1
|
Naik YD, Bahuguna RN, Garcia‐Caparros P, Zwart RS, Reddy MSS, Mir RR, Jha UC, Fakrudin B, Pandey MK, Challabathula D, Sharma VK, Reddy UK, Kumar CVS, Mendu V, Prasad PVV, Punnuri SM, Varshney RK, Thudi M. Exploring the multifaceted dynamics of flowering time regulation in field crops: Insight and intervention approaches. THE PLANT GENOME 2025; 18:e70017. [PMID: 40164968 PMCID: PMC11958873 DOI: 10.1002/tpg2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The flowering time (FTi) plays a critical role in the reproductive success and yield of various crop species by directly impacting both the quality and quantity of grain yield. Achieving optimal FTi is crucial for maximizing reproductive success and ensuring overall agricultural productivity. While genetic factors undoubtedly influence FTi, photoperiodism and vernalization are recognized as key contributors to the complex physiological processes governing flowering in plants. Identifying candidate genes and pathways associated with FTi is essential for developing genomic interventions and plant breeding to enhance adaptability to diverse environmental conditions. This review highlights the intricate nature of the regulatory mechanisms of flowering and emphasizes the vital importance of precisely regulating FTi to ensure plant adaptability and reproductive success. Special attention is given to essential genes, pathways, and genomic interventions geared toward promoting early flowering, particularly under challenging environmental conditions such as drought, heat, and cold stress as well as other abiotic stresses that occur during the critical flowering stage of major field crops. Moreover, this review explores the significant progress achieved in omics technologies, offering valuable insights and tools for deciphering and regulating FTi. In summary, this review aims to provide a comprehensive understanding of the mechanisms governing FTi, with a particular focus on their crucial role in bolstering yields under adverse environmental conditions to safeguard food security.
Collapse
Affiliation(s)
- Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | | | | | - Rebecca S. Zwart
- Centre for Crop Health and School of Agriculture and Environmental ScienceUniversity of Southern QueenslandToowoombaAustralia
| | - M. S. Sai Reddy
- Department of EntomologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | - Reyazul Rouf Mir
- Faculty of AgricultureSher‐e‐Kashmir University of Agricultural Sciences and TechnologySoporeKashmirIndia
| | - Uday Chand Jha
- Indian Council of Agricultural Research, Indian Institute of Pulses ResearchKanpurUttar PradeshIndia
| | - B. Fakrudin
- Department of Biotechnology and Crop ImprovementUniversity of Horticultural SciencesBagalkotKarnatakaIndia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid TropicsHyderabadTelanganaIndia
| | - Dinakar Challabathula
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurTamil NaduIndia
| | - Vinay Kumar Sharma
- Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | - Umesh K. Reddy
- Department of BiologyWest Virginia State UniversityMorgantownWest VirginiaUSA
| | - Chanda Venkata Sameer Kumar
- Department of Genetics and Plant BreedingProfessor Jayashankar Telangana State Agricultural UniversityHyderabadTelanganaIndia
| | - Venugopal Mendu
- Department of Agronomy, Agribusiness & Environmental SciencesTexas A&M UniversityKingsvilleTexasUSA
| | | | - Somashekhar M. Punnuri
- College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| | - Rajeev K. Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food InnovationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Mahendar Thudi
- Centre for Crop Health and School of Agriculture and Environmental ScienceUniversity of Southern QueenslandToowoombaAustralia
- College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| |
Collapse
|
2
|
Jardón MR, Alvarez-Prado S, Vanzetti L, Gonzalez FG, Pérez-Gianmarco T, Gómez D, Serrago RA, Dubcovsky J, Fernandez Long ME, Miralles DJ. Gene-based model to predict heading date in wheat based on allelic characterization and environmental drivers. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:2162-2176. [PMID: 39918258 DOI: 10.1093/jxb/eraf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/04/2025] [Indexed: 05/29/2025]
Abstract
While numerous wheat phenology prediction models are available, most of them are constrained to using variety-dependent coefficients. The overarching objective of this study was to calibrate a gene-based model to predict wheat heading date that allows breeders to select specific gene combinations that would head within the optimal window for a given environment independently of varietal genetic background. A dataset with a total of 49 Argentine wheat cultivars and two recombinant inbred lines was chosen to cover a wide range of allelic combinations for major vernalization, photoperiod, and earliness per se genes. The model was validated using independent data from an Argentine wheat trial network that includes sites from a wide latitudinal range. Ultimately, using this gene-based model, simulations were made to identify optimal gene combinations (ideotypes) × site combinations in contrasting locations. The selected model accurately predicted heading date with an overall median error of 4.6 d. This gene-based crop model for wheat phenology allowed the identification of groups of gene combinations predicted to produce heads within a low-risk window and can be adapted to predict other phenological stages based on accessible climatic information and publicly available molecular markers, facilitating its adoption in wheat-growing regions worldwide.
Collapse
Affiliation(s)
- Mariana R Jardón
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
| | - Santiago Alvarez-Prado
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
- Cátedra de Sistemas de Cultivos Extensivos-GIMUCE, Facultad de Ciencias Agrarias, Universidad Nacional de Rosario, Campo Experimental Villarino S/N, S2125ZAA, Zavalla, Prov. de Santa Fe, Argentina
| | - Leonardo Vanzetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA INTA Marcos Juárez, Ruta 12 s/n CP 2850, Marcos Juárez, Córdoba, Argentina
| | - Fernanda G Gonzalez
- CITNOBA, CONICET-UNNOBA, Monteagudo 2772 (2700) Pergamino, Buenos Aires, Argentina
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA INTA Pergamino, Ruta 32, km 4.5 CP 2700, Pergamino, Buenos Aires, Argentina
| | | | - Dionisio Gómez
- Instituto Nacional de Tecnología Agropecuaria (INTA), EEA INTA Marcos Juárez, Ruta 12 s/n CP 2850, Marcos Juárez, Córdoba, Argentina
| | - Román A Serrago
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California-Davis, 387 N Quad, Davis, CA 95616, USA
- Howard Hughes Medical Institute, 4000 Jones Bridge Rd, Chevy Chase, MD 20815, USA
| | - Maria Elena Fernandez Long
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
| | - Daniel J Miralles
- Departamento de Producción Vegetal, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martin 4453, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET-IFEVA), Buenos Aires, Argentina
| |
Collapse
|
3
|
Zeng LL, Meng WQ, Zhong XN, Peng JJ, Yang XL, Sun L. Transcriptome analyses reveal the flowering regulatory networks in the desert ephemeral plant Eremopyrum triticeum. FRONTIERS IN PLANT SCIENCE 2025; 16:1576519. [PMID: 40406717 PMCID: PMC12095374 DOI: 10.3389/fpls.2025.1576519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/08/2025] [Indexed: 05/26/2025]
Abstract
Eremopyrum triticeum, an annual spring ephemeral plant and a wild relative of wheat (Triticum aestivum), is widely distributed in the Junggar Desert of northern Xinjiang, China. It has several adaptive traits to survive in the desert environments, such as rapid growth in the early spring, flowers quickly, and completes its life cycle within approximately two months. However, the adaptation mechanisms of the fast flowering are still unknown. In this study, high-throughput RNA sequencing (RNA-seq) was performed to identify differentially expressed genes (DEGs) associated with flowering in E. triticeum during three developmental stages. A total of 11,278 DEGs were identified, including 1,632 DEGs specifically expressed during the flowering stage. Pathway analysis showed that these DEGs are mainly enriched in plant-pathogen interaction, plant hormone signal transduction, the MAPK signaling pathway, and so on. A total of 92 DEGs related to the flowering pathway were identified, which are mainly involved in the photoperiod, hormone signaling, autonomous, and vernalization pathway. Multiple transcription factor families related to floral transition were identified, with members of the MADS-box, bHLH, MYB, and AP2 families being the most abundant. In addition, four FLOWERING LOCUS T (FT) genes were identified in E. triticeum, and three of them were highly up-regulated at the flowering stage. The expression of EtFT-1 was induced in darkness, and short-day conditions promote its expression. Overexpression of the EtFT-1 gene accelerates flowering in Arabidopsis.
Collapse
Affiliation(s)
| | | | | | | | | | - Li Sun
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang, China
| |
Collapse
|
4
|
Zhuang L, Du L, Liu H, Liu H, Li H, Zhang Y, Liu Y, Hou J, Li T, Yang D, Zhang X, Hao C. Joint linkage and association analysis identifies genomic regions and candidate genes for yield-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:107. [PMID: 40314838 PMCID: PMC12048430 DOI: 10.1007/s00122-025-04900-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Accepted: 04/04/2025] [Indexed: 05/03/2025]
Abstract
KEY MESSAGE Twenty-six QTLs associated with yield-related traits in wheat were identified through joint linkage and association analysis, with TraesCS5A03G0002500 being selected as a candidate gene for QGl.caas-5A.1. As a major staple crop worldwide, continuously increasing wheat yield is crucial for ensuring food security. Wheat yield is influenced by multiple traits, and elucidating the genetic basis of yield-related traits lays a foundation for future gene cloning and molecular mechanism studies. In this study, a recombinant inbred line (RIL) population derived from 292 lines of Hengguan 35/Zhoumai 18 was genotyped with the Affymetrix wheat 660 K SNP array. Combined with the phenotype of the RIL population in 13 environments, linkage analysis of six yield-related traits including plant height, grain number per spike, thousand-grain weight, grain length, grain width, and grain thickness was conducted. A total of 262 quantitative trait locus (QTLs) (logarithm of odds [LOD] > 3) were identified across 21 chromosomes, in which 50 QTLs were repeatedly detected in more than three environments. Numerous QTLs harbored cloned genes and overlapped with those reported in previous studies. Subsequently, joint analysis of genome-wide association study (GWAS) data from the advanced backcross-nested association mapping plus inter-crossed (AB-NAMIC) population and QTLs identified in the RIL population revealed 26 overlapping genomic regions. Notably, the QGl.caas-5A.1 associated with grain length on chromosome 5A was detected in both the RIL and AB-NAMIC populations, and TraesCS5A03G0002500 was selected as a candidate gene. A kompetitive allele-specific PCR (KASP) marker based on a variant [A/G] in TraesCS5A03G0002500 was developed and validated in a natural population containing 350 accessions. Taken together, these results provide valuable information for fine mapping and cloning of yield-related wheat genes in the future.
Collapse
Affiliation(s)
- Lei Zhuang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Du
- Jiaozuo Academy of Agricultural and Forestry Sciences, Jiaozuo, 454000, Henan, China
| | - Haixia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongxia Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huifang Li
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yinhui Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yunchuan Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Hou
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tian Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Delong Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, 730070, China.
| | - Xueyong Zhang
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Chenyang Hao
- State Key Laboratory of Crop Gene Resources and Breeding/National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
5
|
Wu Y, Shuai R, Zhan X, Wang Q, Tang S, Gao T, Zhao Y, Yang Q, Bian Z. Low-Temperature and Light Pretreatment Interactively Promote Rapid Flowering, Early Ripening, and Yield Accumulation of Winter Wheat. Int J Mol Sci 2025; 26:4280. [PMID: 40362517 PMCID: PMC12072254 DOI: 10.3390/ijms26094280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Exposing wheat (Triticum aestivum L.) seeds to a combination of light and low temperatures for 4-6 weeks, followed by transferring to speed breeding (SB) conditions, has been demonstrated to effectively reduce generation time in winter wheat. To reveal the underlying mechanisms of accelerated generation advancement in winter wheat, we investigated changes in transcriptome and the subsequent responses in plant growth, flowering of germinated seeds vernalized at 4 °C with white exposure (VL) or under dark conditions (VD) for 4 weeks before sowing, and subsequent growth under SB conditions. Germinated seeds without vernalization were directly sown under SB conditions and served as controls (Control). The results showed that, compared with Control and VD, VL significantly expedited vernalization, resulting in early flowering for around 6 days and accelerated ripening of progeny seeds for 13 days with a higher germination index and vigor index. The transcriptomic analysis revealed that the differently expressed genes (DEGs) involved in GA synthesis and its signal transduction both participated in the light-induced speed vernalization and the subsequent rapid growth and development of winter wheat. The MADS-box transcription factors, especially VRN-A1 and MADS55, might play a vital role in the light- and low-temperature-induced early flowering. Our results stress the importance of light in vernalization and lay the groundwork for further elucidating the mechanisms underlying the light-induced speed vernalization of winter wheat.
Collapse
Affiliation(s)
- Yuanlong Wu
- College of Agriculture and Animal, Qinghai University, Xining 810016, China; (Y.W.); (Q.W.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
| | - Runnan Shuai
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
| | - Xiaoxu Zhan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
| | - Qiangui Wang
- College of Agriculture and Animal, Qinghai University, Xining 810016, China; (Y.W.); (Q.W.)
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
| | - Si Tang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
- College of Agriculture and Biotechnology, Zhengzhou University, Zhengzhou 450001, China
| | - Tingting Gao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
- College of Agriculture and Biotechnology, Zhengzhou University, Zhengzhou 450001, China
| | - Yanyan Zhao
- College of Agriculture and Animal, Qinghai University, Xining 810016, China; (Y.W.); (Q.W.)
| | - Qichang Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
| | - Zhonghua Bian
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 600001, China; (R.S.); (X.Z.); (S.T.); (T.G.); (Q.Y.)
| |
Collapse
|
6
|
Liu F, Cao W, Zhang Q, Li Y, Zhou H, Wan Y. Winter Wheat Vernalization Alleles and Freezing Tolerance at the Seedling and Jointing Stages. PLANTS (BASEL, SWITZERLAND) 2025; 14:1350. [PMID: 40364379 PMCID: PMC12073134 DOI: 10.3390/plants14091350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
This study explores the relationship between allelic variation of the vernalization genes (VRN) and the freezing tolerance at the seedling and jointing stages of winter wheat growth. It provides a basis for molecular marker development for freezing tolerance breeding of winter wheat. A total of 435 wheat accessions were used to identify and evaluate the freezing tolerance at the seedling stage using field tests, while 192 wheat accessions were used to evaluate the freezing tolerance at the jointing stage in climate chamber tests. The VRN genes of the wheat accessions were detected using allele-specific markers of the VRN-A1, VRN-B1, VRN-D1 and VRN-B3 loci, and the relationship between VRN genotype and freezing tolerance at the two developmental stages was tested. There were significant differences in freezing tolerance between the wheat accessions. Assessing the freezing tolerance of 52 wheat accessions at both the seedling and jointing stages revealed no significant correlation between tolerance at these two stages. The genotypic analysis found that Vrn-D1 was the most frequent dominant allele in winter wheat, while no accession contained the dominant alleles Vrn-A1 and Vrn-B3. Notably, freezing tolerance showed stage-specific genetic regulation; seedling-stage freezing tolerance strongly correlated with vernalization gene allelic combinations (p < 0.05), whereas jointing-stage freezing tolerance exhibited no such association. The presence of all recessive alleles vrn-A1, vrn-B1, vrn-D1 and vrn-B3 was required for strong seedling-stage freezing tolerance. The VRN-D1 marker was effective for screening freezing tolerance materials under the premise that vrn-A1 and vrn-B1 alleles are recessive at winter wheat seedling stage.
Collapse
Affiliation(s)
- Fangfang Liu
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Wenxin Cao
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Qiqi Zhang
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Yao Li
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Heng Zhou
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| | - Yingxiu Wan
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (F.L.); (W.C.); (Q.Z.); (Y.L.); (H.Z.)
- Anhui Key Laboratory of Crop Quality Improvement, Hefei 230031, China
| |
Collapse
|
7
|
Song T, Fan Q, Shi C, Li S, Zhou J, Bu Y, Chang X, Yu Y, Lei X, Wang Y, Chen D, Xiang J, Zhang X. Effects of five allelic variants of the wheat vernalization gene VRN-B1 on heading date and vernalization requirements. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2025; 45:44. [PMID: 40242017 PMCID: PMC11996741 DOI: 10.1007/s11032-025-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 04/06/2025] [Indexed: 04/18/2025]
Abstract
Winter wheat must undergo vernalization to flower, while spring wheat does not require vernalization. The requirement for vernalization in wheat is primarily controlled by vernalization genes. VRN-1 are the most important vernalization genes. The recessive vrn-1 alleles have a strict vernalization requirement, while dominant mutations in Vrn-1 eliminate or reduce this requirement. In this study, the near-isogenic lines for several VRN-B1 allelic variants (Vrn-B1a, Vrn-B1b, Vrn-B1c, Vrn-B1 d and vrn-B1) were generated in two winter wheat backgrounds. Under field conditions, the four dominant Vrn-B1 allelic variants (Vrn-B1a, Vrn-B1b, Vrn-B1c, and Vrn-B1 d) resulted in an advancement in the heading date by 3-5 days. Using an artificially controlled gradient vernalization treatment (4-5 ℃, ranging from 0 to 45 days with 5-day intervals), the vernalization requirements of VRN-B1 allelic variants were analyzed. The relative effects on vernalization requirements were found to be vrn-B1 > Vrn-B1a = Vrn-B1 d > Vrn-B1b = Vrn-B1c (opposite to the heading date). Gene expression analysis indicates that the earlier heading associated with the dominant Vrn-B1 allelic variants is linked to their open expression under non-vernalization conditions. There may be an expression threshold at the VRN-B1 locus that eliminates the vernalization requirement, and this threshold should be lower than the vrn-B1 levels observed under saturated vernalization conditions. Furthermore, once this hypothesized threshold is reached, there appears to be no dosage effect on VRN-B1 expression. These results deepen our understanding of wheat vernalization genes and provide a theoretical basis for utilizing these genes in breeding programs aimed at improving wheat adaptability. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-025-01565-1.
Collapse
Affiliation(s)
- Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Qiru Fan
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Caiyin Shi
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Siyi Li
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Jianfei Zhou
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yaning Bu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xiling Chang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yang Yu
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Xinpeng Lei
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Yuxin Wang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002 Ningxia China
| | - Jishan Xiang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500 Xinjiang China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili Normal University, Yili, 830500 Xinjiang China
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100 Shaanxi China
| |
Collapse
|
8
|
Díaz Suárez L, Inagaki H, Hirata H, Akimoto Y, Sakakibayashi K, Seino H, Ito M, Cao L, Nakabayashi K, Kato K, Onishi K. Fine-tuning of heading time by earliness per se effect due to multi-allelic variants in VRN-B3 locus of hexaploid wheat. PLANTA 2025; 261:97. [PMID: 40153070 DOI: 10.1007/s00425-025-04674-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 03/12/2025] [Indexed: 03/30/2025]
Abstract
MAIN CONCLUSION Wheat VRN-B3 contains multi-allelic variants conferring earliness per se effects and can generate a new allele by recombining multiple alleles, highlighting its importance for the fine-tuning of heading time. Fine-tuning of heading time is required for breeding well-adapted varieties of wheat in regional environments. The VRN-B3 locus, which encodes the FT-B1 gene, is known as a vernalization gene. In this study, we analyzed two alleles in the VRN-B3 region: QHt-7B_Zen of a Japanese variety (Zenkouji-komugi) and QHt-7B_spelt of a spelt wheat strain (st. Rumania). Phenotypic evaluation of near-isogeneic lines (NILs) of 'Chinese Spring' (CS) under long-day (16 h) conditions showed that QHt-7B_Zen and QHt-7B_spelt conferred approximately 3.9 d earlier and 3.0 d later heading time compared with CS, respectively. Differences in heading times among NILs were also observed for fully vernalized plants under long-day conditions, indicating their earliness per se effect. Both QTLs behaved as single genes with incomplete dominant effects, and fine-mapping showed that FT-B1 was responsible for heading time. Droplet digital PCR analysis revealed that QHt-7B_Zen contained three copies of FT-B1, similar to the CS. QHt-7B_spelt had one FT-B1 copy with 14 substitutions, a 15 bp insertion in the 4.8 kb promoter region, and one amino acid substitution in the third exon, which could be designated as a novel allele, Vrn-B3f. Furthermore, a new allele with two FT-B1 copies conferring an intermediate heading time between the parents was created by the recombination of FT-B1 copies of CS and NIL for QHt-7B_spelt. Our findings indicate that fine-tuning heading time is possible through the versatility of the VRN-B3 locus, which can generate multi-allelic variants that have both vernalization and earliness per se effects in wheat.
Collapse
Affiliation(s)
- Lesly Díaz Suárez
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
- Centro de Investigaciones Agropecuarias (CIAP), Universidad Central "Marta Abreu" de Las Villas (UCLV), Carretera a Camajuaní Km 5 ½, 54830, Santa Clara, Cuba
| | - Hatsune Inagaki
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Hiroshi Hirata
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Yusuke Akimoto
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Kana Sakakibayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Honoka Seino
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Masaki Ito
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Kazumi Nakabayashi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan
| | - Kenji Kato
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, Kita-Ku, Okayama, 700-8530, Japan
| | - Kazumitsu Onishi
- Department of Agro-Environmental Science, Obihiro University of Agriculture and Veterinary Medicine, Inada-Cho, Nishi 2-11, Obihiro, Hokkaido, 080-8555, Japan.
| |
Collapse
|
9
|
Kan W, Gao Y, Zhu Y, Wang Z, Yang Z, Cheng Y, Guo J, Wang D, Tang C, Wu L. Genome-wide identification and expression analysis of TaFDL gene family responded to vernalization in wheat (Triticum aestivum L.). BMC Genomics 2025; 26:255. [PMID: 40091016 PMCID: PMC11912598 DOI: 10.1186/s12864-025-11436-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND FLOWERING LOCUS D (FD) is a basic leucine zipper (bZIP) transcription factor known to be crucial in vernalization, flowering, and stress response across a variety of plants, including biennial and winter annual species. The TaFD-like (TaFDL) gene in wheat is the functional homologue of Arabidopsis FD, yet research on the TaFDL gene family in wheat is still lacking. RESULTS In this study, a total of 62 TaFDL gene family members were identified and classified into 4 main subfamilies, and these genes were located on 21 chromosomes. A comprehensive analysis of the basic physicochemical properties, gene structure, conservation motif, conserved domain, and advanced protein structure of TaFDL gene family revealed the conservation among its individual subfamily. The family members underwent purifying selection. The segmental duplication events were the main driving force behind the expansion of the TaFDL gene family. The TaFDL gene family underwent differentiation in the evolution of FD genes. Additionally, the subcellular localization and transcriptional activation activities of five key TaFDL members were demonstrated. Gene Ontology (GO) annotations and promoter cis-regulatory element analysis indicated that the TaFDL members may play potential roles in regulating flowering, hormone response, low-temperature response, light response, and stress response, which were verified by transcriptome data analysis. Specifically, quantitative real-time PCR (qRT-PCR) analysis revealed that five TaFDL genes exhibited differential responses to different vernalization conditions in winter wheat seeding. Finally, the homologous genes of the five key TaFDL genes across nine different wheat cultivars highlight significant genetic diversity. CONCLUSION These findings enrich the research on FD and its homologous genes, providing valuable insights into the TaFDL gene family's response to vernalization.
Collapse
Affiliation(s)
- Wenjie Kan
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yan Zhu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Ziqi Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Zhu Yang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Yuan Cheng
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Jianjun Guo
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
| | - Dacheng Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
| | - Lifang Wu
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, PR China.
- University of Science and Technology of China, Hefei, Anhui, 230026, PR China.
- Zhongke Taihe Experimental Station, Taihe, Anhui, 236626, PR China.
| |
Collapse
|
10
|
Kiss T, Horváth ÁD, Cseh A, Berki Z, Balla K, Karsai I. Molecular genetic regulation of the vegetative-generative transition in wheat from an environmental perspective. ANNALS OF BOTANY 2025; 135:605-628. [PMID: 39364537 PMCID: PMC11904908 DOI: 10.1093/aob/mcae174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The key to the wide geographical distribution of wheat is its high adaptability. One of the most commonly used methods for studying adaptation is investigation of the transition between the vegetative-generative phase and the subsequent intensive stem elongation process. These processes are determined largely by changes in ambient temperature, the diurnal and annual periodicity of daylength, and the composition of the light spectrum. Many genes are involved in the perception of external environmental signals, forming a complex network of interconnections that are then integrated by a few integrator genes. This hierarchical cascade system ensures the precise occurrence of the developmental stages that enable maximum productivity. This review presents the interrelationship of molecular-genetic pathways (Earliness per se, circadian/photoperiod length, vernalization - cold requirement, phytohormonal - gibberellic acid, light perception, ambient temperature perception and ageing - miRNA) responsible for environmental adaptation in wheat. Detailed molecular genetic mapping of wheat adaptability will allow breeders to incorporate new alleles that will create varieties best adapted to local environmental conditions.
Collapse
Affiliation(s)
- Tibor Kiss
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
- Food and Wine Research Institute, Eszterházy Károly Catholic University, H-3300 Eger, Hungary
| | - Ádám D Horváth
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - András Cseh
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Zita Berki
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Krisztina Balla
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| | - Ildikó Karsai
- HUN-REN Centre for Agricultural Research, Agricultural Institute, H-2462 Martonvásár, Hungary
| |
Collapse
|
11
|
Song T, Shi C, Wang Y, Guo S, Zhang W, Wang X, Zhou J, Bu Y, Li S, Fan Q, Wei F, Xiang J, Chen D, Zhang X. Molecular characterization of a novel photoperiod-insensitive allele Ppd-B1a.3 and its effect on heading date in Chinese wheat (Triticum aestivum) cultivar Qingchun 37. JOURNAL OF PLANT RESEARCH 2025; 138:273-287. [PMID: 39741178 DOI: 10.1007/s10265-024-01609-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025]
Abstract
Breeders adjust wheat heading dates to improve regional adaptability and reduce or mitigate yield losses caused by meteorological disasters, pests and diseases. The Ppd-1 genes play a crucial role in determining wheat sensitivity to changes in day-length and serve as key regulators of heading dates once the vernalization requirement is satisfied. In this study, we identified a new allelic variant of the promoter region, Ppd-B1a.3, in the Chinese wheat cultivar Qingchun 37. Compared to the Ppd-B1b.1 (carried by Chihokukomugi), the main mutation sites in Ppd-B1a.3 include a substitution of C with G at the -505-bp, a T base insertion at the -625-bp, a mutation of TCG to GGT at the -632 to -634-bp, and a 163-bp insertion at the -691 bp. Analysis of F2 populations indicated that Ppd-B1a.3 promotes heading and flowering (approximately 6 days earlier in population 1 and 17 days in population 2) under short-day conditions in a greenhouse. However, the evaluation of Ppd-B1a.3's effect under field conditions may be influenced by the copy number of the Ppd-B1 locus inherited from the other parent in the F2 populations. Ppd-B1a.3 disrupts circadian rhythm expression and exhibits a stronger effect on heading and flowering than the three-copy Ppd-B1 allele carried by Jing 411. Origin analysis suggests that Ppd-B1a.3 may have derived from non-native germplasm. These results deepen our understanding of wheat photoperiod genes and provide useful genetic resources for fine-tuning wheat heading dates during breeding.
Collapse
Affiliation(s)
- Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Caiyin Shi
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yukun Wang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Sihai Guo
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Weijun Zhang
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, Ningxia, China
| | - Xiaoxing Wang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili Normal University, Yili, 830500, Xinjiang, China
| | - Jianfei Zhou
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Yaning Bu
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Siyi Li
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Qiru Fan
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Fan Wei
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China
| | - Jishan Xiang
- College of Biological Sciences and Technology, Yili Normal University, Yili, 830500, Xinjiang, China.
- Xinjiang Key Laboratory of Lavender Conservation and Utilization, Yili Normal University, Yili, 830500, Xinjiang, China.
| | - Dongsheng Chen
- Crop Research Institute, Ningxia Academy of Agriculture and Forestry Science, Yinchuan, 750002, Ningxia, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
12
|
Kosová K, Nešporová T, Vítámvás P, Vítámvás J, Klíma M, Ovesná J, Prášil IT. How to survive mild winters: Cold acclimation, deacclimation, and reacclimation in winter wheat and barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109541. [PMID: 39862458 DOI: 10.1016/j.plaphy.2025.109541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Cold acclimation and vernalization represent the major evolutionary adaptive responses to ensure winter survival of temperate plants. Due to climate change, mild winters can paradoxically worsen plant winter survival due to cold deacclimation induced by warm periods during winter. It seems that the ability of cold reacclimation in overwintering Triticeae cereals is limited, especially in vernalized plants. In the present review, the major factors determining cold acclimation (CA), deacclimation (DA) and reacclimation (RA) processes in winter-type Triticeae, namely wheat and barley, are discussed. Recent knowledge on cold sensing and signaling is briefly summarized. The impacts of chilling temperatures, photoperiod and light spectrum quality as the major environmental factors, and the roles of soluble proteins and sugars (carbohydrates) as well as cold stress memory molecular mechanisms as the major plant-based factors determining CA, DA, and RA processes are discussed. The roles of plant stress memory mechanisms and development processes, namely vernalization, in winter Triticeae reacclimation are elucidated. Recent findings about the role of O-glucose N-acetylation of target proteins during vernalization and their impacts on the expression of VRN1 gene and other target proteins resulting in cold-responsive modules reprogramming are presented.
Collapse
Affiliation(s)
- Klára Kosová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic.
| | - Tereza Nešporová
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Department of Biochemistry and Microbiology, University of Chemistry and Technology, Prague, Czech Republic
| | - Pavel Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jan Vítámvás
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic; Faculty of Forestry and Wood Science, Czech University of Life Sciences, Prague, Czech Republic
| | - Miroslav Klíma
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Jaroslava Ovesná
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| | - Ilja Tom Prášil
- Laboratory of Plant Stress Biology and Biotechnology, Department of Plant Genetics and Crop Breeding, Czech Agrifood Research Center, Drnovská 507, 161 06, Prague 6, Ruzyně, Czech Republic
| |
Collapse
|
13
|
Oiestad AJ, Blake NK, Tillett BJ, O’Sullivan ST, Cook JP, Giroux MJ. Plant Productivity and Leaf Starch During Grain Fill Is Linked to QTL Containing Flowering Locus T1 ( FT1) in Wheat ( Triticum aestivum L.). PLANTS (BASEL, SWITZERLAND) 2025; 14:512. [PMID: 40006771 PMCID: PMC11858846 DOI: 10.3390/plants14040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/24/2025] [Accepted: 01/26/2025] [Indexed: 02/27/2025]
Abstract
Shifts in the environment due to climate change necessitate breeding efforts aimed at adapting wheat to longer, warmer growing seasons. In this study, 21 modern wheat (Triticum aestivum L.) cultivars and 29 landraces were screened for flag leaf starch levels, with the goal of identifying a genetic marker for targeted breeding. The landrace PI 61693 was identified as having exceptionally high flag leaf starch values. Yield trials were carried out in a Berkut × PI 61693 recombinant inbred line (RIL) population and a negative correlation was observed between leaf starch, flowering time, and yield. Genetic mapping identified a Quantitative Trait Loci (QTL) explaining 22-34% variation for leaf starch, flowering time, biomass, and seed yield. The starch synthase TraesCS7D02G117800 (wSsI-1) is located in this region, which possibly accounts for leaf starch variation in this population; also within this QTL is TraesCS7D02G111600 (FT-D1). Sequencing of FT-D1 identified a single base pair deletion in the 3rd exon of the Berkut allele. This indel has recently been shown to significantly impact flowering time and productivity, and likely led to significant variation in flowering date and yield in this population. Here, we illustrate how allelic selection of FT-D1 within breeding programs may aid in adapting wheat to changing environments.
Collapse
Affiliation(s)
| | | | | | | | | | - Michael J. Giroux
- Department of Plant Sciences and Plant Pathology, Montana State University, 119 Plant Bioscience Building, Bozeman, MT 59717-3150, USA; (A.J.O.); (N.K.B.); (B.J.T.); (S.T.O.); (J.P.C.)
| |
Collapse
|
14
|
Yao Y, Guo W, Gou J, Hu Z, Liu J, Ma J, Zong Y, Xin M, Chen W, Li Q, Wang Z, Zhang R, Uauy C, Baloch FS, Ni Z, Sun Q. Wheat2035: Integrating pan-omics and advanced biotechnology for future wheat design. MOLECULAR PLANT 2025; 18:272-297. [PMID: 39780492 DOI: 10.1016/j.molp.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/03/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
Wheat (Triticum aestivum) production is vital for global food security, providing energy and protein to millions of people worldwide. Recent advancements in wheat research have led to significant increases in production, fueled by technological and scientific innovation. Here, we summarize the major advancements in wheat research, particularly the integration of biotechnologies and a deeper understanding of wheat biology. The shift from multi-omics to pan-omics approaches in wheat research has greatly enhanced our understanding of the complex genome, genomic variations, and regulatory networks to decode complex traits. We also outline key scientific questions, potential research directions, and technological strategies for improving wheat over the next decade. Since global wheat production is expected to increase by 60% in 2050, continued innovation and collaboration are crucial. Integrating biotechnologies and a deeper understanding of wheat biology will be essential for addressing future challenges in wheat production, ensuring sustainable practices and improved productivity.
Collapse
Affiliation(s)
- Yingyin Yao
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jinying Gou
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jun Ma
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zihao Wang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Ruijie Zhang
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Faheem Shehzad Baloch
- Department of Biotechnology, Faculty of Science, Mersin University, Yenişehir, Mersin 33343, Turkey; Department of Plant Resources and Environment, Jeju National University, Jeju City, Republic of Korea
| | - Zhongfu Ni
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qixin Sun
- State Key Laboratory of High-Efficiency Production of Wheat-Maize Double Cropping, China Agricultural University, Beijing 100193, China; Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
15
|
Li Y, Xiong H, Guo H, Xie Y, Zhao L, Gu J, Li H, Zhao S, Ding Y, Zhou C, Fang Z, Liu L. A gain-of-function mutation at the C-terminus of FT-D1 promotes heading by interacting with 14-3-3A and FDL6 in wheat. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:20-35. [PMID: 39276323 DOI: 10.1111/pbi.14474] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/17/2024] [Accepted: 08/31/2024] [Indexed: 09/16/2024]
Abstract
Vernalization and photoperiod pathways converging at FT1 control the transition to flowering in wheat. Here, we identified a gain-of-function mutation in FT-D1 that results in earlier heading date (HD), and shorter plant height and spike length in the gamma ray-induced eh1 wheat mutant. Knockout of the wild-type and overexpression of the mutated FT-D1 indicate that both alleles are functional to affect HD and plant height. Protein interaction assays demonstrated that the frameshift mutation in FT-D1eh1 exon 3 led to gain-of-function interactions with 14-3-3A and FDL6, thereby enabling the formation of florigen activation complex (FAC) and consequently activating a flowering-related transcriptomic programme. This mutation did not affect FT-D1eh1 interactions with TaNaKR5 or TaFTIP7, both of which could modulate HD, potentially via mediating FT-D1 translocation to the shoot apical meristem. Furthermore, the 'Segment B' external loop is essential for FT-D1 interaction with FDL6, while residue Y85 is required for interactions with TaNaKR5 and TaFTIP7. Finally, the flowering regulatory hub gene, ELF5, was identified as the FT-D1 regulatory target. This study illustrates FT-D1 function in determining wheat HD with a suite of interaction partners and provides genetic resources for tuning HD in elite wheat lines.
Collapse
Affiliation(s)
- Yuting Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Hongchun Xiong
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huijun Guo
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yongdun Xie
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Linshu Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayu Gu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Huiyuan Li
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shirong Zhao
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuping Ding
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunyun Zhou
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhengwu Fang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (co-construction by Ministry and Province), College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Luxiang Liu
- State Key Laboratory of Crop Gene Resources and Breeding/National Engineering Laboratory of Crop Molecular Breeding/CAEA Research and Development Centre on Nuclear Technology Applications for Irradiation Mutation Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
16
|
Skovbjerg CK, Sarup P, Wahlström E, Jensen JD, Orabi J, Olesen L, Jensen J, Jahoor A, Ramstein G. Multi-population GWAS detects robust marker associations in a newly established six-rowed winter barley breeding program. Heredity (Edinb) 2025; 134:33-48. [PMID: 39609544 PMCID: PMC11724117 DOI: 10.1038/s41437-024-00733-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
Genome-wide association study (GWAS) is a powerful tool for identifying marker-trait associations that can accelerate breeding progress. Yet, its power is typically constrained in newly established breeding programs where large phenotypic and genotypic datasets have not yet accumulated. Expanding the dataset by inclusion of data from well-established breeding programs with many years of phenotyping and genotyping can potentially address this problem. In this study we performed single- and multi-population GWAS on heading date and lodging in four barley breeding populations with varying combinations of row-type and growth habit. Focusing on a recently established 6-rowed winter (6RW) barley population, single-population GWAS hardly resulted in any significant associations. Nevertheless, the combination of the 6RW target population with other populations in multi-population GWAS detected four and five robust candidate quantitative trait loci for heading date and lodging, respectively. Of these, three remained undetected when analysing the combined populations individually. Further, multi-population GWAS detected markers capturing a larger proportion of genetic variance in 6RW. For multi-population GWAS, we compared the findings of a univariate model (MP1) with a multivariate model (MP2). While both models surpassed single-population GWAS in power, MP2 offered a significant advantage by having more realistic assumptions while pointing towards robust marker-trait associations across populations. Additionally, comparisons of GWAS findings for MP2 and single-population GWAS allowed identification of population-specific loci. In conclusion, our study presents a promising approach to kick-start genomics-based breeding in newly established breeding populations.
Collapse
Affiliation(s)
- Cathrine Kiel Skovbjerg
- Nordic Seed A/S, Odder, Denmark.
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | | | | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| | - Ahmed Jahoor
- Nordic Seed A/S, Odder, Denmark
- Department of Plant Breeding, The Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Guillaume Ramstein
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
17
|
Li T, Nagarajan R, Liu S, Luzuriaga JC, Zhai W, Cao S, Jia H, Carver BF, Yan L. The E3 ligase TaE3V-B1 ubiquitinates proteins encoded by the vernalization gene TaVRN1 and regulates developmental processes in wheat. PLANT PHYSIOLOGY 2024; 197:kiae606. [PMID: 39556771 DOI: 10.1093/plphys/kiae606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 11/20/2024]
Abstract
In wheat (Triticum aestivum), early maturity is desired to avoid the hot and dry summer season, especially in view of climate change. Here, we report that TaE3V1, a C3H2C3 RING-type E3 ligase that interacts with TaVRN1, is associated with early development. Aside from its RING domain, TaE3V1 does not harbor any domains that are conserved in other RING-type or other E3 ligase proteins. TaE3V-B1b, encoded by the functional TaE3V1 allele, interacts with and ubiquitinates TaVRN1. In contrast, TaE3V-B1a, encoded by a natural nonfunctional TaE3V1 allele, neither interacts with TaVRN1 nor has E3 ligase activity. TaE3V-B1b activity decreases with plant age under warmer temperatures, but not under the low temperatures required for vernalization. We employed a gene editing method to simultaneously inactivate the 3 homoeologous TaE3V1 genes to validate their functions. Overall, our results suggest that the naturally mutated and edited TaE3V1 alleles can accelerate wheat development and aid adaptation to warming climates.
Collapse
Affiliation(s)
- Tian Li
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ragupathi Nagarajan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shujuan Liu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Juan C Luzuriaga
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Wenxuan Zhai
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Shuanghe Cao
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyan Jia
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Brett F Carver
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| | - Liuling Yan
- Department of Plant and Soil Sciences, Oklahoma State University, Stillwater, OK 74078, USA
| |
Collapse
|
18
|
Liu Y, Wang D, Yuan Y, Liu Y, Lv B, Lv H. Transcriptome Profiling Reveals Key Regulatory Networks for Age-Dependent Vernalization in Welsh Onion ( Allium fistulosum L.). Int J Mol Sci 2024; 25:13159. [PMID: 39684870 DOI: 10.3390/ijms252313159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Plants exhibit diverse pathways to regulate the timing of flowering. Some plant species require a vegetative phase before being able to perceive cold stimuli for the acceleration of flowering through vernalization. This research confirms the correlation between the vernalization process and seedling age in Welsh onions. Findings from two vernalization experiments conducted at different time intervals demonstrate that seedlings must reach a vegetative phase of at least 8 weeks to consistently respond to vernalization. Notably, 8-week-old seedlings subjected to 6 weeks of vernalization displayed the shortest time to bolting, with an average duration of 138.1 days. Transcriptome analysis led to the identification of genes homologous to those in Arabidopsis thaliana that regulate flowering. Specifically, AfisC7G05578 (CO), AfisC2G05881 (AP1), AfisC1G07745 (FT), AfisC1G06473 (RAP2.7), and AfisC2G01843 (VIM1) were identified and suggested to have potential significance in age-dependent vernalization in Welsh onions. This study not only presents a rapid vernalization method for Welsh onions but also provides a molecular foundation for understanding the interplay between seedling age and vernalization.
Collapse
Affiliation(s)
- Yin Liu
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| | - Dan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yu Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yue Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Bingsheng Lv
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Haiyan Lv
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
19
|
Liu Y, Xu X, He C, Jin L, Zhou Z, Gao J, Guo M, Wang X, Chen C, Ayaad MH, Li X, Yan W. Chromatin loops gather targets of upstream regulators together for efficient gene transcription regulation during vernalization in wheat. Genome Biol 2024; 25:306. [PMID: 39623466 PMCID: PMC11613916 DOI: 10.1186/s13059-024-03437-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 11/18/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND Plants respond to environmental stimuli by altering gene transcription that is highly related with chromatin status, including histone modification, chromatin accessibility, and three-dimensional chromatin interaction. Vernalization is essential for the transition to reproductive growth for winter wheat. How wheat reshapes its chromatin features, especially chromatin interaction during vernalization, remains unknown. RESULTS Combinatory analysis of gene transcription and histone modifications in winter wheat under different vernalization conditions identifies 17,669 differential expressed genes and thousands of differentially enriched peaks of H3K4me3, H3K27me3, and H3K9ac. We find dynamic gene expression across the vernalization process is highly associated with H3K4me3. More importantly, the dynamic H3K4me3- and H3K9ac-associated chromatin-chromatin interactions demonstrate that vernalization leads to increased chromatin interactions and gene activation. Remarkably, spatially distant targets of master regulators like VRN1 and VRT2 are gathered together by chromatin loops to achieve efficient transcription regulation, which is designated as a "shepherd" model. Furthermore, by integrating gene regulatory network for vernalization and natural variation of flowering time, TaZNF10 is identified as a negative regulator for vernalization-related flowering time in wheat. CONCLUSIONS We reveal dynamic gene transcription network during vernalization and find that the spatially distant genes can be recruited together via chromatin loops associated with active histone mark thus to be more efficiently found and bound by upstream regulator. It provides new insights into understanding vernalization and response to environmental stimuli in wheat and other plants.
Collapse
Affiliation(s)
- Yanyan Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xintong Xu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziru Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Gao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minrong Guo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xin Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanye Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Mohammed H Ayaad
- Plant Research Department, Nuclear Research Center, Egyptian Atomic Energy Authority, Cairo, 13759, Egypt
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Matsumura M, Watanabe Y, Tada H, Murai K. Cytoplasm of the Wild Species Aegilops mutica Reduces VRN1 Gene Expression in Early Growth of Cultivated Wheat: Prospects for Using Alloplasmic Lines to Breed Varieties Adapted to Global Warming. PLANTS (BASEL, SWITZERLAND) 2024; 13:3346. [PMID: 39683139 DOI: 10.3390/plants13233346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/27/2024] [Accepted: 11/27/2024] [Indexed: 12/18/2024]
Abstract
In a warm winter due to climate warming, it is necessary to suppress early flowering of autumn-sown wheat plants. Here, we propose the use of cytoplasmic genome effects for this purpose. Alloplasmic lines, or cytoplasmic substitution lines, of bread wheat (Triticum aestivum) have cytoplasm from a related wild Aegilops species through recurrent backcrossing and exhibit altered characteristics compared with the euplasmic lines from which they are derived. Thus, alloplasmic lines with Aegilops mutica cytoplasm show delayed flowering compared with lines carrying normal cytoplasm. In the wheat flowering pathway, VERNALIZATION 1 (VRN1) encodes an APETALA1/FRUITFULL-like MADS box transcription factor that plays a central role in the activation of florigen genes, which induce floral meristems in the shoot apex. Here, we compared expression of VRN1 alleles in alloplasmic and euplasmic lines after vernalization. We found that alloplasmic wheat showed a lower level of VRN1 expression after vernalization compared with euplasmic wheat. Thus, nuclear-cytoplasm interactions affect the expression levels of the nuclear VRN1 gene; these interactions might occur through the pathway termed retrograde signaling. In warm winters, autumn-sown wheat cultivars with spring habit can pass through the reproductive growth phase in very early spring, resulting in a decreased tiller/ear number and reduced yield performance. Here, we present data showing that an alloplasmic line of 'Fukusayaka' can avoid the decrease in tiller/ear numbers during warm winters, suggesting that this alloplasmic line may be useful for development of varieties adapted to global warming.
Collapse
Affiliation(s)
- Mina Matsumura
- Graduate School of Bioscience, Fukui Prefectural University, Fukui 910-4103, Japan
| | - Yuko Watanabe
- Graduate School of Bioscience, Fukui Prefectural University, Fukui 910-4103, Japan
| | - Hiroko Tada
- Graduate School of Bioscience, Fukui Prefectural University, Fukui 910-4103, Japan
| | - Koji Murai
- Graduate School of Bioscience, Fukui Prefectural University, Fukui 910-4103, Japan
| |
Collapse
|
21
|
Fourquet L, Barber T, Campos-Mantello C, Howell P, Orman-Ligeza B, Percival-Alwyn L, Rose GA, Sheehan H, Wright TIC, Longin F, Würschum T, Novoselovic D, Greenland AJ, Mackay IJ, Cockram J, Bentley AR. An eight-founder wheat MAGIC population allows fine-mapping of flowering time loci and provides novel insights into the genetic control of flowering time. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:277. [PMID: 39576319 PMCID: PMC11584503 DOI: 10.1007/s00122-024-04787-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
Flowering time synchronizes reproductive development with favorable environmental conditions to optimize yield. Improved understanding of the genetic control of flowering will help optimize varietal adaptation to future agricultural systems under climate change. Here, we investigate the genetic basis of flowering time in winter wheat (Triticum aestivum L.) using an eight-founder multi-parent advanced generation intercross (MAGIC) population. Flowering time data was collected from field trials across six growing seasons in the United Kingdom, followed by genetic analysis using a combination of linear modelling, simple interval mapping and composite interval mapping, using either single markers or founder haplotype probabilities. We detected 57 quantitative trait loci (QTL) across three growth stages linked to flowering time, of which 17 QTL were identified only when the major photoperiod response locus Ppd-D1 was included as a covariate. Of the 57 loci, ten were identified using all genetic mapping approaches and classified as 'major' QTL, including homoeologous loci on chromosomes 1B and 1D, and 4A and 4B. Additional Earliness per se flowering time QTL were identified, along with growth stage- and year-specific effects. Furthermore, six of the main-effect QTL were found to interact epistatically with Ppd-D1. Finally, we exploited residual heterozygosity in the MAGIC recombinant inbred lines to Mendelize the Earliness per se QTL QFt.niab-5A.03, which was confirmed to modulate flowering time by at least four days. This work provides detailed understanding of the genetic control of phenological variation within varieties relevant to the north-western European wheat genepool, aiding informed manipulation of flowering time in wheat breeding.
Collapse
Affiliation(s)
| | - Tobias Barber
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | - Phil Howell
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Gemma A Rose
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
| | | | | | - Friedrich Longin
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | - Tobias Würschum
- State Plant Breeding Institute, University of Hohenheim, Hohenheim, Germany
| | | | | | - Ian J Mackay
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.
| | | |
Collapse
|
22
|
Hu W, You J, Yong R, Zhao D, Li D, Wang Z, Jia J. Identification and validation of two quantitative trait loci showing pleiotropic effect on multiple grain-related traits in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:268. [PMID: 39540955 DOI: 10.1007/s00122-024-04778-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE QKl/Tgw/Gns.yaas-2D associates with KL, TGW, and GNS, and QKl/Tgw.yaas-5A associates with KL and TGW. Significantly pleiotropic and additive effects of these two QTL were validated. The YM5 allele both at QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A was proved to be the best allelic combination for improving yield potential. Kernel length (KL), kernel width (KW), thousand grain weight (TGW), and grain number per spike (GNS) play important roles in the yield improvement of wheat. In this study, one recombinant inbred line (RIL) derived from a cross between Yangmai 5 (YM5) and Yanzhan 1 (YZ1) was used to identify quantitative trait loci (QTL) associated with KL, KW, TGW, and GNS across three years. Two pleiotropic QTL namely QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A were located in two genomic regions on chromosomes 2D and 5A, respectively. Breeder-friendly Kompetitive Allele-Specific PCR (KASP) markers for QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A were developed and validated in a set of 246 wheat cultivars/lines. Analysis of allelic combinations indicated that the YM5 allele both at QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A is probably the best one to promote TGW, GNS, and grain weight per spike. Based on the analysis of gene annotation, sequence variations, expression patterns, and GO enrichment, twenty-five and twenty-four candidate genes of QKl/Tgw/Gns.yaas-2D and QKl/Tgw.yaas-5A, respectively, were identified. These results provide the basis of fine-mapping the target QTL and marker-assisted selection in wheat yield-breeding programs.
Collapse
Affiliation(s)
- Wenjing Hu
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops / Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding / Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Junchao You
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Rui Yong
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Die Zhao
- College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Dongshen Li
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Zunjie Wang
- Key Laboratory of Wheat Biology and Genetic Improvement for Low & Middle Yangtze Valley, Ministry of Agriculture and Rural Affairs, Lixiahe Institute of Agricultural Sciences, Yangzhou, 225007, Jiangsu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China
| |
Collapse
|
23
|
Zhang J, Burguener GF, Paraiso F, Dubcovsky J. Natural alleles of LEAFY and WAPO1 interact to regulate spikelet number per spike in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:257. [PMID: 39446157 PMCID: PMC11502542 DOI: 10.1007/s00122-024-04759-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 10/05/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE Specific combinations of LFY and WAPO1 natural alleles maximize spikelet number per spike in wheat. Spikelet number per spike (SNS) is an important yield component in wheat that determines the maximum number of grains that can be formed in a wheat spike. In wheat, loss-of-function mutations in LEAFY (LFY) or its interacting protein WHEAT ORTHOLOG OF APO1 (WAPO1) significantly reduce SNS by reducing the rate of formation of spikelet meristems. In previous studies, we identified a natural amino acid change in WAPO1 (C47F) that significantly increases SNS in hexaploid wheat. In this study, we searched for natural variants in LFY that were associated with differences in SNS and detected significant effects in the LFY-B region in a nested association mapping population. We generated a large mapping population and confirmed that the LFY-B polymorphism R80S is linked with the differences in SNS, suggesting that LFY-B is the likely causal gene. A haplotype analysis revealed two amino acid changes P34L and R80S, which were both enriched during wheat domestication and breeding suggesting positive selection. We also explored the interactions between the LFY and WAPO1 natural variants for SNS using biparental populations and identified significant interaction, in which the positive effect of the 80S and 34L alleles from LFY-B was only detected in the WAPO-A1 47F background but not in the 47C background. Based on these results, we propose that the allele combination WAPO-A1-47F/LFY-B 34L 80S can be used in wheat breeding programs to maximize SNS and increase grain yield potential in wheat.
Collapse
Affiliation(s)
- Junli Zhang
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Germán F Burguener
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Francine Paraiso
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| |
Collapse
|
24
|
Shafieian A, Mazloom P, Daliri MS, Mousavi AA. Analyses of rapeseed varieties with regard to quantitative and qualitative traits. BRAZ J BIOL 2024; 84:e287065. [PMID: 39417440 DOI: 10.1590/1519-6984.287065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/05/2024] [Indexed: 10/19/2024] Open
Abstract
Rapeseed (Brassica napus L.) is one of the most important oil crops in terms of economics, ecology, and nutrition. For the purpose of selecting the most suitable canola genotypes for quantitative and qualitative traits, an experiment was conducted in Damavand region with the presence of nine genotypes and the examination of nine traits with three replications. The results of analysis of variance showed that the effect of genotype in terms of all traits had significant differences at the level of 0.01 and 0.05. Additionally, the results of the average comparison indicated that Zargol and Hyola 401 genotypes were more favorable than other cultivars in terms of all traits. According to the three analyses related to the examination of the traits, it was concluded that the grain yield trait was positively correlated with the harvest index trait, the biological yield trait was positively correlated with the oil percentage trait, and the leaf width trait was positively correlated with the number of days to 50% flowering. Using principal component analysis (PCA), the first three components explained more than 81 percent of the variance in the data, and the first and second components had positive coefficients for Zargol and Hyola 401 genotypes. On the basis of the graphical analysis, the Zargol and Sunday genotypes were selected as the best genotypes. In comparison with the cluster analysis and heat map drawn on the data, the genotypes were grouped into two main groups based on traits. Accordingly, Zargol genotypes are considered stable genotypes in terms of their traits and are suitable for cultivation and agricultural research.
Collapse
Affiliation(s)
- A Shafieian
- Islamic Azad University, Department of Agronomy, Chalus Branch, Chalus, Iran
| | - P Mazloom
- Islamic Azad University, Department of Agronomy, Chalus Branch, Chalus, Iran
| | - M S Daliri
- Islamic Azad University, Department of Agronomy, Chalus Branch, Chalus, Iran
| | - A A Mousavi
- Islamic Azad University, Department of Agronomy, Chalus Branch, Chalus, Iran
| |
Collapse
|
25
|
Singh C, Yadav S, Khare V, Gupta V, Kamble UR, Gupta OP, Kumar R, Saini P, Bairwa RK, Khobra R, Sheoran S, Kumar S, Kurhade AK, Mishra CN, Gupta A, Tyagi BS, Ahlawat OP, Singh G, Tiwari R. Unraveling the Secrets of Early-Maturity and Short-Duration Bread Wheat in Unpredictable Environments. PLANTS (BASEL, SWITZERLAND) 2024; 13:2855. [PMID: 39458802 PMCID: PMC11511103 DOI: 10.3390/plants13202855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024]
Abstract
In response to the escalating challenges posed by unpredictable environmental conditions, the pursuit of early maturation in bread wheat has emerged as a paramount research endeavor. This comprehensive review delves into the multifaceted landscape of strategies and implications surrounding the unlocking of early maturation in bread wheat varieties. Drawing upon a synthesis of cutting-edge research in genetics, physiology, and environmental science, this review elucidates the intricate mechanisms underlying early maturation and its potential ramifications for wheat cultivation in dynamic environments. By meticulously analyzing the genetic determinants, physiological processes, and environmental interactions shaping early maturation, this review offers valuable insights into the complexities of this trait and its relevance in contemporary wheat breeding programs. Furthermore, this review critically evaluates the trade-offs inherent in pursuing early maturation, navigating the delicate balance between accelerated development and optimal yield potential. Through a meticulous examination of both challenges and opportunities, this review provides a comprehensive framework for researchers, breeders, and agricultural stakeholders to advance our understanding and utilization of early maturation in bread wheat cultivars, ultimately fostering resilience and sustainability in wheat production systems worldwide.
Collapse
Affiliation(s)
- Charan Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sapna Yadav
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Vikrant Khare
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Vikas Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Umesh R. Kamble
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ravindra Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Pawan Saini
- Central Sericultural Research and Training Institute, Pampore 192121, India
| | - Rakesh K. Bairwa
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Rinki Khobra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Sonia Sheoran
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Satish Kumar
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ankita K. Kurhade
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Chandra N. Mishra
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Arun Gupta
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Bhudeva S. Tyagi
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Om P. Ahlawat
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Gyanendra Singh
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Ratan Tiwari
- ICAR—Indian Institute of Wheat and Barley Research, Karnal 132001, India
| |
Collapse
|
26
|
Fu M, Liu S, Che Y, Cui D, Deng Z, Li Y, Zou X, Kong X, Chen G, Zhang M, Liu Y, Wang X, Liu W, Liu D, Geng S, Li A, Mao L. Genome-editing of a circadian clock gene TaPRR95 facilitates wheat peduncle growth and heading date. J Genet Genomics 2024; 51:1101-1110. [PMID: 38849110 DOI: 10.1016/j.jgg.2024.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 06/09/2024]
Abstract
Plant height and heading date are important agronomic traits in wheat (Triticum aestivum L.) that affect final grain yield. In wheat, knowledge of pseudo-response regulator (PRR) genes on agronomic traits is limited. Here, we identify a wheat TaPRR95 gene by genome-wide association studies to be associated with plant height. Triple allele mutant plants produced by CRISPR/Cas9 show increased plant height, particularly the peduncle, with an earlier heading date. The longer peduncle is mainly caused by the increased cell elongation at its upper section, whilst the early heading date is accompanied by elevated expression of flowering genes, such as TaFT and TaCO1. A peduncle-specific transcriptome analysis reveals up-regulated photosynthesis genes and down-regulated IAA/Aux genes for auxin signaling in prr95aabbdd plants that may act as a regulatory mechanism to promote robust plant growth. A haplotype analysis identifies a TaPRR95-B haplotype (Hap2) to be closely associated with reduced plant height and increased thousand-grain weight. Moreover, the Hap2 frequency is higher in cultivars than that in landraces, suggesting the artificial selection on the allele during wheat breeding. These findings suggest that TaPRR95 is a regulator for plant height and heading date, thereby providing an important target for wheat yield improvement.
Collapse
Affiliation(s)
- Mingxue Fu
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shaoshuai Liu
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuqing Che
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dada Cui
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhongyin Deng
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yang Li
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinyu Zou
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingchen Kong
- College of Life Sciences, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guoliang Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 610106, China
| | - Min Zhang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan 610106, China
| | - Yifan Liu
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Xiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wei Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Danmei Liu
- School of Life Science, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Shuaifeng Geng
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Aili Li
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Long Mao
- State Key Laboratory of Crop Gene Resources and Breeding and National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
27
|
Liu X, Deng M, Shi B, Zhu K, Chen J, Xu S, Bie X, Zhang X, Lin X, Xiao J. Distinct roles of H3K27me3 and H3K36me3 in vernalization response, maintenance, and resetting in winter wheat. SCIENCE CHINA. LIFE SCIENCES 2024; 67:2251-2266. [PMID: 38987431 DOI: 10.1007/s11427-024-2664-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
Winter plants rely on vernalization, a crucial process for adapting to cold conditions and ensuring successful reproduction. However, understanding the role of histone modifications in guiding the vernalization process in winter wheat remains limited. In this study, we investigated the transcriptome and chromatin dynamics in the shoot apex throughout the life cycle of winter wheat in the field. Two core histone modifications, H3K27me3 and H3K36me3, exhibited opposite patterns on the key vernalization gene VERNALIZATION1 (VRN1), correlating with its induction during cold exposure. Moreover, the H3K36me3 level remained high at VRN1 after cold exposure, which may maintain its active state. Mutations in FERTILIZATION-INDEPENDENT ENDOSPERM (TaFIE) and SET DOMAIN GROUP 8/EARLY FLOWERING IN SHORT DAYS (TaSDG8/TaEFS), components of the writer complex for H3K27me3 and H3K36me3, respectively, affected flowering time. Intriguingly, VRN1 lost its high expression after the cold exposure memory in the absence of H3K36me3. During embryo development, VRN1 was silenced with the removal of active histone modifications in both winter and spring wheat, with selective restoration of H3K27me3 in winter wheat. The mutant of Tafie-cr-87, a component of H3K27me3 "writer" complex, did not influence the silence of VRN1 during embryo development, but rather attenuated the cold exposure requirement of winter wheat. Integrating gene expression with H3K27me3 and H3K36me3 patterns identified potential regulators of flowering. This study unveils distinct roles of H3K27me3 and H3K36me3 in controlling vernalization response, maintenance, and resetting in winter wheat.
Collapse
Affiliation(s)
- Xuemei Liu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Deng
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingxin Shi
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kehui Zhu
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shujuan Xu
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, 3400, Austria
| | - Xiaomin Bie
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xiansheng Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai'an, 271018, China
| | - Xuelei Lin
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jun Xiao
- Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, 100101, China.
| |
Collapse
|
28
|
Amalova A, Babkenov A, Philp C, Griffiths S, Abugalieva S, Turuspekov Y. Identification of Quantitative Trait Loci Associated with Plant Adaptation Traits Using Nested Association Mapping Population. PLANTS (BASEL, SWITZERLAND) 2024; 13:2623. [PMID: 39339597 PMCID: PMC11435412 DOI: 10.3390/plants13182623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
This study evaluated 290 recombinant inbred lines (RILs) of the nested association mapping (NAM) population from the UK. The population derived from 24 families, where a common parent was "Paragon," one of the UK's spring wheat cultivar standards. All genotypes were tested in two regions of Kazakhstan at the Kazakh Research Institute of Agriculture and Plant Industry (KRIAPI, Almaty region, Southeast Kazakhstan, 2019-2022 years) and Alexandr Barayev Scientific-Production Center for Grain Farming (SPCGF, Shortandy, Akmola region, Northern Kazakhstan, 2019-2022 years). The studied traits consisted of plant adaptation-related traits, including heading date (HD, days), seed maturation date (SMD, days), plant height (PH, cm), and peduncle length (PL, cm). In addition, the yield per m2 was analyzed in both regions. Based on a field evaluation of the population in northern and southeastern Kazakhstan and using 10,448 polymorphic SNP (single-nucleotide polymorphism) markers, the genome-wide association study (GWAS) allowed for detecting 74 QTLs in four studied agronomic traits (HD, SMD, PH, and PL). The literature survey suggested that 16 of the 74 QTLs identified in our study had also been detected in previous QTL mapping studies and GWASs for all studied traits. The results will be used for further studies related to the adaptation and productivity of wheat in breeding projects for higher grain productivity.
Collapse
Affiliation(s)
- Akerke Amalova
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
| | - Adylkhan Babkenov
- Alexandr Barayev Scientific-Production Center for Grain Farming, Shortandy 021600, Kazakhstan
| | | | | | - Saule Abugalieva
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| | - Yerlan Turuspekov
- Institute of Plant Biology and Biotechnology, Almaty 050040, Kazakhstan
- Faculty of Biology and Biotechnology, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan
| |
Collapse
|
29
|
Pang Y, Wang L, Li L, Wang X, Wang D, Zhao M, Ma C, Zhang H, Yan Q, Lu Y, Liang Y, Kong X, Zhu H, Sun X, Zhao Y, Liu S. Genotype selection identified elite lines through quantitative trait loci mapping of agronomically important traits in wheat. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:56. [PMID: 39220047 PMCID: PMC11364835 DOI: 10.1007/s11032-024-01496-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Wheat is one of the most important staple foods in the world. Genetic characterization of wheat agronomically important traits is crucial for yield improvement through molecular breeding. In this study, a recombinant inbred line (RIL) population was developed by crossing a local adapted high yield variety Jimai 22 (JM22) with an external variety Cunmai no.1 (CM1). A high-density genetic map containing 7,359 single nucleotide polymorphism (SNP) markers was constructed. Quantitative trait loci (QTL) mapping identified 61 QTL for eight yield-related traits under six environments (years). Among them, 17 QTL affecting spike number per plant, grain number per spike and thousand grain weight showed high predictability for theoretical yield per plant (TYP), of which, 12 QTL alleles positively contributed to TYP. Nine promising candidate genes for seven of the 12 QTL were identified including three known wheat genes and six rice orthologs. Four elite lines with TYP increased by 5.6%-15.2% were identified through genotype selection which carried 7-9 favorable alleles from JM22 and 2-3 favorable alleles from CM1 of the 12 QTL. Moreover, the linked SNPs of the 12 QTL were converted to high-throughput kompetitive allele-specific PCR (KASP) markers and validated in the population. The mapped QTL, identified promising candidate genes, developed elite lines and KASP markers are highly valuable in future genotype selection to improve wheat yield. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01496-3.
Collapse
Affiliation(s)
- Yunlong Pang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Liming Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang, China
| | - Linzhi Li
- Yantai Academy of Agricultural Sciences, Yantai, China
| | - Xiaoqian Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Danfeng Wang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Meng Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Chenhao Ma
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Huirui Zhang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Qiang Yan
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yue Lu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yunlong Liang
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xiangsheng Kong
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Huaqiang Zhu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Xuecheng Sun
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Yujie Zhao
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| | - Shubing Liu
- National Key Laboratory of Wheat Improvement, College of Agronomy, Shandong Agricultural University, Tai’an, China
| |
Collapse
|
30
|
Yang B, Qiao L, Zheng X, Zheng J, Wu B, Li X, Zhao J. Quantitative Trait Loci Mapping of Heading Date in Wheat under Phosphorus Stress Conditions. Genes (Basel) 2024; 15:1150. [PMID: 39336741 PMCID: PMC11431698 DOI: 10.3390/genes15091150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Wheat (Triticum aestivum L.) is a crucial cereal crop, contributing around 20% of global caloric intake. However, challenges such as diminishing arable land, water shortages, and climate change threaten wheat production, making yield enhancement crucial for global food security. The heading date (HD) is a critical factor influencing wheat's growth cycle, harvest timing, climate adaptability, and yield. Understanding the genetic determinants of HD is essential for developing high-yield and stable wheat varieties. This study used a doubled haploid (DH) population from a cross between Jinmai 47 and Jinmai 84. QTL analysis of HD was performed under three phosphorus (P) treatments (low, medium, and normal) across six environments, using Wheat15K high-density SNP technology. The study identified 39 QTLs for HD, distributed across ten chromosomes, accounting for 2.39% to 29.52% of the phenotypic variance. Notably, five stable and major QTLs (Qhd.saw-3A.7, Qhd.saw-3A.8, Qhd.saw-3A.9, Qhd.saw-4A.4, and Qhd.saw-4D.3) were consistently detected across varying P conditions. The additive effects of these major QTLs showed that favorable alleles significantly delayed HD. There was a clear trend of increasing HD delay as the number of favorable alleles increased. Among them, Qhd.saw-3A.8, Qhd.saw-3A.9, and Qhd.saw-4D.3 were identified as novel QTLs with no prior reports of HD QTLs/genes in their respective intervals. Candidate gene analysis highlighted seven highly expressed genes related to Ca2+ transport, hormone signaling, glycosylation, and zinc finger proteins, likely involved in HD regulation. This research elucidates the genetic basis of wheat HD under P stress, providing critical insights for breeding high-yield, stable wheat varieties suited to low-P environments.
Collapse
Affiliation(s)
- Bin Yang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Bangbang Wu
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Xiaohua Li
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| |
Collapse
|
31
|
Liu Y, Liu P, Gao L, Li Y, Ren X, Jia J, Wang L, Zheng X, Tong Y, Pei H, Lu Z. Epigenomic identification of vernalization cis-regulatory elements in winter wheat. Genome Biol 2024; 25:200. [PMID: 39080779 PMCID: PMC11290141 DOI: 10.1186/s13059-024-03342-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. RESULTS In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues-leaf, axillary bud, and shoot apex-during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. CONCLUSIONS Our study offers critical insights into wheat vernalization's epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Collapse
Affiliation(s)
- Yanhong Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, 100193, China
| | - Pan Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lifeng Gao
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yushan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueni Ren
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jizeng Jia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, China
| | - Xu Zheng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hongcui Pei
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Zefu Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
32
|
Gutaker RM, Purugganan MD. Adaptation and the Geographic Spread of Crop Species. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:679-706. [PMID: 38012052 DOI: 10.1146/annurev-arplant-060223-030954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Crops are plant species that were domesticated starting about 11,000 years ago from several centers of origin, most prominently the Fertile Crescent, East Asia, and Mesoamerica. From their domestication centers, these crops spread across the globe and had to adapt to differing environments as a result of this dispersal. We discuss broad patterns of crop spread, including the early diffusion of crops associated with the rise and spread of agriculture, the later movement via ancient trading networks, and the exchange between the Old and New Worlds over the last ∼550 years after the European colonization of the Americas. We also examine the various genetic mechanisms associated with the evolutionary adaptation of crops to their new environments after dispersal, most prominently seasonal adaptation associated with movement across latitudes, as well as altitudinal, temperature, and other environmental factors.
Collapse
Affiliation(s)
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY, USA;
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, USA
| |
Collapse
|
33
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
34
|
Xiao B, Qie Y, Jin Y, Yu N, Sun N, Liu W, Wang X, Wang J, Qian Z, Zhao Y, Yuan T, Li L, Wang F, Liu C, Ma P. Genetic basis of an elite wheat cultivar Guinong 29 with harmonious improvement between multiple diseases resistance and other comprehensive traits. Sci Rep 2024; 14:14336. [PMID: 38906938 PMCID: PMC11192888 DOI: 10.1038/s41598-024-64998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/14/2024] [Indexed: 06/23/2024] Open
Abstract
Fungal diseases, such as powdery mildew and rusts, significantly affect the quality and yield of wheat. Pyramiding diverse types of resistance genes into cultivars represents the preferred strategy to combat these diseases. Moreover, achieving collaborative improvement between diseases resistance, abiotic stress, quality, and agronomic and yield traits is difficult in genetic breeding. In this study, the wheat cultivar, Guinong 29 (GN29), showed high resistance to powdery mildew and stripe rust at both seedling and adult plant stages, and was susceptible to leaf rust at the seedling stage but slow resistance at the adult-plant stage. Meanwhile, it has elite agronomic and yield traits, indicating promising coordination ability among multiple diseases resistance and other key breeding traits. To determine the genetic basis of these elite traits, GN29 was tested with 113 molecular markers for 98 genes associated with diseases resistance, stress tolerance, quality, and adaptability. The results indicated that two powdery mildew resistance (Pm) genes, Pm2 and Pm21, confirmed the outstanding resistance to powdery mildew through genetic analysis, marker detection, genomic in situ hybridization (GISH), non-denaturing fluorescence in situ hybridization (ND-FISH), and homology-based cloning; the stripe rust resistance (Yr) gene Yr26 and leaf rust resistance (Lr) genes Lr1 and Lr46 conferred the stripe rust and slow leaf rust resistance in GN29, respectively. Meanwhile, GN29 carries dwarfing genes Rht-B1b and Rht-D1a, vernalization genes vrn-A1, vrn-B1, vrn-D1, and vrn-B3, which were consistent with the phenotypic traits in dwarf characteristic and semi-winter property; carries genes Dreb1 and Ta-CRT for stress tolerance to drought, salinity, low temperature, and abscisic acid (ABA), suggesting that GN29 may also have elite stress-tolerance ability; and carries two low-molecular-weight glutenin subunit genes Glu-B3b and Glu-B3bef which contributed to high baking quality. This study not only elucidated the genetic basis of the elite traits in GN29 but also verified the capability for harmonious improvement in both multiple diseases resistance and other comprehensive traits, offering valuable information for breeding breakthrough-resistant cultivars.
Collapse
Affiliation(s)
- Bei Xiao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Key Laboratory of Crop Genetic and Breeding, Shijiazhuang, 050035, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Nina Sun
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Wei Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China
| | - Jiaojiao Wang
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Ya Zhao
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Tangyu Yuan
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Linzhi Li
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, 265500, China
| | - Fengtao Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agriculture Sciences, Jinan, 250100, China.
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, 264005, China.
| |
Collapse
|
35
|
Nishimura K, Kokaji H, Motoki K, Yamazaki A, Nagasaka K, Mori T, Takisawa R, Yasui Y, Kawai T, Ushijima K, Yamasaki M, Saito H, Nakano R, Nakazaki T. Degenerate oligonucleotide primer MIG-seq: an effective PCR-based method for high-throughput genotyping. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2296-2317. [PMID: 38459738 DOI: 10.1111/tpj.16708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/14/2024] [Accepted: 02/14/2024] [Indexed: 03/10/2024]
Abstract
Next-generation sequencing (NGS) library construction often involves using restriction enzymes to decrease genome complexity, enabling versatile polymorphism detection in plants. However, plant leaves frequently contain impurities, such as polyphenols, necessitating DNA purification before enzymatic reactions. To overcome this problem, we developed a PCR-based method for expeditious NGS library preparation, offering flexibility in number of detected polymorphisms. By substituting a segment of the simple sequence repeat sequence in the MIG-seq primer set (MIG-seq being a PCR method enabling library construction with low-quality DNA) with degenerate oligonucleotides, we introduced variability in detectable polymorphisms across various crops. This innovation, named degenerate oligonucleotide primer MIG-seq (dpMIG-seq), enabled a streamlined protocol for constructing dpMIG-seq libraries from unpurified DNA, which was implemented stably in several crop species, including fruit trees. Furthermore, dpMIG-seq facilitated efficient lineage selection in wheat and enabled linkage map construction and quantitative trait loci analysis in tomato, rice, and soybean without necessitating DNA concentration adjustments. These findings underscore the potential of the dpMIG-seq protocol for advancing genetic analyses across diverse plant species.
Collapse
Affiliation(s)
- Kazusa Nishimura
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Hiroyuki Kokaji
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Ko Motoki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Akira Yamazaki
- Faculty of Agriculture, Kindai University, 3327-204, Nakamachi, Nara City, Nara, 631-8505, Japan
| | - Kyoka Nagasaka
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Mori
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Rihito Takisawa
- Faculty of Agriculture, Ryukoku University, 1-5 Yokotani, Seta Oe-cho, Otsu City, Shiga, 520-2194, Japan
| | - Yasuo Yasui
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Takashi Kawai
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Koichiro Ushijima
- Graduate School of Environmental, Life, Natural Science and Technology, Okayama University, 1-1-1 Tsushima-naka, Kita-ku, Okayama City, 700-8530, Okayama, Japan
| | - Masanori Yamasaki
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 no-cho, Nishi-ku, Niigata City, Niigata, 950-2181, Japan
| | - Hiroki Saito
- Tropical Agriculture Research Front, Japan International Research Center for Agricultural Sciences, 1091-1 Maezato-Kawarabaru, Ishigaki, Okinawa, 907-0002, Japan
| | - Ryohei Nakano
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| | - Tetsuya Nakazaki
- Graduate School of Agriculture, Kyoto University, 4-2-1, Shiroyamadai, Kizugawa City, Kyoto, 619-0218, Japan
| |
Collapse
|
36
|
Yoshikawa GV, Boden SA. Finding the right balance: The enduring role of florigens during cereal inflorescence development and their influence on fertility. CURRENT OPINION IN PLANT BIOLOGY 2024; 79:102539. [PMID: 38599051 DOI: 10.1016/j.pbi.2024.102539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/23/2024] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Flowering is a vital process in a plant's lifecycle and variation for flowering-time has helped cereals adapt to diverse environments. Much cereal research has focused on understanding how flowering signals, or florigens, regulate the floral transition and timing of ear emergence. However, flowering genes also perform an enduring role during inflorescence development, with genotypes that elicit a weaker flowering signal producing more elaborately branched inflorescences with extra floret-bearing spikelets. While this outcome indicates that variable expression of flowering genes could boost yield potential, further analysis has shown that dampened florigen levels can compromise fertility, negating the benefit of extra grain-producing sites. Here, we discuss ways that florigens contribute to early and late inflorescence development, including their influence on branch/spikelet architecture and fertility. We propose that a deeper understanding of the role for florigens during inflorescence development could be used to balance the effects of florigens throughout flowering to improve productivity.
Collapse
Affiliation(s)
- Guilherme V Yoshikawa
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia
| | - Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA, 5064, Australia.
| |
Collapse
|
37
|
Du B, Wu J, Wang Q, Sun C, Sun G, Zhou J, Zhang L, Xiong Q, Ren X, Lu B. Genome-wide screening of meta-QTL and candidate genes controlling yield and yield-related traits in barley (Hordeum vulgare L.). PLoS One 2024; 19:e0303751. [PMID: 38768114 PMCID: PMC11104655 DOI: 10.1371/journal.pone.0303751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 04/30/2024] [Indexed: 05/22/2024] Open
Abstract
Increasing yield is an important goal of barley breeding. In this study, 54 papers published from 2001-2022 on QTL mapping for yield and yield-related traits in barley were collected, which contained 1080 QTLs mapped to the barley high-density consensus map for QTL meta-analysis. These initial QTLs were integrated into 85 meta-QTLs (MQTL) with a mean confidence interval (CI) of 2.76 cM, which was 7.86-fold narrower than the CI of the initial QTL. Among these 85 MQTLs, 68 MQTLs were validated in GWAS studies, and 25 breeder's MQTLs were screened from them. Seventeen barley orthologs of yield-related genes in rice and maize were identified within the hcMQTL region based on comparative genomics strategy and were presumed to be reliable candidates for controlling yield-related traits. The results of this study provide useful information for molecular marker-assisted breeding and candidate gene mining of yield-related traits in barley.
Collapse
Affiliation(s)
- Binbin Du
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Jia Wu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | | | - Chaoyue Sun
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| | - Genlou Sun
- Biology Department, Saint Mary’s University, Halifax, Canada
| | - Jie Zhou
- Lu’an Academy of Agricultural Science, Lu’an, China
| | - Lei Zhang
- Lu’an Academy of Agricultural Science, Lu’an, China
| | | | - Xifeng Ren
- Hubei Hongshan Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baowei Lu
- College of Biotechnology and Pharmaceutical Engineering, West Anhui University, Lu’an, China
| |
Collapse
|
38
|
Su PS, Li J, Zang D, Wang Z, Wu Y, Chi S, Sun F, Niu Y, Hua X, Yan J, Ge W. Genome-wide evolutionary analysis of TKL_CTR1-DRK-2 gene family and functional characterization reveals that TaCTR1 positively regulates flowering time in wheat. BMC Genomics 2024; 25:474. [PMID: 38745148 PMCID: PMC11092142 DOI: 10.1186/s12864-024-10383-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Flowering time has an important effect on regional adaptation and yields for crops. The tyrosine kinase-like (TKL) gene family is widely existed and participates in many biological processes in plants. Furthermore, only few TKLs have been characterized functions in controlling flowering time in wheat. RESULTS Here, we report that TaCTR1, a tyrosine kinase-like (TKL) gene, regulates flowering time in wheat. Based on identification and evolutionary analysis of TKL_CTR1-DRK-2 subfamily in 15 plants, we proposed an evolutionary model for TaCTR1, suggesting that occurrence of some exon fusion events during evolution. The overexpression of TaCTR1 caused early flowering time in transgenic lines. Transcriptomics analysis enabled identification of mass differential expression genes including plant hormone (ET, ABA, IAA, BR) signaling, flavonoid biosynthesis, phenolamides and antioxidant, and flowering-related genes in TaCTR1 overexpression transgenic lines compared with WT plants. qRT-PCR results showed that the expression levels of ethylene (ET) signal-related genes (ETR, EIN, ERF) and flowering-related genes (FT, PPD1, CO, PRR, PHY) were altered in TaCTR1-overexpressing wheat compared with WT plants. Metabonomics analysis showed that flavonoid contents were altered. CONCLUSIONS Thus, the results show that TaCTR1 plays a positive role in controlling flowering time by activating various signaling pathways and regulating flowering-related genes, and will provide new insights on the mechanisms of wheat flowering regulation.
Collapse
Affiliation(s)
- Peisen S Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China.
| | - Jingyu Li
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Dongtian Zang
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Zhiyu Wang
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Yangyang Wu
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Shatong Chi
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Fanting Sun
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Yufei Niu
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Xuewen Hua
- College of Agronomy, Liaocheng University, Liaocheng, 252059, P.R. China
| | - Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, P.R. China.
| | - Wenyang Ge
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, P.R. China.
| |
Collapse
|
39
|
Zhang L, Zhou H, Fu X, Zhou N, Liu M, Bai S, Zhao X, Cheng R, Li S, Zhang D. Identification and map-based cloning of an EMS-induced mutation in wheat gene TaSP1 related to spike architecture. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:119. [PMID: 38709271 DOI: 10.1007/s00122-024-04621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
KEY MESSAGE A candidate gene TaSP1 related to spike shape was cloned, and the gene-specific marker was developed to efficiently track the superior haplotype in common wheat. Spike shape, an important factor that affects wheat grain yield, is mainly defined by spike length (SPL), spikelet number (SPN), and compactness. Zhoumai32 mutant 1160 (ZM1160), a mutant obtained from ethyl methane sulfonate (EMS) treatment of hexaploid wheat variety Zhoumai32, was used to identify and clone the candidate gene that conditioned the spike shape. Genetic analysis of an F2 population derived from a cross of ZM1160 and Bainong207 suggested that the compact spike shape in ZM1160 was controlled by a single recessive gene, and therefore, the mutated gene was designated as Tasp1. With polymorphic markers identified through bulked segregant analysis (BSA), the gene was mapped to a 2.65-cM interval flanked by markers YZU0852 and MIS46239 on chromosome 7D, corresponding to a 0.42-Mb physical interval of Chinese spring (CS) reference sequences (RefSeq v1.0). To fine map TaSP1, 15 and seven recombinants were, respectively, screened from 1599 and 1903 F3 plants derived from the heterozygous F2 plants. Finally, TaSP1 was delimited to a 21.9 Kb (4,870,562 to 4,892,493 bp) Xmis48123-Xmis48104 interval. Only one high-confidence gene TraesCS7D02G010200 was annotated in this region, which encodes an unknown protein with a putative vWA domain. Quantitative reverse transcription PCR (qRT-PCR) analysis showed that TraesCS7D02G010200 was mainly expressed in the spike. Haplotype analysis of 655 wheat cultivars using the candidate gene-specific marker Xg010200p2 identified a superior haplotype TaSP1b with longer spike and more spikelet number. TaSP1 is beneficial to the improvement in wheat spike shape.
Collapse
Affiliation(s)
- Lin Zhang
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Huidan Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475001, Henan, China
| | - Xian Fu
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Niuniu Zhou
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Mengjie Liu
- School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475001, Henan, China
| | - Xinpeng Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475001, Henan, China
| | - Ruiru Cheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475001, Henan, China.
| | - Suoping Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475001, Henan, China.
| | - Dale Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, 475001, Henan, China.
- The Zhongzhou Laboratory for Integrative Biology, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
40
|
Mascher M, Marone MP, Schreiber M, Stein N. Are cereal grasses a single genetic system? NATURE PLANTS 2024; 10:719-731. [PMID: 38605239 PMCID: PMC7616769 DOI: 10.1038/s41477-024-01674-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 03/17/2024] [Indexed: 04/13/2024]
Abstract
In 1993, a passionate and provocative call to arms urged cereal researchers to consider the taxon they study as a single genetic system and collaborate with each other. Since then, that group of scientists has seen their discipline blossom. In an attempt to understand what unity of genetic systems means and how the notion was borne out by later research, we survey the progress and prospects of cereal genomics: sequence assemblies, population-scale sequencing, resistance gene cloning and domestication genetics. Gene order may not be as extraordinarily well conserved in the grasses as once thought. Still, several recurring themes have emerged. The same ancestral molecular pathways defining plant architecture have been co-opted in the evolution of different cereal crops. Such genetic convergence as much as cross-fertilization of ideas between cereal geneticists has led to a rich harvest of genes that, it is hoped, will lead to improved varieties.
Collapse
Affiliation(s)
- Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.
| | - Marina Püpke Marone
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
| | - Mona Schreiber
- University of Marburg, Department of Biology, Marburg, Germany
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany.
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany.
| |
Collapse
|
41
|
Li Y, Jin L, Liu X, He C, Bi S, Saeed S, Yan W. Epigenetic control on transcription of vernalization genes and whole-genome gene expression profile induced by vernalization in common wheat. PLANT DIVERSITY 2024; 46:386-394. [PMID: 38798730 PMCID: PMC11119517 DOI: 10.1016/j.pld.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/10/2024] [Accepted: 02/27/2024] [Indexed: 05/29/2024]
Abstract
Vernalization is necessary for winter wheat to flower. However, it is unclear whether vernalization is also required for spring wheat, which is frequently sown in fall, and what molecular mechanisms underlie the vernalization response in wheat varieties. In this study, we examined the molecular mechanisms that regulate vernalization response in winter and spring wheat varieties. For this purpose, we determined how major vernalization genes (VRN1, VRN2, and VRN3) respond to vernalization in these varieties and whether modifications to histones play a role in changes in gene expression. We also identified genes that are differentially regulated in response to vernalization in winter and spring wheat varieties. We found that in winter wheat, but not in spring wheat, VRN1 expression decreases when returned to warm temperature following vernalization. This finding may be associated with differences between spring and winter wheat in the levels of tri-methylation of lysine 27 on histone H3 (H3K27me3) and tri-methylation of lysine 4 on histone H3 (H3K4me3) at the VRN1 gene. Analysis of winter wheat transcriptomes before and after vernalization revealed that vernalization influences the expression of several genes, including those involved in leucine catabolism, cysteine biosynthesis, and flavonoid biosynthesis. These findings provide new candidates for further study on the mechanism of vernalization regulation in wheat.
Collapse
Affiliation(s)
- Yunzhen Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Liujie Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinyu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao He
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Siteng Bi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Sulaiman Saeed
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenhao Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Maple R, Zhu P, Hepworth J, Wang JW, Dean C. Flowering time: From physiology, through genetics to mechanism. PLANT PHYSIOLOGY 2024; 195:190-212. [PMID: 38417841 PMCID: PMC11060688 DOI: 10.1093/plphys/kiae109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/12/2024] [Accepted: 02/12/2024] [Indexed: 03/01/2024]
Abstract
Plant species have evolved different requirements for environmental/endogenous cues to induce flowering. Originally, these varying requirements were thought to reflect the action of different molecular mechanisms. Thinking changed when genetic and molecular analysis in Arabidopsis thaliana revealed that a network of environmental and endogenous signaling input pathways converge to regulate a common set of "floral pathway integrators." Variation in the predominance of the different input pathways within a network can generate the diversity of requirements observed in different species. Many genes identified by flowering time mutants were found to encode general developmental and gene regulators, with their targets having a specific flowering function. Studies of natural variation in flowering were more successful at identifying genes acting as nodes in the network central to adaptation and domestication. Attention has now turned to mechanistic dissection of flowering time gene function and how that has changed during adaptation. This will inform breeding strategies for climate-proof crops and help define which genes act as critical flowering nodes in many other species.
Collapse
Affiliation(s)
- Robert Maple
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Pan Zhu
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Jo Hepworth
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics (NKLPMG), CAS Center for Excellence in Molecular Plant Sciences (CEMPS), Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai 200032, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China
- New Cornerstone Science Laboratory, Shanghai 200032, China
| | - Caroline Dean
- Department of Cell and Developmental Biology, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| |
Collapse
|
43
|
Wang H, Wang W, Xie Z, Yang Y, Dai H, Shi F, Ma L, Sui Z, Xia C, Kong X, Zhang L. Overexpression of rice OsNRT1.1A/OsNPF6.3 enhanced the nitrogen use efficiency of wheat under low nitrogen conditions. PLANTA 2024; 259:127. [PMID: 38637411 DOI: 10.1007/s00425-024-04408-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/04/2024] [Indexed: 04/20/2024]
Abstract
MAIN CONCLUSION Overexpression of OsNRT1.1A promotes early heading and increases the tolerance in wheat under nitrogen deficiency conditions. The application of inorganic nitrogen (N) fertilizers is a major driving force for crop yield improvement. However, the overuse of fertilizers significantly raises production costs and leads to environmental problems, making it critical to enhance crop nitrogen use efficiency (NUE) for the sake of sustainable agriculture. In this study, we created a series of transgenic wheat lines carrying the rice OsNRT1.1A gene, which encodes a nitrate transporter, to investigate its possible application in improving NUE in wheat. The transgenic wheat exhibited traits such as early maturation that were highly consistent with the overexpression of OsNRT1.1A in Arabidopsis and rice. However, we also observed that overexpression of the OsNRT1.1A gene in wheat can facilitate the growth of roots under low N conditions but has no effect on other aspects of growth and development under normal N conditions. Thus, it may lead to the improvement of wheat low N tolerance,which is different from the effects reported in other plants. A field trial analysis showed that transgenic wheat exhibited increased grain yield per plant under low N conditions. Moreover, transcriptome analysis indicated that OsNRT1.1A increased the expression levels of N uptake and utilization genes in wheat, thereby promoting plant growth under low N conditions. Taken together, our results indicated that OsNRT1.1A plays an important role in improving NUE in wheat with low N availability.
Collapse
Affiliation(s)
- Huanhuan Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Wei Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Zhencheng Xie
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuxin Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongyong Dai
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Shi
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Liang Ma
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Zhifeng Sui
- Laboratory of Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050000, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
44
|
Cosenza F, Shrestha A, Van Inghelandt D, Casale FA, Wu PY, Weisweiler M, Li J, Wespel F, Stich B. Genetic mapping reveals new loci and alleles for flowering time and plant height using the double round-robin population of barley. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2385-2402. [PMID: 38330219 PMCID: PMC11016846 DOI: 10.1093/jxb/erae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 02/07/2024] [Indexed: 02/10/2024]
Abstract
Flowering time and plant height are two critical determinants of yield potential in barley (Hordeum vulgare). Despite their role in plant physiological regulation, a complete overview of the genetic complexity of flowering time and plant height regulation in barley is still lacking. Using a double round-robin population originated from the crossings of 23 diverse parental inbred lines, we aimed to determine the variance components in the regulation of flowering time and plant height in barley as well as to identify new genetic variants by single and multi-population QTL analyses and allele mining. Despite similar genotypic variance, we observed higher environmental variance components for plant height than flowering time. Furthermore, we detected new QTLs for flowering time and plant height. Finally, we identified a new functional allelic variant of the main regulatory gene Ppd-H1. Our results show that the genetic architecture of flowering time and plant height might be more complex than reported earlier and that a number of undetected, small effect, or low-frequency genetic variants underlie the control of these two traits.
Collapse
Affiliation(s)
- Francesco Cosenza
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Asis Shrestha
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Delphine Van Inghelandt
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Federico A Casale
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Po-Ya Wu
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Marius Weisweiler
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Jinquan Li
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
| | - Franziska Wespel
- Saatzucht Josef Breun GmbH Co. KG, Amselweg 1, 91074 Herzogenaurach, Germany
| | - Benjamin Stich
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University, 40225 Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829 Köln, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
45
|
Wu L, Li G, Li D, Dong C, Zhang X, Zhang L, Yang Z, Kong X, Xia C, Chen J, Liu X. Identification and functional analysis of a chromosome 2D fragment harboring TaFPF1 gene with the potential for yield improvement using a late heading wheat mutant. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:92. [PMID: 38568320 DOI: 10.1007/s00122-024-04593-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 03/05/2024] [Indexed: 04/05/2024]
Abstract
KEY MESSAGE A chromosome fragment influencing wheat heading and grain size was identified using mapping of m406 mutant. The study of TaFPF1 in this fragment provides more insights into wheat yield improvement. In recent years, wheat production has faced formidable challenges driven by rapid population growth and climate change, emphasizing the importance of improving specific agronomic traits such as heading date, spike length, and grain size. To identify potential genes for improving these traits, we screened a wheat EMS mutant library and identified a mutant, designated m406, which exhibited a significantly delayed heading date compared to the wild-type. Intriguingly, the mutant also displayed significantly longer spike and larger grain size. Genetic analysis revealed that a single recessive gene was responsible for the delayed heading. Surprisingly, a large 46.58 Mb deletion at the terminal region of chromosome arm 2DS in the mutant was identified through fine mapping and fluorescence in situ hybridization. Thus, the phenotypes of the mutant m406 are controlled by a group of linked genes. This deletion encompassed 917 annotated high-confidence genes, including the previously studied wheat genes Ppd1 and TaDA1, which could affect heading date and grain size. Multiple genes in this region probably contribute to the phenotypes of m406. We further investigated the function of TaFPF1 using gene editing. TaFPF1 knockout mutants showed delayed heading and increased grain size. Moreover, we identified the direct upstream gene of TaFPF1 and investigated its relationship with other important flowering genes. Our study not only identified more genes affecting heading and grain development within this deleted region but also highlighted the potential of combining these genes for improvement of wheat traits.
Collapse
Affiliation(s)
- Lifen Wu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangrong Li
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, Sichuan, China
| | - Danping Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chunhao Dong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xueying Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lichao Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic and Technology of China, Chengdu, 611731, Sichuan, China
| | - Xiuying Kong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Chuan Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jingtang Chen
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
| | - Xu Liu
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Sub-Center for National Maize Improvement Center, College of Agronomy, Hebei Agricultural University, Baoding, 071001, Hebei, China.
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
46
|
Li C, Lin H, Debernardi JM, Zhang C, Dubcovsky J. GIGANTEA accelerates wheat heading time through gene interactions converging on FLOWERING LOCUS T1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:519-533. [PMID: 38184778 DOI: 10.1111/tpj.16622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/08/2024]
Abstract
Precise regulation of flowering time is critical for cereal crops to synchronize reproductive development with optimum environmental conditions, thereby maximizing grain yield. The plant-specific gene GIGANTEA (GI) plays an important role in the control of flowering time, with additional functions on the circadian clock and plant stress responses. In this study, we show that GI loss-of-function mutants in a photoperiod-sensitive tetraploid wheat background exhibit significant delays in heading time under both long-day (LD) and short-day photoperiods, with stronger effects under LD. However, this interaction between GI and photoperiod is no longer observed in isogenic lines carrying either a photoperiod-insensitive allele in the PHOTOPERIOD1 (PPD1) gene or a loss-of-function allele in EARLY FLOWERING 3 (ELF3), a known repressor of PPD1. These results suggest that the normal circadian regulation of PPD1 is required for the differential effect of GI on heading time in different photoperiods. Using crosses between mutant or transgenic plants of GI and those of critical genes in the flowering regulation pathway, we show that GI accelerates wheat heading time by promoting FLOWERING LOCUS T1 (FT1) expression via interactions with ELF3, VERNALIZATION 2 (VRN2), CONSTANS (CO), and the age-dependent microRNA172-APETALA2 (AP2) pathway, at both transcriptional and protein levels. Our study reveals conserved GI mechanisms between wheat and Arabidopsis but also identifies specific interactions of GI with the distinctive photoperiod and vernalization pathways of the temperate grasses. These results provide valuable knowledge for modulating wheat heading time and engineering new varieties better adapted to a changing environment.
Collapse
Affiliation(s)
- Chengxia Li
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Huiqiong Lin
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Juan M Debernardi
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Chaozhong Zhang
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California, 95616, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, 20815, USA
| |
Collapse
|
47
|
He Y, Xiong W, Hu P, Huang D, Feurtado JA, Zhang T, Hao C, DePauw R, Zheng B, Hoogenboom G, Dixon LE, Wang H, Challinor AJ. Climate change enhances stability of wheat-flowering-date. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170305. [PMID: 38278227 DOI: 10.1016/j.scitotenv.2024.170305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/05/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024]
Abstract
The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.
Collapse
Affiliation(s)
- Yong He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Wei Xiong
- Sustainable Agrifood System, International Maize and Wheat Improvement Center, Texcoco 56237, Mexico.
| | - Pengcheng Hu
- Agriculture and Food, CSIRO, GPO Box 1700, Canberra ACT 2601, ACT, Australia; School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, Queensland 4072, Australia.
| | - Daiqing Huang
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - J Allan Feurtado
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| | - Tianyi Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China.
| | - Chenyang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Ron DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, Alberta T3H 1P3, Canada
| | - Bangyou Zheng
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, Queensland Biosciences Precinct, St Lucia, Queensland 4067, Australia.
| | - Gerrit Hoogenboom
- Agricultural and Biological Engineering Department, University of Florida, Gainesville, FL 110570, USA.
| | - Laura E Dixon
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | - Hong Wang
- HW Eco Research Group, Fleetwood Postal Outlet, Surrey V4N 9E9, Canada
| | - Andrew Juan Challinor
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
48
|
Kim JH, Kim MS, Seo YW. Overexpression of a TaATL1 encoding RING-type E3 ligase negatively regulates cell division and flowering time in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111966. [PMID: 38151074 DOI: 10.1016/j.plantsci.2023.111966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 12/29/2023]
Abstract
The transition of food crops from the vegetative to reproductive stages is an important process that affects the final yield. Despite extensive characterization of E3 ligases in model plants, their roles in wheat development remain unknown. In this study, we elucidated the molecular function of wheat TaATL1 (Arabidopsis thaliana Toxicos EN Levadura), which acts as a negative regulator of flowering time and cell division. TaATL1 amino acid residues contain a RING domain and exist mainly in a beta-turn form. The expression level of TaATL1 was highly reduced during the transition from vegetative to reproductive stages. TaATL1 is localized in the nucleus and exhibits E3 ligase activity. Transgenic Arabidopsis plants, in which the TaATL1 gene is constitutively overexpressed under the control of the cauliflower mosaic virus 35 S promoter, exhibited regulation of cell numbers, thereby influencing both leaf and root growth. Moreover, TaATL1 overexpression plants showed a late-flowering phenotype compared to wild-type (WT) plants. Following transcriptome analysis, it was discovered that 1661 and 901 differentially expressed genes were down- or up- regulated, respectively, in seedling stages between WT and TaATL1 overexpression. TaATL1 transcripts are involved in cell division, flowering, and signaling. Overall, our findings demonstrated that the regulatory mechanism of wheat TaATL1 gene plays a significant role in cell division-mediated flowering in Arabidopsis.
Collapse
Affiliation(s)
- Jae Ho Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Animal Molecular Biotechnology, Korea University, Seoul, Republic of Korea
| | - Moon Seok Kim
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Institute of Life Science and Natural Resources, Korea University, Seoul, Republic of Korea
| | - Yong Weon Seo
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea; Ojeong Plant Breeding Research Center, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
49
|
Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z, Xia X, Yan L, Cao S. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:635-649. [PMID: 37938892 PMCID: PMC10893938 DOI: 10.1111/pbi.14211] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2023] [Accepted: 10/12/2023] [Indexed: 11/10/2023]
Abstract
Wheat needs different durations of vernalization, which accelerates flowering by exposure to cold temperature, to ensure reproductive development at the optimum time, as that is critical for adaptability and high yield. TaVRN1 is the central flowering regulator in the vernalization pathway and encodes a MADS-box transcription factor (TF) that usually works by forming hetero- or homo-dimers. We previously identified that TaVRN1 bound to an MADS-box TF TaSOC1 whose orthologues are flowering activators in other plants. The specific function of TaSOC1 and the biological implication of its interaction with TaVRN1 remained unknown. Here, we demonstrated that TaSOC1 was a flowering repressor in the vernalization and photoperiod pathways by overexpression and knockout assays. We confirmed the physical interaction between TaSOC1 and TaVRN1 in wheat protoplasts and in planta, and further validated their genetic interplay. A Flowering Promoting Factor 1-like gene TaFPF1-2B was identified as a common downstream target of TaSOC1 and TaVRN1 through transcriptome and chromatin immunoprecipitation analyses. TaSOC1 competed with TaVRT2, another MADS-box flowering regulator, to bind to TaVRN1; their coding genes synergistically control TaFPF1-2B expression and flowering initiation in response to photoperiod and low temperature. We identified major haplotypes of TaSOC1 and found that TaSOC1-Hap1 conferred earlier flowering than TaSOC1-Hap2 and had been subjected to positive selection in wheat breeding. We also revealed that wheat SOC1 family members were important domestication loci and expanded by tandem and segmental duplication events. These findings offer new insights into the regulatory mechanism underlying flowering control along with useful genetic resources for wheat improvement.
Collapse
Affiliation(s)
- Xumei Luo
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Bingyan Liu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Li Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Ke Wang
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Dengan Xu
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xiuling Tian
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lina Xie
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Lingli Li
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xingguo Ye
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Zhonghu He
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Xianchun Xia
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| | - Liuling Yan
- Department of Plant and Soil SciencesOklahoma State UniversityStillwaterOKUSA
| | - Shuanghe Cao
- Institute of Crop SciencesChinese Academy of Agricultural Sciences (CAAS)BeijingChina
| |
Collapse
|
50
|
Afshari-Behbahanizadeh S, Puglisi D, Esposito S, De Vita P. Allelic Variations in Vernalization ( Vrn) Genes in Triticum spp. Genes (Basel) 2024; 15:251. [PMID: 38397240 PMCID: PMC10887697 DOI: 10.3390/genes15020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Rapid climate changes, with higher warming rates during winter and spring seasons, dramatically affect the vernalization requirements, one of the most critical processes for the induction of wheat reproductive growth, with severe consequences on flowering time, grain filling, and grain yield. Specifically, the Vrn genes play a major role in the transition from vegetative to reproductive growth in wheat. Recent advances in wheat genomics have significantly improved the understanding of the molecular mechanisms of Vrn genes (Vrn-1, Vrn-2, Vrn-3, and Vrn-4), unveiling a diverse array of natural allelic variations. In this review, we have examined the current knowledge of Vrn genes from a functional and structural point of view, considering the studies conducted on Vrn alleles at different ploidy levels (diploid, tetraploid, and hexaploid). The molecular characterization of Vrn-1 alleles has been a focal point, revealing a diverse array of allelic forms with implications for flowering time. We have highlighted the structural complexity of the different allelic forms and the problems linked to the different nomenclature of some Vrn alleles. Addressing these issues will be crucial for harmonizing research efforts and enhancing our understanding of Vrn gene function and evolution. The increasing availability of genome and transcriptome sequences, along with the improvements in bioinformatics and computational biology, offers a versatile range of possibilities for enriching genomic regions surrounding the target sites of Vrn genes, paving the way for innovative approaches to manipulate flowering time and improve wheat productivity.
Collapse
Affiliation(s)
- Sanaz Afshari-Behbahanizadeh
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- Department of Agriculture, Food, Natural Science, Engineering, University of Foggia, Via Napoli 25, 71122 Foggia, Italy
| | - Damiano Puglisi
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| | - Salvatore Esposito
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
- National Research Council of Italy, Institute of Biosciences and BioResources, Research Division Portici (CNR-IBBR), 80055 Portici, Italy
| | - Pasquale De Vita
- Research Centre for Cereal and Industrial Crops (CREA-CI), CREA—Council for Agricultural Research and Economics, SS 673 Meters 25 200, 71122 Foggia, Italy; (S.A.-B.); (D.P.)
| |
Collapse
|