic devices are considered to be a candidate development direction in the future of the biomedical field. Here, this paper reviews the research progress in the molecular design and performance modulation of functionalized hydrogels based on four key properties of hydrogels: conductivity, self-healing, adhesion, and toughness. The latest progress in the use of functionalized hydrogels in implantable bioelectronic device applications is summarized below. Finally, discussions are given on the challenges and opportunities of hydrogels for implantable bioelectronic devices.
Collapse
Affiliation(s)
- Mingxi Tu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tianming Zhao
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Hongji Guo
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| | - Chengzhi Zhang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, Shenyang, China
- Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, China
| | - Meihan Liu
- School of Electrical & Control Engineering, Shenyang Jianzhu University, Shenyang, China
| | - Zeyu Zhang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Bo Wang
- School of Mechanical Engineering and Automation, Northeastern University, Shenyang, China
| | - Haibo Yu
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, China
| |
Collapse
|
14
|
Huang X, Li L, Zhu H, Lv T, Tang L, Shentu Z, Li H, Gao T, Zhang K, Hu J, Wang W, Xue B, Lei H, Cao Y. Designing High-Damping, Optically Clear Ionogels through Competitive Binding for Flexible and Impact-Resistant Applications. ACS APPLIED MATERIALS & INTERFACES 2025; 17:9830-9840. [PMID: 39874299 DOI: 10.1021/acsami.4c19831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Developing damping materials that are both optically transparent and mechanically robust, while offering broad frequency damping capacity, is a significant challenge─particularly for devices that require protection without compromising visual clarity. Conventional methods often either fail to maintain transparency or involve complex designs that are difficult to implement. Here, we present an ionogel system that integrates a physically cross-linked elastic copolymer network with a viscous ionic liquid. The competitive interactions between the ionic liquid and the polymer network enable fine-tuning of the mechanical stability and damping capacity. The resulting ionogel is transparent and mechanically robust and exhibits excellent damping over a wide frequency range. Remarkably, a thin layer (0.15 mm) absorbs nearly 60% of the impact force and retains its performance after exposure to extreme conditions. This approach offers a straightforward method for designing advanced damping materials that meet both the aesthetic and functional demands of modern technologies.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Luofei Li
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Haoqi Zhu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Tiancheng Lv
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Lei Tang
- Beijing Xiaomi Mobile Software Co., Ltd, Beijing 100085, China
| | - Zhexian Shentu
- Beijing Xiaomi Mobile Software Co., Ltd, Beijing 100085, China
| | - Haoyue Li
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Tian Gao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Kai Zhang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Juntao Hu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Wei Wang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Hai Lei
- School of Physics, Institute of Advanced Physics, Zhejiang University, Hangzhou 310027, China
| | - Yi Cao
- Department of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
15
|
Wang Y, Jiao Y, Wang J, Zhang H, Ye T, Lu J, He E, Li L, Song J, Bai C, Li X, Li Y, Li F, Li F, Jian J, Yang S, Hou X, Li Q, Zhao S, Tan R, Zhang Y. Metalgel Fiber with Excellent Electrical and Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8198-8208. [PMID: 39854174 DOI: 10.1021/acsami.4c19418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
With the rapid advancement of soft electronics, particularly the rise of fiber electronics and smart textiles, there is an urgent need to develop high-performance fiber materials with both excellent electrical and mechanical properties. However, existing fiber materials including metal fibers, carbon-based fibers, intrinsically conductive polymer fibers, and composite fibers struggle to simultaneously meet the requirements. Here, we introduce a metalgel fiber with a unique structure. In metalgel fibers, liquid metal forms a continuum, extending throughout the entire volume of nanostructured fucoidan polymer networks, which are immobilized by electrostatic interactions. The distinctive structure imparts the fiber with metallic conductivity (2.8 × 106 S·m-1), softness (Young's modulus of 1.8 MPa), and stable electromechanical coupling properties (resistance change <5% after 20,000 times pressing, stretching, bending, and twisting cycles). The metalgel fibers were woven into multifunctional smart textiles, highlighting their potential for practical applications.
Collapse
Affiliation(s)
- Yuanzhen Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yiding Jiao
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jiacheng Wang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Hanting Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Tingting Ye
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jiang Lu
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Er He
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Luhe Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jie Song
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Chenyu Bai
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Xusong Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Yiran Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Fangyan Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Fengqi Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Jingrui Jian
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Shuo Yang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Xinxin Hou
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianming Li
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| | - Shupeng Zhao
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ruiyang Tan
- College of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China
| | - Ye Zhang
- National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Wei Z, Li Y, Guo S, Han R, Luo X. A wearable electrochemical sensor utilizing multifunctional hydrogel for antifouling ascorbic acid quantification in sweat. Anal Chim Acta 2025; 1337:343548. [PMID: 39800507 DOI: 10.1016/j.aca.2024.343548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/26/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025]
Abstract
The accurate and reliable quantification of the levels of disease markers in human sweat is of significance for health monitoring through wearable sensing technology, but the sensors performed in real sweat always suffer from biofouling that cause performance degradation or even malfunction. We herein developed a wearable antifouling electrochemical sensor based on a novel multifunctional hydrogel for the detection of targets in sweat. The integration of polyethylene glycol (PEG) into the sulfobetaine methacrylate (SBMA) hydrogel results in a robust network structure characterized by abundant hydrophilic groups on its surface, significantly enhancing the PEG-SBMA hydrogel's antifouling and mechanical properties. The wearable sweat sensor is specifically designed for ascorbic acid (AA) detection. The incorporation of a silver nanoparticles-molybdenum disulfide (AgNPs-MoS2) composite material into the hydrogel significantly enhances its catalytic properties towards AA. Electrochemical analysis confirms that the sensor reliably detects AA in real sweat with minimal interference from other components and bacteria, demonstrating its practical application potential. Furthermore, this multifunctional hydrogel's mechanical robustness and strong adhesion to various substrates ensure its practical applicability in wearable devices. This technology provides a foundation for accurate health monitoring in wearable sensors, enabling advanced, non-invasive diagnostic tools for personalized healthcare.
Collapse
Affiliation(s)
- Zhen Wei
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yanxin Li
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Shuyue Guo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| | - Xiliang Luo
- Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China.
| |
Collapse
|
17
|
Yang YQ, Pang XW, Zeng ZF, Xu ZC, Qin YQ, Gong LX, Ding H, Dai J, Li SN. Lignin nanoparticle/MXene-based conductive hydrogel with mechanical robustness and strain-sensitivity property via rapid self-gelation process towards flexible sensor. Int J Biol Macromol 2025; 291:139086. [PMID: 39716715 DOI: 10.1016/j.ijbiomac.2024.139086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/08/2024] [Accepted: 12/20/2024] [Indexed: 12/25/2024]
Abstract
Conductive hydrogels have been showcased with substantial potential for soft wearable devices. However, the tedious preparation process and poor trade-off among overall properties, i.e., mechanical and sensing performance, severely limits flexibility of electronics' applications. Herein, we have developed a rapid self-gelation system for achieving high-performance conductive hydrogel within several minutes at ambient condition. The rapid gelation mechanism is attributed to the hydroxyl radical species generated with the help of lignin nanoparticle-Mn+1 (Ag+, Ca2+, Mg2+, Al3+ and Fe3+) based on reversible redox reaction and MXene activization effect. By adjusting the material components, the cross-linked polymer network can be highly strengthened by multiple physical interactions and nano-reinforcement, strongly supporting the mechanical performance. Comparatively, Fe3+-based conductive hydrogel displays integrated merits of mechanical robustness, high stretchability and good electrical conductivity. Meanwhile, due to excellent mechanical and electrical performance, such hydrogel-based sensor possesses good sensing performance, i.e., high sensitivity (maximum GF: 1.08), cyclic reliability and wide work window (0-860 %), displaying promising application in strain-induced detection. Our sensors also produce stable and reliable signal output for signature/vocal recognition. Apparently, the strategy developed herein sets up an innovative concept for highly-efficient green fabricating advanced hydrogel materials for emerging wearable electronics.
Collapse
Affiliation(s)
- Yu-Qin Yang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Xiao-Wen Pang
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Zi-Fan Zeng
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China; Hangzhou Heyu Technology Co., Ltd., Hangzhou 311500, PR China
| | - Zhi-Chao Xu
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Yu-Qing Qin
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Li-Xiu Gong
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Haichang Ding
- Jiangxi Key Laboratory of Organic Chemistry, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jinfeng Dai
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China
| | - Shi-Neng Li
- College of Chemistry and Materials Engineering, Zhejiang A & F University, Hangzhou 311300, PR China.
| |
Collapse
|
18
|
Wang Z, Hu Q, Yao S, Wang S, Liu X, Zhang C, Wang ZL, Li L. Flexible Triboelectric Nanogenerator Patch for Accelerated Wound Healing Through the Synergy of Electrostimulation and Photothermal Effect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409756. [PMID: 39791305 DOI: 10.1002/smll.202409756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/02/2024] [Indexed: 01/12/2025]
Abstract
Physiological wound healing process can restore the functional and structural integrity of skin, but is often delayed due to external disturbance. The development of methods for promoting the repair process of skin wounds represents a highly desired and challenging goal. Here, a flexible, self-powered, and multifunctional triboelectric nanogenerator (TENG) wound patch (e-patch) is presented for accelerating wound healing through the synergy of electrostimulation and photothermal effect. To fabricate the triboelectric e-patch, a flexible and conductive hydrogel with a dual network of polyacrylamide (PAM) and polydopamine (PDA) is synthesized and doped with multi-walled carbon nanotubes (MCNTs). The hydrogel exhibits high conductivity, good stretchability, and high biocompatibility. The triboelectric e-patch assembled from the hydrogel can detect mechanical and electrical signals of human motions in a real-time manner. In a rodent model of full-thickness dorsal skin wound, the e-patch integrating self-driven electrostimulation and photothermal effect under the near-infrared light irradiation efficiently promotes wound repair and hair follicle regeneration through relieving inflammation, fastening collagen deposition, vascular regeneration, and epithelialization. It offers a promising way to accelerate wound healing.
Collapse
Affiliation(s)
- Zhuo Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Quanhong Hu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Shuncheng Yao
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Shaobo Wang
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Xi Liu
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
| | - Cuiping Zhang
- Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
| | - Zhong Lin Wang
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Linlin Li
- Guangzhou Institute of Blue Energy, Knowledge City, Huangpu District, Guangzhou, 510555, P. R. China
- Beijing Key Laboratory of Micro-Nano Energy and Sensor, Center for High-Entropy Energy and Systems, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, Guangxi Colleges and Universities Key Laboratory of Blue Energy and Systems Integration, School of Physical Science & Technology, Guangxi University, Nanning, 530004, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
19
|
Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L, Zhang D. Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408657. [PMID: 39530645 PMCID: PMC11714238 DOI: 10.1002/advs.202408657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Fibrous hydrogels (FGs), characterized by a 3D network structure made from prefabricated fibers, fibrils and polymeric materials, have emerged as significant materials in numerous fields. However, the challenge of balancing mechanical properties and functions hinders their further development. This article reviews the main advantages of FGs, including enhanced mechanical properties, high conductivity, high antimicrobial and anti-inflammatory properties, stimulus responsiveness, and an extracellular matrix (ECM)-like structure. It also discusses the influence of assembly methods, such as fiber cross-linking, interfacial treatments of fibers with hydrogel matrices, and supramolecular assembly, on the diverse functionalities of FGs. Furthermore, the mechanisms for improving the performance of the above five aspects are discussed, such as creating ion carrier channels for conductivity, in situ gelation of drugs to enhance antibacterial and anti-inflammatory properties, and entanglement and hydrophobic interactions between fibers, resulting in ECM-like structured FGs. In addition, this review addresses the application of FGs in sensors, dressings, and tissue scaffolds based on the synergistic effects of optimizing the performance. Finally, challenges and future applications of FGs are discussed, providing a theoretical foundation and new insights for the design and application of cutting-edge FGs.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Bin Hu
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Research Institute of Xi'an Jiaotong UniversityHangzhou311200P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| |
Collapse
|
20
|
Li F, Gan L, Yang X, Tan Z, Shi H, Lai C, Zhang D. Progress of AI assisted synthesis of polysaccharides-based hydrogel and their applications in biomedical field. Int J Biol Macromol 2025; 287:138643. [PMID: 39667472 DOI: 10.1016/j.ijbiomac.2024.138643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Polymeric hydrogels, characterized by their highly hydrophilic three-dimensional network structures, boast exceptional physical and chemical properties alongside high biocompatibility and biodegradability. These attributes make them indispensable in various biomedical applications such as drug delivery, tissue engineering, wound dressings and sensor technologies. With the integration of artificial intelligence (AI), hydrogels are undergoing significant transformations in design, leveraging human-machine interaction, machine learning, neural networks, and 3D/4D printing technology. This article provides a concise yet comprehensive overview of polysaccharide-based hydrogels, exploring their intrinsic properties, functionalities, preparation techniques, and classifications, alongside their progress in biomedical research. Special emphasis is placed on AI-enhanced hydrogels, underscoring their transformative potential in redefining hydrogel performance and functionality. By integrating AI technologies, these intelligent hydrogels open unprecedented opportunities in precision medicine, adaptive biomaterials, and smart healthcare systems, highlighting promising directions for future research.
Collapse
Affiliation(s)
- Fangyu Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Lu Gan
- College of Traditional Chinese Medicine, Xinjaing Medical University, Urumqi, Xinjiang 830017, China
| | - Xurui Yang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Zhongbiao Tan
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China
| | - Hao Shi
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, Jiangsu 223003, China.
| | - Chenhuan Lai
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Daihui Zhang
- Institute of Chemical Industry of Forest Product, Chinese Academy of Forestry, Nanjing, Jiangsu 210042, China
| |
Collapse
|
21
|
Wei H, Jing H, Cheng C, Liu Y, Hao J. A Biomimetic One‐Stone‐Two‐Birds Hydrogel with Electroconductive, Photothermally Antibacterial and Bioadhesive Properties for Skin Tissue Regeneration and Mechanosensation Restoration. ADVANCED FUNCTIONAL MATERIALS 2024. [DOI: 10.1002/adfm.202417280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Indexed: 01/06/2025]
Abstract
AbstractSevere skin wounds arising from burns, cancers, and accidents can damage the entire tissue structure, resulting in permanent somatosensory dysfunction in patients. Although emerging hydrogel dressings have shown clinical potential for accelerating wound repair, the use of an individual material to synchronously restore the tissue structure and sensory function of defective skin remains a challenge. Herein, a multifunctional hydrogel that combines electroconductive polydopamine‐capped graphene nanosheets (PrGOs) embedded in a dynamically crosslinked dual‐polysaccharide (xyloglucan and chitosan) matrix network is presented. The fabricated hydrogels have an adjustable modulus that can be matched to skin tissue at the wound site, owing to the dynamic Schiff‐based crosslinking as well as the facile photo‐triggered secondary crosslinking. Furthermore, the photothermal activity of PrGO can elevate the local temperature up to ≈50 °C, significantly restraining bacterial growth. These two factors jointly promote the regeneration of skin tissue. Tissue adhesion of hydrogels is also reported that offers a conformable and robust interface that can detect and quantify human movement and physiological signals to mimic the human skin somatosensory system. This hydrogel offers an effective one‐stone‐for‐two‐birds material that simultaneously achieves tissue regeneration and multi‐signal sensing, promoting the restoration and/or replacement of the structure and function of damaged skins.
Collapse
Affiliation(s)
- Hua Wei
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Houchao Jing
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Can Cheng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Yaqing Liu
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education School of Chemistry and Chemical Engineering Shandong University Jinan 250100 China
| |
Collapse
|
22
|
Li L, Shanmugasundaram A, Kim J, Oyunbaatar NE, Kanade PP, Cha SE, Lim D, Lee CH, Kim YB, Lee BK, Kim ES, Lee DW. Graphene SU-8 Platform for Enhanced Cardiomyocyte Maturation and Intercellular Communication in Cardiac Drug Screening. ACS NANO 2024; 18:33293-33309. [PMID: 39591586 DOI: 10.1021/acsnano.4c05365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
Cell culture substrates designed for myocardial applications are pivotal in promoting the maturation and functional integration of cardiomyocytes. However, traditional in vitro models often inadequately mimic the diverse biochemical signals and electrophysiological properties of mature cardiomyocytes. Herein, we propose the application of monolayer graphene, transferred onto SU-8 cantilevers integrated with a microelectrode array, to evaluate its influence on the structural, functional, and electro-mechano-physiological properties of cardiomyocytes. The monolayer graphene, prepared using chemical vapor deposition, is adeptly transferred to the target substrates via thermal release tape. The electrical conductivity of these graphene-enhanced SU-8 substrates is about 1600 S/cm, markedly surpassing that of previously reported cell culture substrates. Immunofluorescence staining and Western blot analyses reveal that the electrically conductive graphene significantly enhances cardiomyocyte maturation and cardiac marker expression compared to bare SU-8 substrates. Cardiomyocytes cultured on graphene-transferred substrates exhibit conduction velocity approximately 3.4 times greater than that of the control group. Such improvements in cardiac marker expression, mechano-electrophysiological performance lead to better responsiveness to cardiovascular drugs, such as Verapamil and Isoproterenol. While the graphene monolayer does not fully replicate the complex environment found in native cardiac tissue, its use on SU-8 substrates offers a feasible approach for accelerating cardiomyocyte maturation and facilitating drug screening applications.
Collapse
Affiliation(s)
- Longlong Li
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Arunkumar Shanmugasundaram
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jongyun Kim
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Nomin-Erdene Oyunbaatar
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Pooja P Kanade
- Centre for Quantum Materials and Technology, School of Mathematics and Physics, Queen's University Belfast, Northern Ireland, Belfast BT7 1NN, U.K
| | - Seong-Eung Cha
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Daeyun Lim
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Chil-Hyoung Lee
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Young-Baek Kim
- Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology, Gwangju 61012, Republic of Korea
| | - Bong-Kee Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eung-Sam Kim
- Department of Biological Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dong-Weon Lee
- Department of Mechanical Engineering, Chonnam National University, Gwangju 61186, Republic of Korea
- Advanced Medical Device Research Center for Cardiovascular Disease, Chonnam National University, Gwangju 61186, Republic of Korea
- Center for Next-Generation Sensor Research and Development, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
23
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
24
|
Lin S, Li X, Yuan D, Liu Y, Jin Z, Li P. Conductive Polymer Hydrogel-Derived 3D Nanostructures for Energy and Environmental Electrocatalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406235. [PMID: 39279356 DOI: 10.1002/smll.202406235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Renewable energy and advanced water treatment technologies hold profound significance for driving sustainable development in modern society. Given the environmental friendliness and high efficiency of electrocatalysis processes, great expectations are placed on their applications in energy and water-related fields. However, the electrocatalysis is limited by the selectivity, activity, and durability of the electrocatalytic reactions. Hydrogels, with their hierarchical porous structure, compositional and structural tunability, and ease of functionalization, are bringing surprising advances in advanced energy and environment. Hydrogel catalysts, inheriting the advantages of hydrogel materials, hold promise for achieving significant breakthroughs in electrochemical performance. Here, the latest advancements in energy and environmental electrocatalytic fields are summarized based on the 3D nanostructured hydrogel catalysts. In addition, future potentials and challenges of continuing research on hydrogel materials for energy and environment are discussed.
Collapse
Affiliation(s)
- Siyi Lin
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Xin Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Dunyi Yuan
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Yuanting Liu
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
25
|
Wang Y, Liu Z, Liu Y, Yan J, Wu H, Zhang H, Li H, Wang J, Xue H, Wang L, Shi Y, Tang L, Song P, Gao J. Strong, tough and environment-tolerant organohydrogels for flaw-insensitive strain sensing. MATERIALS HORIZONS 2024; 11:5662-5673. [PMID: 39221913 DOI: 10.1039/d4mh00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conductive organohydrogels are promising for strain sensing, while their weak mechanical properties, poor crack propagation resistance and unstable sensing signals during long-term use have seriously limited their applications as high-performance strain sensors. Here, we propose a facile method, i.e., solvent exchange assisted hot-pressing, to prepare strong yet tough, transparent and anti-fatigue ionically conductive organohydrogels (ICOHs). The densified polymeric network and improved crystallinity endow ICOHs with excellent mechanical properties. The tensile strength, toughness, fracture energy and fatigue threshold of ICOHs can reach 36.12 ± 4.15 MPa, 54.57 ± 2.89 MJ m-3, 43.44 ± 8.54 kJ m-2 and 1212.86 ± 57.20 J m-2, respectively, with a satisfactory fracture strain of 266 ± 33%. In addition, ICOH strain sensors with freezing and drying resistance exhibit excellent cycling stability (10 000 cycles). More importantly, the fatigue resistance allows the notched strain sensor to work normally with no crack propagation and output stable and reliable sensing signals. Overall, the unique flaw-insensitive strain sensing makes ICOHs promising in the field of wearable and durable electronics.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yuntao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Huamin Li
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Junjie Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
26
|
Lyu X, Zhang H, Shen S, Gong Y, Zhou P, Zou Z. Multi-Modal Sensing Ionogels with Tunable Mechanical Properties and Environmental Stability for Aquatic and Atmospheric Environments. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2410572. [PMID: 39292213 DOI: 10.1002/adma.202410572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/11/2024] [Indexed: 09/19/2024]
Abstract
Ionogels have garnered significant interest due to their great potential in flexible iontronic devices. However, their limited mechanical tunability and environmental intolerance have posed significant challenges for their integration into next-generation flexible electronics in different scenarios. Herein, the synergistic effect of cation-oxygen coordination interaction and hydrogen bonding is leveraged to construct a 3D supramolecular network, resulting in ionogels with tunable modulus, stretchability, and strength, achieving an unprecedented elongation at break of 10 800%. Moreover, the supramolecular network endows the ionogels with extremely high fracture energy, crack insensitivity, and high elasticity. Meanwhile, the high environmental stability and hydrophobic network of the ionogels further shield them from the unfavorable effects of temperature variations and water molecules, enabling them to operate within a broad temperature range and exhibit robust underwater adhesion. Then, the ionogel is assembled into a wearable sensor, demonstrating its great potential in flexible sensing (temperature, pressure, and strain) and underwater signal transmission. This work can inspire the applications of ionogels in multifunctional sensing and wearable fields.
Collapse
Affiliation(s)
- Xiaolin Lyu
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
| | - Haoqi Zhang
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Shengtao Shen
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yue Gong
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Piaopiao Zhou
- Department of Critical Care Medicine, Fujian Medical University Union Hospital, Fuzhou, Fujian, 350001, China
| | - Zhigang Zou
- Key Laboratory of Advanced Materials Technologies, International (HongKong Macao and Taiwan) Joint Laboratory on Advanced Materials Technologies, College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China
- Eco-materials and Renewable Energy Research Center, College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
27
|
Xiong J, Zhao X, Liu Z, Chen H, Yan Q, Lian H, Chen Y, Peng Q, He X. Multifunctional Nacre-Like Nanocomposite Papers for Electromagnetic Interference Shielding via Heterocyclic Aramid/MXene Template-Assisted In-Situ Polypyrrole Assembly. NANO-MICRO LETTERS 2024; 17:53. [PMID: 39480629 PMCID: PMC11528091 DOI: 10.1007/s40820-024-01552-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/29/2024] [Indexed: 11/02/2024]
Abstract
Robust, ultra-flexible, and multifunctional MXene-based electromagnetic interference (EMI) shielding nanocomposite films exhibit enormous potential for applications in artificial intelligence, wireless telecommunication, and portable/wearable electronic equipment. In this work, a nacre-inspired multifunctional heterocyclic aramid (HA)/MXene@polypyrrole (PPy) (HMP) nanocomposite paper with large-scale, high strength, super toughness, and excellent tolerance to complex conditions is fabricated through the strategy of HA/MXene hydrogel template-assisted in-situ assembly of PPy. Benefiting from the "brick-and-mortar" layered structure and the strong hydrogen-bonding interactions among MXene, HA, and PPy, the paper exhibits remarkable mechanical performances, including high tensile strength (309.7 MPa), outstanding toughness (57.6 MJ m-3), exceptional foldability, and structural stability against ultrasonication. By using the template effect of HA/MXene to guide the assembly of conductive polymers, the synthesized paper obtains excellent electronic conductivity. More importantly, the highly continuous conductive path enables the nanocomposite paper to achieve a splendid EMI shielding effectiveness (EMI SE) of 54.1 dB at an ultra-thin thickness (25.4 μm) and a high specific EMI SE of 17,204.7 dB cm2 g-1. In addition, the papers also have excellent applications in electromagnetic protection, electro-/photothermal de-icing, thermal therapy, and fire safety. These findings broaden the ideas for developing high-performance and multifunctional MXene-based films with enormous application potential in EMI shielding and thermal management.
Collapse
Affiliation(s)
- Jinhua Xiong
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Xu Zhao
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| | - Zonglin Liu
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - He Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qian Yan
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Huanxin Lian
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Yunxiang Chen
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| | - Qingyu Peng
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China.
| | - Xiaodong He
- National Key Laboratory of Science and Technology On Advanced Composites in Special Environments, Center for Composite Materials and Structures, Harbin Institute of Technology, Harbin, 150080, People's Republic of China
| |
Collapse
|
28
|
Liu C, Wang Y, Shi S, Zheng Y, Ye Z, Liao J, Sun Q, Dang B, Shen X. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. ACS NANO 2024; 18:27420-27432. [PMID: 39331416 DOI: 10.1021/acsnano.4c07677] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
Collapse
Affiliation(s)
- Chencong Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yubo Zheng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiaqi Liao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Baokang Dang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
29
|
Yao X, Li Y, Li S, Song Y, Zhang J, Yang L, Hang ZH, Zhang X, Yang Z. Hierarchically Structured Cellulose Acetate@Silk Protein Membrane with Enhanced Mechanical and Electromagnetic Interference Shielding Performances. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39367812 DOI: 10.1021/acsami.4c13560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2024]
Abstract
Compared to conventional fibers, electrospun porous nanofibers with hierarchical structures often involve additional active sites, interfaces, and internal spaces which boost the performances of functional materials. Here in this study, coaxial composite cellulose acetate@silk fibroin (CA@SF) fibrous membranes are constructed through an electrostatic spinning technique combining solvent-induced phase separation. Hierarchical core-shell structures on the fibers are achieved, which significantly increases the surface area and benefits the mechanical property, flux, as well as the electroless deposition of Ag nanoparticles. The total electromagnetic shielding efficiency of the sandwiched hierarchical CA@SF@Ag composite membrane with a thickness of only 100 μm reaches up to 100 dB, surpassing around 82% beyond nonhierarchical ones. To be noticed, when post-treated by ethanol, the membrane enables an enhanced tensile strength of up to 10 MPa with a thickness of only 50 μm. Our findings pave the way to the application of electrospun fiber membranes in the field of ultrathin electromagnetic shielding films.
Collapse
Affiliation(s)
- Xinyu Yao
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yitan Li
- National Engineering Research Center for Colloidal Materials, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, Shandong, P. R. China
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, Shandong University, Jinan 250100, Shandong, P. R. China
| | - Shengjie Li
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Yaoqieyu Song
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Jiapeng Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Linglu Yang
- Suzhou NanomicroTechnology Co., Ltd., 2 Baichuan Street, Suzhou Industrial Park, Suzhou 215123, P. R. China
| | - Zhi Hong Hang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
| | - Xiaohua Zhang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| | - Zhaohui Yang
- School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University, Suzhou 215006, P. R. China
| |
Collapse
|
30
|
Mirzajani H, Kraft M. Soft Bioelectronics for Heart Monitoring. ACS Sens 2024; 9:4328-4363. [PMID: 39239948 DOI: 10.1021/acssensors.4c00442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Cardiovascular diseases (CVDs) are a predominant global health concern, accounting for over 17.9 million deaths in 2019, representing approximately 32% of all global fatalities. In North America and Europe, over a million adults undergo cardiac surgeries annually. Despite the benefits, such surgeries pose risks and require precise postsurgery monitoring. However, during the postdischarge period, where monitoring infrastructures are limited, continuous monitoring of vital signals is hindered. In this area, the introduction of implantable electronics is altering medical practices by enabling real-time and out-of-hospital monitoring of physiological signals and biological information postsurgery. The multimodal implantable bioelectronic platforms have the capability of continuous heart sensing and stimulation, in both postsurgery and out-of-hospital settings. Furthermore, with the emergence of machine learning algorithms into healthcare devices, next-generation implantables will benefit artificial intelligence (AI) and connectivity with skin-interfaced electronics to provide more precise and user-specific results. This Review outlines recent advancements in implantable bioelectronics and their utilization in cardiovascular health monitoring, highlighting their transformative deployment in sensing and stimulation to the heart toward reaching truly personalized healthcare platforms compatible with the Sustainable Development Goal 3.4 of the WHO 2030 observatory roadmap. This Review also discusses the challenges and future prospects of these devices.
Collapse
Affiliation(s)
- Hadi Mirzajani
- Department of Electrical and Electronics Engineering, Koç University, Rumelifeneri Yolu, Sarıyer, Istanbul, 34450 Turkey
| | - Michael Kraft
- Department of Electrical Engineering (ESAT-MNS), KU Leuven, 3000 Leuven, Belgium
- Leuven Institute for Micro- and Nanoscale Integration (LIMNI), KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
31
|
Lim C, Lee S, Kang H, Cho YS, Yeom DH, Sunwoo SH, Park C, Nam S, Kim JH, Lee SP, Kim DH, Hyeon T. Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407931. [PMID: 39129342 DOI: 10.1002/adma.202407931] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high-quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold-hydrogel nanocomposites exhibit a conductivity of ≈520 S cm-1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm-1 when the density of the dry gold network is controlled. A gold-adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer-based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.
Collapse
Affiliation(s)
- Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
32
|
Jiang Y, Zhu C, Ma X, Fan D. Crossover Integration: Multimaterial Design and Fabrication Strategies in Advanced Tissue Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18755-18757. [PMID: 39155673 DOI: 10.1021/acs.jafc.4c07296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotechnology & Biomedical Research Institute, Northwest University, Xi'an 710127, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotechnology & Biomedical Research Institute, Northwest University, Xi'an 710127, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotechnology & Biomedical Research Institute, Northwest University, Xi'an 710127, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Shaanxi Key Laboratory of Biomaterials and Synthetic Biology, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710127, China
- Biotechnology & Biomedical Research Institute, Northwest University, Xi'an 710127, China
| |
Collapse
|
33
|
Ji H, Feng S, Yang M. Controlled Structural Relaxation of Aramid Nanofibers for Superstretchable Polymer Fibers with High Toughness and Heat Resistance. ACS NANO 2024; 18:18548-18559. [PMID: 38968387 DOI: 10.1021/acsnano.4c04388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Polymer fibers that combine high toughness and heat resistance are hard to achieve, which, however, hold tremendous promise in demanding applications such as aerospace and military. This prohibitive design task exists due to the opposing property dependencies on chain dynamics because traditional heat-resistant materials with rigid molecular structures typically lack the mechanism of energy dissipation. Aramid nanofibers have received great attention as high-performance nanoscale building units due to their intriguing mechanical and thermal properties, but their distinct structural features are yet to be fully captured. We show that aramid nanofibers form nanoscale crimps during the removal of water, which primarily resides at the defect planes of pleated sheets, where the folding can occur. The precise control of such a structural relaxation can be realized by exerting axial loadings on hydrogel fibers, which allows the emergence of aramid fibers with varying angles of crimps. These crimped fibers integrate high toughness with heat resistance, thanks to the extensible nature of nanoscale crimps with rigid molecular structures of poly(p-phenylene terephthalamide), promising as a template for stable stretchable electronics. The tensile strength/modulus (392-944 MPa/11-29 GPa), stretchability (25-163%), and toughness (154-445 MJ/cm3) are achieved according to the degree of crimping. Intriguingly, a toughness of around 430 MJ/m3 can be maintained after calcination below the relaxation temperature (259 °C) for 50 h. Even after calcination at 300 °C for 10 h, a toughness of 310 MJ/m3 is kept, outperforming existing polymer materials. Our multiscale design strategy based on water-bearing aramid nanofibers provides a potent pathway for tackling the challenge for achieving conflicting property combinations.
Collapse
Affiliation(s)
- He Ji
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Shouhua Feng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| | - Ming Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
34
|
Thirumalai D, Santhamoorthy M, Kim SC, Lim HR. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024; 10:459. [PMID: 39057482 PMCID: PMC11275512 DOI: 10.3390/gels10070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Hydrogels are gaining popularity for use in wearable electronics owing to their inherent biomimetic characteristics, flexible physicochemical properties, and excellent biocompatibility. Among various hydrogels, conductive polymer-based hydrogels (CP HGs) have emerged as excellent candidates for future wearable sensor designs. These hydrogels can attain desired properties through various tuning strategies extending from molecular design to microstructural configuration. However, significant challenges remain, such as the limited strain-sensing range, significant hysteresis of sensing signals, dehydration-induced functional failure, and surface/interfacial malfunction during manufacturing/processing. This review summarizes the recent developments in polymer-hydrogel-based wearable electrochemical biosensors over the past five years. Initially serving as carriers for biomolecules, polymer-hydrogel-based sensors have advanced to encompass a wider range of applications, including the development of non-enzymatic sensors facilitated by the integration of nanomaterials such as metals, metal oxides, and carbon-based materials. Beyond the numerous existing reports that primarily focus on biomolecule detection, we extend the scope to include the fabrication of nanocomposite conductive polymer hydrogels and explore their varied conductivity mechanisms in electrochemical sensing applications. This comprehensive evaluation is instrumental in determining the readiness of these polymer hydrogels for point-of-care translation and state-of-the-art applications in wearable electrochemical sensing technology.
Collapse
Affiliation(s)
- Dinakaran Thirumalai
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38544, Republic of Korea; (M.S.); (S.-C.K.)
| | - Hyo-Ryoung Lim
- Digital Healthcare Research Center, Pukyong National University, Busan 48513, Republic of Korea;
- Major of Human Bioconvergence, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
35
|
Li Z, Guo H, Jin X. Fabrication of Uniform Anionic Polymeric Nanoplatelets as Building Blocks for Constructing Conductive Hydrogels with Enhancing Conductive and Mechanical Properties. Macromol Rapid Commun 2024; 45:e2400008. [PMID: 38659335 DOI: 10.1002/marc.202400008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/17/2024] [Indexed: 04/26/2024]
Abstract
Conductive hydrogels play a crucial role in advancing technologies like implantable bioelectronics and wearable electronic devices, owing to their favorable conductivity and appropriate mechanical properties. Here, a novel bottom-up approach is reported for crafting conductive nanocomposite hydrogels to achieve enhancing conductive and mechanical properties. In this approach, new poly(ɛ-caprolactone)-based block copolymers with sulfonic groups are first synthesized and self-assembled into uniform polyanionic nanoplatelets. Subsequently, these negatively charged nanoplatelets, with sulfonic groups on the surface, are employed as nanoadditives for the polymerization of 3,4-ethylenedioxythiophene (EDOT), resulting in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS)/nanoplatelet complex with 3.8 times enhanced electrical conductivity compared with their counterparts prepared using block copolymers (BCPs). Blending the (PEDOT:PSS)/nanoplatelet complex with calcium alginate, nanocomposite hydrogels are successfully prepared. In comparison with hydrogels with (PEDOT:PSS)/BCP complexes prepared by a top-down method, the nanocomposite hydrogels are found to show twice as strong mechanical strength and 1.6 times higher conductivity. This work provides valuable insights into the bottom-up construction of conductive hydrogels for bioelectronics using well-controlled polymeric nanoplatelets.
Collapse
Affiliation(s)
- Zehua Li
- School of Chemistry, Beijing Institute of Technology, Beijing, 102488, China
| | - Hui Guo
- School of Chemistry, Beijing Institute of Technology, Beijing, 102488, China
| | - Xuhui Jin
- School of Chemistry, Beijing Institute of Technology, Beijing, 102488, China
| |
Collapse
|
36
|
Li H, Zhang W, Liao X, Xu L. Kirigami enabled reconfigurable three-dimensional evaporator arrays for dynamic solar tracking and high efficiency desalination. SCIENCE ADVANCES 2024; 10:eado1019. [PMID: 38924404 PMCID: PMC11204288 DOI: 10.1126/sciadv.ado1019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
A kirigami-engineered composite hydrogel membrane is exploited for the construction of three dimensional (3D) solar-tracking evaporator arrays with outstanding evaporation performance and salt tolerance. The hybrid nanofiber network in the hydrogel membrane offers favorable water transport dynamics combined with excellent structural robustness, which are beneficial for the engineering of 3D dynamic structures. Periodic triangular cuts patterned into the membrane allow formation and reconfiguration of 3D conical arrays controlled by uniaxial stretching. With these structures, the tilt angles of the membrane surface are actively tuned to follow the solar trajectory, leading to a solar evaporation rate ~80% higher than that of static planar devices. Furthermore, the tapered 3D flaps and their micro-structured surfaces are capable of localized salt crystallization for prolonged solar desalination, enabling a stable evaporation rate of 3.4 kg m-2 hour-1 even in saturated brine. This versatile design may facilitate the implementation of solar evaporators for desalination and provide inspirations for other soft functional devices with dynamic 3D configurations.
Collapse
Affiliation(s)
- Hao Li
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Weixin Zhang
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
| | - Xi Liao
- School of Construction Engineering, Shenzhen Polytechnic University, Shenzhen 518055, China
- Department of Architecture, The University of Hong Kong, Hong Kong SAR 999077, China
| | - Lizhi Xu
- Department of Mechanical Engineering, The University of Hong Kong, Hong Kong SAR 999077, China
- Advanced Biomedical Instrumentation Centre Limited, Hong Kong SAR 999077, China
- Materials Innovation Institute for Life Sciences and Energy (MILES), The University of Hong Kong Shenzhen Institute of Research and Innovation (HKU-SIRI), Shenzhen 518057, China
| |
Collapse
|
37
|
Lee KK, Celt N, Ardoña HAM. Looking both ways: Electroactive biomaterials with bidirectional implications for dynamic cell-material crosstalk. BIOPHYSICS REVIEWS 2024; 5:021303. [PMID: 38736681 PMCID: PMC11087870 DOI: 10.1063/5.0181222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 04/15/2024] [Indexed: 05/14/2024]
Abstract
Cells exist in natural, dynamic microenvironmental niches that facilitate biological responses to external physicochemical cues such as mechanical and electrical stimuli. For excitable cells, exogenous electrical cues are of interest due to their ability to stimulate or regulate cellular behavior via cascade signaling involving ion channels, gap junctions, and integrin receptors across the membrane. In recent years, conductive biomaterials have been demonstrated to influence or record these electrosensitive biological processes whereby the primary design criterion is to achieve seamless cell-material integration. As such, currently available bioelectronic materials are predominantly engineered toward achieving high-performing devices while maintaining the ability to recapitulate the local excitable cell/tissue microenvironment. However, such reports rarely address the dynamic signal coupling or exchange that occurs at the biotic-abiotic interface, as well as the distinction between the ionic transport involved in natural biological process and the electronic (or mixed ionic/electronic) conduction commonly responsible for bioelectronic systems. In this review, we highlight current literature reports that offer platforms capable of bidirectional signal exchange at the biotic-abiotic interface with excitable cell types, along with the design criteria for such biomaterials. Furthermore, insights on current materials not yet explored for biointerfacing or bioelectronics that have potential for bidirectional applications are also provided. Finally, we offer perspectives aimed at bringing attention to the coupling of the signals delivered by synthetic material to natural biological conduction mechanisms, areas of improvement regarding characterizing biotic-abiotic crosstalk, as well as the dynamic nature of this exchange, to be taken into consideration for material/device design consideration for next-generation bioelectronic systems.
Collapse
Affiliation(s)
- Kathryn Kwangja Lee
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, University of California, Irvine, California 92697, USA
| | | |
Collapse
|
38
|
Sun Y, Cui J, Feng S, Cui J, Guo Y, Liang C, Gao W, Lu Z, Liu F, Zhang B. Projection Stereolithography 3D Printing High-Conductive Hydrogel for Flexible Passive Wireless Sensing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400103. [PMID: 38573809 DOI: 10.1002/adma.202400103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/07/2024] [Indexed: 04/06/2024]
Abstract
Hydrogel-based electronics have inherent similarities to biological tissues and hold potential for wearable applications. However, low conductivity, poor stretchability, nonpersonalizability, and uncontrollable dehydration during use limit their further development. In this study, projection stereolithography 3D printing high-conductive hydrogel for flexible passive wireless sensing is reported. The prepared photocurable silver-based hydrogel is rapidly planarized into antenna shapes on substrates using surface projection stereolithography. After partial dehydration, silver flakes within the circuits form sufficient conductive pathways to achieve high conductivity (387 S cm-1). By sealing the circuits to prevent further dehydration, the resistance remains stable when tensile strain is less than 100% for at least 30 days. Besides, the sealing materials provide versatile functionalities, such as stretchability and shape memory property. Customized flexible radio frequency identification tags are fabricated by integrating with commercial chips to complete the accurate recognition of eye movement, realizing passive wireless sensing.
Collapse
Affiliation(s)
- Yongding Sun
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jin Cui
- School of Information and Science Technology, Northwest University, 1 Xuefu Street, Xi'an, 710127, China
| | - Shiwei Feng
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Jingjing Cui
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Yunlong Guo
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Chen Liang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Weizi Gao
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Zhe Lu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Fukang Liu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| | - Biao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, 710072, China
| |
Collapse
|
39
|
Du Y, Kim JH, Kong H, Li AA, Jin ML, Kim DH, Wang Y. Biocompatible Electronic Skins for Cardiovascular Health Monitoring. Adv Healthc Mater 2024; 13:e2303461. [PMID: 38569196 DOI: 10.1002/adhm.202303461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 02/27/2024] [Indexed: 04/05/2024]
Abstract
Cardiovascular diseases represent a significant threat to the overall well-being of the global population. Continuous monitoring of vital signs related to cardiovascular health is essential for improving daily health management. Currently, there has been remarkable proliferation of technology focused on collecting data related to cardiovascular diseases through daily electronic skin monitoring. However, concerns have arisen regarding potential skin irritation and inflammation due to the necessity for prolonged wear of wearable devices. To ensure comfortable and uninterrupted cardiovascular health monitoring, the concept of biocompatible electronic skin has gained substantial attention. In this review, biocompatible electronic skins for cardiovascular health monitoring are comprehensively summarized and discussed. The recent achievements of biocompatible electronic skin in cardiovascular health monitoring are introduced. Their working principles, fabrication processes, and performances in sensing technologies, materials, and integration systems are highlighted, and comparisons are made with other electronic skins used for cardiovascular monitoring. In addition, the significance of integrating sensing systems and the updating wireless communication for the development of the smart medical field is explored. Finally, the opportunities and challenges for wearable electronic skin are also examined.
Collapse
Affiliation(s)
- Yucong Du
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ji Hong Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Hui Kong
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Anne Ailina Li
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Ming Liang Jin
- Institute for Future, Shandong Key Laboratory of Industrial Control Technology, School of Automation, Qingdao University, Qingdao, 266071, China
| | - Do Hwan Kim
- Department of Chemical Engineering, Hanyang University, Seoul, 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul, 04763, Republic of Korea
- Clean-Energy Research Institute, Hanyang University, Seoul, 04763, Republic of Korea
| | - Yin Wang
- Institute of Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
40
|
Zhao J, Feng J, Jiang Y, Wang Z, Zhang J, Mei S, Yang G, Gu Z, Tan C, Qin Y, Li Z. Skin-Integrated Electrodes Based on Room-Temperature Curable, Highly Conductive Silver/Polydimethylsiloxane Composites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309470. [PMID: 38148306 DOI: 10.1002/smll.202309470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Indexed: 12/28/2023]
Abstract
The quality of electrophysiological (EP) signals heavily relies on the electrode's contact with the skin. However, motion or exposure to water can easily destabilize this connection. In contrast to traditional methods of attaching electrodes to the skin surface, this study introduces a skin-integration strategy inspired by the skin's intergrown structure. A highly conductive and room-temperature curable composite composed of silver microflakes and polydimethylsiloxane (Ag/PDMS) is applied to the skin. Before curing, the PDMS oil partially diffuse into the stratum corneum (SC) layer of the skin. Upon curing, the composite solidifies into an electrode that seamlessly integrated with the skin, resembling a natural extension. This skin-integration strategy offers several advantages. It minimizes motion artifacts resulting from relative electrode-skin displacement, significantly reduces interface impedance (67% of commercial Ag/AgCl gel electrodes at 100 Hz) and withstands water flushes due to its hydrophobic nature. These advantages pave the way for promising advancements in EP signal recording, particularly during motion and underwater conditions.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jiuqing Feng
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yizhou Jiang
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zekai Wang
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Jialong Zhang
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Shuxing Mei
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| | - Guoqing Yang
- School of Microelectronics and State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai, 200433, China
| | - Zongquan Gu
- School of Microelectronics and State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai, 200433, China
| | - Cehui Tan
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Yajie Qin
- School of Information Science and Technology, Fudan University, Shanghai, 200433, China
| | - Zhuo Li
- Department of Materials Science, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, China
| |
Collapse
|
41
|
Wang Y, Wang Y, Xue Y, Li X, Geng Y, Zhao J, Ge L, He H, Li F, Liu X. Portable and Flexible Hydrogel Sensor for On-Site Atrazine Assay on Agricultural Products. Anal Chem 2024; 96:7772-7779. [PMID: 38698542 DOI: 10.1021/acs.analchem.4c01579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
There is growing attention focused toward the problems of ecological sustainability and food safety raised from the abuse of herbicides, which underscores the need for the development of a portable and reliable sensor for simple, rapid, and user-friendly on-site analysis of herbicide residues. Herein, a novel multifunctional hydrogel composite is explored to serve as a portable and flexible sensor for the facile and efficient analysis of atrazine (ATZ) residues. The hydrogel electrode is fabricated by doping graphite-phase carbon nitride (g-C3N4) into the aramid nanofiber reinforced poly(vinyl alcohol) hydrogel via a simple solution-casting procedure. Benefiting from the excellent electroactivity and large specific surface area of the solid nanoscale component, the prepared hydrogel sensor is capable of simple, rapid, and sensitive detection of ATZ with a detection limit down to 0.002 ng/mL and per test time less than 1 min. After combination with a smartphone-controlled portable electrochemical analyzer, the flexible sensor exhibited satisfactory analytical performance for the ATZ assay. We further demonstrated the applications of the sensor in the evaluation of the ATZ residues in real water and soil samples as well as the user-friendly on-site point-of-need detection of ATZ residues on various agricultural products. We envision that this flexible and portable sensor will open a new avenue on the development of next-generation analytical tools for herbicide monitoring in the environment and agricultural products.
Collapse
Affiliation(s)
- Yuying Wang
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yue Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yang Xue
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yue Geng
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Jiahui Zhao
- College of Plant Health & Medicine, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lei Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, P. R. China
| | - Huimin He
- Institute for Frontier Science, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xiaojuan Liu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
42
|
Yao ZF, Kuang Y, Wu HT, Lundqvist E, Fu X, Celt N, Pei J, Yee A, Ardoña HAM. Selective Induction of Molecular Assembly to Tissue-Level Anisotropy on Peptide-Based Optoelectronic Cardiac Biointerfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312231. [PMID: 38335948 PMCID: PMC11126358 DOI: 10.1002/adma.202312231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The conduction efficiency of ions in excitable tissues and of charged species in organic conjugated materials both benefit from having ordered domains and anisotropic pathways. In this study, a photocurrent-generating cardiac biointerface is presented, particularly for investigating the sensitivity of cardiomyocytes to geometrically comply to biomacromolecular cues differentially assembled on a conductive nanogrooved substrate. Through a polymeric surface-templated approach, photoconductive substrates with symmetric peptide-quaterthiophene (4T)-peptide units assembled as 1D nanostructures on nanoimprinted polyalkylthiophene (P3HT) surface are developed. The 4T-based peptides studied here can form 1D nanostructures on prepatterned polyalkylthiophene substrates, as directed by hydrogen bonding, aromatic interactions between 4T and P3HT, and physical confinement on the nanogrooves. It is observed that smaller 4T-peptide units that can achieve a higher degree of assembly order within the polymeric templates serve as a more efficient driver of cardiac cytoskeletal anisotropy than merely presenting aligned -RGD bioadhesive epitopes on a nanotopographic surface. These results unravel some insights on how cardiomyocytes perceive submicrometer dimensionality, local molecular order, and characteristics of surface cues in their immediate environment. Overall, the work offers a cardiac patterning platform that presents the possibility of a gene modification-free cardiac photostimulation approach while controlling the conduction directionality of the biotic and abiotic components.
Collapse
Affiliation(s)
- Ze-Fan Yao
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
| | - Yuyao Kuang
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Hao-Tian Wu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Emil Lundqvist
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Xin Fu
- Department of Materials Science and Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Natalie Celt
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Albert Yee
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
| | - Herdeline Ann M. Ardoña
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Department of Chemistry, School of Physical Sciences, University of California, Irvine, CA 92697, USA
- Department of Biomedical Engineering, Samueli School of Engineering, University of California, Irvine, CA 92697, USA
- Sue & Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Tang G, Li Z, Ding C, Zhao J, Xing X, Sun Y, Qiu X, Wang L. A cigarette filter-derived biomimetic cardiac niche for myocardial infarction repair. Bioact Mater 2024; 35:362-381. [PMID: 38379697 PMCID: PMC10876615 DOI: 10.1016/j.bioactmat.2024.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/24/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Cell implantation offers an appealing avenue for heart repair after myocardial infarction (MI). Nevertheless, the implanted cells are subjected to the aberrant myocardial niche, which inhibits cell survival and maturation, posing significant challenges to the ultimate therapeutic outcome. The functional cardiac patches (CPs) have been proved to construct an elastic conductive, antioxidative, and angiogenic microenvironment for rectifying the aberrant microenvironment of the infarcted myocardium. More importantly, inducing implanted cardiomyocytes (CMs) adapted to the anisotropic arrangement of myocardial tissue by bioengineered structural cues within CPs are more conducive to MI repair. Herein, a functional Cig/(TA-Cu) CP served as biomimetic cardiac niche was fabricated based on structural anisotropic cigarette filter by modifying with tannic acid (TA)-chelated Cu2+ (TA-Cu complex) via a green method. This CP possessed microstructural anisotropy, electrical conductivity and mechanical properties similar to natural myocardium, which could promote elongation, orientation, maturation, and functionalization of CMs. Besides, the Cig/(TA-Cu) CP could efficiently scavenge reactive oxygen species, reduce CM apoptosis, ultimately facilitating myocardial electrical integration, promoting vascular regeneration and improving cardiac function. Together, our study introduces a functional CP that integrates multimodal cues to create a biomimetic cardiac niche and provides an effective strategy for cardiac repair.
Collapse
Affiliation(s)
- Guofeng Tang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Zhentao Li
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Thoracic and Cardiovascular Surgery, The Tenth Affiliated Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, 523058, PR China
| | - Chengbin Ding
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Jiang Zhao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xianglong Xing
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Yan Sun
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Xiaozhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| | - Leyu Wang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangzhou, Guangdong, 510515, PR China
| |
Collapse
|
44
|
Wang S, Wang Z, Yang W, Xu Z, Dai H, He F, Yan S, Shi X. In Situ-Sprayed Bioinspired Adhesive Conductive Hydrogels for Cavernous Nerve Repair. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311264. [PMID: 38330187 DOI: 10.1002/adma.202311264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/04/2024] [Indexed: 02/10/2024]
Abstract
Cavernous nerve injury (CNI), resulting in erectile dysfunction (ED), poses a significant threat to the quality of life for men. Strategies utilizing conductive hydrogels have demonstrated promising results for the treatment of peripheral nerves with a large diameter (>2 mm). However, integrating convenient minimally invasive operation, antiswelling and immunomodulatory conductive hydrogels for treating small-diameter injured cavernous nerves remains a great challenge. Here, a sprayable adhesive conductive hydrogel (GACM) composed of gelatin, adenine, carbon nanotubes, and mesaconate designed for cavernous nerve repair is developed. Multiple hydrogen bonds provide GACM with excellent adhesive and antiswelling properties, enabling it to establish a conformal electrical bridge with the damaged nerve and aiding in the regeneration process. Additionally, mesaconate-loaded GACM suppresses the release of inflammatory factors by macrophages and promotes the migration and proliferation of Schwann cells. In vivo tests demonstrate that the GACM hydrogel repairs the cavernous nerve and restores erectile function and fertility. Furthermore, the feasibility of sprayable GACM in minimally invasive robotic surgery in beagles is validated. Given the benefits of therapeutic effectiveness and clinical convenience, the research suggests a promising future for sprayable GACM materials as advanced solutions for minimally invasive nerve repair.
Collapse
Affiliation(s)
- Shuting Wang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Zhenqing Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Wei Yang
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
| | - Zhen Xu
- Department of Urology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Hao Dai
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fupo He
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Shengtao Yan
- Department of Emergency, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xuetao Shi
- National Engineering Research Centre for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
- Key Laboratory of Biomedical Engineering of Guangdong Province, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
45
|
Farrukh A, Nayab S. Shape Memory Hydrogels for Biomedical Applications. Gels 2024; 10:270. [PMID: 38667689 PMCID: PMC11049586 DOI: 10.3390/gels10040270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/28/2024] Open
Abstract
The ability of shape memory polymers to change shape upon external stimulation makes them exceedingly useful in various areas, from biomedical engineering to soft robotics. Especially, shape memory hydrogels (SMHs) are well-suited for biomedical applications due to their inherent biocompatibility, excellent shape morphing performance, tunable physiochemical properties, and responsiveness to a wide range of stimuli (e.g., thermal, chemical, electrical, light). This review provides an overview of the unique features of smart SMHs from their fundamental working mechanisms to types of SMHs classified on the basis of applied stimuli and highlights notable clinical applications. Moreover, the potential of SMHs for surgical, biomedical, and tissue engineering applications is discussed. Finally, this review summarizes the current challenges in synthesizing and fabricating reconfigurable hydrogel-based interfaces and outlines future directions for their potential in personalized medicine and clinical applications.
Collapse
Affiliation(s)
- Aleeza Farrukh
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Sana Nayab
- Institute of Chemistry, Quaid-i-Azam Campus, University of the Punjab, Lahore 54590, Pakistan
| |
Collapse
|
46
|
Liu Q, Dong X, Qi H, Zhang H, Li T, Zhao Y, Li G, Zhai W. 3D printable strong and tough composite organo-hydrogels inspired by natural hierarchical composite design principles. Nat Commun 2024; 15:3237. [PMID: 38622154 PMCID: PMC11018840 DOI: 10.1038/s41467-024-47597-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Fabrication of composite hydrogels can effectively enhance the mechanical and functional properties of conventional hydrogels. While ceramic reinforcement is common in many hard biological tissues, ceramic-reinforced hydrogels lack a similar natural prototype for bioinspiration. This raises a key question: How can we still attain bioinspired mechanical mechanisms in composite hydrogels without mimicking a specific composition and structure? Abstracting the hierarchical composite design principles of natural materials, this study proposes a hierarchical fabrication strategy for ceramic-reinforced organo-hydrogels, featuring (1) aligned ceramic platelets through direct-ink-write printing, (2) poly(vinyl alcohol) organo-hydrogel matrix reinforced by solution substitution, and (3) silane-treated platelet-matrix interfaces. Unit filaments are further printed into a selection of bioinspired macro-architectures, leading to high stiffness, strength, and toughness (fracture energy up to 31.1 kJ/m2), achieved through synergistic multi-scale energy dissipation. The materials also exhibit wide operation tolerance and electrical conductivity for flexible electronics in mechanically demanding conditions. Hence, this study demonstrates a model strategy that extends the fundamental design principles of natural materials to fabricate composite hydrogels with synergistic mechanical and functional enhancement.
Collapse
Affiliation(s)
- Quyang Liu
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Xinyu Dong
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haobo Qi
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Haoqi Zhang
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Tian Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Yijing Zhao
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Guanjin Li
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore
| | - Wei Zhai
- Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, Singapore.
| |
Collapse
|
47
|
Shin Y, Lee HS, Hong YJ, Sunwoo SH, Park OK, Choi SH, Kim DH, Lee S. Low-impedance tissue-device interface using homogeneously conductive hydrogels chemically bonded to stretchable bioelectronics. SCIENCE ADVANCES 2024; 10:eadi7724. [PMID: 38507496 PMCID: PMC10954228 DOI: 10.1126/sciadv.adi7724] [Citation(s) in RCA: 33] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/12/2024] [Indexed: 03/22/2024]
Abstract
Stretchable bioelectronics has notably contributed to the advancement of continuous health monitoring and point-of-care type health care. However, microscale nonconformal contact and locally dehydrated interface limit performance, especially in dynamic environments. Therefore, hydrogels can be a promising interfacial material for the stretchable bioelectronics due to their unique advantages including tissue-like softness, water-rich property, and biocompatibility. However, there are still practical challenges in terms of their electrical performance, material homogeneity, and monolithic integration with stretchable devices. Here, we report the synthesis of a homogeneously conductive polyacrylamide hydrogel with an exceptionally low impedance (~21 ohms) and a reasonably high conductivity (~24 S/cm) by incorporating polyaniline-decorated poly(3,4-ethylenedioxythiophene:polystyrene). We also establish robust adhesion (interfacial toughness: ~296.7 J/m2) and reliable integration between the conductive hydrogel and the stretchable device through on-device polymerization as well as covalent and hydrogen bonding. These strategies enable the fabrication of a stretchable multichannel sensor array for the high-quality on-skin impedance and pH measurements under in vitro and in vivo circumstances.
Collapse
Affiliation(s)
- Yoonsoo Shin
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyun Su Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Sueng Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sangkyu Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| |
Collapse
|
48
|
Yang Z, You Y, Liu X, Wan Q, Xu Z, Shuai Y, Wang J, Guo T, Hu J, Lv J, Zhang M, Yang M, Mao C, Yang S. Injectable Bombyx mori (B. mori) silk fibroin/MXene conductive hydrogel for electrically stimulating neural stem cells into neurons for treating brain damage. J Nanobiotechnology 2024; 22:111. [PMID: 38486273 PMCID: PMC10941401 DOI: 10.1186/s12951-024-02359-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024] Open
Abstract
Brain damage is a common tissue damage caused by trauma or diseases, which can be life-threatening. Stem cell implantation is an emerging strategy treating brain damage. The stem cell is commonly embedded in a matrix material for implantation, which protects stem cell and induces cell differentiation. Cell differentiation induction by this material is decisive in the effectiveness of this treatment strategy. In this work, we present an injectable fibroin/MXene conductive hydrogel as stem cell carrier, which further enables in-vivo electrical stimulation upon stem cells implanted into damaged brain tissue. Cell differentiation characterization of stem cell showed high effectiveness of electrical stimulation in this system, which is comparable to pure conductive membrane. Axon growth density of the newly differentiated neurons increased by 290% and axon length by 320%. In addition, unfavored astrocyte differentiation is minimized. The therapeutic effect of this system is proved through traumatic brain injury model on rats. Combined with in vivo electrical stimulation, cavities formation is reduced after traumatic brain injury, and rat motor function recovery is significantly promoted.
Collapse
Affiliation(s)
- Zhangze Yang
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Yuxin You
- Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Xiangyu Liu
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China
| | - Quan Wan
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Zongpu Xu
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Yajun Shuai
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Tingbiao Guo
- Centre for Optical and Electromagnetic Research National Engineering Research Center for Optical Instruments Zhejiang University, Hangzhou, 310058, China
| | - Jiaqi Hu
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Junhui Lv
- Department of Neurosurgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China
| | - Meng Zhang
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Key Laboratory of Silkworm and Bee Resource Utilization and Innovation of Zhejiang Province, Hangzhou, 310058, Zhejiang, China.
| | - Chuanbin Mao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, Zhejiang, China.
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR.
| | - Shuxu Yang
- Department of Neurosurgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China.
| |
Collapse
|
49
|
Wu Y, Zhang Y, Liao Z, Wen J, Zhang H, Wu H, Liu Z, Shi Y, Song P, Tang L, Xue H, Gao J. Water vapor assisted aramid nanofiber reinforcement for strong, tough and ionically conductive organohydrogels as high-performance strain sensors. MATERIALS HORIZONS 2024; 11:1272-1282. [PMID: 38165275 DOI: 10.1039/d3mh01560b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Conductive organohydrogels have gained increasing attention in wearable sensors, flexible batteries, and soft robots due to their exceptional environment adaptability and controllable conductivity. However, it is still difficult for conductive organohydrogels to achieve simultaneous improvement in mechanical and electrical properties. Here, we propose a novel "water vapor assisted aramid nanofiber (ANF) reinforcement" strategy to prepare robust and ionically conductive organohydrogels. Water vapor diffusion can induce the pre-gelation of the polymer solution and ensure the uniform dispersion of ANFs in organohydrogels. ANF reinforced organohydrogels have remarkable mechanical properties with a tensile strength, stretchability and toughness of up to 1.88 ± 0.04 MPa, 633 ± 30%, and 6.75 ± 0.38 MJ m-3, respectively. Furthermore, the organohydrogels exhibit great crack propagation resistance with the fracture energy and fatigue threshold as high as 3793 ± 167 J m-2 and ∼328 J m-2, respectively. As strain sensors, the conductive organohydrogel demonstrates a short response time of 112 ms, a large working strain and superior cycling stability (1200 cycles at 40% strain), enabling effective monitoring of a wide range of complex human motions. This study provides a new yet effective design strategy for high performance and multi-functional nanofiller reinforced organohydrogels.
Collapse
Affiliation(s)
- Yongchuan Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ya Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zimin Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jing Wen
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
50
|
Xu Z, Chen Y, Cao Y, Xue B. Tough Hydrogels with Different Toughening Mechanisms and Applications. Int J Mol Sci 2024; 25:2675. [PMID: 38473922 DOI: 10.3390/ijms25052675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024] Open
Abstract
Load-bearing biological tissues, such as cartilage and muscles, exhibit several crucial properties, including high elasticity, strength, and recoverability. These characteristics enable these tissues to endure significant mechanical stresses and swiftly recover after deformation, contributing to their exceptional durability and functionality. In contrast, while hydrogels are highly biocompatible and hold promise as synthetic biomaterials, their inherent network structure often limits their ability to simultaneously possess a diverse range of superior mechanical properties. As a result, the applications of hydrogels are significantly constrained. This article delves into the design mechanisms and mechanical properties of various tough hydrogels and investigates their applications in tissue engineering, flexible electronics, and other fields. The objective is to provide insights into the fabrication and application of hydrogels with combined high strength, stretchability, toughness, and fast recovery as well as their future development directions and challenges.
Collapse
Affiliation(s)
- Zhengyu Xu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yanru Chen
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| | - Bin Xue
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250000, China
| |
Collapse
|