1
|
Ravindran DR, Kannan S, Marudhamuthu M. Fabrication and characterisation of human gut microbiome derived exopolysaccharide mediated silver nanoparticles - An in-vitro and in-vivo approach of Bio-Pm-AgNPs targeting Vibrio cholerae. Int J Biol Macromol 2024; 256:128406. [PMID: 38007009 DOI: 10.1016/j.ijbiomac.2023.128406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/28/2023] [Accepted: 11/22/2023] [Indexed: 11/27/2023]
Abstract
Utilising bacteria to produce silver nanoparticles was highly favoured due to its ability to minimise costs and mitigate any potential negative environmental impact. Exopolysaccharides (EPS) extracted from the human gut microbe have demonstrated remarkable efficacy in combating various bacterial infections. Exopolysaccharide (EPS), a naturally occurring biomolecule found in the human gut isolate Proteus mirabilis DMTMMR-11, was characterised using analytical techniques such as Fourier transform infrared spectroscopy (FTIR), 1H-nuclear magnetic resonance, 13C-nuclear magnetic resonance (NMR), and chemical composition analysis, which confirms the presence of carbohydrates (81.03 ± 0.23), proteins (4.22 ± 1.2), uronic acid (12.1 ± 0.12), and nucleic acid content (2.44 ± 0.15) in exopolysaccharide. The one factor at a time (OFAT) and response surface methodology (RSM) - central composite design (CCD) approaches were used to optimise the production of Bio-Pm-AgNPs, leading to an increase in yield of up to 1.86 g/l. The Bio-Pm-AgNPs were then subjected to Fourier transform infrared spectroscopy (FTIR) which determines the functional groups, X-ray diffractometer confers that Bio-Pm-AgNPs are crystalline in nature, field emission-scanning electron microscopy (FE-SEM) reveals the morphology of Bio-Pm-AgNPs, energy dispersive X-ray spectroscopy (EDX) confirms the presence of elements like Ag, C and O, high-resolution transmission electron microscopy (HR-TEM) determines that the Bio-Pm-AgNPs are sphere-shaped at 75 nm. Dynamic light scattering (DLS) and zeta potential analysis were also carried out to reveal the physiological nature of Bio-Pm-AgNPs. Bio-Pm-AgNPs have a promising effect on the inhibitory mechanism of Vibrio cholerae cells at a MIC concentration of 20 μg/ml which significantly affects cellular respiration and energy metabolism through glycolysis and TCA cycles by deteriorating the enzyme responsible for ATP and NADH utilisation. The action of Bio-Pm-AgNPs reduces the purity and concentration of nucleic acids, which leads to higher DNA damage. In-vivo analysis reveals that the treatment of Bio-Pm-AgNPs decreased the colonisation of V. cholerae and improved the survival rates in C. elegans.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be University), Karaikal, Puducherry 609609, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu 625021, India.
| |
Collapse
|
2
|
Kasprzak MM, Sady M, Kruk J, Bartkova S, Sanka I, Scheler O, Jamróz E, Berski W, Onacik-Gür S, Szram R, Okpala COR, Tkaczewska J, Zając M, Domagała J, Ptasznik S. Replacement of milk fat by rapeseed oil stabilised emulsion in commercial yogurt. PeerJ 2023; 11:e16441. [PMID: 38099312 PMCID: PMC10720406 DOI: 10.7717/peerj.16441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/20/2023] [Indexed: 12/17/2023] Open
Abstract
The incorporation of lipid droplets and further characterization of matrices within dairy products may be possible using such adjacent particles as protein complexes/lipids. Among the range of varied emulsions and their functionalities, great attention has recently focused on the fabrication of high internal phase types. Feasibly, stable alternatives structured with health-beneficial lipids like those derived from plants could replace saturated fatty acids. As a fat replacement strategy, the fate of incorporated HIPE would require some adjustments either with storage stability and/or structural feat for the food matrix. Therefore, the replacement of milk fat by rapeseed oil stabilised emulsion in commercial yogurt was investigated. This involved 25%, 50% and 75% rapeseed oil respectively assigned as low (LIPE), medium (MIPE), and high internal phase emulsion (HIPE). Specifically, emulsions were examined by droplet size, encapsulation, pH, zeta potential, phase separation, and rheology. The fat free yogurt supplemented by HIPE were examined by droplet size, zeta potential, pH, color, sensory, texture and microbiological aspects against positive (regular milk fat) and negative (fat free) yogurt controls. Results showed increasing rapeseed oil contents would form smaller droplet-like emulsions. Within the yogurt matrix however, incorporating HIPE would seemingly reduce oil droplet size without much compromise to bacterial viability, sensory, or texture. Overall, this simple method of lipid alternation shows promise in dairy products.
Collapse
Affiliation(s)
- Mirosław M. Kasprzak
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Marek Sady
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Joanna Kruk
- Department of Engineering and Machinery for Food Industry, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Simona Bartkova
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Immanuel Sanka
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Ott Scheler
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Ewelina Jamróz
- Department of Chemistry, University of Agriculture, Cracow, Poland
| | - Wiktor Berski
- Department of Carbohydrates Technology and Cereals Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Sylwia Onacik-Gür
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Warsaw, Poland
| | - Rafał Szram
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Charles Odilichukwu R. Okpala
- UGA Cooperative Extension, University of Georgia, Athens, Georgia, United States
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Joanna Tkaczewska
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Marzena Zając
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Jacek Domagała
- Department of Animal Product Processing, Faculty of Food Technology, University of Agriculture, Cracow, Poland
| | - Stanisław Ptasznik
- Department of Meat and Fat Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology-State Research Institute, Warsaw, Poland
| |
Collapse
|
3
|
Stolarek P, Bernat P, Różalski A. Adjustment in the Composition and Organization of Proteus mirabilis Lipids during the Swarming Process. Int J Mol Sci 2023; 24:16461. [PMID: 38003652 PMCID: PMC10671106 DOI: 10.3390/ijms242216461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Proteus mirabilis, an opportunistic pathogen of the urinary tract, is known for its dimorphism and mobility. A connection of lipid alterations, induced by the rods elongation process, with enhanced pathogenicity of long-form morphotype for the development of urinary tract infections, seems highly probable. Therefore, research on the adjustment in the composition and organization of P. mirabilis lipids forming elongated rods was undertaken. The analyses performed using the ultra-high performance liquid chromatography with tandem mass spectrometry showed that drastic modifications in the morphology of P. mirabilis rods that occur during the swarming process are directly related to deprivation of the long-form cells of PE 33:1 and PG 31:2 and their enrichment with PE 32:1, PE 34:1, PE 34:2, PG 30:2, PG 32:1, and PG 34:1. The analyses conducted by the gas chromatography-mass spectrometry showed negligible effects of the swarming process on fatty acids synthesis. However, the constant proportions between unsaturated and saturated fatty acids confirmed that phenotypic modifications in the P. mirabilis rods induced by motility were independent of the saturation of the phospholipid tails. The method of the Förster resonance energy transfer revealed the influence of the swarming process on the melting of ordered lipid rafts present in the short-form rods, corresponding to the homogeneity of lipid bilayers in the long-form rods of P. mirabilis. Confocal microscope photographs visualized strong Rhod-PE fluorescence of the whole area of swarmer cells, in contrast to weak membrane fluorescence of non-swarmer cells. It suggested an increased permeability of the P. mirabilis bilayers in long-form rods morphologically adapted to the swarming process. These studies clearly demonstrate that swarming motility regulates the lipid composition and organization in P. mirabilis rods.
Collapse
Affiliation(s)
- Paulina Stolarek
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| | - Antoni Różalski
- Department of Biology of Bacteria, Faculty of Biology and Environmental Protection, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland;
| |
Collapse
|
4
|
Ravindran DR, Kannan S, Jeyakumar D, Marudhamuthu M. Characterization of phenyl propiolic acid from Proteus mirabilis DMTMMR-11 and Evaluation of its mode of action against Yersinia enterocolitica (MTCC-840) an in-Vitro and in-Vivo based approach. Microb Pathog 2023; 182:106258. [PMID: 37482115 DOI: 10.1016/j.micpath.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
Foodborne illnesses are pervasive in raising public health concerns in both developed and developing nations. Yersinia enterocolitica a zoonotic bacterial species that causes food-transmitted infections, and gastroenteritis, is its most prevalent clinical manifestation. This study aims to investigate the differences, dependencies, and inhibitory mechanisms between the host and the microbiome. Proteus mirabilis DMTMMR-11, the bacterium found in the human gastrointestinal tract was used for the extraction of intracellular metabolite, because of its beneficial effects on the normal flora of the human gut. Phenyl propiolic acid was identified as the dominant compound in the metabolite after characterization using FT-IR, NMR, and LC-MS-MS. To assess its inhibitory mechanism against Yersinia enterocolitica, the pathogen was subjected to biological characterization by MBC and MIC, resulting in the rate of inhibition at 50 μg/ml. Anti-bacterial curve supports the inhibited growth of Y. enterocolitica. Mechanism of inhibition at its cellular level was indicated by the increase in alkaline phosphate content, which drastically reduced the cell membrane and cell wall potential expanding its permeability by intruding the membrane proteins, which was observed in SEM Imaging. Phenyl propiolic acid efficiently disrupts the biofilm formation by reducing the adherence and increasing the eradication property of the pathogen by exhibiting 65% of inhibition at the minimal duration of 12h. In-vivo study was carried out through host-pathogen interaction in C. elegans, an efficient model organism assessed for its life-span, physiological, and behavioral assays.
Collapse
Affiliation(s)
- Deepthi Ramya Ravindran
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu, 625021, India
| | - Suganya Kannan
- Central Research Laboratory for Biomedical Research, Vinayaka Mission's Medical College and Hospital, Vinayaka Mission's Research Foundation (Deemed to be university), Karaikal, Puducherry, 609609, India
| | - Deepika Jeyakumar
- Laboratory of Microbiology, Serology, and Molecular Biology, Vadamalayan Hospitals Private Limited, Madurai, TamilNadu, 625002, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, TamilNadu, 625021, India.
| |
Collapse
|
5
|
Habib S, Ahmed A, Haque MFU, Ejaz R. Efficacious use of potential biosurfactant producing plant growth promoting rhizobacteria to combat petrol toxicity in Zea mays L. plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53725-53740. [PMID: 36864337 DOI: 10.1007/s11356-023-25925-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/09/2023] [Indexed: 06/19/2023]
Abstract
Soil pollution caused by petroleum hydrocarbons is a serious threat for human life, as it affects the groundwater, cause economical losses after decreasing the agricultural production, and create other ecological issues. Here, we are reporting the isolation and screening of rhizosphere bacteria possessing biosurfactant producing potential and capable of enhancing plant growth under petrol stress as well as possessing. Efficient biosurfactant producers having plant growth promoting traits were characterized morphologically, physiologically, and phylogenetically. These selected isolates were identified as Bacillus albus S2i, Paraclostridium benzoelyticum Pb4, and Proteus mirabilis Th1 based on 16S rRNA sequence analysis. These bacteria possessed plant growth promoting attributes as well as exhibited positive activity toward the assays based on hydrophobicity, lipase activity, surface activity, and hydrocarbon degradation that indicated the production of biosurfactants. Fourier transform infrared spectroscopy of crude biosurfactants extracted from bacterial strains revealed that the biosurfactants from Pb4 and Th1 might belong to glycolipid or glycolipopeptide class whereas the biosurfactants from S2i could be from phospholipid class. Scanning electron micrographs exhibited group of exopolymer matrices interconnecting the cells forming a complex network of mass, while energy dispersive X-ray analysis has shown elemental composition of biosurfactants with dominance of nitrogen, carbon, oxygen, and phosphorous. Further, these strains were then used to ascertain their effect on the growth and biochemical parameters including stress metabolites and antioxidant enzymology of Zea mays L. plants grown under petrol (gasoline) stress. Significant increments in all studied parameters were observed in comparison with control treatments that might be due to petrol degradation by bacteria and also by secreting growth stimulating substances released by these bacteria in soil ecosystem. To the best of our knowledge, this is the first report in which Pb4 and Th1 were studied as surfactant producing PGPR and further their role as biofertilizer for the significant improvement in phytochemical constituents of maize plants grown under petrol stress was assessed.
Collapse
Affiliation(s)
- Sabiha Habib
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, 54590, Pakistan
| | - Ambreen Ahmed
- Institute of Botany, University of the Punjab, Quaid-E-Azam Campus, Lahore, 54590, Pakistan.
| | - Muhammad Farhan Ul Haque
- School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, Lahore, 54590, Pakistan
| | - Rabia Ejaz
- School of Biological Sciences, University of the Punjab, Quaid-E-Azam Campus, Lahore, 54590, Pakistan
| |
Collapse
|
6
|
Saha S, Aggarwal S, Singh DV. Attenuation of quorum sensing system and virulence in Vibrio cholerae by phytomolecules. Front Microbiol 2023; 14:1133569. [PMID: 37065125 PMCID: PMC10098448 DOI: 10.3389/fmicb.2023.1133569] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 02/28/2023] [Indexed: 04/01/2023] Open
Abstract
The Vibrio cholerae, a gram-negative bacterium, is the causative agent of cholera. Quorum sensing is a cell-to-cell communication that leads to gene expression, accumulation of signaling molecules, biofilm formation, and production of virulence factors. The quorum sensing pathway in V. cholerae is regulated by luxO, and biofilm formation and other virulence factors are positively controlled by aphA and negatively by hapR. Hence, targeting the global regulator luxO would be a promising approach to modulate the QS to curtail V. cholerae pathogenesis. The present study investigated the modulating activity of quercetin and naringenin on biofilm formation and quorum-sensing regulated phenotypes in V. cholerae. Then after we determined the anti-quorum sensing capability of phytomolecules against the model organism Chromobacterium violaceum. Also, we performed flow cytometry for live/dead bacteria, MTT assay, CLSM, and growth curve analysis to determine their role as QS modulators rather than anti-bacterial. V. cholerae strains VC287 and N16961 formed thick biofilm. We observed a two-fold reduction in the expression of biofilm-associated genes comprising gbpA, vpsA, rbmA, and mbaA in the presence of phytomolecules indicating that phytomolecules modulate quorum sensing pathway rather than killing the bacteria. These phytomolecules were non-toxic and non-hemolytic and had anti-adhesion and anti-invasion properties. In addition, quercetin and naringenin were found to be highly effective compared to known quorum-sensing inhibitors terrein and furanone C-30. Thus, this study provides evidence that phytomolecules: quercetin and naringenin modulate the quorum-sensing pathway rather than killing the bacteria and can be used as an anti-quorum-sensing molecule for therapy against the pathogen.
Collapse
Affiliation(s)
- Subhasree Saha
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, Haryana, India
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Shifu Aggarwal
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Durg Vijai Singh
- Department of Infectious Disease Biology, Institute of Life Sciences, Bhubaneswar, Odisha, India
- Department of Biotechnology, School of Earth, Biological and Environmental Sciences, Central University of South Bihar, Gaya, India
- *Correspondence: Durg Vijai Singh, ;
| |
Collapse
|
7
|
Isolation, screening and molecular characterization of biosurfactant producing bacteria from soil samples of auto repair shops. Arch Microbiol 2021; 203:4929-4939. [PMID: 34254182 DOI: 10.1007/s00203-021-02483-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/18/2021] [Accepted: 07/07/2021] [Indexed: 10/20/2022]
Abstract
A total of 107 bacterial strains were isolated from used motor oil contaminated soil samples from auto-repair shops. The isolates were evaluated for their biosurfactant production abilities by employing a series of screening techniques, including hemolytic assay, oil displacement assay, drop-collapse assay, and parafilm M test. The potential biosurfactant producers were characterized by 16S rDNA-based molecular tools and were identified as Proteus mirabilis, Klebsiella pneumoniae, Enterobacter cloacae, Micrococcus sp., Citrobacter sp., and Bacillus sp. The widest clearing zone with a diameter of 6.5 cm was observed upon the addition of cell-free supernatant (CFS) from P. mirabilis SLM-B52 as assayed by the oil displacement test. Remarkable emulsification indexes, equivalent to 42% (against kerosene), 53% (against xylenes), and 50% (against benzene and toluene), were recorded by the CFSs of Micrococcus sp. SLM-B28, P. mirabilis SLM-B85, and K. pneumoniae SLM-B46, respectively. Du Noüy tensiometer analysis showed that biosurfactant produced by P. mirabilis SLM-B52 has the highest surface tension reduction capacity with a value of 30.5 mN m-1. The emulsifying activity of a CFS from P. mirabilis was also described in this study for the first time. Taking together, biosurfactants from promising bacterial strains have potential application in microorganism-based biodegradation processes of hydrocarbons which cause detrimental effects on the environment.
Collapse
|
8
|
Kannan S, Solomon A, Krishnamoorthy G, Marudhamuthu M. Liposome encapsulated surfactant abetted copper nanoparticles alleviates biofilm mediated virulence in pathogenic Pseudomonas aeruginosa and MRSA. Sci Rep 2021; 11:1102. [PMID: 33441765 PMCID: PMC7806599 DOI: 10.1038/s41598-020-79976-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/04/2020] [Indexed: 01/05/2023] Open
Abstract
In the present study lipopeptide biosurfactant with high emulsification capacity produced by human skin bacterium Paenibacillus thiaminolyticus was purified and subjected to FTIR and NMR spectral analysis which gave evidence of the active characteristics of the surfactant. To augment the antivirulent potential further, the mixer of copper and copper oxide nanoparticles (CuNPs) was synthesized, and characterized by UV–Visible spectroscopy, SEM-EDAX, TEM, and Zeta analysis. Here, we attempted to enhance the antimicrobial and antibiofilm activity with the assistance of encapsulated preparation of lipopeptide and CuNPs in multilamellar liposomes. The proposed mechanism of action of lipopeptide and CuNPs liposomal preparation negatively influences the cell metabolism, secreted virulence such as staphyloxanthin, pyocyanin, and extracellular polysaccharides. The significant decline in the growth of MRSA and P. aeruginosa in both planktonic form and biofilm by lipopeptide and CuNPs treatment were visualized using scanning electron microscopy and High content screening imaging system. In vivo studies revealed that treatment with lipopeptide and CuNPs in multilamellar liposomes extended the lifespan of infected Caenorhabditis elegans by about 75%. Therefore, this study typifies lipopeptide and CuNPs could credibly be a substantial substitute over conventional antibiotics in averting the biofilm associated pathogenesis of MRSA and P. aeruginosa.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Anitta Solomon
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Govindan Krishnamoorthy
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Tamil Nadu, Madurai, 625021, India.
| |
Collapse
|
9
|
Balakrishnan J, Ganapathi P, Kannan S, Marudhamuthu M, Shanmugam K. Anti-listerial activity of microalgal fatty acid methyl esters and their possible applications as chicken marinade. Int J Food Microbiol 2020; 339:109027. [PMID: 33412385 DOI: 10.1016/j.ijfoodmicro.2020.109027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 12/02/2020] [Accepted: 12/08/2020] [Indexed: 11/30/2022]
Abstract
Fatty acid methyl esters (FAMEs) from marine microalgae have been reported to possess antimicrobial activities against several Gram positive and Gram negative bacteria, but a majority of them needs to be explored. The objective of this study was to investigate the antibacterial activity, mechanism of FAMEs from selected marine microalgae against Listeria monocytogenes, and to elucidate its efficacy in food model. The minimum inhibitory concentration of FAMEs was calculated to be 155 μg/mL for Chromulina sp. and 162 μg/mL for Nannochloropsis sp. against L. monocytogenes. Time-killing kinetics showed that FAMEs efficiently inhibited the growth of L. monocytogenes in a time and concentration dependent manner. The mechanism of action of FAMEs was studied by analysing its effects at a MIC on the cellular metabolism, membrane permeability, and membrane integrity of L. monocytogenes. Transmission Electron Microscopy (TEM) results showed that cells exposed to FAMEs showed damaged cell membrane structure with leakage of the internal contents in the cells of L. monocytogenes. Fluorescence microscopy images showed that L. monocytogenes cells treated with FAMEs showed high dead cell population corresponding with propidium iodide positive cells. Furthermore, FAMEs significantly down regulated quorum sensing and biofilm related genes (DegU, FlaE, and FlaD). In vivo therapeutic potential of FAMEs revealed improved Caenorhabditis elegans survival and reduced intestinal colonization during L. monocytogenes infection. Growth of listeria was abolished in chicken meat during the cold storage of 9 days when the samples were pre-treated with FAMEs. These results suggest anti-L. monocytogenes activity of FAMEs and elucidated its use in food control of chicken meat at refrigerated conditions.
Collapse
Affiliation(s)
- Jeyakumar Balakrishnan
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Prakash Ganapathi
- Department of Molecular Biology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai 625021, Tamil Nadu, India
| | - Kathiresan Shanmugam
- Department of Life Sciences, School of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
10
|
Gowri M, Latha N, Suganya K, Kumar SK, Alahmadi TA, Alharbi SA, Murugan M, Rajan M. Amoxicillin loaded Nickel functionalized polymeric bentonite carrier for enhanced therapeutic activity. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02340-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Kannan S, Krishnamoorthy G, Kulanthaiyesu A, Marudhamuthu M. Effect of biosurfactant derived from Vibrio natriegens MK3 against Vibrio harveyi biofilm and virulence. J Basic Microbiol 2019; 59:936-949. [PMID: 31347191 DOI: 10.1002/jobm.201800706] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/10/2019] [Accepted: 06/29/2019] [Indexed: 12/29/2022]
Abstract
Vibrio harveyi is a marine luminous pathogen, which causes biofilm-mediated infections, pressures the search for an innovative alternate approach to strive against vibriosis in aquaculture. This study anticipated to explore the effect of glycolipid biosurfactant as an antipathogenic against V. harveyi to control vibriosis. In this study, 27 bacterial strains were isolated from marine soil sediments. Out of these, 11 strains exhibited surfactant activity and the strain MK3 showed high emulsification index. The potent strain was identified as Vibrio natriegens and named as V. natriegens MK3. The extracted biosurfactant was purified using high-performance liquid chromatography and it was efficient to decrease the surface tension of the growth medium up to 21 mN/m. The functional group and composition of the biosurfactant were determined by Fourier-transform infrared spectroscopy and nuclear magnetic resonance spectroscopy spectral studies and the nature of the biosurfactant was identified as glycolipid. The surfactant was capable of reducing the biofilm formation, bioluminescence, extracellular polysaccharide synthesis, and quorum sensing in marine shrimp pathogen V. harveyi. The antagonistic effect of biosurfactant was evaluated against V. harveyi-infected brine shrimp Artemia salina. This study reveals that biosurfactant can be considered for the management of biofilm-related aquatic infections.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Govindan Krishnamoorthy
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| | - Arunkumar Kulanthaiyesu
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Periye, Kerala, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, Tamil Nadu, India
| |
Collapse
|
12
|
Kannan S, Sathasivam G, Marudhamuthu M. Decrease of growth, biofilm and secreted virulence in opportunistic nosocomial Pseudomonas aeruginosa ATCC 25619 by glycyrrhetinic acid. Microb Pathog 2018; 126:332-342. [PMID: 30458255 DOI: 10.1016/j.micpath.2018.11.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 11/27/2022]
Abstract
The present study elucidates the antibiofilm and antivirulent capability of glycyrrhetinic acid (GRA) against Pseudomonas aeruginosa ATCC 25619. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) of GRA against P. aeruginosa were found to be 160 μg/mL and 420 μg/mL respectively. In an acclimatization resistance analysis using P. aeruginosa, no resistance towards GRA was observed during the habituation period. Adequate penetration of GRA over the biofilm matrix was proposed with the membrane penetration model assembly constructed with the preformed biofilm exhibited the prospective penetration of GRA above the mature biofilm. Furthermore, GRA resulted in the attenuation of virulence factors such as motility, biofilm formation, pyocyanin secretion, secreted proteases with its sub MIC concentrations. The antibiofilm property of GRA was assessed with the light microscopy and high content screening fluorescent imaging system, which clearly demonstrates, the thickness of P. aeruginosa biofilm was reduced to 11.33 ± 2.08 μm from 39 ± 2.51 μm. Transmission Electron Microscopy (TEM) images depicted the morphological changes in cells such as disaggregation of colonies, cell disruption with loss of intracellular material, cytolytic damage, the process of morphological transformation, bacteriolysis indicating the potential effect of GRA.
Collapse
Affiliation(s)
- Suganya Kannan
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Gowtham Sathasivam
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India
| | - Murugan Marudhamuthu
- Department of Microbial Technology, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021, Tamil Nadu, India.
| |
Collapse
|
13
|
Murugesan G, Latha N, Suganya K, Murugan M, Munusamy MA, Rajan M. Stimulus-responsive zinc oxide-functionalized macromolecular humic acid nanocarrier for enhancement of antibacterial activity of ciprofloxacin hydrochloride. Int J Biol Macromol 2018; 114:1109-1116. [DOI: 10.1016/j.ijbiomac.2018.03.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 02/11/2018] [Accepted: 03/21/2018] [Indexed: 02/06/2023]
|
14
|
Gowri M, Suganya K, Latha N, Murugan M, Ahmed M, Alarfaj AA, Rajan M. Metal oxide nanoparticle-functionalized sebacic acid-grafted PHEAM nanocarriers for enriched activity of metronidazole against food borne bacteria: in vitro and in vivo study. NEW J CHEM 2018. [DOI: 10.1039/c8nj03718c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Food borne infection is a serious complication caused by Listeria monocytogenes (L. monocytogenes), a dangerous bacteria.
Collapse
Affiliation(s)
- Murugesan Gowri
- Department of Chemistry
- Kandaswami Kandar's College
- Namakkal District
- India
| | - Kannan Suganya
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai
- India
| | - Nachimuthu Latha
- Department of Chemistry
- Kandaswami Kandar's College
- Namakkal District
- India
| | - Marudhamuthu Murugan
- Department of Microbial Technology
- School of Biological Sciences
- Madurai Kamaraj University
- Madurai
- India
| | - Mukhtar Ahmed
- Department of Zoology
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology
- College of Science
- King Saud University
- Riyadh 11451
- Kingdom of Saudi Arabia
| | - Mariappan Rajan
- Biomaterials in Medicinal Chemistry Laboratory
- Department of Natural Products Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai
| |
Collapse
|