1
|
Borisova NE, Kharcheva AV, Sumyanova TB, Gontcharenko V, Matveev PI, Starostin L, Trigub A, Ivanov AV, Patsaeva SV. Bipyridyldicarboxamides and f-metals: the influence of electron effects on the structure, stability, separation, and photophysical properties of their complexes. Dalton Trans 2024; 53:17673-17686. [PMID: 39415720 DOI: 10.1039/d4dt02489c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
In this work, three isomeric fluorinated bipyridyldicarboxamides were studied to evaluate the impact of the fluorine atom position on the structure, stability, Am(III)/Ln(III) separation, and photophysical properties of their complexes. The complexes of the fluorinated amides have a metal-to-ligand composition of 1 : 1, which is independent of the fluorine atom position or lanthanide metal. The bipyridyl fragments in the fluorinated complexes are flattened compared with those in unsubstituted ones. Ln-to-heteroatom distances are more affected by steric hindrance in the ligand and further by lanthanide ion radius contraction. This leads to significant effectivity of heavy lanthanide extraction compared with the light ones, particularly for 4F diamide. Fluorination leads to a slight variation in the excited triplet state of the complexes, and hence, the effectiveness of luminescence increases for Eu, Sm, and Tb complexes. Moreover, fluorination significantly affects the CIE chromaticity coordinates for the complexes.
Collapse
Affiliation(s)
- Nataliya E Borisova
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Anastasia V Kharcheva
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
- Department of Physics M.V. Lomonosov Moscow State University 1/2 Leninskie Gory, 119991 Moscow, Russia
| | - Tsagana B Sumyanova
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Victoria Gontcharenko
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Pert I Matveev
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Leonid Starostin
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexander Trigub
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Alexey V Ivanov
- Department of Chemistry M.V. Lomonosov Moscow State University 1/3 Leninskie Gory, 119991 Moscow, Russia.
| | - Svetlana V Patsaeva
- Department of Physics M.V. Lomonosov Moscow State University 1/2 Leninskie Gory, 119991 Moscow, Russia
| |
Collapse
|
2
|
Smirnova KA, Edilova YO, Kiskin MA, Bogomyakov AS, Kudyakova YS, Valova MS, Romanenko GV, Slepukhin PA, Saloutin VI, Bazhin DN. Perfluoroalkyl Chain Length Effect on Crystal Packing and [LnO 8] Coordination Geometry in Lanthanide-Lithium β-Diketonates: Luminescence and Single-Ion Magnet Behavior. Int J Mol Sci 2023; 24:ijms24119778. [PMID: 37298728 DOI: 10.3390/ijms24119778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/31/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023] Open
Abstract
Functionalized perfluoroalkyl lithium β-diketonates (LiL) react with lanthanide(III) salts (Ln = Eu, Gd, Tb, Dy) in methanol to give heterobimetallic Ln-Li complexes of general formula [(LnL3)(LiL)(MeOH)]. The length of fluoroalkyl substituent in ligand was found to affect the crystal packing of complexes. Photoluminescent and magnetic properties of heterobimetallic β-diketonates in the solid state are reported. The effect of the geometry of the [LnO8] coordination environment of heterometallic β-diketonates on the luminescent properties (quantum yields, phosphorescence lifetimes for Eu, Tb, Dy complexes) and single-ion magnet behavior (Ueff for Dy complexes) is revealed.
Collapse
Affiliation(s)
- Kristina A Smirnova
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yulia O Edilova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Mikhail A Kiskin
- N.S. Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Artem S Bogomyakov
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Yulia S Kudyakova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Marina S Valova
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Galina V Romanenko
- International Tomography Center, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia
| | - Pavel A Slepukhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Victor I Saloutin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia
| | - Denis N Bazhin
- Postovsky Institute of Organic Synthesis, Ural Branch of the Russian Academy of Sciences, 620137 Yekaterinburg, Russia
- Department of Organic and Biomolecular Chemistry, Ural Federal University Named after the First President of Russia B.N. Eltsin, 620002 Ekaterinburg, Russia
| |
Collapse
|
3
|
Roy S, Shukla P, Prakash Sahu P, Sun Y, Ahmed N, Chandra Sahoo S, Wang X, Kumar Singh S, Das S. Zero‐field Slow Magnetic Relaxation Behavior of Dy
2
in a Series of Dinuclear {Ln
2
} (Ln=Dy, Tb, Gd and Er) Complexes: A Combined Experimental and Theoretical Study. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Soumalya Roy
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Pooja Shukla
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| | - Prem Prakash Sahu
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Yu‐Chen Sun
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Naushad Ahmed
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | | | - Xin‐Yi Wang
- State Key Laboratory of Coordination Chemistry Collaborative Innovation Center of Advanced Microstructures School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 China
| | - Saurabh Kumar Singh
- Department of Chemistry Indian Institute of Technology Hyderabad Kandi- 502285, Sangareddy Telangana India
| | - Sourav Das
- Department of Basic Sciences, Chemistry Discipline Institute of Infrastructure Technology Research And Management Near Khokhra Circle, Maninagar East Ahmedabad 380026, Gujarat India
| |
Collapse
|
4
|
Panja A, Jagličić Z, Herchel R, Brandão P, Pramanik K, Jana NC. Three angular Zn 2Dy complexes showing the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres. NEW J CHEM 2022. [DOI: 10.1039/d2nj01759h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Three isostructural Zn2Dy complexes displaying the effect of remote coordination at Zn and counter ions on slow magnetic relaxation at Dy centres.
Collapse
Affiliation(s)
- Anangamohan Panja
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Zvonko Jagličić
- Institute of Mathematics, Physics and Mechanics & Faculty of Civil and Geodetic Engineering, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia
| | - Radovan Herchel
- Department of Inorganic Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, 77146 Olomouc, Czech Republic
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Kuheli Pramanik
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata 700020, India
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB 721152, India
| |
Collapse
|
5
|
Dinuclear dysprosium(III) complex derived from a multidentate bis-hydrazone Schiff base ligand: Synthesis, crystal structure and magnetic properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
6
|
Pramanik K, Sun YC, Brandão P, Jana NC, Wang XY, Panja A. Macrocycle supported dinuclear lanthanide complexes with different β-diketonate co-ligands displaying zero field single-molecule magnetic behaviour. NEW J CHEM 2022. [DOI: 10.1039/d2nj01017h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three different sets of isomorphous dinuclear Gd/Dy complexes with an uncommon macrocyclic ligand and β-diketonate co-ligands were reported in which Dy2 analogues are zero field SMMs.
Collapse
Affiliation(s)
- Kuheli Pramanik
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| | - Yu-Chen Sun
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Paula Brandão
- Department of Chemistry, CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Narayan Ch. Jana
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| | - Xin-Yi Wang
- State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Anangamohan Panja
- Department of Chemistry, Gokhale Memorial Girls’ College, 1/1 Harish Mukherjee Road, Kolkata, 700020, India
- Department of Chemistry, Panskura Banamali College, Panskura RS, WB, 721152, India
| |
Collapse
|
7
|
Zhang X, Zhao L, Jin X, Zhang Z, Li Y. Nanomolar determination of nitrofurans in water via excited-state inter-ligand proton transfer. Anal Chim Acta 2021; 1181:338905. [PMID: 34556219 DOI: 10.1016/j.aca.2021.338905] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 07/25/2021] [Accepted: 08/02/2021] [Indexed: 10/20/2022]
Abstract
Qualification and quantification of trace organic contaminants necessitates development of highly efficient sensing system, where excited-state inter-ligand proton transfer (ESILPT) provides a feasible pathway to construct efficient chemo-sensors. Herein, a strategically synthesized lanthanide complex, Eu(DBM)3(MeOH)3 (briefly as Eu-DBM-MeOH; DBM = dibenzoylmethane), features two-step ESILPT processes, along with modification on molecular structure and energy band. As a result, Eu-DBM-MeOH exhibits excellent photophysical properties with characteristic luminescence of Eu3+ ion. Benefiting from these merits, the Eu-DBM-MeOH complex acts as ultra-sensitive chemo-sensor toward nanomolar-level nitrofuran antibiotics (nitrofurazone and nitrofurantoin) in water, by disrupting ESILPT processes. Combining the advantages on photophysical property and luminescent sensitivity, ESILPT-active compounds are expected to widen and deepen the research on complex-based luminophores, being potentially useful in trace detection and biological imaging.
Collapse
Affiliation(s)
- Xiaojun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Lina Zhao
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China; Department of Food & Environmental Engineering, East University of Heilongjiang, Harbin, 150066, PR China
| | - Xiaomeng Jin
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China
| | - Zijun Zhang
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| | - Yuxin Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Material Science, Heilongjiang University, Harbin, 150080, PR China.
| |
Collapse
|
8
|
Borges AS, Dutra JDL, Santos GS, Diniz R, Kai J, Araujo MH. Theoretical and experimental spectroscopic investigation of new Eu(III)-FOD complex containing 2-pyrrolidone ligand. J Mol Model 2021; 27:293. [PMID: 34549346 DOI: 10.1007/s00894-021-04883-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/18/2021] [Indexed: 10/20/2022]
Abstract
The preparation and photoluminescent properties of the new [Eu(FOD)3(2-Pyr)2] complex (FOD = 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadionate; 2-Pyr = 2-pyrrolidone) are reported. The obtained complex was characterized by elemental analysis, complexometric titration using EDTA, infrared spectroscopy, and single-crystal X-ray diffraction studies. The coordination polyhedron of the complex is described as a distorted square antiprismatic with both 2-Pyr monodentate ligands coordinated to Eu(III) via the oxygen atoms, in neutral form, while the three FOD molecules are coordinated in the anionic form. Structural modeling at the PBE1PBE/SVP/MWB52 level of theory provided a geometry in excellent agreement with the one obtained experimentally. Spectroscopy properties such as intensity parameters (Ω2 and Ω4), radiative emission rate (Arad), and chemical partition of Arad for [Eu(FOD)3(2-Pyr)2] and [Eu(FOD)3(H2O)2] were calculated by using the QDC model with help of the semiempirical wavefunctions. The modeling of the ligand-to-metal energy transfer for both complexes was performed, allowing to obtain the theoretical emission quantum yield and to characterize the most relevant molecular orbitals involved.
Collapse
Affiliation(s)
- Alex Santos Borges
- Coordenadoria de Química E Biologia, IFES, Vitória, ES, 29040-780, Brazil.
| | - José Diogo L Dutra
- Pople Computational Chemistry Laboratory, Departamento de Química, UFS, São Cristóvão, SE, 49100-000, Brazil.
| | - Gabriel Silva Santos
- Pople Computational Chemistry Laboratory, Departamento de Química, UFS, São Cristóvão, SE, 49100-000, Brazil
| | - Renata Diniz
- Departamento de Química, UFMG, Belo Horizonte, MG, 31270-901, Brazil
| | - Jiang Kai
- Departamento de Química, PUC-Rio, Rio de Janeiro, RJ, 22451-900, Brazil.,Nutriplant, Barueri, SP, 06415-110, Brazil
| | | |
Collapse
|
9
|
Near-infrared luminescence and magnetism of dinuclear lanthanide complexes constructed from a schiff-base and different β-diketonate coligands. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
de Bettencourt-Dias A, Rossini JSK, Sobrinho JA. Effect of the aromatic substituent on the para-position of pyridine-bis(oxazoline) sensitizers on the emission efficiency of their Eu III and Tb III complexes. Dalton Trans 2020; 49:17699-17708. [PMID: 33237048 DOI: 10.1039/d0dt03135f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Two efficient lanthanide ion sensitizers 2,6-bis(oxazoline)-4-phenyl-pyridine (PyboxPh, 1) and 2,6-bis(oxazoline)-4-thiophen-2-yl-pyridine (Pybox2Th, 2) were synthesized. 1 crystallizes in the monoclinic space group P21/c with cell parameters a = 16.3794(4) Å, b = 7.2856(2) Å, c = 11.7073(3) Å, β = 97.229(1)° and V = 1385.97(6) Å3. 2 crystallizes in the monoclinic space group P21/n with cell parameters a = 5.9472(2), b = 16.0747(6), c = 14.3716(5) Å, β = 93.503(1)° and V = 1371.35(8) Å3. Photophysical characterization of 1 shows that its triplet state energy is located at 22 250 cm-1 and efficient energy transfer is observed for EuIII and TbIII. Solutions of [Ln(PyboxPh)3]3+ in dichloromethane display an emission efficiency of 37.2% for Ln[double bond, length as m-dash]Eu and 24.0% for Ln[double bond, length as m-dash]Tb. The excited state lifetimes for EuIII and TbIII are 2.227 ms and 723 μs, respectively. The triplet state energy of 2 is located at 19 280 cm-1 and is therefore too low to efficiently sensitize TbIII emission. However, the sensitization of EuIII is effective, with an emission quantum yield of 14.5% and an excited state lifetime of 714 μs. This shows that the derivatization of the chelator is strongly influenced by the aromatic substituents on the para-position of the pyridine ring. New isostructural 1 : 1 complexes of PyboxPh with EuIII (3) and TbIII (4) were also isolated and crystallize in the triclinic space group P1[combining macron] with cell parameters a = 9.1845(2) Å, b = 10.3327(2) Å, c = 11.9654(2) Å, α = 98.419(1)°, β = 108.109(1)°, γ = 91.791(1)°, V = 1064.08(4) Å3 and a = 7.8052(1) Å, b = 11.8910(1) Å, c = 14.2668(2) Å, α = 72.557(1)°, β = 86.355(1)°, γ = 77.223(1)°, V = 1231.95(3) Å3, respectively.
Collapse
|
11
|
Armaghan M, Najafi E, Knedel T, Frank W, Janiak C. Synthesis and Single Crystal Structure Characterization of Dinuclear and Polymeric Mixed‐ligand Coordination Compounds of Zinc(II) and Cadmium(II) with the Bridging Ligand 1,2‐Bis(pyridin‐4‐ylmethylene)hydrazine. Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mahsa Armaghan
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| | - Ezzat Najafi
- Department of Chemistry Payame Noor University (PNU) 19395–3697 Tehran Iran
| | - Tim‐Oliver Knedel
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| | - Walter Frank
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| | - Christoph Janiak
- Institute für Anorganische Chemie und Strukturchemie Heinrich‐Heine Universität 40204 Düsseldorf Germany
| |
Collapse
|
12
|
Orts-Arroyo M, Castro I, Lloret F, Martínez-Lillo J. Field-induced slow relaxation of magnetisation in two one-dimensional homometallic dysprosium(iii) complexes based on alpha- and beta-amino acids. Dalton Trans 2020; 49:9155-9163. [PMID: 32578628 DOI: 10.1039/d0dt01126f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Two one-dimensional dysprosium(iii) complexes based on α-glycine (gly) and β-alanine (β-ala) amino acids, with the formula {[Dy2(gly)6(H2O)4](ClO4)6·5H2O}n (1) and {[Dy2(β-ala)6(H2O)4](ClO4)6·H2O}n (2), have been synthesised and characterised structurally and magnetically. Both compounds crystallise in the triclinic system with the space group P1[combining macron]. In 1, two DyIII ions are eight-coordinate and bound to six oxygen atoms from six gly ligands and two oxygen atoms from two water molecules, showing different geometries (bicapped trigonal prism and square antiprism). In 2, two DyIII ions are nine-coordinate and bound to seven oxygen atoms from six β-ala ligands and two oxygen atoms from two water molecules in the same geometry (capped square antiprism). In the crystal packing of both compounds, cationic {[Dy2(L)6(H2O)4]6+}n [L = α-glycine (1) and β-alanine (2)] chains, ClO4- anions, and water molecules generate a network connected through H-bonding interactions. The study of the magnetic properties of 1 and 2 through dc magnetic susceptibility measurements reveals different magnetic behaviour 1 and 2. In addition, ac magnetic susceptibility measurements show a field-induced slow relaxation of magnetisation for both compounds, pointing out that the single-molecule magnet (SMM) phenomenon occurs in both 1 and 2.
Collapse
Affiliation(s)
- Marta Orts-Arroyo
- Instituto de Ciencia Molecular (ICMol), Universitat de València, c/Catedrático José Beltrán 2, 46980, Paterna, Valencia, Spain.
| | | | | | | |
Collapse
|
13
|
Bera SP, Mondal A, Konar S. Investigation of the role of terminal ligands in magnetic relaxation in a series of dinuclear dysprosium complexes. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00558d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Three dinuclear dysprosium complexes have been studied to establish the role of terminal ligands in the magnetic properties of the complexes.
Collapse
Affiliation(s)
- Siba Prasad Bera
- Department of Chemistry
- Indian Institute of Science Education and Research
- (IISER)
- Bhopal 462066
- India
| | - Arpan Mondal
- Department of Chemistry
- Indian Institute of Science Education and Research
- (IISER)
- Bhopal 462066
- India
| | - Sanjit Konar
- Department of Chemistry
- Indian Institute of Science Education and Research
- (IISER)
- Bhopal 462066
- India
| |
Collapse
|
14
|
Ke H, Yang Y, Wei W, Jiang Y, Zhang YQ, Xie G, Chen S. Synergistic effect of mixed ligands on the anisotropy axis of two dinuclear dysprosium complexes. Dalton Trans 2020; 49:10594-10602. [DOI: 10.1039/d0dt02139c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present the synergistic effect of mixed ligands on the anisotropy axis of two dinuclear dysprosium complexes.
Collapse
Affiliation(s)
- Hongshan Ke
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yongsheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Wen Wei
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Youdong Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Gang Xie
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| | - Sanping Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education
- College of Chemistry and Materials Science
- Northwest University
- Xi'an 710069
- P. R. China
| |
Collapse
|
15
|
Liu SS, Liu B, Ding MM, Meng YS, Jing JH, Zhang YQ, Wang X, Lin S. Substituent effects of auxiliary ligands in mononuclear dibenzoylmethane Dy III/Er III complexes: single-molecule magnetic behavior and luminescence properties. CrystEngComm 2020. [DOI: 10.1039/d0ce01147a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The single-molecule magnetic behavior and luminescence of [(dbm)3Ln(dmbipy)] and [(dbm)2Ln(dmobipy)(NO3)] are significantly modified by replacing the substituents of auxiliary ligands.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Bin Liu
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Man-Man Ding
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Yin-Shan Meng
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- Dalian 116024
- P. R. China
- Beijing National Laboratory for Molecular Sciences
| | - Jia-Hui Jing
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS
- School of Physical Science and Technology
- Nanjing Normal University
- Nanjing 210023
- P. R. China
| | - Xincheng Wang
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| | - Shijing Lin
- Beijing Key Laboratory of Fuels Cleaning and Advanced Catalytic Emission Reduction Technology
- College of Chemical Engineering
- Beijing Institute of Petrochemical Technology
- Beijing 102617
- P. R. China
| |
Collapse
|