1
|
Salamah M, Sipos B, Schelz Z, Zupkó I, Kiricsi Á, Szalenkó-Tőkés Á, Rovó L, Katona G, Balogh GT, Csóka I. Development, in vitro and ex vivo characterization of lamotrigine-loaded bovine serum albumin nanoparticles using QbD approach. Drug Deliv 2025; 32:2460693. [PMID: 39901331 PMCID: PMC11795762 DOI: 10.1080/10717544.2025.2460693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/26/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The present study aimed to prepare and optimize lamotrigine-loaded bovine serum albumin nanoparticles (LAM-NP) using the Quality by Design (QbD) approach and to investigate both the in vitro and ex vivo effects of different cross-linking agents glutaraldehyde (GLUT), glucose (GLUC) and 1-(3-dimethylaminutesopropyl)-3-ethylcarbodiimide hydrochloride (EDC) on intranasal applicability. Cross-linked LAM-NP from EDC (NP-EDC-1) showed the lowest Z-average value (163.7 ± 1.9 nm) and drug encapsulation efficacy (EE%) of 97.31 ± 0.17%. The drug release of GLUC cross-linked LAM-NP (NP-GLUC-9), glutaraldehyde cross-linked LAM-NP (NP-GLUT-2), and NP-EDC-1 at blood circulation conditions was higher than the initial LAM. The results of the blood-brain barrier parallel artificial membrane permeability assay (BBB-PAMPA) showed an increase in the permeability of LAM through the BBB with NP-GLUC-9 and an increase in flux with all selected formulations. The ex vivo study showed that LAM diffusion from the selected formulations through the human nasal mucosa was higher than in case of initial LAM. The cytotoxicity study indicated that BSA-NP reduced LAM toxicity, and GLUC 9 mM and EDC 1 mg could be alternative cross-linking agents to avoid GLUT 2% v/v toxicity. Furthermore, permeability through Caco-2 cells showed that nasal epithelial transport/absorption of LAM was improved by using BSA-NPs. The use of BSA-NP may be a promising approach to enhance the solubility, permeability through BBB and decrease the frequency of dosing and adverse effects of LAM.
Collapse
Affiliation(s)
- Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Bence Sipos
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Zsuzsanna Schelz
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenkó-Tőkés
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| |
Collapse
|
2
|
Eftekharifar M, Heidari R, Mohaghegh N, Najafabadi AH, Heidari H. Advances in photoactivated carbon-based nanostructured materials for targeted cancer therapy. Adv Drug Deliv Rev 2025; 222:115604. [PMID: 40354939 DOI: 10.1016/j.addr.2025.115604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/15/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
In this review, we explore key innovations in photoactivated therapeutic programming of carbon-based nanomaterials (CBNs), focusing on their diverse nanostructural configurations and their exceptional photothermal, photochemical, and photoacoustic properties. These attributes position CBNs as remarkable phototherapeutic agents, capable of addressing critical challenges in targeted cancer therapy through their precision, multifunctionality, and adaptability to specific therapeutic modalities. We will explore their diverse derivatives, and the role of chemical augmentation and site-specific surface functionalisation, which are pivotal in optimising the targeting and efficacy of phototherapeutic interventions. The biological and physical relevance of this ever-growing library of nanomaterials in targeted phototherapy will be thoroughly explored. Dynamic photo-triggering of the underlying molecular mechanisms of action e.g., energy conversion modalities lie at the heart of these therapeutic innovations. We will further discuss the tunability and programming of these carriers and structure-function alterations at specific therapeutic wavelengths. The application space of phototherapies is thoroughly mapped exploring the three primary approaches of photothermal therapy, photodynamic therapy and photochemical internalisation as well as emerging techniques and promising multimodal approaches that combine two or more of these processes. The specificity of the target tissue site and the approach under study forms another critical focus area of this review, with an emphasis on three types of cancer-breast cancer, lung cancer, and gliomas-that have demonstrated some of the most promising outcomes from photomedicine. We also provide a perspective on in vitro and in vivo validation and preclinical testing of CBNs for phototherapeutic applications. Finally, we reflect on the potential of CBNs to revolutionise targeted cancer therapy through data-driven materials design and integration with computational tools for biophysical performance optimisation. The exciting integration of machine learning into nanoparticle research and phototherapy has potential to fundamentally transform the landscape of nanomedicine. These techniques ranging from supervised learning algorithms such as random forests and support vector machines to more advanced neural networks and deep learning, can enable unprecedented precision in predicting, optimising, and tailoring the properties of nanoparticles for targeted applications. The transformative impact of photoactivated CBNs in advancing cancer treatment, paves the way for their clinical application and widespread adoption in personalised photomedicine. We conclude with a section on the current challenges facing the reproducibility, manufacturing throughput, and biocompatibility of these nanostructured materials including their long-term effects in trials and degradation profiles in biological systems as evaluated in vitro and in vivo.
Collapse
Affiliation(s)
| | - Reza Heidari
- Computer Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovations, Los Angeles, CA 90024, USA
| | | | - Hossein Heidari
- Institute for Materials Discovery, University College London, London E20 2AE, UK.
| |
Collapse
|
3
|
Jana BK, Singha I, Puro N, Baishya R, Dutta RS, Singh M, Mazumder B. Pseudo-ternary phase diagram based PEGylated nano-dispersion of linezolid to promote wound regeneration: an in vitro and in vivo evaluation. J Drug Target 2025; 33:989-1003. [PMID: 39891403 DOI: 10.1080/1061186x.2025.2461093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/04/2025] [Accepted: 01/25/2025] [Indexed: 02/03/2025]
Abstract
Open wounds are prone to bacterial infiltration mostly resistant strains like methicillin-resistant Staphylococcus aureus (MRSA), which affects healing of open wounds. Topical linezolid nano-dispersion using essential oils as nanoemulgel can increase solubility of drug and bypass side-effects like GI-irritation of oral administration. Pseudo-ternary phase diagram was built to optimise nanoemulsion. Surfactant/co-surfactant mixture (3:1), deionised water and Oilmix (4:1) with drug were vortexed and then ultrasonicated. 1% carbopol gel of optimised nanoemulsion was prepared and characterised, exposed to antimicrobial study, cytocompatibility study using HEK293 cell-line, and in vivo wound healing study using rat excision model. Histological study was performed to confirm growth of stratum corneum. Optimised formulation has particle size (244.6 ± 178.66 nm), polydispersity index (25%), entrapment efficiency (92.3 ± 3.38%) and in vitro drug release (87.58 ± 4.16%) best fitted in Korsmeyer-Peppas kinetics model. Nanoemulgel F6 (0.2%w/w) was found with viscosity of 5345 ± 6 cP constituting a very excellent antimicrobial effect against MRSA. HEK293 cells had shown good cytocompatibility with formulation. The wound contraction rate was 99.66 ± 0.57% at day 15 on daily application of nanoemulgel and stratum corneum was almost fully regenerated. The developed nanoemulgel has potential antimicrobial efficacy and can promote wound healing.
Collapse
Affiliation(s)
- Bani Kumar Jana
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Ishita Singha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Nusalu Puro
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Natural Products Chemistry Group-Pharmacology Unit, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, India
| | - Rinku Baishya
- Natural Products Chemistry Group-Pharmacology Unit, CSIR-North East Institute of Science and Technology (NEIST), Jorhat, India
| | - Rajat Subhra Dutta
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
- Girijananda Chowdhury Institute of Pharmaceutical Science-Tezpur, Tezpur, India
| | - Mohini Singh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| | - Bhaskar Mazumder
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, India
| |
Collapse
|
4
|
Kim M, Song ES, Chen JC, Chatterjee S, Sun Y, Lee SM, Wu S, Patel P, Tian Z, Kantor A, Wustman BA, Lockhart DJ, Siegwart DJ. Dual SORT LNPs for multi-organ base editing. Nat Biotechnol 2025:10.1038/s41587-025-02675-z. [PMID: 40457105 DOI: 10.1038/s41587-025-02675-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 04/09/2025] [Indexed: 06/11/2025]
Abstract
Alpha-1 antitrypsin (A1AT) deficiency (AATD) is caused by a mutation in the SERPINA1 gene (PiZ allele), where misfolded A1AT liver accumulation leads to liver damage, and A1AT deficiency in the lungs results in emphysema due to unregulated neutrophil elastase activity. Base editing offers a potential cure for A1AT; however, effective treatment is hindered by the absence of dual-target delivery systems that can target key tissues. We developed Dual Selective ORgan-Targeting lipid nanoparticles (SORT LNPs) to deliver base editors to the liver and lungs. Dual SORT LNPs correct the PiZ mutation, achieving 40% correction editing in liver cells and 10% in lung AT2 cells. The liver maintains stable editing for 32 weeks, reducing Z-A1AT levels by over 80% and restoring a normal liver phenotype. In parallel, 89% neutrophil elastase inhibition is achieved in lung bronchoalveolar lavage fluid. Taken together, Dual SORT LNP therapy offers a promising approach for long-lasting genome correction for multi-organ diseases such as AATD.
Collapse
Affiliation(s)
- Minjeong Kim
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Eunice S Song
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Sumanta Chatterjee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yehui Sun
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sang M Lee
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shiying Wu
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Priyanka Patel
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zeru Tian
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | | | - Daniel J Siegwart
- Department of Biomedical Engineering, Department of Biochemistry, Simmons Comprehensive Cancer Center, Program in Genetic Drug Engineering, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Salamah M, Volk B, Lekli I, Bak I, Gyöngyösi A, Kozma G, Kónya Z, Szalenkó-Tőkés Á, Kiricsi Á, Rovó L, Balogh-Weiser D, Zupkó I, Csóka I, Katona G, Balogh GT. Preparation, and ex vivo and in vivo Characterization of Favipiravir-Loaded Aspasomes and Niosomes for Nose-to-Brain Administration. Int J Nanomedicine 2025; 20:6489-6514. [PMID: 40420912 PMCID: PMC12105672 DOI: 10.2147/ijn.s518486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 05/05/2025] [Indexed: 05/28/2025] Open
Abstract
Purpose The present study aimed to develop and compare the intranasal applicability of favipiravir-loaded aspasomes (FAV-ASPs) using film hydration method, and favipiravir-loaded niosomes (FAV-NIOs) using ethanol injection method. Methods The FAV-ASP and FAV-NIO formulations were characterized according to nanoparticulate characteristics (DLS, drug loading, drug encapsulation efficacy, droplet size distribution), drug release and permeability behavior. Results The optimized FAV-ASP formulation (FAV-ASP8) consisted of FAV, ascorbyl palmitate, Span® 60 and cholesterol (30:25:25:50 w/w) with nano-scale size range (292.06 ± 2.10 nm), narrow polydispersity index (PDI) value (0.36 ± 0.03), adequate zeta potential (-74.73 ± 3.28 mV) and acceptable encapsulation efficiency (55.33 ± 0.41%). The optimized FAV-NIO formulation (FAV-NIO9) contained FAV, Span® 60 and cholesterol (30:30:40 w/w) with nano-scale size range (167.13 ± 1.60 nm), narrow PDI value (0.07 ± 0.01), adequate zeta potential (-27.1 ± 1.24 mV) and acceptable encapsulation efficiency (51.30 ± 0.69%). FAV-ASP8 and FAV-NIO9 were suitable for spraying into the nasal cavity (droplet size distribution <200 µm). In vitro drug release and permeability studies demonstrated enhanced solubility and increased blood-brain barrier (BBB) permeability of FAV formulations, respectively. The ex vivo human nasal permeability study revealed that FAV diffusion from FAV-ASP8 was higher than from FAV-NIO9 or initial FAV. Furthermore, the in vivo animal study showed that FAV-ASP8 had a higher BBB penetration compared to FAV-NIO9 and pure FAV. The in vitro-in vivo correlation study showed good correlation between the in vitro and the in vivo pharmacokinetic data. Conclusion FAV-ASP8 for nose-to-brain delivery system could be a promising formulation to improve FAV bioavailability compared to FAV-NIO9.
Collapse
Affiliation(s)
- Maryana Salamah
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Balázs Volk
- Directorate of Drug Substance Development, Egis Pharmaceuticals Plc., Budapest, Hungary
| | - István Lekli
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - István Bak
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Alexandra Gyöngyösi
- Department of Pharmacology, Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - Gábor Kozma
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Zoltán Kónya
- Faculty of Science and Informatics, Department of Applied & Environmental Chemistry, University of Szeged, Szeged, Hungary
| | - Ágnes Szalenkó-Tőkés
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Ágnes Kiricsi
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - László Rovó
- Department of Oto-Rhino-Laryngology and Head-Neck Surgery, University of Szeged, Szeged, Hungary
| | - Diána Balogh-Weiser
- Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
- Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Budapest, Hungary
| | - István Zupkó
- Institute of Pharmacodynamics and Biopharmacy, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Ildikó Csóka
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - Gábor Katona
- Institute of Pharmaceutical Technology and Regulatory Affairs, Faculty of Pharmacy, University of Szeged, Szeged, Hungary
| | - György Tibor Balogh
- Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
- Center for Pharmacology and Drug Research & Development, Department of Pharmaceutical Chemistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
6
|
Hanafy BI, Munson MJ, Soundararajan R, Pereira S, Gallud A, Sanaullah SM, Carlesso G, Mazza M. Advancing Cellular-Specific Delivery: Machine Learning Insights into Lipid Nanoparticles Design and Cellular Tropism. Adv Healthc Mater 2025:e2500383. [PMID: 40326205 DOI: 10.1002/adhm.202500383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/26/2025] [Indexed: 05/07/2025]
Abstract
Lipid nanoparticles (LNPs) have gained significant attention as effective nucleic acid delivery vehicles. Despite their success, LNPs are predominantly liver-targeted which limits their broader application. To expand the therapeutic potential of LNPs, this work implements a data-driven approach that combines design of experiments (DoE), high throughput screening (HTS), and machine learning (ML) to tailor LNP formulations for preferential immune cell targeting. This methodology involves the generation of 180 LNP formulations, with varying lipid molar ratios and lipid chemistries, to explore a diverse design space. This work aims to identify LNP properties that enhance immune cell specificity while reducing hepatic uptake. The in vitro screening of these LNPs provided a rich dataset for ML analysis, leading to the identification of promising candidates with improved immune cellular selectivity profiles. These findings are validated in vivo where it is demonstrated that selected LNPs achieved preferential spleen expression with a successful redirection of LNP tropism beyond hepatic cells. This workflow highlights the importance of tailoring LNP compositions for the development of LNPs with selective cellular tropism.
Collapse
Affiliation(s)
- Belal I Hanafy
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Michael J Munson
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Sweden
| | - Ramesh Soundararajan
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Sara Pereira
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| | - Audrey Gallud
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg, 431 83, Sweden
| | - Sajib Md Sanaullah
- Early ICC Discovery, R&D Oncology, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Gianluca Carlesso
- Early ICC Discovery, R&D Oncology, AstraZeneca, Gaithersburg, MD, 20878, USA
| | - Mariarosa Mazza
- Advanced Drug Delivery, Pharmaceutical Sciences, Biopharmaceuticals R&D, AstraZeneca, Cambridge, CB2 0AA, United Kingdom
| |
Collapse
|
7
|
Gangadhara NY, B M, Kumar PK, Krishna H, Shivakumar A, Sadashivanna RH, Krishnegowda A. Evaluation of peroxidase mimicking behaviour of V 2O 5 nanozymes with various morphologies and its application as glucose sensor via cascade mechanism in human serum samples. Biochem Biophys Res Commun 2025; 762:151758. [PMID: 40199131 DOI: 10.1016/j.bbrc.2025.151758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/21/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
A simple spectrophotometric method is presented for quantifying glucose and H2O2 using p-aminophenol sulfate-(PAP) & N-(1-Naphthyl) ethylenediamine dihydrochloride-(NEDA) as novel chromogenic reagents with different morphological V2O5 nanoparticles (NPs) as peroxidase mimicking nanozyme. For glucose, the method was linear in the range of 0.0289 and 0.925 mM for HRP and NPs. The substrate and nanozymes interaction was established using Km values, which were satisfactory. Recovery studies were performed with glucose and found between 83.98 % and 99.08 % for NPs and 88.48 to 99.35 for HRP. LOD range of 0.0194-0.0351 mM and LOQ range of 0.0588-0.1064 mM was observed with NPs, whereas for HRP, LOD was 0.02 and LOQ was 0.0607 mM. Maltose, sucrose, fructose, mannose, and galactose, considered potential interferants in glucose assay methods, provided negligible interference with the proposed method. Based on XRD data, the average crystalline size of the NPs was calculated using Scherrer's equation and Williamson-Hall plot and ranged between 29.14 and 45.42 nm, 32.5 and 45.7 nm, respectively. SEM and TEM images confirm the morphology of V2O5 Nps were vanadium nanosheets (VNShs), nanoflowers (VNFws), and nanospheres (VNSps). DLS data revealed the Zeta potential of NPs in the range -4.5mv to 4.6mv. XPS confirms the NPs are in the V2O5 state.
Collapse
Affiliation(s)
- Nikhil Y Gangadhara
- Department of Chemistry, Maharaja Institute of Technology Mysore, Mandya, 571438, Karnataka, India.
| | - Manju B
- Department of Chemistry, Maharaja Institute of Technology Mysore, Mandya, 571438, Karnataka, India.
| | - P Kiran Kumar
- Department of Chemistry, Seshadripuram Institute of Technology, Mysuru- 571311 Karnataka, India.
| | - Honnur Krishna
- Department of Chemistry, S.D.V.S. Sangh's S. S. Arts College T.P. Science Institute, Sankeshwar, 591313, Belagavi, Karnataka, India.
| | - Anantharaman Shivakumar
- St. Philomena's College (Autonomous), PG Department of Chemistry, Mysore, 570015, Karnataka, India.
| | | | | |
Collapse
|
8
|
Khot S, Mahajan U, Jadhav A, Vaishampayan P, Bagul U, Gadhave D, Gorain B, Kokare C. Nose-to-brain delivery of sorafenib-loaded lipid-based poloxamer-carrageenan nanoemulgel: Formulation and therapeutic investigation in glioblastoma-induced orthotopic rat model. Int J Biol Macromol 2025; 309:142861. [PMID: 40188927 DOI: 10.1016/j.ijbiomac.2025.142861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Glioblastoma multiforme (GBM) has a poor clinical prognosis, where conventional treatment offers therapeutic limitations. Therefore, the current study introduces a first-of-its-kind sorafenib (SOR) nanoemulsion (SNE) loaded with poloxamer-carrageenan nanoemulgel (SPCNEG), a novel dual-functional and natural polymer-based payload system for effective intranasal chemotherapeutic administration. The nanoformulation was developed using carrageenan (a natural gelling agent), poloxamer (a mucoadhesive agent), glyceryl caprate as lipid, and Cremophor EL:PEG 400 blend as surfactant system. The improved biopharmaceutical attributes of developed formulations were confirmed from the release experiments, revealing augmentation in drug release from SNE (84.56 ± 3.78 %) and SPCNEG (68.62 ± 4.11 %) up to 3.41- and 8.12-fold compared to plain SOR. The ex vivo experiments showed a similar enhancement in drug permeation. Moreover, the SNE also showed superior performance on glioma cell lines, as indicated by lower IC50 (2.23 μg/mL) than plain SOR (16.61 μg/mL). The pharmacokinetic study revealed a 2.52- and 3.24-fold increase in SNE and SPCNEG brain concentration, respectively, compared to Soranib®. Additionally, a high correlation was also observed between in vitro drug release and in vivo absorption at prespecified time intervals for developed formulations. In conclusion, the current research promising and non-invasive alternative to existing interventions for enhanced brain targeting potential.
Collapse
Affiliation(s)
- Shubham Khot
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Unmesh Mahajan
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Amol Jadhav
- Institute of Applied Biological Research and Development, (IABRD), A division of Nirav Biosolutions Pvt Ltd, Aundh, Pune 411007, Maharashtra, India
| | | | - Uddhav Bagul
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India
| | - Dnyandev Gadhave
- Department of Pharmaceutical Science, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY 11439, USA
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Chandrakant Kokare
- Department of Pharmaceutics, Sinhgad Technical Education Society's, Sinhgad Institute of Pharmacy (Affiliated to Savitribai Phule Pune University), Narhe, Pune 411041, Maharashtra, India.
| |
Collapse
|
9
|
Júnior AQDS, Rodrigues GDS, Barroso ADS, Figueiredo PLB, Machado FP, Ferreira MA, Fernandes CP, dos Santos GB, Mourão RHV. Essential Oil of Lippia origanoides Kunth: Nanoformulation, Anticholinesterase Activity, and Molecular Docking. Molecules 2025; 30:1554. [PMID: 40286153 PMCID: PMC11990080 DOI: 10.3390/molecules30071554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 04/29/2025] Open
Abstract
This study investigates the therapeutic potential of Lippia origanoides essential oil (LOEO) in neurological and pharmaceutical applications. The chemical composition of LOEO was analyzed using gas chromatography-mass spectrometry (GC-MS), revealing major constituents, such as carvacrol, thymol, and γ-gurjunene, known for their antioxidant and antimicrobial properties. LOEO demonstrated significant acetylcholinesterase (AChE)-inhibitory activity, particularly in a nanoformulation that enhances bioavailability and stability. Additionally, the major constituent carvacrol, when tested in isolation, also exhibited AChE-inhibitory activity comparable to that of the nanoformulation. Molecular docking analysis indicated strong binding affinities between LOEO compounds and AChE, supporting its therapeutic potential for neurodegenerative diseases like Alzheimer's. Additionally, in silico pharmacokinetic predictions revealed favorable absorption and blood-brain barrier penetration profiles for key constituents. Despite promising results, this study acknowledges the need for in vivo validation and long-term stability assessments of the nanoformulation. Future research should focus on pharmacodynamic studies and evaluating the oil's effectiveness in animal models. These findings highlight LOEO as a valuable candidate for developing natural therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Antônio Quaresma da Silva Júnior
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
| | - Gabriela dos Santos Rodrigues
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil;
| | - Adenilson de Sousa Barroso
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
| | - Pablo Luis Baia Figueiredo
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Química dos Produtos Naturais, Universidade do Estado do Pará, Belém 66095-015, PA, Brazil
| | - Francisco Paiva Machado
- Laboratório de Tecnologia de Produtos Naturais—LTPN, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (F.P.M.); (M.A.F.)
- Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil
| | - Mikaela Amaral Ferreira
- Laboratório de Tecnologia de Produtos Naturais—LTPN, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Niterói 24241-000, RJ, Brazil; (F.P.M.); (M.A.F.)
| | - Caio Pinho Fernandes
- Laboratory of Phytopharmaceutical Nanobiotechnology, Department of Biological and Health Sciences, Federal University of Amapá, Macapá 68902-280, AP, Brazil;
| | - Gabriela B. dos Santos
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil;
| | - Rosa Helena V. Mourão
- Programa de Pós-Graduação em Biodiversidade e Biotecnologia da Rede Bionorte, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil;
- Laboratório de Bioprospecção e Biologia Experimental, Universidade Federal do Oeste do Pará, Santarém 68040-255, PA, Brazil; (G.d.S.R.); (A.d.S.B.)
- Programa de Pós-Graduação em Ciências da Saúde, Universidade Federal do Oeste do Pará, Santarém 68035-110, PA, Brazil;
| |
Collapse
|
10
|
Karimi M, Aslanabadi A, Atkinson B, Hojabri M, Munawwar A, Zareidoodeji R, Ray K, Habibzadeh P, Parlayan HNK, DeVico A, Heredia A, Abbasi A, Sajadi MM. Subcutaneous liposomal delivery improves monoclonal antibody pharmacokinetics in vivo. Acta Biomater 2025; 195:522-535. [PMID: 39965705 DOI: 10.1016/j.actbio.2025.02.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025]
Abstract
Background Monoclonal antibodies (mAbs) effectively treat and prevent various diseases, but their clinical application is hindered by issues related to the route of administration and pharmacokinetics (PK). Intravenous (IV) administration is cumbersome, while subcutaneous (SC) administration is hampered by lower bioavailability and potential for immunogenicity. This study evaluated the efficacy of liposomal formulations in enhancing the subcutaneous (SC) delivery and PK of broadly neutralizing antibodies (bNAbs) directed against HIV. METHODS mAbs were encapsulated in liposomes with and without PEGylation. The liposomes were characterized for particle size, polydispersity index, zeta potential, and release. Thereafter, mice were injected with free mAbs or liposome-encapsulated mAbs, and PK was evaluated. RESULTS Liposomes exhibited sizes of 85-92 nm with negative surface charges. Encapsulation efficiencies were 61 % for PEGylated and 58 % for non-PEGylated liposomes. Stability testing over 16 weeks revealed that formulations remained stable at 4 °C but showed leakage at 37 C. Cytotoxicity assays confirmed that the liposomal formulations did not affect cell viability or induce apoptosis in HMEC-1 cells. In vivo, PK studies in humanized FcRn mice indicated that the PEGylated formulations generally had higher half-life, Cmax, AUC, and MRT, and lower CL values compared to their non-PEGylated formulations of the same injection type. Both liposomal formulations showed improvements in bioavailability and extended half-life compared to free mAbs administered via SC and IV routes. Compared to the gold standard of IV free mAb injection, SC injection of antibodies encapsulated in PEGylated liposome had up to 80 % higher bioavailability and 45 % extension of half-life. Compared to the SC free mAb injection, the differences were even more pronounced, with liposomal SC injection having up to 113 % higher bioavailability and 81 % extension of half-life. CONCLUSION Overall, liposomal encapsulation effectively protected SC injected mAbs from degradation, facilitated sustained release, and improved PK profiles, suggesting a promising strategy for enhancing the therapeutic potential of mAbs in conditions that need repeated injections. Future work should further optimize liposomal formulations to increase loading capacity, stability, and release kinetics. STATEMENT OF SIGNIFICANCE This study addresses a challenge in the administration of monoclonal antibodies (mAbs). Intravenous administration requires additional resources, including nursing staff, making it time-consuming and costly. Although subcutaneous (SC) administration offers a less expensive and more patient-friendly option, it suffers from lower bioavailability and potentially shorter half-life. In this study, we encapsulated mAbs in liposomal formulations specifically designed to enhance their pharmacokinetics by promoting efficient lymphatic transport. Compared with both SC and even IV administration of free antibodies, liposomal formulations of mAbs remarkably improve bioavailability and extend the half-life. This innovative approach combines the comfort of SC administration with enhanced pharmacokinetics, addressing the limitations of current SC delivery methods. Liposomal formulations have the ability to greatly improve SC mAb administration by reducing the amount of antibody needed to be administered, reducing the frequency of injections, and potentially protecting against immunogenicity.
Collapse
Affiliation(s)
- Maryam Karimi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arash Aslanabadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ben Atkinson
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Mahsa Hojabri
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Arshi Munawwar
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Roza Zareidoodeji
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Krishanu Ray
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Parham Habibzadeh
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Hanife Nur Karakoc Parlayan
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Infectious Diseases, Karadeniz Technical University School of Medicine, Trabzon, Turkey
| | - Anthony DeVico
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Abdolrahim Abbasi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Mohammad M Sajadi
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
11
|
Syauqi MA, Burhanuddin AZ, Muharam APU, Azizah N, Gattang CP, Permana AD. Optimizing Andrographolide from Sambiloto Leaves ( Andrographis paniculata) Using Cyclodextrin Metal-Organic Frameworks for Targeted Pulmonary Delivery via a Metered Dose Inhaler: A Proof-Of-Concept Study. Mol Pharm 2025; 22:1280-1292. [PMID: 39966087 DOI: 10.1021/acs.molpharmaceut.4c00967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Andrographis paniculata is recognized for its numerous applications in the pharmaceutical industry. The primary compound of this plant, andrographolide (AG), has demonstrated potent antibacterial properties, including against K. pneumoniae. However, its poor solubility limits its bioavailability. To address this, the creation of an inclusion complex (IC) using cyclodextrin (CD) and Metal-Organic Frameworks (MOFs) offers a promising solution for improving AG's solubility and bioavailability. The AG-CD-MOFs are intended to be delivered via a metered dose inhaler (MDI), allowing for direct targeting of lung tissue. This research focuses on designing AG encapsulated within CD-MOFs to boost solubility and enhance drug efficacy when delivered directly to the lungs via an MDI. Computational molecular modeling indicated that γ-CD is the most suitable host molecule for forming an inclusion complex (IC) with AG, surpassing α-CD and β-CD. The optimal AG to γ-CD ratio for the IC is 1:2 (w/w), with a particle size of 534.53 ± 49.11 nm, a PDI of 0.121 ± 0.01, an encapsulation efficiency (EE) of 89.45 ± 7.03%, and a drug loading (DL) of 26.09 ± 2.87%. The IC exhibits strong antibacterial activity comparable to AG crystal-DMSO, highlighting the importance of solubility in AG's antibacterial efficacy. Additionally, drug release studies revealed that the IC's release profile is nearly nine times greater than that of the AG crystal. In vivo studies further demonstrated the high selectivity of the MDI for lung tissue delivery compared to injection and oral administration, with drug concentrations of 7.44 ± 0.57 μg/mL, 1.52 ± 0.23 μg/mL, and 1.5 ± 0.16 μg/mL, respectively. Moreover, the MDI AG-CD-MOFs exhibited sustained-release properties, maintaining a drug concentration of 5.27 ± 0.75 μg/mL in lung tissue for up to 48 h, significantly higher than injection and oral administration, which only maintained concentrations of 1.52 ± 0.23 μg/mL and 1.50 ± 0.16 μg/mL at 8 h, respectively. The developed formulation shows high selectivity to lung tissue and shows sustained-release behavior. The formula was deemed safe based on in vitro hemolysis and irritation risk tests and did not cause inflammation in lung tissue, as confirmed by histopathology studies. Furthermore, in vivo studies are strongly recommended to validate this therapy and improve pneumonia treatment options.
Collapse
Affiliation(s)
- Muhammad Ammar Syauqi
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | | | | | - Ni'mah Azizah
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Caesar Putra Gattang
- Faculty of Medicine, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| | - Andi Dian Permana
- Faculty of Pharmacy, Hasanuddin University, Makassar, South Sulawesi 90245, Indonesia
| |
Collapse
|
12
|
Zhu N, Bi D, Huang J, Yao L, Wu Y, Jiang Z, Hu Z, Zhu B, Li S, Xu X. Genipin crosslinked sodium caseinate-chitosan oligosaccharide nanoparticles for optimizing β-carotene stability and bioavailability. Int J Biol Macromol 2025; 297:139626. [PMID: 39788249 DOI: 10.1016/j.ijbiomac.2025.139626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/03/2025] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
In this study, genipin served as crosslinker to combine sodium caseinate (SC) and chitosan oligosaccharide (COS), aiming to improve the physicochemical properties and encapsulation efficiency of SC in delivering hydrophobic nutritional factors. The genipin crosslinked complex of SC and COS (GSCC) was characterized by circular dichroism spectrum and infrared spectrum analyses. Nanoparticles produced from GSCC (GSCCNP) exhibited a superior hydrophilicity compared to those derived from SC (SCNP). GSCCNP significantly augmented the encapsulation efficacy and photostability of β-carotene. β-Carotene encapsulated within GSCCNP (βC-GSCCNP) exhibited remarkable in vitro sustained release characteristics and heightened bioavailability. In addition, βC-GSCCNP showed significant in vitro anti-inflammatory activity. These findings indicated that genipin crosslinking COS-modified SC could construct a nano-delivery system to enhance the stability and bioavailability of insoluble nutritional factors, thereby presenting promising applications for hydrophobic nutrients in the development of functional foods and beverages.
Collapse
Affiliation(s)
- Nanting Zhu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Decheng Bi
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Jinfeng Huang
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Lijun Yao
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Yan Wu
- Instrumental Analysis Center, Shenzhen University, Shenzhen 518060, China
| | - Zedong Jiang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Zhangli Hu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Beiwei Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shuangfei Li
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| | - Xu Xu
- Shenzhen Key Laboratory of Marine Bioresources and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
13
|
Jahan S, Sultana N, Ali A, Emad NA, Alam P, Mujeeb M, Aqil M, Ali A. 5-Fluorouracil- and Sesamol-Loaded Transliposomal Gel for Skin Cancer: In Vitro, Ex Vivo, and Dermatokinetic Evaluation. ACS OMEGA 2025; 10:6857-6875. [PMID: 40028080 PMCID: PMC11865969 DOI: 10.1021/acsomega.4c09147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 03/05/2025]
Abstract
This study explores a novel approach to managing skin conditions through a combination therapy utilizing a phospholipid-enriched edge activator-based nanoformulation. 5-Fluorouracil (5-FU)- and sesamol (SES)-loaded transliposomes (FS-TL) were developed using a thin film hydration method and optimized using Box-Behnken Design. FS-TL characterization indicated a vesicle size of 165.6 ± 1.1 nm, polydispersity index of 0.28 ± 0.01, and a zeta potential of -33.17 ± 0.9 mV, and the percent entrapment efficiencies for 5-FU and SES were found to be 63.16 ± 1.07% and 75.60 ± 3.68%, respectively. The drug loading percents for 5-FU and SES were found to be 5.87 ± 0.099% and 7.03 ± 0.34%, respectively. The morphological studies exhibit the distinctive spherical shape of the nanoformulation. The in vitro drug release demonstrated sustained release with 82.52 ± 1.2% and 86.28 ± 1.3% releases for 5-FU and SES, respectively. The ex vivo skin permeation exhibited 81.04 ± 2.1% and 78.03 ± 1.7% for 5-FU and SES. Confocal laser microscopy scanning (CLSM) revealed a deeper formulation penetration (30.0 μm) of excised mice skin membranes than for a standard rhodamine solution (10.0 μm). The dermatokinetic investigation revealed that FS-TL gel has significantly higher concentrations of 5-FU and SES (p < 0.001). The efficacy of FS-TL (p < 0.05) in eradicating the A431 melanoma cell line was satisfactory. These findings suggest the potential of FS-TL formulation over conventional approaches in skin cancer management.
Collapse
Affiliation(s)
- Samreen Jahan
- Jamia
Hamdard University, Department of Pharmaceutics,
School of Pharmaceutical Education and Research, New Delhi, India 110062
| | - Niha Sultana
- Jamia
Hamdard University, Department of Pharmaceutics,
School of Pharmaceutical Education and Research, New Delhi, India 110062
| | - Asad Ali
- Jamia
Hamdard University, Department of Pharmaceutics,
School of Pharmaceutical Education and Research, New Delhi, India 110062
| | - Nasr A. Emad
- Jamia
Hamdard University, Department of Pharmaceutics,
School of Pharmaceutical Education and Research, New Delhi, India 110062
| | - Perwez Alam
- King
Saud University, Department of Pharmacognosy,
College of Pharmacy, P.O. Box 2457, Riyadh, Saudi Arabia 11451
| | - Mohd. Mujeeb
- Jamia
Hamdard University, Department of Pharmacognosy
and Phytochemistry, School of Pharmaceutical Education and Research, New Delhi, India 110062
| | - Mohd. Aqil
- Jamia
Hamdard University, Department of Pharmaceutics,
School of Pharmaceutical Education and Research, New Delhi, India 110062
| | - Asgar Ali
- Jamia
Hamdard University, Department of Pharmaceutics,
School of Pharmaceutical Education and Research, New Delhi, India 110062
| |
Collapse
|
14
|
Park J, Pho T, Bhatnagar N, Mai LD, Rodriguez-Otero MR, Pal SS, Le CTT, Jenison SE, Li C, May GA, Arioka M, Kang SM, Champion JA. Multilayer Adjuvanted Influenza Protein Nanoparticles Improve Intranasal Delivery and Antigen-Specific Immunity. ACS NANO 2025; 19:7005-7025. [PMID: 39954231 PMCID: PMC11867023 DOI: 10.1021/acsnano.4c14735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Intranasal vaccination is a desired route for protection against influenza viruses by mucosal and systemic immunity. However, the nasal mucosa impedes the intranasal delivery of vaccines. Here, we formulated layer-by-layer (LBL) influenza vaccine nanoparticles for effective intranasal delivery by coating them with alternating mucoadhesive cationic chitosan and muco-inert anionic CpG adjuvants. The nanoparticle cores were formed by desolvating influenza M2e antigen and coating it with hemagglutinin (HA) antigen via biotin-streptavidin conjugation. LBL modification promoted nasal delivery and interaction with the resident immune cells. Intranasal administration with LBL nanoparticles significantly improved cellular and humoral immune responses against HA and M2e including high IgA titers, a hallmark of potent mucosal immunity and persistence of immune responses. Distinct trends for antigen-specific immune responses were observed for different routes of vaccination. The enhanced immune responses conferred mice protection against the influenza challenge and prominently reduced viral titers, demonstrating the effectiveness of intranasal LBL vaccine nanoparticles.
Collapse
Affiliation(s)
- Jaeyoung Park
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Thomas Pho
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noopur Bhatnagar
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Linh D. Mai
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mariela R. Rodriguez-Otero
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Surya Sekhar Pal
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Chau Thuy Tien Le
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Sarah E. Jenison
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chenyu Li
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Grace A. May
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Marisa Arioka
- Department
of Chemistry, Tokyo University of Science, Shinjuku-ku, Tokyo 162-8601, Japan
| | - Sang-Moo Kang
- Center
for
Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia 30302, United States
| | - Julie A. Champion
- School of
Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Bioengineering
Program, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
15
|
Satapathy BS, Zafar A, Warsi MH, Behera S, Mohanty DI, Mujtaba MA, Mohanty M, Upadhyay AK, Khalid M. Luliconazole-niacinamide lipid nanocarrier laden gel for enhanced treatment of vaginal candidiasis: in vitro, ex vivo, in silico and preclinical insights. RSC Adv 2025; 15:5665-5680. [PMID: 39980997 PMCID: PMC11836644 DOI: 10.1039/d4ra08397k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
A lipid-based nanocarrier system is a novel technique for the delivery of poorly soluble drugs through topical delivery. This study developed a dual-drug (luliconazole: LZ, and niacinamide: NM) loaded lipid nanocarrier (LN)-laden gel for the treatment of vaginal candidiasis. The LNs were prepared using cholesterol and soya-α-lecithin through a thin-film hydration technique. The average vesicle size, polydispersity index, and zeta potential of the optimized LZNMLNs were 126.40 ± 1.30 nm, 0.276, and -34.6 ± 0.8 mV, respectively, and the formulation showed the sustained release of both drugs over an extended period. Selected LZNMLNs were incorporated into a bio-adhesive gel. The optimized LZNMLNs-gel showed excellent viscosity, spreadability, and bio-adhesiveness. The optimized LZNMLNs-gel exhibited significantly higher permeation of LZ (1.46-fold) and NM (1.55-fold) than LZNM gel. The optimized LZNMLNs-gel showed significantly higher in vitro antifungal activity (ZOI = 34 ± 2 mm) than commercial Candid V gel (18 ± 1 mm). The optimized LZNMLNs-gel did not show any cytotoxicity against vaginal epithelial cells. The bioavailability of LZNMLNs-gel was significantly (P < 0.05) increased (1.94-fold for LZ and 1.33-fold for NM) compared to Candid V, with a decrease in total clearance indicating sustained release of the drug, which may lead to the maintenance of therapeutic concentration for an extended period. In vivo antifungal activity showed that the optimized LZNMLNs-gel completely treated the infection on the 7th day of treatment in an induced rabbit model, compared to the commercial gel (Candid V gel, 10 days). Based the findings, it can be concluded that LN-laden gel is an alternative carrier for improvement of the topical delivery of drugs for the treatment of vaginal candidiasis.
Collapse
Affiliation(s)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72341 Al-Jouf Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University Taif 21944 Saudi Arabia
| | - Sritam Behera
- Nityananda College of Pharmacy, Biju Patnaik University of Technology Sergarh Balasore Odisha India
| | - Dibya Iochan Mohanty
- Centre for Nanomedicine, Department of Pharmaceutics, School of Pharmacy, Anurag University Hyderabad Telangana Pin 500088 India
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University Arar Saudi Arabia
- Center for Health Research, Northern Border University Arar Saudi Arabia
| | - Mahaprasad Mohanty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University Odisha India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala Punjab India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
16
|
Paranjape S, Choi KY, Kashiwagi S, Choi HS. H-Dots: Renal Clearable Zwitterionic Nanocarriers for Disease Diagnosis and Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:2111-2123. [PMID: 39823416 DOI: 10.1021/acs.langmuir.4c04372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Nanocarriers have shown significant promise in the diagnosis and treatment of various diseases, utilizing a wide range of biocompatible materials such as metals, inorganic substances, and organic components. Despite diverse design strategies, key physicochemical properties, including hydrodynamic diameter, shape, surface charge, and hydrophilicity/lipophilicity, are crucial for optimizing biodistribution, pharmacokinetics, and therapeutic efficacy. However, these properties are often influenced by drug payload, presenting an ongoing challenge in developing versatile platform technologies for theranostics. To enable tissue- and organ-specific targeting while minimizing nonspecific uptake, renal clearable Harvard dots (H-dots) have emerged as a promising organic nanocarrier platform. Composed of an ε-polylysine backbone for a tunable charge, near-infrared fluorophores for tracking their fate in living organisms, and β-cyclodextrins for potential drug delivery, H-dots offer a multifunctional approach to theranostic nanomedicine. Recent studies demonstrate that H-dots are effective for targeted imaging and drug delivery to solid tumors. This review highlights current nanocarrier design strategies and recent advances in H-dot applications for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Swarali Paranjape
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Kyu Young Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
- Department of Otorhinolaryngology-Head and Neck Surgery, Kangnam Sacred Heart Hospital and Hallym University College of Medicine, Yeongdeungpo-gu, Seoul 07441, Republic of Korea
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, United States
| |
Collapse
|
17
|
Xiong T, Li D, Ren J, Chen C, Li S, Song Z, Xu N, Liu T, Liu S. Soluble microneedle acupuncture patches containing melittin liposomes for the percutaneous treatment of rheumatoid arthritis. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2025; 64:102806. [PMID: 39855442 DOI: 10.1016/j.nano.2025.102806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/11/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025]
Abstract
Bee venom acupuncture (BVA) offers therapeutic potential for rheumatoid arthritis (RA) but faces challenges from pain and allergies linked to live bee stings. A key hurdle is melittin (Mel), bee venom's main anti-inflammatory component, which degrades rapidly when orally ingested, leading to decreased efficacy and increased toxicity. This study proposes a solution by encapsulating melittin in liposomes to enhance stability and lessen side effects, expanding its clinical applicability. Additionally, the advancement of microneedle technology, which bypasses gastrointestinal issues by targeting the stratum corneum, opens a novel pathway for RA treatment. Employing soluble microneedles loaded with melittin-encapsulated liposomes (Mel-Lip) enables effective transdermal delivery. Results from an adjuvant-induced RA animal model show that Mel-Lip microneedles improve foot health, repair cartilage, and lower inflammatory markers, highlighting microneedling with transdermal nanocarriers as a promising, patient-friendly approach for RA management.
Collapse
Affiliation(s)
- Tong Xiong
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Du Li
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Juanjuan Ren
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Chuncheng Chen
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Shijie Li
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Zhuoyue Song
- Bioengineering Laboratory, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510070, Guangdong, PR China
| | - Nenggui Xu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| | - Tao Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| | - Shihui Liu
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China.
| |
Collapse
|
18
|
Dang M, Slaughter KV, Cui H, Jiang C, Zhou L, Matthew DJ, Sivak JM, Shoichet MS. Colloid-Forming Prodrug-Hydrogel Composite Prolongs Lower Intraocular Pressure in Rodent Eyes after Subconjunctival Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2419306. [PMID: 39763100 PMCID: PMC11854861 DOI: 10.1002/adma.202419306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Indexed: 02/26/2025]
Abstract
Colloidal drug aggregates (CDAs) are challenging in drug discovery due to their unpredictable formation and interference with screening assays. These limitations are turned into a strategic advantage by leveraging CDAs as a drug delivery platform. This study explores the deliberate formation and stabilization of CDAs for local ocular drug delivery, using a modified smallmolecule glaucoma drug. A series of timolol prodrugs are synthesized and self-assembled into CDAs. Of four prodrugs, timolol palmitate CDAs have a critical aggregate concentration of 2.72 µM and sustained in vitro release over 28 d. Timolol palmitate CDAs are dispersed throughout in situ gelling hyaluronan-oxime hydrogel and injected into the subconjunctival space of rat eyes. The intraocular pressure is significantly reduced for at least 49 d with a single subconjunctival injection of timolol-palmitate CDAs compared to 6 h for conventional timolol maleate. The systemic blood concentrations of timolol are significantly lower, even after 6 h, for timolol palmitate CDA-loaded hydrogel versus free timolol maleate, thereby potentially reducing the risk of systemic side effects. This innovative approach redefines the role of CDAs and provides a framework for long-acting ocular therapeutics, shifting their perception from a drug screening challenge to a powerful tool for sustained local drug delivery.
Collapse
Affiliation(s)
- Mickael Dang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Kai V. Slaughter
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| | - Hong Cui
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
| | - Christopher Jiang
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - Lisa Zhou
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
| | - David J. Matthew
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
| | - Jeremy M. Sivak
- Donald K. Johnson Eye InstituteKrembil Research InstituteUniversity Health Network399 Bathurst StreetTorontoONM5T 2S8Canada
- Department of Ophthalmology and Vision SciencesUniversity of Toronto340 College StreetTorontoONM5T 3A9Canada
- Department of Laboratory Medicine and PathobiologyUniversity of Toronto1 King's College CircleTorontoONM5S 1A8Canada
| | - Molly S. Shoichet
- Department of Chemical Engineering & Applied ChemistryUniversity of Toronto200 College StreetTorontoONM5S 3E5Canada
- Terrence Donnelly Centre for Cellular and Biomolecular ResearchUniversity of Toronto160 College StreetTorontoONM5S 3E1Canada
- Institute of Biomedical Engineering University of Toronto164 College StreetTorontoONM5S 3G9Canada
| |
Collapse
|
19
|
Matalqah S, Lafi Z, Mhaidat Q, Asha N, Yousef Asha S. 'Applications of machine learning in liposomal formulation and development'. Pharm Dev Technol 2025; 30:126-136. [PMID: 39780760 DOI: 10.1080/10837450.2024.2448777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
Machine learning (ML) has emerged as a transformative tool in drug delivery, particularly in the design and optimization of liposomal formulations. This review focuses on the intersection of ML and liposomal technology, highlighting how advanced algorithms are accelerating formulation processes, predicting key parameters, and enabling personalized therapies. ML-driven approaches are restructuring formulation development by optimizing liposome size, stability, and encapsulation efficiency while refining drug release profiles. Additionally, the integration of ML enhances therapeutic outcomes by enabling precision-targeted delivery and minimizing side effects. This review presents current breakthroughs, challenges, and future opportunities in applying ML to liposomal systems, aiming to improve therapeutic efficacy and patient outcomes in various disease treatments.
Collapse
Affiliation(s)
- Sina Matalqah
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | - Zainab Lafi
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman, Jordan
| | | | | | | |
Collapse
|
20
|
Gadeval A, Anup N, Pawar B, Mule S, Otavi S, Sahu R, Kumar Tekade R. Gold-thiol-beaded albumin nanoparticles for chemo-combined pulsatile plasmonic laser therapy of Rheumatoid arthritis in rat model. Int J Pharm 2024; 667:124882. [PMID: 39471886 DOI: 10.1016/j.ijpharm.2024.124882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/15/2024] [Accepted: 10/26/2024] [Indexed: 11/01/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory immune disease that causes synovial membrane inflammation and destruction of articular cartilage. Traditionally, methotrexate is a first-line drug for RA treatment. However, its therapeutic benefits are insufficient. Pulsatile Plasmonic laser therapy (PPLT) has recently emerged as a localized and new-generation intervention for RA. This investigation reports the development of nanoGold-thiol-beaded albumin nanoparticles containing Leflunomide (GTBA-NP-L; 54 nm, PDI: 0.15 and entrapment efficiency: >90 %) for treating RA in an arthritic rat model. Upon irradiation of the plasmonic laser, the nanoGold component of GTBA-NP-L showed a local thermogenic effect (1.5 W/cm2 for 5 mins: ∼45 °C). This local thermal effect enhances drug release (1.5-fold) while co-delivering heat and antiarthritic leflunomide at inflamed RA joints site. In vitro and in vivo studies demonstrated significant antiarthritic effects of GTBA-NP-L, accompanied by reduced inflammatory stress in lipopolysaccharide (LPS)-activated RAW 264.7 macrophage cells and antigen-induced arthritis (AIA) rat model. GTBA-NP-L treatment significantly reduced the cell viability (49.66 ± 2.46 %), apoptosis (83.36 ± 4.30 %), cell cycle arrest (38.28 ± 2.85 %), ROS and Nitrite stress levels (178.92 ± 19.79 %), and suppressed pro-inflammatory cytokines (TNF-α: 4.81, IL-6: 3.07 and IL-1β: 4.46-fold). In the arthritic rat, GTBA-NP-L treatment reduced inflammation, paw edema (1.89-fold), pain perception (45-48 %), and impacted hematological (Hb and RBCs: 12-15 %, WBCs: 30-32 %), serological (RF: 50-54 %, CRP: 40-47 %), and radiological parameters. Conclusively, the study demonstrates that the chemo-combined Pulsatile Plasmonic laser therapy showed superior efficacy as compared to individual treatments, suggesting GTBA-NP-L as a potential therapeutic candidate for rheumatoid arthritis.
Collapse
Affiliation(s)
- Anuradha Gadeval
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Neelima Anup
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Bhakti Pawar
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shubham Mule
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Shivam Otavi
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Sahu
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India
| | - Rakesh Kumar Tekade
- National Institute of Pharmaceutical Education and Research (NIPER) Ahmedabad, An Institute of National Importance, Government of India, Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Palaj, Opp. Air Force Station, Gandhinagar 382355, Gujarat, India.
| |
Collapse
|
21
|
Ahmad S, d'Avanzo N, Mancuso A, Barone A, Cristiano MC, Carresi C, Mollace V, Celia C, Fresta M, Paolino D. Skin Tolerability of Oleic Acid Based Nanovesicles Designed for the Improvement of Icariin and Naproxen Percutaneous Permeation. ACS APPLIED BIO MATERIALS 2024; 7:7852-7860. [PMID: 38608313 DOI: 10.1021/acsabm.4c00067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024]
Abstract
Deformable nanovesicles have a crucial role in topical drug delivery through the skin, due to their capability to pass intact the stratum corneum and epidermis (SCE) and significantly increase the efficacy and accumulation of payloads in the deeper layers of the skin. Namely, lipid-based ultradeformable nanovesicles are versatile and load bioactive molecules with different physicochemical properties. For this reason, this study aims to make oleic acid based nanovesicles (oleosomes) for the codelivery of icariin and sodium naproxen and increase their permeation through the skin. Oleosomes have suitable physicochemical properties and long-term stability for a potential dermal or transdermal application. The inclusion of oleic acid in the lipid bilayer increases 3-fold the deformable properties of oleosomes compared to conventional liposomes and significantly improves the percutaneous permeation of icariin and sodium naproxen through the human SCE membranes compared to hydroalcoholic solutions of both drugs. The tolerability studies on human volunteers demonstrate that oleosomes are safer and speed up the recovery of transepidermal water loss (TEWL) baselines compared to saline solution. These results highlight promising properties of icariin/sodium naproxen coloaded oleosomes for the treatment of skin disorders and suggest the potential future applications of these nanovesicles for further in vivo experiments.
Collapse
Affiliation(s)
- Shabir Ahmad
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Nicola d'Avanzo
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Medical and Surgical Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Cristina Carresi
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
| | - Vincenzo Mollace
- Institute of Research for Food Safety and Health IRC-FSH, Department of Health Sciences, University of Catanzaro "Magna Graecia", 88100 Catanzaro, Italy
- Renato Dulbecco Institute, Lamezia Terme, 88046 Catanzaro, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
- Laboratory of Drug Targets Histopathology, Institute of Cardiology, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
- UdA-TechLab, Research Center, University of Chieti-Pescara "G. d'Annunzio", Via dei Vestini 31, 66100 Chieti, Italy
| | - Massimo Fresta
- Department of Health Sciences, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100 Catanzaro, Italy
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta", 88100, Catanzaro, Italy
- Research Center "ProHealth Translational Hub", Department of Experimental and Clinical Medicine, University of Catanzaro "Magna Graecia", Campus Universitario "S. Venuta", Building of BioSciences, Viale S. Venuta, 88100 Catanzaro, Italy
| |
Collapse
|
22
|
Chen M, Nan J, Breider F. A comparative study on the stability and coagulation removal of aged vs. nonaged nanoplastics in surface water. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136490. [PMID: 39547043 DOI: 10.1016/j.jhazmat.2024.136490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Nanoplastics (NPs) are released into surface water due to the widespread use of plastics, undergoing aging from environmental and human factors that alter their physical and chemical characteristics. However, detecting NPs remains challenging, resulting in limited research on their behavior in surface water and their removal efficiency by drinking water treatment. This study utilizes palladium-doped polystyrene nanoplastics (PSNPs) as tracers to enable precise detection and quantification through ICP-MS, thereby overcoming the limitations of conventional detection methods. PSNPs are aged using solar irradiation and ozone to simulate both natural and artificial aging processes, affecting the physical and chemical properties of NPs, which in turn influence their behavior in water treatment systems. Moreover, the study investigates the impact of various coagulation conditions, including different coagulants (AlCl3 and PACl), pH levels (4-9), and humic acid (HA) concentrations (0-10 mg/L), on the of both aged and nonaged NPs. The results demonstrate solar aging triggers significant morphological changes in PSNPs, while ozone aging induces more oxygen functional groups on PSNPs (CIozone=20.99; CIsolar=0.70), increasing sensitivity to HA concentrations and resulting in reduced removal efficiencies for ozone aged PSNPs by AlCl3 (68.68 %) and PACl (74.74 %). In addition, PACl achieves higher PSNPs removal efficiencies (REmin=88.59 %) than that of AlCl3 (REmin=85.57 %) under varied pH levels. This research fills a gap in understanding aged NPs behavior in surface water and offers practical solutions for optimizing coagulation for NPs removal, enhancing our ability to predict NPs environmental fate and manage NPs pollution to ensure drinking water safety.
Collapse
Affiliation(s)
- Meng Chen
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China; Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland
| | - Jun Nan
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne - EPFL, Central Environmental Laboratory, Station 2, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
23
|
Agrahari V, Choonara YE, Mosharraf M, Patel SK, Zhang F. The Role of Artificial Intelligence and Machine Learning in Accelerating the Discovery and Development of Nanomedicine. Pharm Res 2024; 41:2289-2297. [PMID: 39623144 DOI: 10.1007/s11095-024-03798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/19/2024] [Indexed: 12/29/2024]
Abstract
The unique potential of nanomedicine to address challenging health issues is rapidly advancing the field, leading to the generation of more effective products. However, these complex systems often pose several challenges with respect to their design for specific functionality, scalable manufacturing, characterization, quality control, and clinical translation. In this regard, the application of artificial intelligence (AI) and machine learning (ML) approaches can enable faster and more accurate data assessment, identifying trends and predicting outcomes, leading to efficient nanomedicine product development. This perspective paper discusses the potential of AI and ML in nanomedicine product development with a focus on their applications in discovery, assessment, manufacturing, and clinical trials. The potential limitations of AI and ML approaches in nanomedicine product development are also covered.
Collapse
Affiliation(s)
- Vivek Agrahari
- CONRAD, Eastern Virginia Medical School, Old Dominion University, Norfolk, VA, 23507, USA
| | - Yahya E Choonara
- Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Wits Infectious Diseases and Oncology Research Institute, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| | - Mitra Mosharraf
- HTD Biosystems, 3197 Independence Drive, Livermore, CA, 94551, USA.
- Engimata, 3197 Independence Drive, Livermore, CA, 94551, USA.
| | - Sravan Kumar Patel
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Magee-Womens Research Institute, Pittsburgh, PA, 15213, USA
| | - Fan Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Florida, 1350 Center Drive, Gainesville, FL, 32610, USA
- Department of Pharmacology & Therapeutics, College of Medicine, University of Florida, 1200 Newell Drive, Gainesville, FL, 32610, USA
- Department of Chemical Engineering, College of Engineering, University of Florida, 1006 Center Drive, Gainesville, FL, 32611, USA
| |
Collapse
|
24
|
Bellotti M, Chiesa E, Conti B, Genta I, Conti M, Auricchio F, Caimi A. Computational-Aided Approach for the Optimization of Microfluidic-Based Nanoparticles Manufacturing Process. Ann Biomed Eng 2024; 52:3240-3252. [PMID: 39098979 PMCID: PMC11561088 DOI: 10.1007/s10439-024-03590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 07/25/2024] [Indexed: 08/06/2024]
Abstract
In the last few years, the microfluidic production of nanoparticles (NPs) is becoming a promising alternative to conventional industrial approaches (e.g., nanoprecipitation, salting out, and emulsification-diffusion) thanks to the production efficiency, low variability, and high controllability of the production parameters. Nevertheless, the development of new formulations and the switching of the production process toward microfluidic platforms requires expensive and time-consuming number of experiments for the tuning of the formulation to obtain NPs with specific morphological and functional characteristics. In this work, we developed a computational fluid dynamic pipeline, validated through an ad hoc experimental strategy, to reproduce the mixing between the solvent and anti-solvent (i.e., acetonitrile and TRIS-HCl, respectively). Moreover, beyond the classical variables able to describe the mixing performances of the microfluidic chip, novel variables were described in order to assess the region of the NPs formation and the changing of the amplitude of the precipitation region according to different hydraulic conditions. The numerical approach proved to be able to capture a progressive reduction of the nanoprecipitation region due to an increment of the flow rate ratio; in parallel, through the experimental production, a progressive increment of the NPs size heterogeneity was observed with the same fluid dynamic conditions. Hence, the preliminary comparison between numerical and experimental evidence proved the effectiveness of the computational strategy to optimize the NPs manufacturing process.
Collapse
Affiliation(s)
- Marco Bellotti
- Department of Civil Engineering and Architecture, Università degli Studi di Pavia, Via Ferrata 3, Pavia, Italy.
| | - Enrica Chiesa
- Department of Drug Sciences, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, Italy
| | - Bice Conti
- Department of Drug Sciences, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, Italy
| | - Ida Genta
- Department of Drug Sciences, Università degli Studi di Pavia, V.le Taramelli 12, Pavia, Italy
| | - Michele Conti
- Department of Civil Engineering and Architecture, Università degli Studi di Pavia, Via Ferrata 3, Pavia, Italy
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, Università degli Studi di Pavia, Via Ferrata 3, Pavia, Italy
| | - Alessandro Caimi
- Department of Civil Engineering and Architecture, Università degli Studi di Pavia, Via Ferrata 3, Pavia, Italy
| |
Collapse
|
25
|
Baselga M, Güemes A, Arruebo M, Yus C, Alejo T, Sebastián V, Martínez G, Arribas D, Mendoza G, Junquera C, Monleón E. Preclinical evaluation of polymer encapsulated carbon-based nano and microparticles for sentinel lymph node tattooing. Sci Rep 2024; 14:29512. [PMID: 39604460 PMCID: PMC11603039 DOI: 10.1038/s41598-024-80931-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024] Open
Abstract
Selective sentinel lymph node biopsy (SNLB) is the standard method for detecting regional metastases in breast cancer patients. Identifying affected axillary lymph nodes before neoadjuvant treatment is crucial, as such treatment may alter drainage pathways and lymph node morphology, hindering the identification of sentinel lymph nodes. The use of carbon-based tattooing on sentinel lymph nodes (SLN) has been employed as a permanent tattooing method in clinical studies of Targeted Axillary Dissection (TAD), aiding in the SLN identification during surgery. Our study introduces a new method of lymph node tattooing based on poly lactic-co-glycolic (PLGA) particles with encapsulated carbon. This strategy substantially improves tattooing efficiency over single carbon suspensions currently used in clinical studies. We synthesized and characterized carbon-loaded PLGA micro- and nanoparticles, experimentally assessing their biological impact on porcine lymph nodes. The effect of particles' size and concentration was evaluated over time (from 1 to 16 weeks). Light and electron microscopy studies were conducted to characterize the cellular effects induced by the presence of these particles. Our findings reveal that the diverse physicochemical parameters of the particles interact differently with the lymphatic tissue, influencing their biodistribution within the lymph nodes and the intensity of the inflammatory response.
Collapse
Affiliation(s)
- Marta Baselga
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
| | - Antonio Güemes
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, 50009, Spain
| | - Manuel Arruebo
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
| | - Cristina Yus
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain.
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain.
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain.
| | - Teresa Alejo
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
| | - Víctor Sebastián
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
- Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de 13 Salud Carlos III, Madrid, 28029, Spain
| | - Gema Martínez
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-University of Zaragoza, Zaragoza, 50009, Spain
- Department of Chemical Engineering, University of Zaragoza, Campus Río Ebro, Zaragoza, 50018, Spain
- Networking Res. Center in Biomaterials, Bioengineering and Nanomedicine (CIBERBBN), Instituto de 13 Salud Carlos III, Madrid, 28029, Spain
| | - Dolores Arribas
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Surgery, University of Zaragoza, Zaragoza, 50009, Spain
| | - Gracia Mendoza
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
| | - Concepción Junquera
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
| | - Eva Monleón
- Institute for Health Research Aragon (IIS Aragón), Zaragoza, 50009, Spain
- Department of Human Anatomy and Histology, University of Zaragoza, Zaragoza, 50009, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes, University of Zaragoza, Zaragoza, 50009, Spain
| |
Collapse
|
26
|
Cui J, Makita Y, Okamura T, Ikeda C, Fujiwara SI, Tominaga K. Near-Infrared Light Photodynamic Therapy with PEI-Capped Up-Conversion Nanoparticles and Chlorin e6 Induces Apoptosis of Oral Cancer Cells. J Funct Biomater 2024; 15:333. [PMID: 39590537 PMCID: PMC11595556 DOI: 10.3390/jfb15110333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common malignancy in the oral cavity. Photodynamic therapy (PDT) is a new alternative for the treatment of diseases using photosensitizers (PS) and light. In this study, we used a photosensitizer complex (Ce6-MnNPs-Chlorin e6 combined with up-conversion nanoparticles NaYF4:Yb/Er/Mn) to investigate the therapeutic effectiveness of this treatment against oral cancer cells. We also investigated the mechanism of action of near-infrared light PDT (NIR-PDT) combined with the Ce6-MnNPs. After determining a suitable concentration of Ce6-MnNPs using an MTT assay, human oral squamous cell carcinoma cells (HSC-3) were treated with NIR-PDT with Ce6-MnNPs. We examined the characteristics of Ce6-MnNPs by transmission electron microscopy (TEM); a zeta potential and particle size analyzer; Fourier-transform infrared spectroscopy (FTIR); cell viability by MTT assay; and apoptosis by FITC-Annexin V/PI assay. The mitochondrial membrane potential (MMP), apoptosis-related mRNA level (Bax and Bcl-2) and p53 protein were also researched. NIR-PDT with 0.5 ng/µL Ce6-MnNPs inhibited the proliferation of HSC-3 (p < 0.05). After treatment with NIR-PDT, changes in the mitochondrial membrane potential and apoptosis occurred (p < 0.01). The ratio of Bax/Bcl-2 and p53-positive cells increased (p < 0.01). These results suggest that this treatment can induce apoptosis of oral cancer cells.
Collapse
Affiliation(s)
- Jinhao Cui
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Yoshimasa Makita
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Tomoharu Okamura
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Chihoko Ikeda
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| | - Shin-ichi Fujiwara
- Department of Chemistry, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (Y.M.); (S.-i.F.)
| | - Kazuya Tominaga
- Department of Oral Pathology, Osaka Dental University, 8-1 Kuzuhahanazonocho, Hirakata 573-1121, Osaka, Japan; (T.O.); (C.I.); (K.T.)
| |
Collapse
|
27
|
Eugster R, Orsi M, Buttitta G, Serafini N, Tiboni M, Casettari L, Reymond JL, Aleandri S, Luciani P. Leveraging machine learning to streamline the development of liposomal drug delivery systems. J Control Release 2024; 376:1025-1038. [PMID: 39489466 DOI: 10.1016/j.jconrel.2024.10.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/05/2024]
Abstract
Drug delivery systems efficiently and safely administer therapeutic agents to specific body sites. Liposomes, spherical vesicles made of phospholipid bilayers, have become a powerful tool in this field, especially with the rise of microfluidic manufacturing during the COVID-19 pandemic. Despite its efficiency, microfluidic liposomal production poses challenges, often requiring laborious, optimization on a case-by-case basis. This is due to a lack of comprehensive understanding and robust methodologies, compounded by limited data on microfluidic production with varying lipids. Artificial intelligence offers promise in predicting lipid behaviour during microfluidic production, with the still unexploited potential of streamlining development. Herein we employ machine learning to predict critical quality attributes and process parameters for microfluidic-based liposome production. Validated models predict liposome formation, size, and production parameters, significantly advancing our understanding of lipid behaviour. Extensive model analysis enhanced interpretability and investigated underlying mechanisms, supporting the transition to microfluidic production. Unlocking the potential of machine learning in drug development can accelerate pharmaceutical innovation, making drug delivery systems more adaptable and accessible.
Collapse
Affiliation(s)
- Remo Eugster
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Markus Orsi
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Giorgio Buttitta
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Rome, Lazio, Italy
| | - Nicola Serafini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Mattia Tiboni
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Luca Casettari
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, PU, Italy
| | - Jean-Louis Reymond
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland
| | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
28
|
Raghunath I, Koland M, Sarathchandran C, Saoji S, Rarokar N. Design and optimization of chitosan-coated solid lipid nanoparticles containing insulin for improved intestinal permeability using piperine. Int J Biol Macromol 2024; 280:135849. [PMID: 39313060 DOI: 10.1016/j.ijbiomac.2024.135849] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/12/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The objective of this research was to optimize the composition and performance of chitosan-coated solid lipid nanoparticles carrying insulin (Ch-In-SLNs) and to assess the potential of piperine in enhancing the intestinal permeability of insulin from these SLNs in vitro. The SLNs were formulated from glyceryl behenate (GB), soya lecithin, and poloxamer® 407, and then coated with a combination of chitosan and piperine to facilitate insulin penetration across the gastrointestinal (GI) mucosa. A Box-Behnken Design (BBD) was utilized to optimize the Ch-In-SLNs formulations, with PDI, particle size, zeta potential, and association efficiency (AE) serving as the response variables. The resulting Ch-In-SLNs exhibited excellent monodispersity (PDI = 0.4), optimal particle size (654.43 nm), positive zeta potential (+36.87 mV), and low AE values. The Ch-In-SLNs demonstrated sustained release of insulin for 12 h in simulated gastric fluid (SGF) and intestinal fluid (SIF), with increased release in the latter. After incubation in SGF and SIF for 12 h, the insulin SLNs retained 54 and 41 % of their initial insulin load, respectively, indicating effective protection from gastric enzymes. Permeation studies using goat intestine and Caco-2 cell lines indicated improved insulin permeation in the presence of piperine. Additionally, cell uptake studies confirmed the role of piperine in enhancing insulin permeation.
Collapse
Affiliation(s)
- Indu Raghunath
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India
| | - Marina Koland
- Nitte (Deemed to be University), NGSM Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Mangalore, Karnataka 575018, India.
| | - C Sarathchandran
- College of Pharmaceutical Sciences, Pariyaram Medical College, Kerala 670 503, India
| | - Suprit Saoji
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India.
| | - Nilesh Rarokar
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, Maharashtra 440033, India; NanoBioSome Research Laboratory, Pardi, Bhandara Road, Nagpur, Maharashtra 440035, India.
| |
Collapse
|
29
|
Camlik G, Bilakaya B, Küpeli Akkol E, Velaro AJ, Wasnik S, Muhar AM, Degim IT, Sobarzo-Sánchez E. Oral Active Carbon Quantum Dots for Diabetes. Pharmaceuticals (Basel) 2024; 17:1395. [PMID: 39459034 PMCID: PMC11510116 DOI: 10.3390/ph17101395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND/OBJECTIVES Metformin (Met), an oral drug used to treat type II diabetes, is known to control blood glucose levels. Metformin carbon quantum dots (MetCQDs) were prepared to enhance the bioavailability and effectiveness of metformin. Several studies have shown that carbon quantum dots (CQDs) have attractive properties like small particle size, high penetrability, low cytotoxicity, and ease of synthesis. CQDs are made from a carbon source, namely, citric acid, and a heteroatom, such as nitrogen. The active molecule can be a carbon source or a heteroatom, as reported here. METHODS This study aims to produce MetCQDs from an active molecule. MetCQDs were successfully produced by microwave-based production methods and characterized. The effect of the MetCQDs was tested in Wistar albino rats following a Streptozocin-induced diabetic model. RESULTS The results show that the products have a particle size of 9.02 ± 0.04 nm, a zeta potential of -10.4 ± 0.214 mV, and a quantum yield of 15.1 ± 0.045%. Stability studies and spectrophotometric analyses were carried out and the effectiveness of MetCQDs evaluated in diabetic rats. The results show a significant reduction in blood sugar levels (34.1-51.1%) compared to the group receiving only metformin (37.1-55.3%) over a period of 30 to 360 min. Histopathological examinations of the liver tissue indicate improvement in the liver health indicators of the group treated with MetCQDs. CONCLUSIONS Based on these results, the products have potential therapeutic advantages in diabetes management through their increased efficacy and may have reduced side effects compared to the control group.
Collapse
Affiliation(s)
- Gamze Camlik
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Biruni University, Istanbul 34015, Türkiye; (G.C.); (B.B.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Besa Bilakaya
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Biruni University, Istanbul 34015, Türkiye; (G.C.); (B.B.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Ankara 06330, Türkiye;
| | - Adrian Joshua Velaro
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (A.J.V.); (A.M.M.)
- Artisan Karya Abadi Research, Medan 20155, Indonesia
- Department of Surgery, Dr. Djasamen Saragih Regional Public Hospital, Pematang Siantar 21121, Indonesia
| | - Siddhanshu Wasnik
- Faculty of Medicine, Government Medical College and Hospital, Miraj 416410, Maharashtra, India;
| | - Adi Muradi Muhar
- Department of Surgery, Faculty of Medicine, Universitas Sumatera Utara, Medan 20155, Indonesia; (A.J.V.); (A.M.M.)
| | - Ismail Tuncer Degim
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Biruni University, Istanbul 34015, Türkiye; (G.C.); (B.B.)
- Biruni University Research Center (B@MER), Biruni University, Istanbul 34015, Türkiye
| | - Eduardo Sobarzo-Sánchez
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Lord Cochrane 417, Santiago 8330507, Chile
- Department of Organic Chemistry, Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
30
|
Kaur M, Singh G, Shivgotra R, Singh M, Thakur S, Jain SK. Prolonged Skin Retention of Luliconazole from SLNs Based Topical Gel Formulation Contributing to Ameliorated Antifungal Activity. AAPS PharmSciTech 2024; 25:229. [PMID: 39354184 DOI: 10.1208/s12249-024-02945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/12/2024] [Indexed: 10/03/2024] Open
Abstract
The development of effective therapy is necessary because the patients have to contend with long-term therapy as skin fungal infections usually relapse and are hardly treated. Despite being a potent antifungal agent, luliconazole (LCZ) has certain shortcomings such as limited skin penetration, low solubility in aqueous medium, and poor skin retention. Solid Lipid Nanoparticles (SLNs) were developed using biodegradable lipids by solvent injection method and were embodied into the gel base for topical administration. After in-vitro characterizations of the formulations, molecular interactions of the drug with excipients were analyzed using in-silico studies. Ex-vivo release was determined in contrast to the pure LCZ and the commercial formulation followed by in-vivo skin localization, skin irritation index, and antifungal activity. The prepared SLNs have an average particle size of 290.7 nm with no aggregation of particles and homogenous gels containing SLNs with ideal rheology and smooth texture properties were successfully prepared. The ex-vivo LCZ release from the SLN gel was lower than the commercial formulation whereas its skin deposition and skin retention were higher as accessed by CLSM studies. The drug reaching the systemic circulation and the skin irritation potential were found to be negligible. The solubility and drug retention in the skin were both enhanced by the development of SLNs as a carrier. Thus, SLNs offer significant advantages by delivering long lasting concentrations of LCZ at the site of infection for a complete cure of the fungal load together with skin localization of the topical antifungal drug.
Collapse
Affiliation(s)
- Manjot Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurbir Singh
- Department of Chemistry, Panjab University, Chandigarh, Punjab, 160014, India
| | - Riya Shivgotra
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manpreet Singh
- Department of Chemistry, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Shubham Thakur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Subheet Kumar Jain
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
- Centre for Basic and Translational Research in Health Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
31
|
Yun J, Shahi NK, Dockko S. Adsorption performance and mechanism of a starch-stabilized ferromanganese binary oxide for the removal of phosphate. CHEMOSPHERE 2024; 362:142864. [PMID: 39019184 DOI: 10.1016/j.chemosphere.2024.142864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
Effective removal of phosphate from water is essential for preventing the eutrophication and worsening of water quality. This study aims to enhance phosphate removal by synthesizing starch-stabilized ferromanganese binary oxide (FMBO-S), discover the factors, and investigate adsorption mechanisms. FMBO and FMBO-S properties were studied using Scanning Electron Microscopy, BET analysis, Polydispersity Index (PDI), Fourier Transform Infrared Spectroscopy, and X-ray Photoelectron Spectroscopy (XPS). After starch loading, the average pore diameter increased from 14.89 Å to 25.16 Å, and significantly increased the pore volume in the mesopore region. FMBO-S showed a PDI value below 0.5 indicating homogeneous size dispersity and demonstrated faster and higher adsorption capacity: 61.24 mg g-1 > 28.57 mg g-1. Both FMBO and FMBO-S adsorption data fit well with the pseudo-second-order and Freundlich models, indicating a chemisorption and multilayered adsorption process. The phosphate adsorption by FMBO was pH-dependent, suggesting electrostatic attraction as the dominant mechanism. For the FMBO-S, phosphate adsorption was favored in a wide pH range, despite the weaker electrostatic attraction as evident from the point of zero charge and zeta potential values, indicating ligand exchange as a main mechanism. Moreover, the XPS analysis shows a significant change in the proportion of Fe species for FMBO-S than FMBO after phosphate adsorption, indicating significant involvement of Fe. Meanwhile, phosphate adsorption was almost unaffected by the presence of Cl-, NO3-, and SO42- anions, whereas CO32- significantly reduced the adsorption capacity. This study revealed that FMBO-S could be a promising, low-cost adsorbent for phosphate removal and recovery from water.
Collapse
Affiliation(s)
- Jun Yun
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
32
|
Spaziani S, Esposito A, Barisciano G, Quero G, Elumalai S, Leo M, Colantuoni V, Mangini M, Pisco M, Sabatino L, De Luca AC, Cusano A. Combined SERS-Raman screening of HER2-overexpressing or silenced breast cancer cell lines. J Nanobiotechnology 2024; 22:350. [PMID: 38902746 PMCID: PMC11188264 DOI: 10.1186/s12951-024-02600-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/28/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND Breast cancer (BC) is a heterogeneous neoplasm characterized by several subtypes. One of the most aggressive with high metastasis rates presents overexpression of the human epidermal growth factor receptor 2 (HER2). A quantitative evaluation of HER2 levels is essential for a correct diagnosis, selection of the most appropriate therapeutic strategy and monitoring the response to therapy. RESULTS In this paper, we propose the synergistic use of SERS and Raman technologies for the identification of HER2 expressing cells and its accurate assessment. To this end, we selected SKBR3 and MDA-MB-468 breast cancer cell lines, which have the highest and lowest HER2 expression, respectively, and MCF10A, a non-tumorigenic cell line from normal breast epithelium for comparison. The combined approach provides a quantitative estimate of HER2 expression and visualization of its distribution on the membrane at single cell level, clearly identifying cancer cells. Moreover, it provides a more comprehensive picture of the investigated cells disclosing a metabolic signature represented by an elevated content of proteins and aromatic amino acids. We further support these data by silencing the HER2 gene in SKBR3 cells, using the RNA interference technology, generating stable clones further analysed with the same combined methodology. Significant changes in HER2 expression are detected at single cell level before and after HER2 silencing and the HER2 status correlates with variations of fatty acids and downstream signalling molecule contents in the context of the general metabolic rewiring occurring in cancer cells. Specifically, HER2 silencing does reduce the growth ability but not the lipid metabolism that, instead, increases, suggesting that higher fatty acids biosynthesis and metabolism can occur independently of the proliferating potential tied to HER2 overexpression. CONCLUSIONS Our results clearly demonstrate the efficacy of the combined SERS and Raman approach to definitely pose a correct diagnosis, further supported by the data obtained by the HER2 gene silencing. Furthermore, they pave the way to a new approach to monitor the efficacy of pharmacologic treatments with the aim to tailor personalized therapies and optimize patients' outcome.
Collapse
Affiliation(s)
- Sara Spaziani
- Optoelectronic Division-Engineering Department, University of Sannio, Benevento, 82100, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), Benevento, 82100, Italy
| | - Alessandro Esposito
- Institute for Experimental Endocrinology and Oncology G. Salvatore, IEOS, second unit, Via P. Castellino 111, Naples, 80131, Italy
| | - Giovannina Barisciano
- Department of Sciences and Technologies, University of Sannio, Benevento, 82100, Italy
| | - Giuseppe Quero
- Biosciences and Territory Department, University of Molise, Pesche, 86090, Italy
| | - Satheeshkumar Elumalai
- Institute for Experimental Endocrinology and Oncology G. Salvatore, IEOS, second unit, Via P. Castellino 111, Naples, 80131, Italy
| | - Manuela Leo
- Department of Sciences and Technologies, University of Sannio, Benevento, 82100, Italy
| | - Vittorio Colantuoni
- Department of Sciences and Technologies, University of Sannio, Benevento, 82100, Italy
| | - Maria Mangini
- Institute for Experimental Endocrinology and Oncology G. Salvatore, IEOS, second unit, Via P. Castellino 111, Naples, 80131, Italy
| | - Marco Pisco
- Optoelectronic Division-Engineering Department, University of Sannio, Benevento, 82100, Italy.
- Centro Regionale Information Communication Technology (CeRICT Scrl), Benevento, 82100, Italy.
| | - Lina Sabatino
- Department of Sciences and Technologies, University of Sannio, Benevento, 82100, Italy.
| | - Anna Chiara De Luca
- Institute for Experimental Endocrinology and Oncology G. Salvatore, IEOS, second unit, Via P. Castellino 111, Naples, 80131, Italy.
| | - Andrea Cusano
- Optoelectronic Division-Engineering Department, University of Sannio, Benevento, 82100, Italy
- Centro Regionale Information Communication Technology (CeRICT Scrl), Benevento, 82100, Italy
| |
Collapse
|
33
|
Napiórkowska A, Szpicer A, Górska-Horczyczak E, Kurek MA. Microencapsulation of Essential Oils Using Faba Bean Protein and Chia Seed Polysaccharides via Complex Coacervation Method. Molecules 2024; 29:2019. [PMID: 38731509 PMCID: PMC11085623 DOI: 10.3390/molecules29092019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The aim of this study was to develop microcapsules containing juniper or black pepper essential oils, using a combination of faba bean protein and chia seed polysaccharides (in ratios of 1:1, 1:2, 2:1). By synergizing these two polymers, our goal was to enhance the efficiency of essential oil microencapsulation, opening up various applications in the food industry. Additionally, we aimed to investigate the influence of different polymer mixing ratios on the properties of the resulting microcapsules and the course of the complex coacervation process. To dissolve the essential oils and limit their evaporation, soybean and rapeseed oils were used. The powders resulting from the freeze-drying of coacervates underwent testing to assess microencapsulation efficiency (65.64-87.85%), density, flowability, water content, solubility, and hygroscopicity. Additionally, FT-IR and DSC analyses were conducted. FT-IR analysis confirmed the interactions between the components of the microcapsules, and these interactions were reflected in their high thermal resistance, especially at a protein-to-polysaccharide ratio of 2:1 (177.2 °C). The water content in the obtained powders was low (3.72-7.65%), but it contributed to their hygroscopicity (40.40-76.98%).
Collapse
Affiliation(s)
- Alicja Napiórkowska
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.S.)
| | | | | | - Marcin Andrzej Kurek
- Department of Technique and Food Development, Warsaw University of Life Sciences, 02-787 Warsaw, Poland; (A.S.)
| |
Collapse
|
34
|
Rahmatinejad Z, Dehghani T, Hoseini B, Rahmatinejad F, Lotfata A, Reihani H, Eslami S. A comparative study of explainable ensemble learning and logistic regression for predicting in-hospital mortality in the emergency department. Sci Rep 2024; 14:3406. [PMID: 38337000 PMCID: PMC10858239 DOI: 10.1038/s41598-024-54038-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
This study addresses the challenges associated with emergency department (ED) overcrowding and emphasizes the need for efficient risk stratification tools to identify high-risk patients for early intervention. While several scoring systems, often based on logistic regression (LR) models, have been proposed to indicate patient illness severity, this study aims to compare the predictive performance of ensemble learning (EL) models with LR for in-hospital mortality in the ED. A cross-sectional single-center study was conducted at the ED of Imam Reza Hospital in northeast Iran from March 2016 to March 2017. The study included adult patients with one to three levels of emergency severity index. EL models using Bagging, AdaBoost, random forests (RF), Stacking and extreme gradient boosting (XGB) algorithms, along with an LR model, were constructed. The training and validation visits from the ED were randomly divided into 80% and 20%, respectively. After training the proposed models using tenfold cross-validation, their predictive performance was evaluated. Model performance was compared using the Brier score (BS), The area under the receiver operating characteristics curve (AUROC), The area and precision-recall curve (AUCPR), Hosmer-Lemeshow (H-L) goodness-of-fit test, precision, sensitivity, accuracy, F1-score, and Matthews correlation coefficient (MCC). The study included 2025 unique patients admitted to the hospital's ED, with a total percentage of hospital deaths at approximately 19%. In the training group and the validation group, 274 of 1476 (18.6%) and 152 of 728 (20.8%) patients died during hospitalization, respectively. According to the evaluation of the presented framework, EL models, particularly Bagging, predicted in-hospital mortality with the highest AUROC (0.839, CI (0.802-0.875)) and AUCPR = 0.64 comparable in terms of discrimination power with LR (AUROC (0.826, CI (0.787-0.864)) and AUCPR = 0.61). XGB achieved the highest precision (0.83), sensitivity (0.831), accuracy (0.842), F1-score (0.833), and the highest MCC (0.48). Additionally, the most accurate models in the unbalanced dataset belonged to RF with the lowest BS (0.128). Although all studied models overestimate mortality risk and have insufficient calibration (P > 0.05), stacking demonstrated relatively good agreement between predicted and actual mortality. EL models are not superior to LR in predicting in-hospital mortality in the ED. Both EL and LR models can be considered as screening tools to identify patients at risk of mortality.
Collapse
Affiliation(s)
- Zahra Rahmatinejad
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Toktam Dehghani
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Toos Institute of Higher Education, Mashhad, Iran
| | - Benyamin Hoseini
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Rahmatinejad
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Aynaz Lotfata
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Hamidreza Reihani
- Department of Emergency Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Saeid Eslami
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical Informatics, Amsterdam UMC - Location AMC, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
35
|
Bashiru M, Macchi S, Forson M, Khan A, Ishtiaq A, Oyebade A, Jalihal A, Ali N, Griffin RJ, Oyelere AK, Hooshmand N, Siraj N. Doxorubicin-Based Ionic Nanomedicines for Combined Chemo-Phototherapy of Cancer. ACS APPLIED NANO MATERIALS 2024; 7:2176-2189. [PMID: 38410412 PMCID: PMC10896075 DOI: 10.1021/acsanm.3c05464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Synergistic combination therapy approach offers lots of options for delivery of materials with anticancer properties, which is a very promising strategy to treat a variety of malignant lesions with enhanced therapeutic efficacy. The current study involves a detailed investigation of combination ionic nanomedicines where a chemotherapeutic drug is coupled with a photothermal agent to attain dual mechanisms (chemotherapy (chemo) and photothermal therapy (PTT)) to improve the drug's efficacy. An FDA-approved Doxorubicin hydrochloride (DOX·HCl) is electrostatically attached with a near-infrared cyanine dye (ICG, IR783, and IR820), which serves as a PTT drug using ionic liquid chemistry to develop three ionic material (IM)-based chemo-PTT drugs. Carrier-free ionic nanomedicines (INMs) are derived from ionic materials (IMs). The photophysical properties of the developed combination IMs and their INMs were studied in depth. The phototherapeutic efficiency of the combination drugs was evaluated by measuring the photothermal conversion efficiency and singlet-oxygen quantum yield. The improved photophysical properties of the combination nanomedicines in comparison to their parent compounds significantly enhanced INMs' photothermal efficiency. Cellular uptake, dark and light toxicity studies, and cell death mechanisms of the chemo-PTT nanoparticles were also studied in vitro. The combination INMs exhibited enhanced cytotoxicity compared to their respective parent compounds. Moreover, the apoptosis cell death mechanism was almost doubled for combination nanomedicine than the free DOX, which is attributed to enhanced cellular uptake. Examination of the combination index and improved in vitro cytotoxicity results revealed a great synergy between chemo and PTT drugs in the developed combination nanomedicines.
Collapse
Affiliation(s)
- Mujeebat Bashiru
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Samantha Macchi
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Mavis Forson
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Amna Khan
- Department of Chemistry, University of Arkansas at Fayetteville, Fayetteville, Arkansas 72701, United States
| | - Arisha Ishtiaq
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Adeniyi Oyebade
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Amanda Jalihal
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Nawab Ali
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Robert J Griffin
- Department of Radiation Oncology, Arkansas Nanomedicine Center, Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Adegboyega K Oyelere
- School of Chemistry and Biochemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Nasrin Hooshmand
- Laser Dynamics Laboratory, School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Noureen Siraj
- Department of Chemistry, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|
36
|
Verma A, Awasthi A. Revolutionizing Drug Discovery: The Role of Artificial Intelligence and Machine Learning. Curr Pharm Des 2024; 30:807-810. [PMID: 38409722 DOI: 10.2174/0113816128298691240222054120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/29/2024] [Accepted: 02/12/2024] [Indexed: 02/28/2024]
Affiliation(s)
- Abhishek Verma
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
37
|
Santana JEG, Oliveira-Tintino CDDM, Gonçalves Alencar G, Siqueira GM, Sampaio Alves D, Moura TF, Tintino SR, de Menezes IRA, Rodrigues JPV, Gonçalves VBP, Nicolete R, Emran TB, Gonçalves Lima CM, Ahmad SF, Coutinho HDM, da Silva TG. Comparative Antibacterial and Efflux Pump Inhibitory Activity of Isolated Nerolidol, Farnesol, and α-Bisabolol Sesquiterpenes and Their Liposomal Nanoformulations. Molecules 2023; 28:7649. [PMID: 38005371 PMCID: PMC10675182 DOI: 10.3390/molecules28227649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
The efflux systems are considered important mechanisms of bacterial resistance due to their ability to extrude various antibiotics. Several naturally occurring compounds, such as sesquiterpenes, have demonstrated antibacterial activity and the ability to inhibit efflux pumps in resistant strains. Therefore, the objective of this research was to analyze the antibacterial and inhibitory activity of the efflux systems NorA, Tet(K), MsrA, and MepA by sesquiterpenes nerolidol, farnesol, and α-bisabolol, used either individually or in liposomal nanoformulation, against multi-resistant Staphylococcus aureus strains. The methodology consisted of in vitro testing of the ability of sesquiterpenes to reduce the Minimum Inhibitory Concentration (MIC) and enhance the action of antibiotics and ethidium bromide (EtBr) in broth microdilution assays. The following strains were used: S. aureus 1199B carrying the NorA efflux pump, resistant to norfloxacin; IS-58 strain carrying Tet(K), resistant to tetracyclines; RN4220 carrying MsrA, conferring resistance to erythromycin. For the EtBr fluorescence measurement test, K2068 carrying MepA was used. It was observed the individual sesquiterpenes exhibited better antibacterial activity as well as efflux pump inhibition. Farnesol showed the lowest MIC of 16.5 µg/mL against the S. aureus RN4220 strain. Isolated nerolidol stood out for reducing the MIC of EtBr to 5 µg/mL in the 1199B strain, yielding better results than the positive control CCCP, indicating strong evidence of NorA inhibition. The liposome formulations did not show promising results, except for liposome/farnesol, which reduced the MIC of EtBr against 1199B and RN4220. Further research is needed to evaluate the mechanisms of action involved in the inhibition of resistance mechanisms by the tested compounds.
Collapse
Affiliation(s)
| | - Cícera Datiane de Morais Oliveira-Tintino
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Gabriel Gonçalves Alencar
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Gustavo Miguel Siqueira
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Daniel Sampaio Alves
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Talysson Felismino Moura
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Saulo Relison Tintino
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Irwin Rose Alencar de Menezes
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | | | | | - Roberto Nicolete
- Oswaldo Cruz Foundation (Fiocruz Ceará), Eusebio 61773-270, Brazil; (J.P.V.R.); (V.B.P.G.); (R.N.)
| | - Talha Bin Emran
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | | | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Henrique Douglas Melo Coutinho
- Departament of Biological Chemistry, Universidade Regional do Cariri (URCA), Crato 63105-010, Brazil; (C.D.d.M.O.-T.); (G.G.A.); (G.M.S.); (D.S.A.); (T.F.M.); (S.R.T.); (I.R.A.d.M.)
| | - Teresinha Gonçalves da Silva
- Departamento de Antibióticos, Universidade Federal de Pernambuco (UFPE), Recife 50670-901, Brazil; (J.E.G.S.); (T.G.d.S.)
| |
Collapse
|