1
|
Kocán P, Pieczyrak B, Umachi S, Cigánek M, Sobotík P, Ošťádal I, Jurczyszyn L, Krajčovič J, Sakamoto K. One-dimensional molecular nanostructures interacting with two-dimensional metals. NANOSCALE HORIZONS 2025; 10:915-921. [PMID: 39973331 DOI: 10.1039/d4nh00622d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Electrons confined within the 2D layer of metals grown on silicon substrates exhibit exotic properties due to strong correlation effects. Their properties, such as their 2D superconductivity, have been frequently subjected to possible tuning by doping using charge transfer from adsorbed layers. Doping relies on adding electrons or holes to the system and the resulting shift of the Fermi level EF in the otherwise robust surface electronic structure. This strategy has not been sufficiently controlled in the case of an indium double layer grown on the Si(111) surface. This study provides an alternative approach relying on spatially periodic modification of the surface electronic structure of the 2D metal. Derivatives of diketopyrrolopyrroles (DPP) are used for the growth of perfectly ordered 1D-like molecular superstructures on top of the In double layer, imaged by scanning tunneling microscopy. The integral changes of electronic structure are measured by angle-resolved photoelectron spectroscopy and density functional theory calculations show local modification of the surface states near EF by the adsorbed molecules. This study demonstrates that the surface electronic states can be controllably patterned, using a proper bonding scheme. It is anticipated that the combination of the original 2D superconductor and the 1D-like patterning will motivate further research.
Collapse
Affiliation(s)
- Pavel Kocán
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Barbara Pieczyrak
- Institute of Experimental Physics, University of Wroclaw, Wroclaw, Poland
| | - Soshiro Umachi
- Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| | - Martin Cigánek
- Brno University of Technology, Faculty of Chemistry, Materials Research Centre, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Pavel Sobotík
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Ivan Ošťádal
- Faculty of Mathematics and Physics, Charles University, Prague, Czech Republic.
| | - Leszek Jurczyszyn
- Institute of Experimental Physics, University of Wroclaw, Wroclaw, Poland
| | - Jozef Krajčovič
- Brno University of Technology, Faculty of Chemistry, Materials Research Centre, Purkyňova 118, 612 00, Brno, Czech Republic
| | - Kazuyuki Sakamoto
- Department of Applied Physics, Osaka University, Osaka, 565-0871, Japan
| |
Collapse
|
2
|
Gong X, Autieri C, Zhou H, Ma J, Tang X, Zheng X, Ming X. In-gap states and strain-tuned band convergence in layered structure trivalent iridate K 0.75Na 0.25IrO 2. Phys Chem Chem Phys 2023; 25:6857-6866. [PMID: 36799367 DOI: 10.1039/d2cp04806j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Iridium oxides (iridates) provide a good platform to study the delicate interplay between spin-orbit coupling (SOC) interactions, electron correlation effects, Hund's coupling and lattice degrees of freedom. An overwhelming number of investigations primarily focus on tetravalent (Ir4+, 5d5) and pentavalent (Ir5+, 5d4) iridates, and far less attention has been paid to iridates with other valence states. Here, we pay our attention to a less-explored trivalent (Ir3+, 5d6) iridate, K0.75Na0.25IrO2, crystallizing in a triangular lattice with edge-sharing IrO6 octahedra and alkali metal ion intercalated [IrO2]- layers, offering a good platform to explore the interplay between different degrees of freedom. We theoretically determine the preferred occupied positions of the alkali metal ions from energetic viewpoints and reproduce the experimentally observed semiconducting behavior and nonmagnetic (NM) properties of K0.75Na0.25IrO2. The SOC interactions play a critical role in the band dispersion, resulting in NM Jeff = 0 states. More intriguingly, our electronic structure not only uncovers the presence of intrinsic in-gap states and nearly free electron character for the conduction band minimum, but also explains the abnormally low activation energy in K0.75Na0.25IrO2. Particularly, the band edge can be effectively modulated by mechanical strain, and the in-gap states feature enhanced band-convergence characteristics by 6% compressive strain, which will greatly enhance the electrical conductivity of K0.75Na0.25IrO2. The present work sheds new light on the unconventional electronic structures of trivalent iridates, indicating their promising application as a nanoelectronic and thermoelectric material, which will attract extensive interest and stimulate experimental works to further understand the unprecedented electronic structures and exploit potential applications of the triangular trivalent iridate.
Collapse
Affiliation(s)
- Xujia Gong
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Carmine Autieri
- International Research Centre Magtop, Polish Academy of Sciences, Aleja Lotników 32/46, PL-02668 Warsaw, Poland
| | - Huanfu Zhou
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Jiafeng Ma
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Xin Tang
- Key Lab of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, School of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Xiaojun Zheng
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| | - Xing Ming
- College of Science, Guilin University of Technology, Guilin 541004, People's Republic of China.
| |
Collapse
|
3
|
Wang Y, Gao Q, Li W, Cheng P, Zhang YQ, Feng B, Hu Z, Wu K, Chen L. Nearly Ideal Two-Dimensional Electron Gas Hosted by Multiple Quantized Kronig-Penney States Observed in Few-Layer InSe. ACS NANO 2022; 16:13014-13021. [PMID: 35943244 DOI: 10.1021/acsnano.2c05556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A theoretical ideal two-dimensional electron gas (2DEG) was characterized by a flat density of states independent of energy. Compared with conventional two-dimensional free-electron systems in semiconductor heterojunctions and noble metal surfaces, we report here the achievement of ideal 2DEG with multiple quantized states in few-layer InSe films. The multiple quantum well states (QWSs) in few-layer InSe films are found, and the number of QWSs is strictly equal to the number of atomic layers. The multiple stair-like DOS as well as multiple bands with parabolic dispersion both characterize ideal 2DEG features in these QWSs. Density functional theory calculations and numerical simulations based on quasi-bounded square potential wells described as the Kronig-Penney model provide a consistent explanation of 2DEG in the QWSs. Our work demonstrates that 2D van der Waals materials are ideal systems for realizing 2DEG hosted by multiple quantized Kronig-Penney states, and the semiconducting nature of the material provides a better chance for construction of high-performance electronic devices utilizing these states, for example, superlattice devices with negative differential resistance.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qian Gao
- School of Physics, Nankai University, Tianjin 300071, China
| | - Wenhui Li
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Peng Cheng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Yi-Qi Zhang
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Baojie Feng
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Zhenpeng Hu
- School of Physics, Nankai University, Tianjin 300071, China
| | - Kehui Wu
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Lan Chen
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
4
|
Chi L, Nogami J, Singh CV. Phase Transformation-Induced Quantum Dot States on the Bi/Si(111) Surface. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36217-36226. [PMID: 35900138 DOI: 10.1021/acsami.2c07015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanopatterns at near atomic dimensions with controllable quantum dot states (QDSs) are promising candidates for the continued downscaling of electronic devices. Herein, we report a phase transition-induced QD system achieved on the √3 × √3-Bi/Si(111) surface reconstruction, which points the way to a novel strategy on QDS implementation. Combining scanning tunneling microscopy, scanning tunneling spectroscopy, and density functional theory (DFT) calculations, the structure, energy dispersion, and size effect on band gap of the QDs are measured and verified. As-created QDs can be manipulated with a dot size down to 2 nm via Bi phase transformation, which, in turn, is triggered by thermal annealing at 700 K. The transition mechanism is also supported by our DFT calculations, and an empirical analytical model is developed to predict the transformation kinetics.
Collapse
Affiliation(s)
- Longxing Chi
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Jun Nogami
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Chandra Veer Singh
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|