1
|
Soda T, Pasqua T, De Sarro G, Moccia F. Cognitive Impairment and Synaptic Dysfunction in Cardiovascular Disorders: The New Frontiers of the Heart-Brain Axis. Biomedicines 2024; 12:2387. [PMID: 39457698 PMCID: PMC11504205 DOI: 10.3390/biomedicines12102387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Within the central nervous system, synaptic plasticity, fundamental to processes like learning and memory, is largely driven by activity-dependent changes in synaptic strength. This plasticity often manifests as long-term potentiation (LTP) and long-term depression (LTD), which are bidirectional modulations of synaptic efficacy. Strong epidemiological and experimental evidence show that the heart-brain axis could be severely compromised by both neurological and cardiovascular disorders. Particularly, cardiovascular disorders, such as heart failure, hypertension, obesity, diabetes and insulin resistance, and arrhythmias, may lead to cognitive impairment, a condition known as cardiogenic dementia. Herein, we review the available knowledge on the synaptic and molecular mechanisms by which cardiogenic dementia may arise and describe how LTP and/or LTD induction and maintenance may be compromised in the CA1 region of the hippocampus by heart failure, metabolic syndrome, and arrhythmias. We also discuss the emerging evidence that endothelial dysfunction may contribute to directly altering hippocampal LTP by impairing the synaptically induced activation of the endothelial nitric oxide synthase. A better understanding of how CV disorders impact on the proper function of central synapses will shed novel light on the molecular underpinnings of cardiogenic dementia, thereby providing a new perspective for more specific pharmacological treatments.
Collapse
Affiliation(s)
- Teresa Soda
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Teresa Pasqua
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Giovambattista De Sarro
- Department of Health Sciences, University of Magna Graecia, 88100 Catanzaro, Italy; (T.P.); (G.D.S.)
| | - Francesco Moccia
- Department of Medicine and Health Sciences “V. Tiberio“, University of Molise, 86100 Campobasso, Italy;
| |
Collapse
|
2
|
Ghaderi S, Gholipour P, Komaki A, Shahidi S, Seif F, Bahrami-Tapehebur M, Salehi I, Zarei M, Sarihi A, Rashno M. Underlying mechanisms behind the neuroprotective effect of vanillic acid against diabetes-associated cognitive decline: An in vivo study in a rat model. Phytother Res 2024; 38:1262-1277. [PMID: 38185917 DOI: 10.1002/ptr.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/01/2023] [Accepted: 12/16/2023] [Indexed: 01/09/2024]
Abstract
Hippocampal synaptic dysfunction, oxidative stress, neuroinflammation, and neuronal loss play critical roles in the pathophysiology of diabetes-associated cognitive decline (DACD). The study aimed to investigate the effects of vanillic acid (VA), a phenolic compound, against DACD and explore the potential underlying mechanisms. Following confirmation of diabetes, rats were treated with VA (50 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) for 8 consecutive weeks. The cognitive performance of the rats was evaluated using passive-avoidance and water-maze tasks. Long-term potentiation (LTP) was induced at hippocampal dentate gyrus (DG) synapses in response to high-frequency stimulation (HFS) applied to the perforant pathway (PP) to evaluate synaptic plasticity. Oxidative stress factors, inflammatory markers, and histological changes were evaluated in the rat hippocampus. This study showed that streptozotocin (STZ)-induced diabetes caused cognitive decline that was associated with inhibition of LTP induction, suppression of enzymatic antioxidant activities, enhanced lipid peroxidation, elevated levels of inflammatory proteins, and neuronal loss. Interestingly, chronic treatment with VA alleviated blood glucose levels, improved cognitive decline, ameliorated LTP impairment, modulated oxidative-antioxidative status, inhibited inflammatory response, and prevented neuronal loss in diabetic rats at a level comparable to insulin therapy. The results suggest that the antihyperglycemic, antioxidative, anti-inflammatory, and neuroplastic properties of VA may be the mechanisms behind its neuroprotective effect against DACD.
Collapse
Affiliation(s)
- Shahab Ghaderi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Parsa Gholipour
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alireza Komaki
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Siamak Shahidi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Faezeh Seif
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran
| | - Mohammad Bahrami-Tapehebur
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| | - Iraj Salehi
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohammad Zarei
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Abdolrahman Sarihi
- Department of Neuroscience, School of Science and Advanced Technologies in Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | |
Collapse
|
3
|
Ansari MA, Rao MS, Al-Jarallah A. Insights into early pathogenesis of sporadic Alzheimer's disease: role of oxidative stress and loss of synaptic proteins. Front Neurosci 2024; 17:1273626. [PMID: 38260013 PMCID: PMC10800995 DOI: 10.3389/fnins.2023.1273626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 12/11/2023] [Indexed: 01/24/2024] Open
Abstract
Oxidative stress, induced by impaired insulin signaling in the brain contributes to cognitive loss in sporadic Alzheimer's disease (sAD). This study evaluated early hippocampal oxidative stress, pre- and post-synaptic proteins in intraperitoneal (IP) and intracerebroventricular (ICV) streptozotocin (STZ) models of impaired insulin signaling. Adult male Wistar rats were injected with STZ, IP, or ICV, and sacrificed 1-, 3-, or 6-weeks post injection. Rat's cognitive behavior was assessed using Morris water maze (MWM) tests at weeks 3 and 6. Hippocampal synaptosomal fractions were examined for oxidative stress markers and presynaptic [synapsin I, synaptophysin, growth-associated protein-43 (GAP-43), synaptosomal-associated protein-25 (SNAP-25)] and postsynaptic [drebrin, synapse-associated protein-97 (SAP-97), postsynaptic density protein-95 (PSD-95)] proteins. IP-STZ and ICV-STZ treatment impaired rat's cognition, decreased the levels of reduced glutathione (GSH) and increased the levels of thiobarbituric acid reactive species (TBARS) in a time dependent manner. In addition, it reduced the expression of pre- and post-synaptic proteins in the hippocampus. The decline in cognition is significantly correlated with the reduction in synaptic proteins in the hippocampus. In conclusion, impaired insulin signaling in the brain is deleterious in causing early synaptosomal oxidative damage and synaptic loss that exacerbates with time and correlates with cognitive impairments. Our data implicates oxidative stress and synaptic protein loss as an early feature of sAD and provides insights into early biochemical and behavioral changes during disease progression.
Collapse
Affiliation(s)
- Mubeen A. Ansari
- Department of Pharmacology and Toxicology, College of Medicine, Kuwait University, Jabriya, Kuwait
| | | | - Aishah Al-Jarallah
- Department of Biochemistry, College of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|
4
|
Palazzo E, Marabese I, Boccella S, Belardo C, Pierretti G, Maione S. Affective and Cognitive Impairments in Rodent Models of Diabetes. Curr Neuropharmacol 2024; 22:1327-1343. [PMID: 38279738 PMCID: PMC11092917 DOI: 10.2174/1570159x22666240124164804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 01/28/2024] Open
Abstract
Diabetes and related acute and long-term complications have a profound impact on cognitive, emotional, and social behavior, suggesting that the central nervous system (CNS) is a crucial substrate for diabetic complications. When anxiety, depression, and cognitive deficits occur in diabetic patients, the symptoms and complications related to the disease worsen, contributing to lower quality of life while increasing health care costs and mortality. Experimental models of diabetes in rodents are a fundamental and valuable tool for improving our understanding of the mechanisms underlying the close and reciprocal link between diabetes and CNS alterations, including the development of affective and cognitive disorders. Such models must reproduce the different components of this pathological condition in humans and, therefore, must be associated with affective and cognitive behavioral alterations. Beyond tight glycemic control, there are currently no specific therapies for neuropsychiatric comorbidities associated with diabetes; animal models are, therefore, essential for the development of adequate therapies. To our knowledge, there is currently no review article that summarizes changes in affective and cognitive behavior in the most common models of diabetes in rodents. Therefore, in this review, we have reported the main evidence on the alterations of affective and cognitive behavior in the different models of diabetes in rodents, the main mechanisms underlying these comorbidities, and the applicable therapeutic strategy.
Collapse
Affiliation(s)
- Enza Palazzo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Ida Marabese
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Serena Boccella
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Carmela Belardo
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Gorizio Pierretti
- Department of Plastic Surgery, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Sabatino Maione
- Department of Experimental Medicine, Pharamacology Division, University of Campania “L. Vanvitelli”, Naples, Italy
| |
Collapse
|
5
|
Zhu Y, Huang R, Wang D, Yu L, Liu Y, Huang R, Yin S, He X, Chen B, Liu Z, Cheng L, Zhu R. EVs-mediated delivery of CB2 receptor agonist for Alzheimer's disease therapy. Asian J Pharm Sci 2023; 18:100835. [PMID: 37645682 PMCID: PMC10460952 DOI: 10.1016/j.ajps.2023.100835] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 07/16/2023] [Accepted: 07/21/2023] [Indexed: 08/31/2023] Open
Abstract
Alzheimer's disease (AD) is a typical neurodegenerative disease that leads to irreversible neuronal degeneration, and effective treatment remains elusive due to the unclear mechanism. We utilized biocompatible mesenchymal stem cell-derived extracellular vesicles as carriers loaded with the CB2 target medicine AM1241 (EVs-AM1241) to protect against neurodegenerative progression and neuronal function in AD model mice. According to the results, EVs-AM1241 were successfully constructed and exhibited better bioavailability and therapeutic effects than bare AM1241. The Morris water maze (MWM) and fear conditioning tests revealed that the learning and memory of EVs-AM1241-treated model mice were significantly improved. In vivo electrophysiological recording of CA1 neurons indicated enhanced response to an auditory conditioned stimulus following fear learning. Immunostaining and Western blot analysis showed that amyloid plaque deposition and amyloid β (Aβ)-induced neuronal apoptosis were significantly suppressed by EVs-AM1241. Moreover, EVs-AM1241 increased the number of neurons and restored the neuronal cytoskeleton, indicating that they enhanced neuronal regeneration. RNA sequencing revealed that EVs-AM1241 facilitated Aβ phagocytosis, promoted neurogenesis and ultimately improved learning and memory through the calcium-Erk signaling pathway. Our study showed that EVs-AM1241 efficiently reversed neurodegenerative pathology and enhanced neurogenesis in model mice, indicating that they are very promising particles for treating AD.
Collapse
Affiliation(s)
- Yanjing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, China
| | - Ruiqi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Liqun Yu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Yuchen Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Runzhi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Shuai Yin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Xiaolie He
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Bairu Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Zhibo Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
| | - Liming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, China
- Clinical Center For Brain And Spinal Cord Research, Tongji University, Shanghai 200065, China
| | - Rongrong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopaedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Shanghai 200065, China
- Frontier Science Center for Stem Cell Research, Tongji University, Shanghai 200065, China
| |
Collapse
|
6
|
de Bartolomeis A, De Simone G, De Prisco M, Barone A, Napoli R, Beguinot F, Billeci M, Fornaro M. Insulin effects on core neurotransmitter pathways involved in schizophrenia neurobiology: a meta-analysis of preclinical studies. Implications for the treatment. Mol Psychiatry 2023; 28:2811-2825. [PMID: 37085712 PMCID: PMC10615753 DOI: 10.1038/s41380-023-02065-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 04/23/2023]
Abstract
Impairment of insulin action and metabolic dysregulation have traditionally been associated with schizophrenia, although the molecular basis of such association remains still elusive. The present meta-analysis aims to assess the impact of insulin action manipulations (i.e., hyperinsulinemia, hypoinsulinemia, systemic or brain insulin resistance) on glutamatergic, dopaminergic, γ-aminobutyric acid (GABA)ergic, and serotonergic pathways in the central nervous system. More than one hundred outcomes, including transcript or protein levels, kinetic parameters, and other components of the neurotransmitter pathways, were collected from cultured cells, animals, or humans, and meta-analyzed by applying a random-effects model and adopting Hedges'g to compare means. Two hundred fifteen studies met the inclusion criteria, of which 180 entered the quantitative synthesis. Significant impairments in key regulators of synaptic plasticity processes were detected as the result of insulin handlings. Specifically, protein levels of N-methyl-D-aspartate receptor (NMDAR) subunits including type 2A (NR2A) (Hedges' g = -0.95, 95%C.I. = -1.50, -0.39; p = 0.001; I2 = 47.46%) and 2B (NR2B) (Hedges'g = -0.69, 95%C.I. = -1.35, -0.02; p = 0.043; I2 = 62.09%), and Postsynaptic density protein 95 (PSD-95) (Hedges'g = -0.91, 95%C.I. = -1.51, -0.32; p = 0.003; I2 = 77.81%) were found reduced in insulin-resistant animal models. Moreover, insulin-resistant animals showed significantly impaired dopamine transporter activity, whereas the dopamine D2 receptor mRNA expression (Hedges'g = 3.259; 95%C.I. = 0.497, 6.020; p = 0.021; I2 = 90.61%) increased under insulin deficiency conditions. Insulin action modulated glutamate and GABA release, as well as several enzymes involved in GABA and serotonin synthesis. These results suggest that brain neurotransmitter systems are susceptible to insulin signaling abnormalities, resembling the discrete psychotic disorders' neurobiology and possibly contributing to the development of neurobiological hallmarks of treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Andrea de Bartolomeis
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy.
| | - Giuseppe De Simone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele De Prisco
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
- Bipolar and Depressive Disorders Unit, Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, 170 Villarroel st, 12-0, 08036, Barcelona, Catalonia, Spain
| | - Annarita Barone
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medical Sciences, University of Naples "Federico II", Via S. Pansini 5, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Martina Billeci
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| | - Michele Fornaro
- Section of Psychiatry, Laboratory of Molecular and Translational Psychiatry, Unit of Treatment-Resistant Psychiatric Disorders, Department of Neuroscience, Reproductive Sciences and Odontostomatology University of Naples "Federico II", School of Medicine, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
7
|
FKN/NR Signaling Pathway Regulates Hippocampal Inflammatory Responses: the Survival of Hippocampal Neurons in Diabetic Rats with Chronic Unpredictable Mild Stress. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8980627. [PMID: 36072409 PMCID: PMC9444384 DOI: 10.1155/2022/8980627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/16/2022] [Accepted: 06/28/2022] [Indexed: 11/17/2022]
Abstract
Aim To investigate the mechanism via which FKN/CX3CR1 signaling abnormalities mediate N-methyl-D-aspartic acid receptor (NMDA) overexcitation-induced hippocampal neuronal injury in diabetic rats complicated with depression (DD). Methods Sixty rats were randomly divided into 5 groups. The depression-like behaviors of the rats were evaluated by open field test and Morris water maze. The pathological changes of hippocampus in DD rats were observed by HE staining. The blood levels of inflammatory factors (IL-1β, TNF-α, and IL-6) and neurotransmitters (D-serine and glutamic acid) were determined by enzyme-linked immunosorbent assay (ELISA). The expressions of BDNF, A1 receptor (A1R), A2 receptor (A2R), A3 receptor (A3R), calmodulin dependent kinase II (CaMKII), CX3CR1, CX3CL1 (FKN), NR2A, and NR2B proteins were detected by immunohistochemistry and Western-blotting. Results Compared with the normal control group, blood glucose level increased significantly and body weight decreased in T2DM group and T2DMC group. In addition, the number of spontaneous activities significantly decreased and the capability of learning and memory was attenuated in T2DMC group and Chronic Stress group. The blood levels of IL-1β, TNF-α, IL-6, glutamate (Glu), and D-serine significantly increased in each model group. After intervention with CX3CR1 antibody, the expressions of BDNF, CaMK II, A1R, and A3R increased and those of A2R, CX3CR1, FKN, NR2A, and NR2B decreased. Conclusion In the diabetic state, the binding of FKN to CX3CR1 increases, which regulates a variety of adenosine receptors. When it exerts its effect on neurons, the overactivation of NR results in neuronal injury and causes depression.
Collapse
|
8
|
Romano AD, Villani R, Sangineto M, Cassano T, Serviddio G. The GLP-1 receptor agonist Exendin-4 modulates hippocampal NMDA-receptor signalling in aged rats and improves cognitive impairment in diabetic elderly patients. JOURNAL OF GERONTOLOGY AND GERIATRICS 2022. [DOI: 10.36150/2499-6564-n474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Gajda JM, Asiedu M, Morrison G, Dunning JA, Ghoreishi-Haack N, Barth AL. NYX-2925, A NOVEL, NON-OPIOID, SMALL-MOLECULE MODULATOR OF THE N-METHYL-d-ASPARTATE RECEPTOR (NMDAR), DEMONSTRATES POTENTIAL TO TREAT CHRONIC, SUPRASPINAL CENTRALIZED PAIN CONDITIONS. MEDICINE IN DRUG DISCOVERY 2021. [DOI: 10.1016/j.medidd.2020.100067] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
10
|
Sesamin alleviates diabetes-associated behavioral deficits in rats: The role of inflammatory and neurotrophic factors. Int Immunopharmacol 2021; 92:107356. [PMID: 33440305 DOI: 10.1016/j.intimp.2020.107356] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022]
Abstract
Neuroinflammation and loss of neurotrophic support have key roles in the pathophysiology of diabetes-associated behavioral deficits (DABD). Sesamin (Ses), a major lignan of sesame seed and its oil, shows anti-hyperglycemic, anti-oxidative, and neuroprotective effects. The present study was designed to assess the potential protective effects of Ses against DABD and investigate the roles of inflammatory markers and neurotrophic factors in streptozotocin (STZ)-induced diabetic rats. After confirmation of diabetes, Ses (30 mg/kg/day; P.O.) or insulin (6 IU/rat/day; S.C.) was administered to rats for eight consecutive weeks. During the eighth-week period of the study, behavioral functions of the animals were evaluated by employing standard behavioral paradigms. Moreover, inflammation status, neurotrophic factors, and histological changes were assessed in the cerebral cortex and hippocampal regions of the rats. The results of behavioral tests showed that STZ-induced diabetes increased anxiety-/depression-like behaviors, decreased locomotor/exploratory activities, and impaired passive avoidance learning and memory. These DABD were accompanied by neuroinflammation, lack of neurotrophic support, and neuronal loss in both cerebral cortex and hippocampus of the rats. Intriguingly, chronic treatment with Ses improved all the above-mentioned diabetes-related behavioral, biochemical, and histological deficits, and in some cases, it was even more effective than insulin therapy. In conclusion, the results suggest that Ses was capable of improving DABD, which might be ascribed, at least partly, to the reduction of blood glucose level, inhibition of neuroinflammation, and potentiation of neurotrophic factors.
Collapse
|
11
|
RAGE signaling is required for AMPA receptor dysfunction in the hippocampus of hyperglycemic mice. Physiol Behav 2020; 229:113255. [PMID: 33221393 DOI: 10.1016/j.physbeh.2020.113255] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 10/31/2020] [Accepted: 11/18/2020] [Indexed: 01/08/2023]
Abstract
Diabetes in humans has been associated for a long time with cognitive dysfunction. In rodent animal models, cognitive dysfunction can manifest as impaired hippocampal synaptic plasticity. Particular attention has been concentrated on the receptor for advanced glycation end products (RAGE), which is implicated in multiple diabetic complications involving the development of vascular and peripheral nerve abnormalities. In this study, we hypothesize that RAGE signaling alters glutamate receptor function and expression, impairing synaptic transmission in the hippocampus. Using preparations of hippocampal slices from male mice, we show a RAGE-dependent decrease in long-term potentiation (LTP) and an increase in paired-pulse facilitation (PPF) following streptozotocin (STZ)-induced diabetes. Consistently, in hippocampal cultures from male and female neonatal mice, high glucose caused a RAGE-dependent reduction of AMPA- but not NMDA-evoked currents, and an increase in cytosolic reactive oxygen species (ROS). Consistently, when cultures were co-treated with high glucose and the RAGE antagonist FPS-ZM1, AMPA-evoked currents were unchanged. Hippocampi from STZ-induced hyperglycemic wild type (WT) mice showed increased RAGE expression concomitant with a decrease of both expression and phosphorylation (Ser 831 and 845) of the AMPA GluA1 subunit. We found these changes correlated to activation of the MAPK pathway, consistent with decreased pJNK/JNK ratio and the JNK kinase, pMEK7. As no changes in expression or phosphorylation of regulatory proteins were observed in hippocampi from STZ-induced hyperglycemic RAGE-KO mice, we report a RAGE-dependent impairment in the hippocampi of hyperglycemic WT mice, with reduced AMPA receptor expression/function and LTP deficits.
Collapse
|
12
|
Reduced brain fractalkine-CX3CR1 signaling is involved in the impaired cognition of streptozotocin-treated mice. IBRO Rep 2020; 9:233-240. [PMID: 32995659 PMCID: PMC7509139 DOI: 10.1016/j.ibror.2020.09.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/09/2020] [Indexed: 11/20/2022] Open
Abstract
Patients with diabetes mellitus are predisposed to cognitive impairment. Fractalkine-CX3CR1 in the brain signaling represents a primary neuron-microglia inter-regulatory system for several brain functions including learning and memory processes. The present study addressed whether fractalkine-CX3CR1 signaling in the hippocampus contributes to the cognitive deficits observed in streptozotocin (STZ)-treated mice. Our results showed that STZ-treated mice exhibited significant cognitive deficits in the Y-maze test, and a decrease in fractalkine and CX3CR1 levels in the hippocampus. Moreover, intracerebroventricular injection of the CX3CR1 antagonist 18a in normal mice induced significant cognitive deficits in the Y-maze test. STZ-treated mice showed a significant increase in plasma corticosterone levels and a decrease in plasma and hippocampal levels of insulin-like growth factor-1 (IGF-1). Therefore, we examined the effects of corticosterone and IGF-1 on regulation of fractalkine and CX3CR1 expression. Dexamethasone (DEX) application significantly decreased the mRNA expression of fractalkine in primary neuron and astrocyte cultures, and of CX3CR1 in primary microglia cultures. On the other hand, IGF-1 application significantly increased the mRNA expression of fractalkine in primary neuron cultures and CX3CR1 in primary microglia cultures. In addition, administration of DEX and the IGF-1 receptor tyrosine kinase inhibitor picropodophyllin significantly reduced the mRNA expression of fractalkine and CX3CR1 in the hippocampus. These findings indicate that impaired cognition in STZ-treated mice is associated with reduced fractalkine-CX3CR1 signaling in the hippocampus which may be induced by an increase in corticosterone and a decrease in IGF-1.
Collapse
Key Words
- AMPA, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
- CNS, central nervous system
- CX3CR1
- CX3CR1, CX3C chemokine receptor 1
- DEX, dexamethasone
- DM, diabetes mellitus
- DMSO, dimethyl sulfoxide
- Diabetes
- EDTA, ethylenediaminetetraacetic acid
- Fractalkine
- GAPDH, glyceraldehyde-3-phosphate dehydrogenase
- IGF-1, insulin-like growth factor-1
- LTP, long-term potentiation
- Memory
- Mice
- NMDA, N-methyl-d-aspartate
- PPP, picropodophyllin
- STZ, streptozotocin
- Streptozotocin
Collapse
|
13
|
Thapak P, Bishnoi M, Sharma SS. Amelioration of diabetes-induced cognitive impairment by Transient Receptor Potential Vanilloid 2 (TRPV2) channel inhibitor: Behavioral and mechanistic study. Neurochem Int 2020; 139:104783. [PMID: 32652268 DOI: 10.1016/j.neuint.2020.104783] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 02/08/2023]
Abstract
Transient receptor potential (TRP) channels are Ca2+ permeable non-selective cation channels which play a pivotal role in diabetes and diabetic complications. Among diabetic complications, diabetes-induced cognitive impairment is a major CNS complication. The role of several TRP channels has been investigated extensively for their diverse Ca2+ regulating mechanism, and recently their role has been postulated in the progression of neurodegenerative disorders. However, the role of TRPV2 has not been investigated yet. Therefore, in the present study, the involvement of TRPV2 channels was investigated in diabetes-induced cognitive impairment using TRPV2 inhibitor, tranilast. High glucose exposure in rat C6 glial cells enhances the Ca2+-entry through TRPV2 channels. In our in-vivo study, diabetic rats showed increased gene and protein expression of TRPV2 in the hippocampus. Subsequent increase in the acetylcholinesterase activity in the cortex, as well as decrease in the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (p-CaMKII-Thr-286), p-GSK-3β (Ser-9), p-CREB (Ser-133) and postsynaptic density protein 95 (PSD-95) in the hippocampus were also observed this led to the impairment in the learning and memory as evident from behavioral parameters such as Morris water maze test, passive avoidance and Y-maze test paradigm. Three-week treatment with tranilast (30 and 100 mg/kg, p.o.) showed improvement in learning and memory associated behaviours (Morris water maze test, passive avoidance, and Y-maze test) by increasing the p-CaMKII (Thr-286), p-GSK-3β (Ser-9), p-CREB (Ser-133) and PSD-95 in the hippocampus. Cortical acetylcholinesterase activity was also reduced by the tranilast. These findings depicted that TRPV2 inhibition may be an effective treatment strategy in diabetes-induced cognitive deficits.
Collapse
Affiliation(s)
- P Thapak
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India
| | - M Bishnoi
- National Agri-Food Biotechnology Institute (NABI), S. A. S. Nagar, Punjab, India
| | - S S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S. A. S. Nagar, Punjab, India.
| |
Collapse
|
14
|
Levels of serum S100B are associated with cognitive dysfunction in patients with type 2 diabetes. Aging (Albany NY) 2020; 12:4193-4203. [PMID: 32112645 PMCID: PMC7093188 DOI: 10.18632/aging.102873] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022]
Abstract
Objective: Previous studies have provided robust evidence that cognitive impairment exists in patients with type 2 diabetes. The predictive role of S100B in a variety of neurodegenerative diseases such as Alzheimer’s disease, has been shown to be closely related to cognitive function. The purpose of this study was to investigate the correlation between serum S100B levels and cognitive function in type 2 diabetes patients. Results: The type 2 diabetes group scored lower than the healthy control group in all domains of cognitive function except language and attention, and the former group also had lower serum levels of S100B. Besides, serum S100B levels were lower in the type 2 diabetes patients with impaired cognition than in those with normal cognition. In addition, the moderate to severe cognitive impairment group had significantly lower levels than that in mild cognitive impairment group. After adjusting for confounding factors, serum S100B levels were positively correlated with cognitive function in type 2 diabetes patients. Conclusions: Serum S100B levels were positively correlated with cognitive function in type 2 diabetes patients with cognitive impairment. It is suggested that S100B may be involved in the occurrence and development of cognitive dysfunction in type 2 diabetes patients and play a protective role. Methods: The clinical data and biochemical indexes of ninety-six patients with type 2 diabetes and sixty-eight healthy subjects were collected. The levels of serum S100B were detected by enzyme-linked immunosorbent assay. Ninety-six type 2 diabetes patients were divided into a cognitive dysfunction group and a normal cognition group according to Mini-mental State Examination scores. To better understand the differences in various aspects of cognition, we used the Repeatable Battery for the Assessment of Neuropsychological Status scale for further evaluation. To study the relationship between serum S100B levels and cognitive impairment, the cognitive dysfunction group was divided into a mild cognitive impairment group and a moderate to severe cognitive impairment group for further study.
Collapse
|
15
|
Ahmed A, Zeng G, Jiang D, Lin H, Azhar M, Farooq AD, Choudhary MI, Liu X, Wang Q. Time-dependent impairments in learning and memory in Streptozotocin-induced hyperglycemic rats. Metab Brain Dis 2019; 34:1431-1446. [PMID: 31286327 DOI: 10.1007/s11011-019-00448-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 06/10/2019] [Indexed: 12/17/2022]
Abstract
The sedentary lifestyle is responsible for the high prevalence of diabetes which also impairs cognition including learning and memory. Various studies have highlighted the learning and memory impairments in rodent models but data regarding the timeline of their development and their correlation to biochemical parameters are scarce. So, the present study was designed to investigate the type of memory which is more susceptible to hyperglycemia and its correlation with biochemical parameters such as inflammatory cytokines, cAMP response element binding (CREB) and protein kinase B (Akt) activation. Hyperglycemia was induced using streptozotocin (STZ, 45 mg/kg i.p.) and confirmed by measuring fasting blood glucose levels after 1 week of STZ injection. Learning and memory deficits were evaluated using the Novel Object Recognition Test (NORT) and Morris water maze (MWM), and correlated with biochemical parameters (TNF-α, IL-1β, and dopamine) at 3, 6 and 9 weeks. STZ-injected rats after 3 weeks of injection demonstrated moderate hyperglycemia (blood glucose = 7.99 ± 0.62 mM) with intact learning and reference memory; however, their working memory was impaired in MWM. Severe hyperglycemia (blood glucose = 11.51 ± 0.69 mM) accompanied by impaired short, long, and working memory was evident after 6 weeks whereas learning was intact. After 9 weeks of STZ injection, hyperglycemia was more pronounced (13.69 ± 1.43 mM) and accompanied by a learning deficit in addition to short, long, and working memory impairments. The extent of hyperglycemia either in terms of duration or severity resulted in enhanced inflammation, down-regulation of the level of dopamine, protein expression of AKT and CREB, which possibly affected learning and memory negatively.
Collapse
Affiliation(s)
- Ayaz Ahmed
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Guirong Zeng
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Dejiang Jiang
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
| | - Haiying Lin
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Mudassar Azhar
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Ahsana Dar Farooq
- Hamdard Al-Majeed College of Eastern Medicine, Hamdard University, Karachi, 74600, Pakistan
| | - Muhammad Iqbal Choudhary
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
- Department of Biochemistry, College of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Xinmin Liu
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
- Hunan Provincial Research Center for Safety Evaluation of Drugs, Changsha, China.
- Research Center for Pharmacology & Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Qiong Wang
- Affiliated TCM hospital/ Sino-Portugal TCM International Cooperation Center / Department of Physiology in School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
16
|
Lakstygal AM, de Abreu MS, Lifanov DA, Wappler-Guzzetta EA, Serikuly N, Alpsyshov ET, Wang D, Wang M, Tang Z, Yan D, Demin KA, Volgin AD, Amstislavskaya TG, Wang J, Song C, Alekseeva P, Kalueff AV. Zebrafish models of diabetes-related CNS pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:48-58. [PMID: 30476525 DOI: 10.1016/j.pnpbp.2018.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/18/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
Abstract
Diabetes mellitus (DM) is a common metabolic disorder that affects multiple organ systems. DM also affects brain processes, contributing to various CNS disorders, including depression, anxiety and Alzheimer's disease. Despite active research in humans, rodent models and in-vitro systems, the pathogenetic link between DM and brain disorders remains poorly understood. Novel translational models and new model organisms are therefore essential to more fully study the impact of DM on CNS. The zebrafish (Danio rerio) is a powerful novel model species to study metabolic and CNS disorders. Here, we discuss how DM alters brain functions and behavior in zebrafish, and summarize their translational relevance to studying DM-related CNS pathogenesis in humans. We recognize the growing utility of zebrafish models in translational DM research, as they continue to improve our understanding of different brain pathologies associated with DM, and may foster the discovery of drugs that prevent or treat these diseases.
Collapse
Affiliation(s)
- Anton M Lakstygal
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS, Brazil; The International Zebrafish Neuroscience Research Consortium (ZNRC), Slidell, LA, USA
| | - Dmitry A Lifanov
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; School of Pharmacy, Southwest University, Chongqing, China
| | | | - Nazar Serikuly
- School of Pharmacy, Southwest University, Chongqing, China
| | | | - DongMei Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - MengYao Wang
- School of Pharmacy, Southwest University, Chongqing, China
| | - ZhiChong Tang
- School of Pharmacy, Southwest University, Chongqing, China
| | - DongNi Yan
- School of Pharmacy, Southwest University, Chongqing, China
| | - Konstantin A Demin
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Andrey D Volgin
- Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia
| | | | - JiaJia Wang
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Cai Song
- Institute for Marine Drugs and Nutrition, Guangdong Ocean University, Zhanjiang, China; Marine Medicine Development Center, Shenzhen Institute, Guangdong Ocean University, Shenzhen, China
| | - Polina Alekseeva
- Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Institute of Experimental Medicine, Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia; Laboratory of Biological Psychiatry, Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia; Scientific Research Institute of Physiology and Basic Medicine, Novosibirsk, Russia; Ural Federal University, Ekaterinburg, Russia; Russian Scientific Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia; ZENEREI Research Center, Slidell, LA, USA.
| |
Collapse
|
17
|
Nam SM, Yoo DY, Kwon HJ, Kim JW, Jung HY, Kim DW, Seong JK, Hwang IK, Yoon YS. Effects of long-term exposure to aluminum in the hippocampus in the type 2 diabetes model rats. Toxicol Res (Camb) 2019; 8:206-215. [PMID: 30931101 PMCID: PMC6404161 DOI: 10.1039/c8tx00192h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 11/21/2018] [Indexed: 11/21/2022] Open
Abstract
We investigated the long-term effects of aluminum (Al) exposure in the hippocampus in Zucker diabetic fatty (ZDF) rats and Zucker lean control (ZLC) rats. Six-week-old ZLC and ZDF rats were randomly divided into Al- and non-Al-groups. They were sacrificed 27 weeks after Al exposure (2000 ppm) through drinking water. Al exposure did not affect physiological parameters such as the body weight and blood glucose levels, but the prolonged diabetic condition had significant effects on the body weight and blood glucose levels. To determine the effects of diabetes and Al exposure on the neural plasticity and inflammatory response in the hippocampus, we examined the levels of doublecortin (DCX), N-methyl-d-aspartate receptors (NMDAR1, NMDAR2A, and NMDAR2B), and ionized calcium-binding adapter molecule 1 (Iba-1) in the hippocampus. DCX immunohistochemical staining revealed that Al exposure significantly reduced neuronal differentiation in both ZLC and ZDF rats. In particular, ZDF rats showed significantly decreased DCX immunoreactive neuroblasts compared with ZLC rats after aluminum exposure. In contrast, the expression of postsynaptic NMDARs was altered only in ZDF-Al rats; the protein expression level of NMDAR1 was reduced, but that of NMDAR2B increased in the hippocampus. Iba-1-immunoreactive microglia with morphological changes, including increased cytoplasm and retracted processes, were detected in the long-term diabetic condition and in the case of the co-existence of diabetes and Al exposure. Al exposure aggravated the diabetes-induced reduction of neuroblast differentiation and NMDAR signaling and facilitated the morphological changes associated with inflammatory activation in microglia in the hippocampus. However, further studies are still needed to confirm these findings.
Collapse
Affiliation(s)
- Sung Min Nam
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- Department of Anatomy , College of Veterinary Medicine , Konkuk University , Seoul 05030 , Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology , Research Institute of Oral Sciences , College of Dentistry , Gangneung-Wonju National University , Gangneung 25457 , South Korea
| | - Jong Whi Kim
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
| | - Hyo Young Jung
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology , Research Institute of Oral Sciences , College of Dentistry , Gangneung-Wonju National University , Gangneung 25457 , South Korea
| | - Je Kyung Seong
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- KMPC (Korea Mouse Phenotyping Center) , Seoul National University , Seoul 08826 , South Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- KMPC (Korea Mouse Phenotyping Center) , Seoul National University , Seoul 08826 , South Korea
| | - Yeo Sung Yoon
- Department of Anatomy and Cell Biology , College of Veterinary Medicine , and Research Institute for Veterinary Science , Seoul National University , Seoul 08826 , South Korea . ; ; Tel: +82 2 8801264
- KMPC (Korea Mouse Phenotyping Center) , Seoul National University , Seoul 08826 , South Korea
| |
Collapse
|
18
|
Chornenkyy Y, Wang W, Wei A, Nelson PT. Alzheimer's disease and type 2 diabetes mellitus are distinct diseases with potential overlapping metabolic dysfunction upstream of observed cognitive decline. Brain Pathol 2019; 29:3-17. [PMID: 30106209 PMCID: PMC6427919 DOI: 10.1111/bpa.12655] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 08/09/2018] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) and type 2 diabetes mellitus (T2DM) are highly prevalent aging-related diseases associated with significant morbidity and mortality. Some findings in human and animal models have linked T2DM to AD-type dementia. Despite epidemiological associations between the T2DM and cognitive impairment, the interrelational mechanisms are unclear. The preponderance of evidence in longitudinal studies with autopsy confirmation have indicated that vascular mechanisms, rather than classic AD-type pathologies, underlie the cognitive decline often seen in self-reported T2DM. T2DM is associated with cardiovascular and cerebrovascular disease (CVD), and is associated with increased risk of infarcts and small vessel disease in the brain and other organs. Neuropathological examinations of post-mortem brains demonstrated evidence of cerebrovascular disease and little to no correlation between T2DM and β-amyloid deposits or neurofibrillary tangles. Nevertheless, the mechanisms upstream of early AD-specific pathology remain obscure. In this regard, there may indeed be overlap between the pathologic mechanisms of T2DM/"metabolic syndrome," and AD. More specifically, cerebral insulin processing, glucose metabolism, mitochondrial function, and/or lipid metabolism could be altered in patients in early AD and directly influence symptomatology and/or neuropathology.
Collapse
Affiliation(s)
| | - Wang‐Xia Wang
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| | - Angela Wei
- Department of BiologyUniversity of KentuckyLexingtonKY
| | - Peter T. Nelson
- University of Kentucky College of MedicineLexingtonKY
- Sanders‐Brown Center on Aging, Department of PathologyUniversity of KentuckyLexingtonKY
| |
Collapse
|
19
|
Zanotto C, Hansen F, Galland F, Batassini C, Federhen BC, da Silva VF, Leite MC, Nardin P, Gonçalves CA. Glutamatergic Alterations in STZ-Induced Diabetic Rats Are Reversed by Exendin-4. Mol Neurobiol 2018; 56:3538-3551. [PMID: 30145785 DOI: 10.1007/s12035-018-1320-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 08/14/2018] [Indexed: 01/25/2023]
Abstract
Diabetes mellitus is a metabolic disorder that results in glucotoxicity and the formation of advanced glycated end products (AGEs), which mediate several systemic adverse effects, particularly in the brain tissue. Alterations in glutamatergic neurotransmission and cognitive impairment have been reported in DM. Exendin-4 (EX-4), an analogue of glucagon-like peptide-1 (GLP-1), appears to have beneficial effects on cognition in rats with chronic hyperglycemia. Herein, we investigated the ability of EX-4 to reverse changes in AGE content and glutamatergic transmission in an animal model of DM looking principally at glutamate uptake and GluN1 subunit content of the N-methyl-D-aspartate (NMDA) receptor. Additionally, we evaluated the effects of EX-4 on in vitro models and the signaling pathway involved in these effects. We found a decrease in glutamate uptake and GluN1 content in the hippocampus of diabetic rats; EX-4 was able to revert these parameters, but had no effect on the other parameters evaluated (glycemia, C-peptide, AGE levels, RAGE, and glyoxalase 1). EX-4 abrogated the decrease in glutamate uptake and GluN1 content caused by methylglyoxal (MG) in hippocampal slices, in addition to leading to an increase in glutamate uptake in astrocyte culture cells and hippocampal slices under basal conditions. The effect of EX-4 on glutamate uptake was mediated by the phosphatidylinositide 3-kinases (PI3K) signaling pathway, which could explain the protective effect of EX-4 in the brain tissue, since PI3K is involved in cell metabolism, inhibition of apoptosis, and reduces inflammatory responses. These results suggest that EX-4 could be used as an adjuvant treatment for brain impairment associated with excitotoxicity.
Collapse
Affiliation(s)
- Caroline Zanotto
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| | - Fernanda Hansen
- Department of Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Fabiana Galland
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Cristiane Batassini
- Department of Biological Sciences, Integrated Regional University of Alto Uruguai and Missões, Frederico Westphalen, Brazil
| | | | | | - Marina Concli Leite
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Patrícia Nardin
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| |
Collapse
|
20
|
Chen R, Shi J, Yin Q, Li X, Sheng Y, Han J, Zhuang P, Zhang Y. Morphological and Pathological Characteristics of Brain in Diabetic Encephalopathy. J Alzheimers Dis 2018; 65:15-28. [DOI: 10.3233/jad-180314] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Rui Chen
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jiangwei Shi
- Department of Integrated Rehabilitation, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qingsheng Yin
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaojin Li
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanyuan Sheng
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Juan Han
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengwei Zhuang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yanjun Zhang
- Chinese Materia Medica College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
21
|
Metabolic Changes Associated with a Rat Model of Diabetic Depression Detected by Ex Vivo 1H Nuclear Magnetic Resonance Spectroscopy in the Prefrontal Cortex, Hippocampus, and Hypothalamus. Neural Plast 2018; 2018:6473728. [PMID: 29849562 PMCID: PMC5911311 DOI: 10.1155/2018/6473728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 02/12/2018] [Accepted: 03/11/2018] [Indexed: 01/08/2023] Open
Abstract
Diabetic patients often present with comorbid depression. However, the pathogenetic mechanisms underlying diabetic depression (DD) remain unclear. To explore the mechanisms underpinning the pathogenesis of the disease, we used ex vivo 1H nuclear magnetic resonance spectroscopy and immunohistochemistry to investigate the main metabolic and pathological changes in various rat brain areas in an animal model of DD. Compared with the control group, rats in the DD group showed significant decreases in neurotransmitter concentrations of glutamate (Glu) and glutamine (Gln) in the prefrontal cortex (PFC), hippocampus, and hypothalamus and aspartate and glycine in the PFC and hypothalamus. Gamma-aminobutyric acid (GABA) was decreased only in the hypothalamus. Levels of the energy product, lactate, were higher in the PFC, hippocampus, and hypothalamus of rats with DD than those in control rats, while creatine was lower in the PFC and hippocampus, and alanine was lower in the hypothalamus. The levels of other brain metabolites were altered, including N-acetyl aspartate, taurine, and choline. Immunohistochemistry analysis revealed that expressions of both glutamine synthetase and glutaminase were decreased in the PFC, hippocampus, and hypothalamus of rats with DD. The metabolic changes in levels of Glu, Gln, and GABA indicate an imbalance of the Glu-Gln metabolic cycle between astrocytes and neurons. Our results suggest that the development of DD in rats may be linked to brain metabolic changes, including inhibition of the Glu-Gln cycle, increases in anaerobic glycolysis, and disturbances in the lactate-alanine shuttle, and associated with dysfunction of neurons and astrocytes.
Collapse
|
22
|
Yin H, Wang W, Yu W, Li J, Feng N, Wang L, Wang X. Changes in Synaptic Plasticity and Glutamate Receptors in Type 2 Diabetic KK-Ay Mice. J Alzheimers Dis 2018; 57:1207-1220. [PMID: 28304288 DOI: 10.3233/jad-160858] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
In the present study, the progressive alteration of cognition and the mechanisms of reduction in long-term potentiation (LTP) in spontaneous obese KK-Ay type 2 diabetic mice were investigated. In the study, 3-, 5-, and 7-month-old KK-Ay mice were used. The results indicated that KK-Ay mice showed cognitive deficits in the Morris water maze test beginning at the age of 3 months. LTP was significantly impaired in KK-Ay mice during whole study period (3 to 7 months). The above deficits were reversible at an early stage (3 to 5 months old) by diet intervention. Moreover, we found the underlying mechanisms of LTP impairment in KK-Ay mice might be attributed to abnormal phosphorylation or expression of postsynaptic glutamate receptor subunits instead of alteration of basal synaptic transmission. The expression levels of NR1, NR2A, and NR2B subunits of N-methyl-d-aspartate receptors (NMDARs) were unchanged while the Tyr-dependent phosphorylation of both NR2A and NR2B subunits were significantly reduced in KK-Ay mice. The level of p-Src expression mediating this process was decreased, and the level of αCaMKII autophosphorylation was also reduced. Meanwhile, the GluR1 of α-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors (AMPARs) was decreased, and GluR2 was significantly increased. These data suggest that deficits in synaptic plasticity in KK-Ay mice may arise from the abnormal phosphorylation of the NR2 subunits and the alteration of subunit composition of AMPARs. Diet intervention at an early stage of diabetes might alleviate the cognitive deficits and LTP reduction in KK-Ay mice.
Collapse
|
23
|
Nday CM, Eleftheriadou D, Jackson G. Shared pathological pathways of Alzheimer's disease with specific comorbidities: current perspectives and interventions. J Neurochem 2018; 144:360-389. [PMID: 29164610 DOI: 10.1111/jnc.14256] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 11/10/2017] [Accepted: 11/10/2017] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) belongs to one of the most multifactorial, complex and heterogeneous morbidity-leading disorders. Despite the extensive research in the field, AD pathogenesis is still at some extend obscure. Mechanisms linking AD with certain comorbidities, namely diabetes mellitus, obesity and dyslipidemia, are increasingly gaining importance, mainly because of their potential role in promoting AD development and exacerbation. Their exact cognitive impairment trajectories, however, remain to be fully elucidated. The current review aims to offer a clear and comprehensive description of the state-of-the-art approaches focused on generating in-depth knowledge regarding the overlapping pathology of AD and its concomitant ailments. Thorough understanding of associated alterations on a number of molecular, metabolic and hormonal pathways, will contribute to the further development of novel and integrated theranostics, as well as targeted interventions that may be beneficial for individuals with age-related cognitive decline.
Collapse
Affiliation(s)
- Christiane M Nday
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Despoina Eleftheriadou
- Department of Chemical Engineering, Laboratory of Inorganic Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Graham Jackson
- Department of Chemistry, University of Cape Town, Rondebosch, Cape Town, South Africa
| |
Collapse
|
24
|
Abou-El-Hassan H, Dia B, Choucair K, Eid SA, Najdi F, Baki L, Talih F, Eid AA, Kobeissy F. Traumatic brain injury, diabetic neuropathy and altered-psychiatric health: The fateful triangle. Med Hypotheses 2017; 108:69-80. [PMID: 29055405 DOI: 10.1016/j.mehy.2017.08.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 07/25/2017] [Accepted: 08/06/2017] [Indexed: 12/11/2022]
Abstract
Traumatic brain injury is a detrimental medical condition particularly when accompanied by diabetes. There are several comorbidities going along with diabetes including, but not limited to, kidney failure, obesity, coronary artery disease, peripheral vascular disease, hypertension, stroke, neuropathies and amputations. Unlike diabetes type 1, diabetes type 2 is more common in adults who simultaneously suffer from other comorbid conditions making them susceptible to repetitive fall incidents and sustaining head trauma. The resulting brain insult exacerbates current psychiatric disorders such as depression and anxiety, which, in turn, increases the risk of sustaining further brain traumas. The relationship between diabetes, traumatic brain injury and psychiatric health constitutes a triad forming a non-reversible vicious cycle. At the proteomic and psychiatric levels, cellular, molecular and behavioral alterations have been reported with the induction of non-traumatic brain injury in diabetic models such as stroke. However, research into traumatic brain injury has not been systematically investigated. Thus, in cases of diabetic neuropathy complicated with traumatic brain injury, utilizing fine structural and analytical techniques allows the identification of key biological markers that can then be used as innovative diagnostics as well as novel therapeutic targets in an attempt to treat diabetes and its sequelae especially those arising from repetitive mild brain trauma.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Batoul Dia
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Khalil Choucair
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Stephanie A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farah Najdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Lama Baki
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Farid Talih
- Department of Psychiatry, Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Assaad A Eid
- Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.
| |
Collapse
|
25
|
Hippocampal insulin resistance and altered food decision-making as players on obesity risk. Neurosci Biobehav Rev 2017; 77:165-176. [DOI: 10.1016/j.neubiorev.2017.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 12/17/2022]
|
26
|
de Senna PN, Bagatini PB, Galland F, Bobermin L, do Nascimento PS, Nardin P, Tramontina AC, Gonçalves CA, Achaval M, Xavier LL. Physical exercise reverses spatial memory deficit and induces hippocampal astrocyte plasticity in diabetic rats. Brain Res 2017; 1655:242-251. [PMID: 27984020 DOI: 10.1016/j.brainres.2016.10.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 10/11/2016] [Accepted: 10/26/2016] [Indexed: 12/26/2022]
|
27
|
Quincozes-Santos A, Bobermin LD, de Assis AM, Gonçalves CA, Souza DO. Fluctuations in glucose levels induce glial toxicity with glutamatergic, oxidative and inflammatory implications. Biochim Biophys Acta Mol Basis Dis 2016; 1863:1-14. [PMID: 27663722 DOI: 10.1016/j.bbadis.2016.09.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/21/2016] [Accepted: 09/17/2016] [Indexed: 02/06/2023]
Abstract
Astrocytes are dynamic cells that maintain brain homeostasis by regulating neurotransmitter systems, antioxidant defenses, inflammatory responses and energy metabolism. Astroglial cells are also primarily responsible for the uptake and metabolism of glucose in the brain. Diabetes mellitus (DM) is a pathological condition characterized by hyperglycemia and is associated with several changes in the central nervous system (CNS), including alterations in glial function. Classically, excessive glucose concentrations are used to induce experimental models of astrocyte dysfunction; however, hypoglycemic episodes may also cause several brain injuries. The main focus of the present study was to evaluate how fluctuations in glucose levels induce cytotoxicity. The culture medium of astroglial cells was replaced twice as follows: (1) from 6mM (control) to 12mM (high glucose), and (2) from 12mM to 0mM (glucose deprivation). Cell viability, mitochondrial function, oxidative/nitrosative stress, glutamate metabolism, inflammatory responses, nuclear factor κB (NFκB) transcriptional activity and p38 mitogen-activated protein kinase (p38 MAPK) levels were assessed. Our in vitro experimental model showed that up and down fluctuations in glucose levels decreased cell proliferation, induced mitochondrial dysfunction, increased oxidative/nitrosative stress with consequent cellular biomolecular damage, impaired glutamate metabolism and increased pro-inflammatory cytokine release. Additionally, activation of the NFκB and p38 signaling pathways were putative mechanisms of the effects of glucose fluctuations on astroglial cells. In summary, for the first time, we show that changes in glucose concentrations, from high-glucose levels to glucose deprivation, exacerbate glial injury.
Collapse
Affiliation(s)
- André Quincozes-Santos
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.
| | - Larissa Daniele Bobermin
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriano M de Assis
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Diogo Onofre Souza
- Departamento de Bioquímica, Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
28
|
Wongchitrat P, Lansubsakul N, Kamsrijai U, Sae-Ung K, Mukda S, Govitrapong P. Melatonin attenuates the high-fat diet and streptozotocin-induced reduction in rat hippocampal neurogenesis. Neurochem Int 2016; 100:97-109. [PMID: 27620814 DOI: 10.1016/j.neuint.2016.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/10/2016] [Accepted: 09/06/2016] [Indexed: 12/15/2022]
Abstract
A deviant level of melatonin in blood circulation has been associated with the development of diabetes and with learning and memory deficiencies. Melatonin might have an important function in diabetes control; however, the mechanism of melatonin in diabetes remains unknown. The present study aimed to investigate the hyperglycemic condition induced by high-fat diet (HFD) feeding and streptozotocin (STZ) injection and to examine the effect of melatonin on adult hippocampal functions. HFD-fed and STZ-treated rats significantly increased blood glucose level. The present study showed that HFD-fed and STZ-treated rats significantly impaired memory in the Morris Water Maze task, reduced neurogenesis in the hippocampus shown by a reduction in nestin, doublecortin (DCX) and β-III tubulin immunoreactivities, reduced axon terminal markers, synaptophysin, reduced dendritic marker including postsynaptic density 95 (PSD-95) and the glutamate receptor subunit NR2A. Moreover, a significant downregulation of melatonin receptor, insulin receptor-β (IR-β) and both p-IR-β and phosphorylated extracellular signal-regulated kinase (p-ERK) occurred in HFD-fed and STZ-treated rats, while the level of glial fibrillary acidic protein (GFAP) increased. Treatment of melatonin, rats had shorter escape latencies and remained in the target quadrant longer compared to the HFD-fed and STZ-treated rats. Melatonin attenuated the reduction of neurogenesis, synaptogenesis and the induction of astrogliosis. Moreover, melatonin countered the reduction of melatonin receptor, insulin receptor and downstream signaling pathway for insulin. Our data suggested that the dysfunction of insulin signaling pathway occurred in the diabetes may provide a convergent mechanism of hippocampal impaired neurogenesis and synaptogenesis lead to impair memory while melatonin reverses these effects, suggesting that melatonin may reduce the pathogenesis of diabetes.
Collapse
Affiliation(s)
- Prapimpun Wongchitrat
- Center for Research and Innovation, Faculty of Medical Technology, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Niyada Lansubsakul
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Department of Anatomy, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| | - Utcharaporn Kamsrijai
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Kwankanit Sae-Ung
- Innovative Learning Center, Srinakharinwirot University, Bangkok, 10110, Thailand
| | - Sujira Mukda
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand
| | - Piyarat Govitrapong
- Research Center for Neuroscience, Institute of Molecular Biosciences, Mahidol University, Salaya, Nakon Pathom, 73170, Thailand; Center for Neuroscience and Department of Pharmacology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
29
|
Histological study on the protective role of vitamin B complex on the cerebellum of diabetic rat. Tissue Cell 2016; 48:283-96. [PMID: 27394072 DOI: 10.1016/j.tice.2016.06.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 06/21/2016] [Accepted: 06/21/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND Disorder in cerebellar structure was reported in diabetes mellitus. B vitamins are involved in many significant metabolic processes within the brain. AIM OF THE WORK To detect the protective role of vitamin B complex on the histological structure of the cerebellum of experimentally induced diabetic rat. MATERIAL & METHODS Eighteen adult male Wistar rats were divided into two groups. Group I: normal vehicle control (n=6). Group II: streptozotocin-induced diabetic rats (n=12), which was equally divided into two subgroups; IIA (diabetic vehicle control), IIB (diabetic vitamin B complex-treated): streptozotocin-induced diabetic rats treated with vitamin B complex (1mg/kg/day) for 6 weeks. Specimens from the cerebellum were processed for light and electron microscopy. RESULTS In vitamin B complex treated group, the histological changes in Purkinje cells, astrocytes and oligodendrocytes were improved compared with the diabetic non-treated group. The white matter revealed intact myelinated axons. Inducible nitric oxide synthase (iNOS) and caspase-3 expression reduced. Glial fibrillary acidic protein (GFAP) expression revealed less activated astroglia. The number of Purkinje cells/mm(2) significantly increased. While, the number of GFAP positive astrocytes/mm(2) significantly decreased. In addition, the blood glucose level was reduced. CONCLUSION Vitamin B complex protected the cerebellum from the histological changes which occurred in STZ- induced diabetic rats.
Collapse
|
30
|
Zheng Y, Yang Y, Dong B, Zheng H, Lin X, Du Y, Li X, Zhao L, Gao H. Metabonomic profiles delineate potential role of glutamate-glutamine cycle in db/db mice with diabetes-associated cognitive decline. Mol Brain 2016; 9:40. [PMID: 27090642 PMCID: PMC4835835 DOI: 10.1186/s13041-016-0223-5] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/11/2016] [Indexed: 12/02/2022] Open
Abstract
Background Diabetes-associated cognition decline is one of central nervous system complications in diabetic mellitus, while its pathogenic mechanism remains unclear. In this study, 1H nuclear magnetic resonance-based metabonomics and immunohistochemistry was used to explore key metabolic alterations in hippocampus of type 2 diabetic db/db mice with cognition decline in order to advance understanding of mechanisms underlying the pathogenesis of the disease. Results Metabonomics reveals that lactate level was significantly increased in hippocampus of db/db mice with cognition decline compared with age-matched wild-type mice. Several tricarboxylic acid cycle intermediates including succinate and citrate were reduced in hippocampus of db/db mice with cognition decline. Moreover, an increase in glutamine level and a decrease in glutamate and γ-aminobutyric acid levels were observed in db/db mice. Results from immunohistochemistry analysis show that glutamine synthetase was increased and glutaminase and glutamate decarboxylase were decreased in db/db mice. Conclusions Our results suggest that the development of diabetes-associated cognition decline in db/db mice is most likely implicated in a reduction in energy metabolism and a disturbance of glutamate-glutamine shuttling between neurons and astrocytes in hippocampus. Electronic supplementary material The online version of this article (doi:10.1186/s13041-016-0223-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yongquan Zheng
- Radiology Department of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China.,School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yunjun Yang
- Radiology Department of the First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Baijun Dong
- Department of Urology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Hong Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaodong Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yao Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Liangcai Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Hongchang Gao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| |
Collapse
|
31
|
Protective effect of transient receptor potential vanilloid subtype 1 (TRPV1) modulator, against behavioral, biochemical and structural damage in experimental models of Alzheimer's disease. Brain Res 2016; 1642:397-408. [PMID: 27084583 DOI: 10.1016/j.brainres.2016.04.022] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 02/17/2016] [Accepted: 04/11/2016] [Indexed: 01/11/2023]
Abstract
Alzheime's disease (AD) is an overwhelming neurodegenerative disorder, characterized by synaptic dysfunction, memory loss, neuro-inflammation and neural cell death. Very few treatments are in hand for the management of AD and they are only concentrating on peculiar aspects. Hence, an immense thrust is required to find utmost therapeutic targets to conquer this condition. This study investigates a potential role of vanillin, a selective agonist of transient receptor potential vanilloid subtype 1 (TRPV1) in the experimental models of AD viz. intracerebroventricular (i.c.v.) streptozotocin (STZ) and aluminum trichloride (AlCl3)+d-galactose induced AD in mice. The i.c.v. administration of STZ and intraperitoneally administration of AlCl3+d-galactose have significantly impaired learning-memory (Morris water maze and attentional set-shifting test), brain structure (hematoxylin, eosin and Congo red staining), enhanced brain oxidative stress (thiobarbituric acid reactive substance - TBARS and glutathione - GSH), nitrosative stress (nitrite/nitrate), acetylcholinesterase activity (AChE), inflammation (MPO), and calcium levels (Ca(++)). Treatment with vanillin in different doses and donepezil have significantly ameliorated i.c.v. STZ and AlCl3+d-galactose induced reduction in executive function, impaired reversal learning, cognition, memory and brain damage. Treatment with these drugs has also reduced the brain oxidative stress (TBARS and GSH), nitrosative stress (nitrite/nitrate), and AChE, MPO, and Ca(++) levels. These results indicate that vanillin, a selective agonist of TRPV1 and donepezil, a potent acetylcholine esterase inhibitor have attenuated i.c.v. STZ and AlCl3+d-galactose induced experimental AD. Hence, pharmacological positive modulation of TRPV1 channels may be a potential research target for mitigation of AD.
Collapse
|
32
|
Gaspar JM, Baptista FI, Macedo MP, Ambrósio AF. Inside the Diabetic Brain: Role of Different Players Involved in Cognitive Decline. ACS Chem Neurosci 2016; 7:131-42. [PMID: 26667832 DOI: 10.1021/acschemneuro.5b00240] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus is the most common metabolic disease, and its prevalence is increasing. A growing body of evidence, both in animal models and epidemiological studies, has demonstrated that metabolic diseases like obesity, insulin resistance, and diabetes are associated with alterations in the central nervous system (CNS), being linked with development of cognitive and memory impairments and presenting a higher risk for dementia and Alzheimer's disease. The rising prevalence of diabetes together with its increasing earlier onset suggests that diabetes-related cognitive dysfunction will increase in the near future, causing substantial socioeconomic impact. Decreased insulin secretion or action, dysregulation of glucose homeostasis, impairment in the hypothalamic-pituitary-adrenal axis, obesity, hyperleptinemia, and inflammation may act independently or synergistically to disrupt neuronal homeostasis and cause diabetes-associated cognitive decline. However, the crosstalk between those factors and the mechanisms underlying the diabetes-related CNS complications is still elusive. During the past few years, different strategies (neuroprotective and antioxidant drugs) have emerged as promising therapies for this complication, which still remains to be preventable or treatable. This Review summarizes fundamental past and ongoing research on diabetes-associated cognitive decline, highlighting potential contributors, mechanistic mediators, and new pharmacological approaches to prevent and/or delay this complication.
Collapse
Affiliation(s)
- Joana M. Gaspar
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - Filipa I. Baptista
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
| | - M. Paula Macedo
- CEDOC,
Chronic Diseases Research Centre, NOVA Medical School/Faculdade de
Ciências Médicas, Universidade Nova de Lisboa, Edifício
CEDOC - IIRua Câmara Pestana no. 6, 6A e 6B, 1150-082 Lisboa, Portugal
- Portuguese Diabetes Association (APDP), R. do Salitre 118-120, 1250-203 Lisboa, Portugal
| | - António F. Ambrósio
- Institute
for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, 3000-548 Coimbra, Portugal
- CNC.IBILI
Consortium, University of Coimbra, 3004-517 Coimbra, Portugal
- AIBILI, 3000-548 Coimbra, Portugal
| |
Collapse
|
33
|
Murtishaw AS, Heaney CF, Bolton MM, Sabbagh JJ, Langhardt MA, Kinney JW. Effect of acute lipopolysaccharide-induced inflammation in intracerebroventricular-streptozotocin injected rats. Neuropharmacology 2016; 101:110-22. [DOI: 10.1016/j.neuropharm.2015.08.044] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 08/03/2015] [Accepted: 08/26/2015] [Indexed: 12/25/2022]
|
34
|
Jain S, Sharma B. Neuroprotective effect of selective DPP-4 inhibitor in experimental vascular dementia. Physiol Behav 2015; 152:182-93. [PMID: 26382939 DOI: 10.1016/j.physbeh.2015.09.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 07/11/2015] [Accepted: 09/08/2015] [Indexed: 12/17/2022]
Abstract
Vascular risk factors are associated with a higher incidence of dementia. Diabetes mellitus is considered as a main risk factor for Alzheimer's disease and vascular dementia. Both forms of dementia are posing greater risk to the world population and are increasing at a faster rate. In the past we have reported the induction of vascular dementia by experimental diabetes. This study investigates the role of vildagliptin, a dipeptidyl peptidase-4 inhibitor in the pharmacological interdiction of pancreatectomy diabetes induced vascular endothelial dysfunction and subsequent vascular dementia in rats. Attentional set shifting and Morris water-maze test were used for assessment of learning and memory. Vascular endothelial function, blood brain barrier permeability, serum glucose, serum nitrite/nitrate, oxidative stress (viz. aortic superoxide anion, brain thiobarbituric acid reactive species and brain glutathione), brain calcium and inflammation (myeloperoxidase) were also estimated. Pancreatectomy diabetes rats have shown impairment of endothelial function, blood brain barrier permeability, learning and memory along with increase in brain inflammation, oxidative stress and calcium. Administration of vildagliptin has significantly attenuated pancreatectomy induced impairment of learning, memory, endothelial function, blood brain barrier permeability and biochemical parameters. It may be concluded that vildagliptin, a dipeptidyl peptidase-4 inhibitor may be considered as potential pharmacological agents for the management of pancreatectomy induced endothelial dysfunction and subsequent vascular dementia. The selective modulators of dipeptidyl peptidase-4 may further be explored for their possible benefits in vascular dementia.
Collapse
Affiliation(s)
- Swati Jain
- CNS and CVS Lab., Department of Pharmacology, School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Pin-250103, Uttar Pradesh, India; Department of Pharmacology, Amity Institute of Pharmacy, Amity University Uttar Pradesh, A-Block, Ground Floor, Sector-125, Noida - 201303, Uttar Pradesh, India.
| | - Bhupesh Sharma
- School of Pharmacy, Bharat Institute of Technology, Partapur Bypass, Meerut, Pin-250103, Uttar Pradesh, India; CNS Pharmacology, Conscience Research, Pocket F-233, B, Dilshad Garden, Delhi 110095, India.
| |
Collapse
|
35
|
Hansen F, Battú CE, Dutra MF, Galland F, Lirio F, Broetto N, Nardin P, Gonçalves CA. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids 2015; 48:375-85. [PMID: 26347375 DOI: 10.1007/s00726-015-2091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/28/2015] [Indexed: 01/29/2023]
Abstract
Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.
Collapse
Affiliation(s)
- Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Cíntia Eickhoff Battú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Márcio Ferreira Dutra
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-970, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Franciane Lirio
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Núbia Broetto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90046-900, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
36
|
Schubert KO, Föcking M, Cotter DR. Proteomic pathway analysis of the hippocampus in schizophrenia and bipolar affective disorder implicates 14-3-3 signaling, aryl hydrocarbon receptor signaling, and glucose metabolism: potential roles in GABAergic interneuron pathology. Schizophr Res 2015; 167:64-72. [PMID: 25728835 DOI: 10.1016/j.schres.2015.02.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2014] [Revised: 02/01/2015] [Accepted: 02/03/2015] [Indexed: 12/15/2022]
Abstract
Neuropathological changes of the hippocampus have been associated with psychotic disorders such as schizophrenia and bipolar disorder. Recent work has particularly implicated hippocampal GABAergic interneurons in the pathophysiology of these diseases. However, the molecular mechanisms underlying structural and cellular hippocampal pathology remain poorly understood. We used data from comprehensive difference-in-gel electrophoresis (2-D DIGE) investigations of postmortem human hippocampus of people with schizophrenia and bipolar disorder, covering the acidic (isoelectric point (pI) between pH4 and 7) and, separately, the basic (pI between pH6 and 11) sub-proteome, for Ingenuity Pathway Analysis (IPA) of implicated protein networks and pathways. Comparing disease and control cases, we identified 58 unique differentially expressed proteins in schizophrenia, and 70 differentially expressed proteins in bipolar disorder, using mass spectrometry. IPA implicated, most prominently, 14-3-3 and aryl hydrocarbon receptor signaling in schizophrenia, and gluconeogenesis/glycolysis in bipolar disorder. Both disorders were characterized by alterations of proteins involved in the oxidative stress response, mitochondrial function, and protein-endocytosis, -trafficking, -degradation, and -ubiquitination. These findings are interpreted with a focus on GABAergic interneuron pathology in the hippocampus.
Collapse
Affiliation(s)
- Klaus Oliver Schubert
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland; Discipline of Psychiatry, School of Medicine, The University of Adelaide, Adelaide, Australia.
| | - Melanie Föcking
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - David R Cotter
- Department of Psychiatry, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
37
|
Castillo-Gómez E, Coviello S, Perez-Rando M, Curto Y, Carceller H, Salvador A, Nacher J. Streptozotocin diabetic mice display depressive-like behavior and alterations in the structure, neurotransmission and plasticity of medial prefrontal cortex interneurons. Brain Res Bull 2015; 116:45-56. [DOI: 10.1016/j.brainresbull.2015.06.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 06/05/2015] [Accepted: 06/10/2015] [Indexed: 12/15/2022]
|
38
|
Viswaprakash N, Vaithianathan T, Viswaprakash A, Judd R, Parameshwaran K, Suppiramaniam V. Insulin treatment restores glutamate (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) receptor function in the hippocampus of diabetic rats. J Neurosci Res 2015; 93:1442-50. [PMID: 25807926 DOI: 10.1002/jnr.23589] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Revised: 12/22/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022]
Abstract
Type 1 diabetes is associated with cognitive dysfunction. Cognitive processing, particularly memory acquisition, depends on the regulated enhancement of expression and function of glutamate receptor subtypes in the hippocampus. Impairment of memory was been detected in rodent models of type 1 diabetes induced by streptozotocin (STZ). This study examines the functional properties of synaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors and the expression of synaptic molecules that regulate glutamatergic synaptic transmission in the hippocampus of STZ-diabetic rats. The AMPA receptor-mediated miniature excitatory postsynaptic currents (mEPSCs) and single-channel properties of synaptosomal AMPA receptors were examined after 4 weeks of diabetes induction. Results show that amplitude and frequency of mEPSCs recorded from CA1 pyramidal neurons were decreased in diabetic rats. In addition, the single-channel properties of synaptic AMPA receptors from diabetic rat hippocampi were different from those of controls. These impairments in synaptic currents gated by AMPA receptors were accompanied by decreased protein levels of AMPA receptor subunit GluR1, the presynaptic protein synaptophysin, and the postsynaptic anchor protein postsynaptic density protein 95 in the hippocampus of diabetic rats. Neural cell adhesion molecule (NCAM), an extracellular matrix molecule abundantly expressed in the brain, and the polysialic acid (PSA) attached to NCAM were also downregulated in the hippocampus of diabetic rats. Insulin treatment, when initiated at the onset of diabetes induction, reduced these effects. These findings suggest that STZ-induced diabetes may result in functional deteriorations in glutamatergic synapses in the hippocampus of rats and that these effects may be reduced by insulin treatment.
Collapse
Affiliation(s)
- Nilmini Viswaprakash
- Department of Biomedical Sciences, College of Veterinary Medicine, Nursing and Allied Health, Tuskegee University, Tuskegee, Alabama
| | - Thirumalini Vaithianathan
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, New York.,Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| | - Ajitan Viswaprakash
- Biology Department and Spine Rehabilitation Center, University of Alabama-Birmingham, Birmingham, Alabama
| | - Robert Judd
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, Alabama
| | - Kodeeswaran Parameshwaran
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama.,Department of Biological and Environmental Sciences, Texas A&M University-Commerce, Commerce, Texas
| | - Vishnu Suppiramaniam
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, Alabama
| |
Collapse
|
39
|
Köksal B, Emre MH, Polat A. Investigation of Propolis' Effect on Thiobarbituric Acid Reactive Substances and Anti-Oxidant Enzyme Levels of Hippocampus in Diabetic Rats Induced by Streptozotocin. Open Access Maced J Med Sci 2015; 3:52-6. [PMID: 27275196 PMCID: PMC4877788 DOI: 10.3889/oamjms.2015.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/22/2015] [Accepted: 02/23/2015] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Propolis is an organic resinous viscous substance collected from flower bud and plant sprig by bees. Propolis has a potential treatment agent for oxidative damage caused by diabetes in hippocampus due to its flavonoid and phenolic content. AIM In this study effect of propolis on thiobarbituric acid reactive substances and anti-oxidative enzyme levels of hippocampus in diabetic rats induced by streptozotocin was investigated. MATERIALS AND METHODS The study involved measuring levels of SOD, CAT, GSH-Px and TBARs in hippocampus tissue of STZ-induced diabetic rats (Adult Male Sprague Dawley rats) after applying propolis for one month. The subjects of the study were composed of 51 rats randomly assigned to four groups (Control, STZ, P+STZ and STZ+P). For analysis of data, Kruskal Wallis Test was utilized. RESULTS The findings of the study showed that there were no significant difference in the levels of TBARS, SOD, CAT and GSH-Px of hippocampus across the groups. CONCLUSION Propolis application in four-week duration does not have effect on TBARS, SOD, CAT and GSH-Px levels of hippocampus of diabetic rats. These findings mean that more time for observing oxidative harms on hippocampus is needed.
Collapse
Affiliation(s)
- Burcu Köksal
- Inonu University, Faculty of Medicine, Department of Physiology, 44280 Malatya, Turkey
| | - Memet Hanifi Emre
- Inonu University, Faculty of Medicine, Department of Physiology, 44280 Malatya, Turkey
| | - Alaadin Polat
- Inonu University, Faculty of Medicine, Department of Physiology, 44280 Malatya, Turkey
| |
Collapse
|
40
|
Li J, Zhang S, Zhang L, Wang R, Wang M. Effects of l-3-n-Butylphthalide on Cognitive Dysfunction and NR2B Expression in Hippocampus of Streptozotocin (STZ)-Induced Diabetic Rats. Cell Biochem Biophys 2014; 71:315-22. [DOI: 10.1007/s12013-014-0200-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
41
|
Capiotti KM, De Moraes DA, Menezes FP, Kist LW, Bogo MR, Da Silva RS. Hyperglycemia induces memory impairment linked to increased acetylcholinesterase activity in zebrafish (Danio rerio). Behav Brain Res 2014; 274:319-25. [PMID: 25157430 DOI: 10.1016/j.bbr.2014.08.033] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 08/12/2014] [Accepted: 08/16/2014] [Indexed: 12/20/2022]
Abstract
Diabetes mellitus, which causes hyperglycemia, affects the central nervous system and can impairs cognitive functions, such as memory. The aim of this study was to investigate the effects of hyperglycemia on memory as well as on the activity of acethylcholinesterase. Hyperglycemia was induced in adult zebrafish by immersion in glucose 111mM by 14 days. The animals were divided in 4 groups: control, glucose-treated, glucose-washout 7-days and glucose-washout 14-days. We evaluated the performance in inhibitory avoidance task and locomotor activity. We also determined acethylcholinesterase activity and gene expression from whole brain. In order to counteract the effect of hyperglycemia underlined by effects on acethylcholinesterase activity, we treated the animals with galantamine (0.05ng/g), an inhibitor of this enzyme. Also we evaluated the gene expression of insulin receptor and glucose transporter from zebrafish brain. The hyperglycemia promoted memory deficit in adult zebrafish, which can be explained by increased AChE activity. The ache mRNA levels from zebrafish brain were decrease in 111mM glucose group and returned to normal levels after 7 days of glucose withdrawal. Insulin receptors (insra-1, insra-2, insrb-1 and insrb-2) and glut-3 mRNA levels were not significantly changed. Our results also demonstrated that galantamine was able to reverse the memory deficit caused by hyperglycemia, demonstrating that these effects involve modulation of AChE activity. These data suggest that the memory impairment induced by hyperglycemia is underlined by the cholinergic dysfunction caused by the mechanisms involving the control of acetylcholinesterase function and gene expression.
Collapse
Affiliation(s)
- Katiucia Marques Capiotti
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| | - Daiani Almeida De Moraes
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| | - Fabiano Peres Menezes
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil.
| | - Luiza Wilges Kist
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| | - Maurício Reis Bogo
- Laboratório de Biologia Genômica e Molecular, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| | - Rosane Souza Da Silva
- Laboratório de Neuroquímica e Psicofarmacologia, Departamento de Biologia Celular e Molecular, Faculdade de Biociências, PUCRS, Porto Alegre, RS, Brazil; Instituto Nacional de Ciência e Tecnologia Translacional em Medicina (INCT-TM), 90035-003 Porto Alegre, RS, Brazil.
| |
Collapse
|
42
|
Lazcano Z, Solis O, Bringas ME, Limón D, Diaz A, Espinosa B, García-Peláez I, Flores G, Guevara J. Unilateral injection of Aβ25-35in the hippocampus reduces the number of dendritic spines in hyperglycemic rats. Synapse 2014; 68:585-594. [DOI: 10.1002/syn.21770] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 07/15/2014] [Indexed: 02/05/2023]
Affiliation(s)
- Zayda Lazcano
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Oscar Solis
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - María Elena Bringas
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Daniel Limón
- Laboratorio de Neurofarmacología, Facultad de Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Alfonso Diaz
- Departamento de Farmacia, Facultad de Ciencias Químicas; Benemérita Universidad Autónoma de Puebla; Puebla México
- Laboratorio Experimental de Enfermedades Neurodegenerativas; Instituto Nacional de Neurología y Neurocirugía; Ciudad de México Distrito Federal México
- Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Distrito Federal México
| | - Blanca Espinosa
- Laboratorio de Bioquímica, Instituto Nacional de Enfermedades Respiratorias; Ciudad de México Distrito Federal México
| | - Isabel García-Peláez
- Departamento de Biología Celular y Tisular, Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Distrito Federal México
| | - Gonzalo Flores
- Laboratorio de Neuropsiquiatría; Instituto de Fisiología Benemérita Universidad Autónoma de Puebla; Puebla México
| | - Jorge Guevara
- Departamento de Bioquímica, Facultad de Medicina; Universidad Nacional Autónoma de México; Ciudad de México Distrito Federal México
| |
Collapse
|
43
|
Chmiel-Perzyńska I, Perzyński A, Urbańska EM. Experimental diabetes mellitus type 1 increases hippocampal content of kynurenic acid in rats. Pharmacol Rep 2014; 66:1134-9. [PMID: 25443746 DOI: 10.1016/j.pharep.2014.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 07/24/2014] [Accepted: 07/28/2014] [Indexed: 10/24/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is frequently associated with peripheral and central complications and has recently emerged as a risk factor for cognitive impairment and dementia. Kynurenic acid (KYNA), a unique tryptophan derivative, displays pleiotropic effects including blockade of ionotropic glutamate and α7 nicotinic receptors. Here, the influence of experimental diabetes on KYNA synthesis was studied in rat brain. METHODS DM was induced by i.p. administration of streptozotocin (STZ). Five weeks later, KYNA content and the activity of semi-purified kynurenine aminotransferases (KATs) were measured in frontal cortex, hippocampus and striatum of diabetic and insulin-treated rats, using HPLC-based methods. RESULTS Hippocampal but not cortical or striatal KYNA concentration was considerably increased during DM, either untreated or treated with insulin (220% and 170% of CTR, respectively). The activity of kynurenine aminotransferase I (KAT I) was not affected by DM in all of the studied structures. KAT II activity was moderately increased in cortex (145% of CTR) and hippocampus (126% of CTR), but not in striatum of diabetic animals. Insulin treatment normalized cortical but not hippocampal KAT II activity. CONCLUSIONS A novel factor potentially implicated in diabetic hippocampal dysfunction has been identified. Observed increase of KYNA level may stem from the activation of endogenous neuroprotection, however, it may also have negative impact on cognition.
Collapse
Affiliation(s)
| | | | - Ewa M Urbańska
- Medical University of Lublin, Lublin, Poland; Institute of Agricultural Medicine, Lublin, Poland.
| |
Collapse
|
44
|
Du LL, Xie JZ, Cheng XS, Li XH, Kong FL, Jiang X, Ma ZW, Wang JZ, Chen C, Zhou XW. Activation of sirtuin 1 attenuates cerebral ventricular streptozotocin-induced tau hyperphosphorylation and cognitive injuries in rat hippocampi. AGE (DORDRECHT, NETHERLANDS) 2014; 36:613-623. [PMID: 24142524 PMCID: PMC4039268 DOI: 10.1007/s11357-013-9592-1] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Accepted: 10/07/2013] [Indexed: 06/02/2023]
Abstract
Patients with diabetes in the aging population are at high risk of Alzheimer's disease (AD), and reduction of sirtuin 1 (SIRT1) activity occurs simultaneously with the accumulation of hyperphosphorylated tau in the AD-affected brain. It is not clear, however, whether SIRT1 is a suitable molecular target for the treatment of AD. Here, we employed a rat model of brain insulin resistance with intracerebroventricular injection of streptozotocin (ICV-STZ; 3 mg/kg, twice with an interval of 48 h). The ICV-STZ-treated rats were administrated with resveratrol (RSV; SIRT1-specific activator) or a vehicle via intraperitoneal injection for 8 weeks (30 mg/kg, once per day). In ICV-STZ-treated rats, the levels of phosphorylated tau and phosphorylated extracellular signal-regulated kinases 1 and 2 (ERK1/2) at the hippocampi were increased significantly, whereas SIRT1 activity was decreased without change of its expression level. The capacity of spatial memory was also significantly lower in ICV-STZ-treated rats compared with age-matched control. RSV, a specific activator of SIRT1, which reversed the ICV-STZ-induced decrease in SIRT1 activity, increases in ERK1/2 phosphorylation, tau phosphorylation, and impairment of cognitive capability in rats. In conclusion, SIRT1 protects hippocampus neurons from tau hyperphosphorylation and prevents cognitive impairment induced by ICV-STZ brain insulin resistance with decreased hippocampus ERK1/2 activity.
Collapse
Affiliation(s)
- Lai-Ling Du
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jia-Zhao Xie
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiang-Shu Cheng
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xiao-Hong Li
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Fan-Li Kong
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Xia Jiang
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Zhi-Wei Ma
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Jian-Zhi Wang
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Chen Chen
- />School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072 Australia
| | - Xin-Wen Zhou
- />Department of Pathophysiology, Key Laboratory of Neurological Diseases of Education Ministry of China, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| |
Collapse
|
45
|
Bloemer J, Bhattacharya S, Amin R, Suppiramaniam V. Impaired insulin signaling and mechanisms of memory loss. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 121:413-49. [PMID: 24373245 DOI: 10.1016/b978-0-12-800101-1.00013-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Insulin is secreted from the β-cells of the pancreas and helps maintain glucose homeostasis. Although secreted peripherally, insulin also plays a profound role in cognitive function. Increasing evidence suggests that insulin signaling in the brain is necessary to maintain health of neuronal cells, promote learning and memory, decrease oxidative stress, and ultimately increase neuronal survival. This chapter summarizes the different facets of insulin signaling necessary for learning and memory and additionally explores the association between cognitive impairment and central insulin resistance. The role of impaired insulin signaling in the advancement of cognitive dysfunction is relevant to the current debate of whether the shared pathophysiological mechanisms between diabetes and cognitive impairment implicate a direct relationship. Here, we summarize a vast amount of literature that suggests a strong association between impaired brain insulin signaling and cognitive impairment.
Collapse
Affiliation(s)
- Jenna Bloemer
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Subhrajit Bhattacharya
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Rajesh Amin
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| | - Vishnu Suppiramaniam
- Department of Pharmacal Sciences, Harrison School of Pharmacy, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
46
|
Artola A. Diabetes mellitus- and ageing-induced changes in the capacity for long-term depression and long-term potentiation inductions: Toward a unified mechanism. Eur J Pharmacol 2013; 719:161-169. [DOI: 10.1016/j.ejphar.2013.04.061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/21/2013] [Accepted: 04/03/2013] [Indexed: 12/01/2022]
|
47
|
Myosins Are Differentially Expressed under Oxidative Stress in Chronic Streptozotocin-Induced Diabetic Rat Brains. ISRN NEUROSCIENCE 2013; 2013:423931. [PMID: 24982856 PMCID: PMC4045535 DOI: 10.1155/2013/423931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 08/17/2013] [Indexed: 02/07/2023]
Abstract
Diabetes mellitus is a disease characterized by persistent hyperglycemia, which may lead to brain tissue damage due to oxidative stress and also contributes to neuronal death and changes in synaptic transmission. This study evaluated the effect of oxidative stress and the use of antioxidants supplementation on myosins expression levels in the brains of chronic diabetic rats induced by streptozotocin. Lipid peroxidation, antioxidant enzymes activities, and myosins-IIB and -Va expressions at transcriptional and translational levels were examined after 90 days induction. The chronic effect of the diabetes led to the upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, and the downregulation of glutathione peroxidase (GPx), but there was no statistically significant increase in the malondialdehyde (MDA) levels. These alterations were accompanied by high myosin-IIB and low myosin-Va expressions. Although the antioxidant supplementation did not interfere on MDA levels, the oxidative stress caused by chronic hyperglycemia was reduced by increasing SOD and restoring CAT and GPx activities. Interestingly, after supplementation, diabetic rats recovered only myosin-Va protein levels, without interfering on myosins mRNA levels expressed in diabetic rat brains. Our results suggest that antioxidant supplementation reduces oxidative stress and also regulates the myosins protein expression, which should be beneficial to individuals with diabetes/chronic hyperglycemia.
Collapse
|
48
|
Waszkielewicz AM, Gunia A, Szkaradek N, Słoczyńska K, Krupińska S, Marona H. Ion channels as drug targets in central nervous system disorders. Curr Med Chem 2013; 20:1241-85. [PMID: 23409712 PMCID: PMC3706965 DOI: 10.2174/0929867311320100005] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Revised: 01/14/2013] [Accepted: 01/18/2013] [Indexed: 12/27/2022]
Abstract
Ion channel targeted drugs have always been related with either the central nervous system (CNS), the peripheral nervous system, or the cardiovascular system. Within the CNS, basic indications of drugs are: sleep disorders, anxiety, epilepsy, pain, etc. However, traditional channel blockers have multiple adverse events, mainly due to low specificity of mechanism of action. Lately, novel ion channel subtypes have been discovered, which gives premises to drug discovery process led towards specific channel subtypes. An example is Na(+) channels, whose subtypes 1.3 and 1.7-1.9 are responsible for pain, and 1.1 and 1.2 - for epilepsy. Moreover, new drug candidates have been recognized. This review is focusing on ion channels subtypes, which play a significant role in current drug discovery and development process. The knowledge on channel subtypes has developed rapidly, giving new nomenclatures of ion channels. For example, Ca(2+)s channels are not any more divided to T, L, N, P/Q, and R, but they are described as Ca(v)1.1-Ca(v)3.3, with even newer nomenclature α1A-α1I and α1S. Moreover, new channels such as P2X1-P2X7, as well as TRPA1-TRPV1 have been discovered, giving premises for new types of analgesic drugs.
Collapse
Affiliation(s)
- A M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland.
| | | | | | | | | | | |
Collapse
|
49
|
Neurochemical Nature of Cognitive and Emotional Disorders under Conditions of Experimental Diabetes Mellitus. NEUROPHYSIOLOGY+ 2013. [DOI: 10.1007/s11062-013-9369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
50
|
Thibault O, Anderson KL, DeMoll C, Brewer LD, Landfield PW, Porter NM. Hippocampal calcium dysregulation at the nexus of diabetes and brain aging. Eur J Pharmacol 2013; 719:34-43. [PMID: 23872402 DOI: 10.1016/j.ejphar.2013.07.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 07/11/2013] [Indexed: 01/19/2023]
Abstract
Recently it has become clear that conditions of insulin resistance/metabolic syndrome, obesity and diabetes, are linked with moderate cognitive impairment in normal aging and elevated risk of Alzheimer's disease. It appears that a common feature of these conditions is impaired insulin signaling, affecting the brain as well as peripheral target tissues. A number of studies have documented that insulin directly affects brain processes and that reduced insulin signaling results in impaired learning and memory. Several studies have also shown that diabetes induces Ca(2+) dysregulation in neurons. Because brain aging is associated with substantial Ca(2+) dyshomeostasis, it has been proposed that impaired insulin signaling exacerbates or accelerates aging-related Ca(2+) dyshomeostasis. However, there have been few studies examining insulin interactions with Ca(2+) regulation in aging animals. We have been testing predictions of the Ca(2+) dysregulation/diabetes/brain aging hypothesis and have found that insulin and insulin-sensitizers (thiazolidinediones) target several hippocampal Ca(2+)-related processes affected by aging. The drugs appear able to reduce the age-dependent increase in Ca(2+) transients and the Ca(2+) -sensitive afterhyperpolarization. Thus, while additional testing is needed, the results to date are consistent with the view that strategies that enhance insulin signaling can counteract the effect of aging on Ca(2+) dysregulation.
Collapse
Affiliation(s)
- Olivier Thibault
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States.
| | - Katie L Anderson
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Chris DeMoll
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Lawrence D Brewer
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Philip W Landfield
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| | - Nada M Porter
- Department of Molecular and Biomedical Pharmacology, MS 313, 800 Rose Street, University of Kentucky Medical Center, Lexington, KY 40536, United States
| |
Collapse
|