1
|
Yoo J, Kim Y, Back JH, Shin J, Bae PK, Park KM, Kim M, Seo YH, Bak Y, Heo YH, Heo J, Choi H, Kim Y, Lee S, Lee JE, Jeong S, Yang JK, Kim S. Surface-engineered nanobeads for regioselective antibody binding: A robust immunoassay platform leveraging catalytic signal amplification. Biosens Bioelectron 2025; 281:117463. [PMID: 40228457 DOI: 10.1016/j.bios.2025.117463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/03/2025] [Accepted: 04/07/2025] [Indexed: 04/16/2025]
Abstract
Regulating protein interactions and protein corona formation of nanomaterials is crucial for advancing nanomedicine, where surface engineering of nanomaterials plays a pivotal role in precise control over biological interactions. Here, we present a surface-engineered nanoparticle-based immunoassay platform using carboxyl-enriched polystyrene nanobeads (CEPS) with regioselectively controlled antibody-binding properties. Proteomic analysis and theoretical simulation revealed that CEPS has an enhanced Fc-specific binding affinity for immunoglobulins compared to conventional carboxylated polystyrene beads, with a higher surface carboxyl density critically mediating protein interactions. This regioselective antibody binding with unique Fc-specific affinity eliminates the need for complex surface modifications, streamlining the assay process and broadening the applicability across various immunoassay formats. Additionally, incorporating a palladium catalyst within CEPS enables solvent-triggered on-demand catalytic signal amplification using a leucodye substrate, providing a more stable alternative to enzyme-based methods while significantly enhancing detection sensitivity and stability. The platform demonstrated enhanced performance in detecting clinically relevant biomarkers, including C-reactive protein, interferon-gamma, and the receptor-binding domain of SARS-CoV2, achieving lower detection limits and faster response times compared to conventional enzyme-based ELISA systems. Notably, the CEPS-based assay retained catalytic activity for over 140 days at room temperature, underscoring its potential for reliable, long-term use in diverse diagnostic applications.
Collapse
Affiliation(s)
- Jounghyun Yoo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Youngsun Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Hyun Back
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jawon Shin
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Pan Kee Bae
- HGUARD Inc., Daejeon, 34054, Republic of Korea
| | - Kyung Mi Park
- BioNano Health Guard Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
| | - Myung Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Young Hun Seo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Biosensor Group, Korea Institute of Science and Technology Europe, Campus E7.1, Saarbrücken, 66123, Germany
| | - Yecheol Bak
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Yoon Ho Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeongyun Heo
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Honghwan Choi
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yongju Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sangyoup Lee
- Bionic Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
| | - Ji Eun Lee
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea.
| | - Sohdam Jeong
- Department of Chemical Engineering, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Jin-Kyoung Yang
- Department of Chemical Engineering, Dong-Eui University, Busan, 47340, Republic of Korea.
| | - Sehoon Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Cui X, Zhong Z, Xu S, Pan Y, Wang X, Zhang L, He A, Ye X, Cao H, Zhang W, Tian R. Ion exchange- and enrichment-based technology applied to large-scale plasma proteomic analysis of breast cancer neoadjuvant chemotherapy. J Chromatogr A 2025; 1750:465914. [PMID: 40188783 DOI: 10.1016/j.chroma.2025.465914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/24/2025]
Abstract
Mass spectrometry (MS) based proteomics provides unbiased quantification of all proteins in plasma, which can dynamically reflect individual health states in real time. However, large-scale proteomics studies are constrained by the excessive dynamic range of plasma proteome and low throughput. Herein, two kinds of magnetic metal-organic frameworks (MOFs) modified with ion exchange functional groups (denoted as MHP-UiO-66-SAX and MHP-HKUST-1-SCX) were designed and fabricated to exhibit large protein adsorption capability, which were combined with an automated Liquid-handling System, thus realizing in-depth, high-throughput and automated proteomics studies. The constructed workflow could automatically complete the sample preparation before MS within only six hours and nearly a thousand protein groups per sample could be quantified. In the cohort study of nearly one hundred breast cancer neoadjuvant chemotherapy (NC) plasma samples, two differentially expressed proteins previously reported as biomarkers were related with the pathological complete response (PCR) of the breast cancer, demonstrating the feasibility of the developed technology for preparing large-scale clinical samples and exhibiting the potential application in monitoring the effect of chemotherapy.
Collapse
Affiliation(s)
- Xiaozhen Cui
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhihua Zhong
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China; School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Sen Xu
- Shanghai Research Institute of Chemical Industry, Shanghai 200062, China; Department of Clinical Laboratory, Zhongshan Hospital, Fudan University, Shanghai 200032,China
| | - Yini Pan
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China; School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xi Wang
- The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Luobin Zhang
- The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - An He
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xueting Ye
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China; The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China
| | - Hua Cao
- The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People's Hospital, Shenzhen 518020, China.
| | - Weibing Zhang
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Ruijun Tian
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
3
|
Song Z, Chen H, Xu W, Zong X, Wang X, Ji Y, Gong J, Pang M, Fung SY, Yang H, Yu Y. The hexapeptide functionalized gold nanoparticles protect against sepsis-associated encephalopathy by forming specific protein corona and regulating macrophage activation. Mater Today Bio 2025; 32:101704. [PMID: 40236814 PMCID: PMC11997411 DOI: 10.1016/j.mtbio.2025.101704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/07/2025] [Accepted: 03/23/2025] [Indexed: 04/17/2025] Open
Abstract
Sepsis-induced systemic inflammatory responses can often lead to brain dysfunction with impaired cognitive function and mobility, known as sepsis-associated encephalopathy (SAE). Currently, there are no effective pharmacological therapeutics to treat SAE. Herein, we demonstrated the hexapeptide functionalized gold nanoparticles P12 that reduced SAE in septic mice with a dual mechanism to down-regulate systemic inflammation. We found that intraperitoneally administered P12 could target macrophages and regulate their inflammatory responses to decrease systemic inflammation and improve mice's cognitive function and mobility with SAE. Depleting peritoneal macrophages diminished the neuroprotective effects of P12 in SAE mice, suggesting macrophages as the effector cells for the neuroprotection by P12. In addition, the proteomic analysis revealed that P12 was capable of sequestering specific circulating inflammatory proteins in the blood of septic mice by forming a protein corona, contributing to the suppression of systemic inflammation. We also found that the local administration of P12 directly to the brain parenchyma effectively inhibited microglia activation and neuroinflammation in mice with SAE. This study provides an insightful understanding of the function and mechanisms of action of P12 in regulating sepsis-associated systemic inflammation and presents a new drug-free nanotherapeutic approach to treat SAE.
Collapse
Affiliation(s)
- Zichen Song
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| | - Hongguang Chen
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| | - Wenfei Xu
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaoye Zong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Xiaoyu Wang
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yuting Ji
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Jiameng Gong
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Mimi Pang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Shan-Yu Fung
- Department of Immunology and Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Hong Yang
- Department of Pharmacology and Tianjin Key Laboratory of Inflammation Biology, The Province and Ministry Co-Sponsored Collaborative Innovation Center for Medical Epigenetics, School of Basic Medical Sciences, Tianjin Medical University, No. 22 Qixiangtai Road, Heping District, Tianjin 300070, China
| | - Yonghao Yu
- Department of Anesthesia, Tianjin Institute of Anesthesiology, Tianjin Medical University General Hospital, NO. 154 Anshan Road, Tianjin 300052, China
| |
Collapse
|
4
|
Geppner L, Hellner J, Henjakovic M. Effects of micro- and nanoplastics on blood cells in vitro and cardiovascular parameters in vivo, considering their presence in the human bloodstream and potential impact on blood pressure. ENVIRONMENTAL RESEARCH 2025; 273:121254. [PMID: 40024503 DOI: 10.1016/j.envres.2025.121254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The adverse effects of plastics on the environment, wildlife, and human health have been extensively studied, yet their production remains unavoidable due to the lack of viable alternatives. Environmental fragmentation of larger plastic particles generates microplastics (MPs, 0.1-5000 μm) and nanoplastics (NPs, 1-100 nm), which can enter the bloodstream through inhalation or ingestion. This review examines whether MPs and NPs influence blood pressure. To address this question, relevant studies were analyzed based on predefined criteria. Due to anatomical barriers and microcirculatory dynamics, only NPs and small MPs are expected to enter the bloodstream under physiological conditions, although pathological states may alter this. In vitro research indicates that MPs and NPs negatively affect erythrocytes and endothelial cells, while rodent models suggest potential cardiovascular effects. Plastic particles and fibers have been detected in human blood, thrombi, atherosclerotic plaques, and various tissues. However, validated data on plastic particle-related blood pressure changes remain lacking. Despite limitations in their applicability to human physiology, preclinical models suggest that MPs and NPs circulate in the bloodstream, interact with blood cells, and contribute to vascular damage. Mechanisms such as endothelial injury, platelet activation, inflammation, and MPs/NPs accumulation in atherosclerotic plaques may contribute to blood pressure elevation but are unlikely to be the exclusive cause of hypertension. Further research is needed to clarify the role of plastic particles in blood pressure regulation. Standardized detection methods, real-world scenario-related models, and targeted human studies are essential to assessing cardiovascular risks associated with MP and NP exposure.
Collapse
Affiliation(s)
- Liesa Geppner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria; Vienna Doctoral School of Ecology and Evolution (VDSEE), University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Julius Hellner
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria
| | - Maja Henjakovic
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, Steiner Landstraße 124, 3500, Krems an der Donau, Austria.
| |
Collapse
|
5
|
Jacinto C, Javed Y, Lavorato G, Tarraga WA, Conde BIC, Orozco JM, Picco AS, Garcia J, Dias CSB, Malik S, Sharma SK. Biotransformation and biological fate of magnetic iron oxide nanoparticles for biomedical research and clinical applications. NANOSCALE ADVANCES 2025; 7:2818-2886. [PMID: 40255989 PMCID: PMC12004083 DOI: 10.1039/d5na00195a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Accepted: 03/15/2025] [Indexed: 04/22/2025]
Abstract
Safe implementation of nanotechnology-based products in biomedical applications necessitates an extensive understanding of the (bio)transformations that nanoparticles undergo in living organisms. The long-term fate in the body is a crucial consideration because it governs potential risks for human health. To accurately predict the life cycle of nanoparticles, their fate after administration into the body-including their (bio)transformations, persistence, and biodegradation-needs to be thoroughly evaluated. Magnetic iron oxide nanoparticles (MIONPs) can enter the body through various routes, including inhalation, ingestion, dermal absorption, and injection. Microscale and nanoscale studies are performed to observe nanomaterial biotransformations and their effect on clinically relevant properties. Researchers are utilizing high-resolution TEM for nanoscale monitoring of the nanoparticles while microscale follow-up approaches comprise quantification tools at the whole organism level and the molecular level. Nanoparticle-cell interactions, including cellular uptake and intracellular trafficking, are key to understanding nanoparticle accumulation in cells and organs. Prolonged accumulation may induce cell stress and nanoparticle toxicity, often mediated through oxidative stress and inflammation. In this review article, the journey of nanoparticles in the body is depicted and their biotransformations and final fate are discussed. Immunohistochemical techniques are particularly valuable in tracking nanoparticle distribution within tissues and assessing their impact at the cellular level. A thorough description of a wide range of characterization techniques is provided to unveil the fate and biotransformations of clinically relevant nanoparticles and to assist in their design for successful biomedical applications.
Collapse
Affiliation(s)
- Carlos Jacinto
- Nano-Photonics and Imaging Group, Institute of Physics, Universidade Federal de Alagoas 57072-900 Maceió AL Brazil
| | - Yasir Javed
- Department of Physics, University of Agriculture Faisalabad Pakistan
| | - Gabriel Lavorato
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Wilson A Tarraga
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | | | - Juan Manuel Orozco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), Faculdad de Ciencias Exactas, Universidad Nacional de La Plata - CONICET Diagonal 113 y 64 1900 La Plata Argentina
| | - Joel Garcia
- Department of Chemistry, De La Salle University Manila Philippines
| | - Carlos Sato Baraldi Dias
- Institute for Photon Science and Synchrotron Radiation (IPS), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 Eggenstein-Leopoldshafen 76344 Germany
| | - Sonia Malik
- Physiology, Ecology & Environmental Laboratory (P2e), University of Orléans 45067 France
- Department of Biotechnology, Baba Farid College Bathinda 151001 India
| | - Surender Kumar Sharma
- Department of Physics, Central University of Punjab Bathinda 151401 India
- Department of Physics, Federal University of Maranhão São Luís 65080-805 Brazil
| |
Collapse
|
6
|
Gomez NA, Blumel D, Dueñas D, Young B, Hazel M, Yu M. Influence of experimental conditions on the adsorption of disease biomarker proteins to InP/ZnS quantum dots. Anal Biochem 2025:115903. [PMID: 40368225 DOI: 10.1016/j.ab.2025.115903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 04/25/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
The spontaneous formation of quantum dot (QD)-protein assemblies in the physiological environment exhibits challenges or benefits for nanomedicine applications. In this study, we investigated the QD-protein assemblies spontaneously formed with the greener water soluble InP/ZnS-COOH QDs and isolated disease biomarker proteins under various environmental conditions, including QDs size, solution pH, incubation time, ionic strength, different salts, as well as the lowest concentrations of the proteins that started the formation of detectable assemblies. It was shown that higher ionic strength or valence charge disrupted the assembly's formation. The basic pH 8.5 facilitated the formation to a greater extent than the pH 7.4 did. The heat shock protein 90-alpha (HSP90α) adsorbed on QDs surface more readily than cytochrome C (CytoC) and lysozyme (Lyz) in the basic environment. Among the three-sized QDs compared, the medium-sized QDs were the most effective in promoting the assemblies' formation. The detectable assemblies started at as low as 0.4 ng/mL of CytoC, 1.0 ng/mL of HSP90α, or 1.8 ng/mL of Lyz, respectively. The findings add insights into how the biomarker proteins interacted with the QDs under different environmental conditions, which promotes the understanding of QD-protein assemblies' collaborative behaviors when they facilitate bioimaging and biomedicine applications.
Collapse
Affiliation(s)
- Nathaniel A Gomez
- Department of Chemistry, Utah Valley University, Orem, Utah, USA 84058
| | - Daniel Blumel
- Department of Chemistry, Utah Valley University, Orem, Utah, USA 84058
| | - Davies Dueñas
- Department of Chemistry, Utah Valley University, Orem, Utah, USA 84058
| | - Bronson Young
- Department of Chemistry, Utah Valley University, Orem, Utah, USA 84058
| | - Matt Hazel
- Department of Chemistry, Utah Valley University, Orem, Utah, USA 84058
| | - Ming Yu
- Department of Chemistry, Utah Valley University, Orem, Utah, USA 84058.
| |
Collapse
|
7
|
Fu J, Chen Y, Wang S. Protein corona as a mediator in antibiotic adsorption onto microplastics: Mechanisms and implications. Int J Biol Macromol 2025; 311:143982. [PMID: 40334886 DOI: 10.1016/j.ijbiomac.2025.143982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/23/2025] [Accepted: 05/05/2025] [Indexed: 05/09/2025]
Abstract
Microplastics are emerging pollutants capable of adsorbing antibiotics in the environment through interactions mediated by biological molecules such as proteins, ultimately posing risks to human health. However, direct evidence demonstrating that microplastics and antibiotics form chemical-adsorption products has not been explored. One key mechanism contributing to their co-exposure risks during their transmission is biofilm formation, particularly the development of a protein corona, which may also serve as a potential virulence mechanism. In this study, the interactions and adsorption processes among microplastics, proteins, and antibiotics within biofilm formation were innovatively analysed using molecular docking. Hydrophobic interactions contributing to the formation of a stable protein corona have been evidenced even in vitro digestive simulations. Notably, the presence of a protein corona on microplastics enhances the maximum adsorption capacity of antibiotics by 51.9 ± 2.7 %-64.7 ± 3.5 %, without affecting the chemical adsorption mode on Site II or the heterogeneous diffusion mechanism. Furthermore, compared to previous studies, this research provides compelling evidence that sulfamethoxazole interacts with Glu 166 in Site II of bovine serum albumin with high accuracy. Overall, this study addresses a previously overlooked aspect of toxicological research by offering new insights into pollutant adsorption facilitated by the protein corona on microplastics.
Collapse
Affiliation(s)
- Jianxin Fu
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; Institute of Dietary Nutrition and Health Food, Shandong Agriculture and Engineering University, Jinan 250100, China.
| | - Yuhang Chen
- College of Food Science and Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China; Institute of Dietary Nutrition and Health Food, Shandong Agriculture and Engineering University, Jinan 250100, China
| | - Shaolei Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| |
Collapse
|
8
|
Khan S, Asok S, Dasari VV, Magar S, Paila B, Suresh AK. Feeling of an Eye When It Meets the Unseen "Nano". Anal Chem 2025; 97:9326-9335. [PMID: 40267515 DOI: 10.1021/acs.analchem.5c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Nanomedicine is increasingly being utilized in addressing various eye ailments and holds immense potential in rectifying ocular diseases; however, the interactions between nanomedicines and their route of administration via tear fluid remain poorly understood. When nanoparticles are introduced into the tear fluid, a layer of protein corona is formed on their surface that not only influences the properties and biological fate of nanoparticles but also potentially interferes with the function of endogenous proteins. To investigate the interactions between gold nanoaprticles (AuNPs) and tear fluid, focusing on the physicochemical changes of the particles, and to quantitatively and qualitatively identify the key proteins involved in the corona formation, we employed label-free techniques for material and biophysical characterizations along with proteomic analyses and mass spectrometry. The AuNPs remained stable without forming aggregates, showing only an ∼31 nm increase in hydrodynamic diameter after interacting with tear fluid. Notably, their overall zeta potential increased significantly from -12 to -23 eV due to the supplemented charge by the adsorbed proteins. Proteomic analysis and liquid chromatography/mass spectrometry (LC-MS/MS) identified 31 proteins that were bound with the nanoparticles from a total of 174 proteins that were detected in the tear fluid. Bioinformatic classification revealed an enrichment of specific proteins essential for ocular health; proteins such as clusterin, lactotransferrin, adenosine triphosphate (ATP) synthase, lysozyme, alpha enolase, keratin, apolipoprotein, and epidermal growth factor receptor (EGFR) with pivotal roles in anti-inflammatory, immune response, cell adhesion, cellular organization, plasminogen activation, cell signaling, stress response, and corneal epithelial homeostasis. Overall, our study provides an unresolved comprehensive map of the tear protein corona landscape and its impact on nanoparticle behavior in the tear fluid. These insights must be considered and are valuable for designing safer and more effective nanomedicines for the treatment of various eye diseases.
Collapse
Affiliation(s)
- Salman Khan
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Sneha Asok
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Veda V Dasari
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Sharayu Magar
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Bhagyasree Paila
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| | - Anil K Suresh
- Bionanotechnology and Sustainable Laboratory, Department of Biological Sciences, School of Engineering and Applied Sciences, SRM University-AP, Amaravati 522503, India
| |
Collapse
|
9
|
Lee H. Molecular Dynamics Simulations of Protein Corona Formation on Membrane Surfaces: Effects of Lipid Composition and PEGylation on Selective Plasma Protein Adsorption. Mol Pharm 2025; 22:2590-2602. [PMID: 40191893 DOI: 10.1021/acs.molpharmaceut.4c01533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2025]
Abstract
The adsorption of plasma proteins (human serum albumin (SA) and apolipoproteins A-I and E-III) onto various lipid bilayers is simulated. With three different binding orientations for each protein, free energy calculations from umbrella sampling simulations show stronger binding of SA to the bilayer composed of lipids with smaller headgroups and stronger binding of apolipoproteins to the bilayer composed of anionic lipids rather than cationic or zwitterionic lipids, in agreement with experiments. Anionic residues of SA form hydrogen bonds more readily with amine headgroups of lipids than with larger trimethylammonium headgroups, where the cationic nitrogen is sterically hindered. In contrast, cationic residues of apolipoproteins form hydrogen bonds predominantly with anionic phosphate groups of lipids, indicating that protein-bilayer binding is attributed to hydrogen bonds facilitated by electrostatic attraction, depending on the electrostatics and size of lipid headgroups. For lipid bilayers grafted with polyethylene glycol (PEG), the binding strength of SA decreases while that of apolipoproteins increases, consistent with experiments, due to hydrogen bonding and hydrophobic interactions between proteins and PEG. These findings help explain experimental observations regarding the abundance of specific plasma proteins adsorbed onto various liposomes and suggest manipulating lipid composition and PEGylation to attract specific proteins to liposome-based drug carriers.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea
| |
Collapse
|
10
|
Zheng Y, Yang G, Li P, Tian B. Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration. Biomaterials 2025; 322:123385. [PMID: 40367812 DOI: 10.1016/j.biomaterials.2025.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Understanding and exploiting bioelectric signaling pathways and physicochemical properties of materials that interface with living tissues is central to advancing tissue regeneration. In particular, the emerging field of bioelectronics leverages these principles to develop personalized, minimally invasive therapeutic strategies tailored to the dynamic demands of individual patients. By integrating sensing and actuation modules into flexible, biocompatible devices, clinicians can continuously monitor and modulate local electrical microenvironments, thereby guiding regenerative processes without extensive surgical interventions. This review provides a critical examination of how fundamental bioelectric cues and physicochemical considerations drive the design and engineering of next-generation bioelectronic platforms. These platforms not only promote the formation and maturation of new tissues across neural, cardiac, musculoskeletal, skin, and gastrointestinal systems but also precisely align therapies with the unique structural, functional, and electrophysiological characteristics of each tissue type. Collectively, these insights and innovations represent a convergence of biology, electronics, and materials science that holds tremendous promise for enhancing the efficacy, specificity, and long-term stability of regenerative treatments, ushering in a new era of advanced tissue engineering and patient-centered regenerative medicine.
Collapse
Affiliation(s)
- Yuze Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangqing Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Jang S, Jun H, Eom S, Zhao S, Murthy N, Kang S, Kim H. EGFR Affibody and PEG functionalized protein nanoparticles: Sustaining targeting and macrophage evasion. Int J Biol Macromol 2025; 307:142167. [PMID: 40118404 DOI: 10.1016/j.ijbiomac.2025.142167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/23/2025]
Abstract
When nanoparticles are introduced into a biological environment, serum proteins rapidly attach to their surfaces, leading to opsonization and subsequent rapid clearance by the immune system. In this study, we functionalized protein nanoparticles with PEG to impart stealth properties, aiming to reduce immune recognition. By incorporating EGFRAfb, we conferred targeting capabilities to the PEGylated protein nanoparticles, demonstrating their ability to specifically bind to target cells even after PEGylation. Additionally, the stealth effect conferred by PEGylation effectively prevented phagocytosis by macrophages. Taken together, these results indicate that PEGylated protein nanoparticles not only exhibit increased in vivo half-life due to reduced opsonization but also maintain cell-specific targeting capabilities.
Collapse
Affiliation(s)
- Seonhye Jang
- Department of Pharmaceutical Engineering, INJE University, Gimhae 50834, Republic of Korea
| | - Heejin Jun
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Soomin Eom
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Sheng Zhao
- Department of Bioengineering and Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
| | - Niren Murthy
- Department of Bioengineering and Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA.
| | - Sebyung Kang
- Department of Biological Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - Hansol Kim
- Department of Pharmaceutical Engineering, INJE University, Gimhae 50834, Republic of Korea.
| |
Collapse
|
12
|
Farajizadeh A, Sui L, Wong J, Goss GG. Modulation of PFOA (perfluorooctanoic acid) uptake in Daphnia (Daphnia magna) by TiO 2 nanoparticles. Comp Biochem Physiol C Toxicol Pharmacol 2025; 291:110150. [PMID: 39978429 DOI: 10.1016/j.cbpc.2025.110150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/03/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
The hydrophobic surface of plastics adsorbs hydrophobic persistent organic pollutants (POP) such as Perfluorooctanoic acid (PFOA). The potential for hydrophobic nanoparticles such as titanium dioxide (TiO2) to associate with PFOA and alter accumulation rates has not been investigated. Nanoparticles form ecocorona by adsorption of multiple constituents in water, but few studies have examined if this results in differences in the rate of PFOA accumulation in freshwater animals. We demonstrate the PFOA associates with the hydrophobic surfaces of nano-sized TiO2 particles and this increases the rate of uptake of PFOA into Daphnia magna. Accumulation of PFOA in daphnia was measurement over multiple concentrations, flux times and particle sizes using a radiotracer-based method (14C-labelled PFOA). Our results show that TiO2 NPs have a high sorption capacity for PFOA and PFOA sorption decreased aggregation of TiO2 as evidenced by a decrease in average hydrodynamic diameter, decreased zeta potential and increased polydispersity index. Uptake of PFOA at 10 μg/L was found to be 45 % higher in the presence of 500 μg/L of 5 nm TiO2 compared to control PFOA alone uptake. Potentiation of PFOA uptake using 25 nm TiO2 NPs was 25 % higher than control PFOA alone. PFOA alone (0.5 mg/L) reduced metabolic oxygen consumption (MO2) in daphnia by 52 %, but exposure to (100 mg/L) 5 nm TiO2 NPs sorbed with (0.5 mg/L) PFOA decreased metabolic oxygen consumption (MO2) by ~88 %. These findings show that TiO2 nanoparticles act as vectors for hydrophobic organic pollutant accumulation and significantly potentiate PFOA accumulation and toxicity in aquatic organisms.
Collapse
Affiliation(s)
- Arian Farajizadeh
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Lazarus Sui
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Jonas Wong
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| | - Greg G Goss
- Department of Biological Sciences, University of Alberta, 11455 Saskatchewan Drive, Edmonton, Alberta T6G 2E9, Canada.
| |
Collapse
|
13
|
Dar AI, Randhawa S, Verma M, Saini TC, Acharya A. Debugging the dynamics of protein corona: Formation, composition, challenges, and applications at the nano-bio interface. Adv Colloid Interface Sci 2025; 342:103535. [PMID: 40319752 DOI: 10.1016/j.cis.2025.103535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 04/25/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
The intricate interplay between nanomaterials and the biological molecules has garnered considerable interest in understanding the dynamics of protein corona formation at the nano-bio interface. This review provides an in-depth exploration of protein-nanoparticle interactions, elucidating their structural dynamics and thermodynamics at the nano-Bio interface and further on emphasizing its formation, composition, challenges, and applications in the biomedical and nanotechnological domains, such as drug delivery, theranostics, and the translational medicine. We delve the nuanced mechanisms governing protein corona formation on nanoparticle surfaces, highlighting the influence of nanoparticle and biological factors, and review the impact of corona formation on the biological identity and functionality of nanoparticles. Notably, emerging applications of artificial intelligence and machine learning have begun to revolutionize this field, enabling accurate prediction of corona composition and related biological outcomes. These tools not only enhance efficiency over traditional experimental methods but also help decode complex protein-nanoparticle interaction patterns, offering new insights into corona-driven cellular responses and disease diagnostics. Additionally, it discusses recent advancements in the field of protein corona, particularly in translational nanomedicine and associated applications entailing current and future strategies which are aimed at mitigating the adverse effects of protein-nanoparticle interactions at the biological interface, for tailoring the protein coronas by engineering of the nanomaterials. This comprehensive assessment from chemical, technological, and biological aspects serves as a guiding beacon for the development of future nanomedicine, enabling the more effective emulation of the biological milieu and the design of protein-NP systems for enhanced biomedical applications.
Collapse
Affiliation(s)
- Aqib Iqbal Dar
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shiwani Randhawa
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohini Verma
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Trilok Chand Saini
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amitabha Acharya
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, HP 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
14
|
Li Z, Chen P, Qu A, Sun M, Xu L, Xu C, Hu S, Kuang H. Opportunities and Challenges for Nanomaterials as Vaccine Adjuvants. SMALL METHODS 2025:e2402059. [PMID: 40277301 DOI: 10.1002/smtd.202402059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/29/2025] [Indexed: 04/26/2025]
Abstract
Adjuvants, as a critical component of vaccines, are capable of eliciting more robust and sustained immune responses. Nanomaterials have shown unique advantages and broad application prospects in adjuvant development due to their high adjustability and distinctive physicochemical properties. This review focuses on nanoadjuvants and their immunological mechanisms. First, various types of adjuvants are introduced with an emphasis on metal and metal oxide nanoparticles, coordination polymers, liposomes, polymer nanoparticles, and other inorganic nanoparticles that can serve as vaccine adjuvants. Second, this review describes the current status of the clinical applications of nanoadjuvants. Next, the mechanisms of action for nanoadjuvants have been thoroughly elucidated, including the depot effect, NLRP3 inflammasome activation, targeting C-type lectin receptors, activation of toll-like receptors, and activation of the cGAS-STING signaling pathway. Finally, the challenges and opportunities associated with the development of nanoadjuvants have also been addressed.
Collapse
Affiliation(s)
- Zongda Li
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Panpan Chen
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
15
|
Li X, Wu X, Zhang J, Xie C, Song Y, Liu Y, Zheng L, Zhang S, Zhang P, Vijver MG, Peijnenburg WJGM, Lynch I, Guo Z. Key events relating to homeostasis and regeneration of freshwater planarians (Dugesia Japonica) after exposure to various ZnO-forms. JOURNAL OF HAZARDOUS MATERIALS 2025; 493:138360. [PMID: 40273864 DOI: 10.1016/j.jhazmat.2025.138360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/29/2025] [Accepted: 04/20/2025] [Indexed: 04/26/2025]
Abstract
This study aims to investigate the toxicity and underlying mechanisms of ZnO nanoparticles (ZnO NPs), bulk ZnO (ZnO MPs), and zinc ions (Zn2 +) on Dugesia japonica planarians, with a focus on their bioaccumulation, transformation, and associated biological effects. Using advanced techniques such as synchrotron X-ray fluorescence (XRF), X-ray Absorption Near Edge Structure (XANES) and single particle ICP-MS (sp-ICP-MS), we measured the accumulation, distribution, and transformation of these materials in planarians. All treatments caused significant Zn accumulation: ZnO NPs increased Zn by 120-fold, ZnO MPs by 100-fold, and Zn2+ by 430-fold. XANES and sp-ICP-MS analysis confirmed that ZnO NPs remained largely in particulate form (40-60 %) following uptake by planarians. Toxicity tests revealed that all treatments impaired blastema growth, locomotion, stem cell proliferation, differentiation, and neural regeneration. ZnO MPs exhibited higher toxicity than ZnO NPs, while Zn2+ resulted in elevated oxidative stress. ZnO NPs induced severe energy damage and triggered cell apoptosis, whereas ZnO MPs caused more pronounced necrosis cell death. Transcriptomic and proteomic analyses showed that all treatments disrupted pathways related to oxidative stress response, energy metabolism and cell apoptosis. ZnO NPs primarily affected the membrane integrity pathway, ZnO MPs altered cell homeostasis and membrane potential, while Zn2+ exposure triggered metal ion-specific cellular reactions. These molecular and cellular changes collectively explain the observed phenotypic outcomes, which align with the Adverse Outcome Pathway framework. The findings provide insights into the environmental risks of different ZnO forms and highlight their distinct toxicity mechanisms.
Collapse
Affiliation(s)
- Xiaowei Li
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Xin Wu
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Changjian Xie
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| | - Yingjun Song
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Yunpeng Liu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Lingna Zheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Shujing Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong 255000, China; School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Peng Zhang
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| | - Martina G Vijver
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, Leiden 2300 RA, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, P.O. Box 9518, Leiden 2300 RA, the Netherlands; National Institute for Public Health and the Environment (RIVM), Center for Safety Assessment of Substances and Products, Bilthoven, the Netherlands
| | - Iseult Lynch
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Zhiling Guo
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom.
| |
Collapse
|
16
|
Yadav P, Rethinasabapathy M, Dhiman D, Choi YJ, Huh YS, Venkatesu P. Unravelling the Biomolecular Interactions Between Hemoglobin and 2D MXenes: A Breakthrough in Biomedical Approach. ACS APPLIED BIO MATERIALS 2025; 8:3279-3289. [PMID: 40200682 DOI: 10.1021/acsabm.5c00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Taking the potential applications of two-dimensional transition metal carbides, such as MXenes, in biomedical fields, it is crucial to explore the impact of MXenes on various blood proteins. The study of the interaction of these 2D materials with proteins is scarce. Owing to the potential of absorbing proteins on the MXene surface, it is crucial to investigate the biocompatibility of these materials with proteins . In this regard, we successfully investigated the biomolecular interactions between hemoglobin (Hb) and single-layered titanium carbide (Ti3C2Tx-SL), multilayered titanium carbide (Ti3C2Tx-ML), and multilayered vanadium carbide (V2CTx-ML) MXenes for protein-MXene corona formation. The conformational, thermal, and colloidal stabilities of Hb were investigated after exposing MXenes to Hb for 30 min at Hb/MXene ratios of 12:1, 10:1, 8:1, and 6:1 using a combination of spectroscopic techniques, electron microscopy, and thermodynamic stability studies. Our results reveal that Hb adsorption onto MXene surfaces is primarily driven by electrostatic interactions and hydrogen bonding, leading to significant changes in the secondary and tertiary structures of the protein and further disruption in the colloidal stability of Hb. Explicitly, the hierarchy of interactions between Hb and MXenes follows the order: Ti3C2Tx-SL > V2CTx-ML > Ti3C2Tx-ML. The morphological study of Hb with MXenes was studied through transmission electron microscopy (TEM) and atomic force microscopy (AFM). Further, it was found that at high loading concentrations that is above 8:1, the protein-corona formation tendency of Hb-MXene also increases. The biological and toxicological behavior of nanomaterials (NMs) is based on the effect of their interaction with proteins, which induces conformational changes in proteins and subsequently alters their biological functions. In this regard, this article provides important insights for using these MXenes biomedically and for the rational design of nanoproducts based on MXenes in the near future.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Muruganantham Rethinasabapathy
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Diksha Dhiman
- Department of Chemistry, University of Delhi, Delhi 110 007, India
| | - Yu Jung Choi
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Yun Suk Huh
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | | |
Collapse
|
17
|
Yang L, Wang S, Deng C, Chen J, Zhao J, Yan B, Yue T. Boosting Cancer Cell Uptake of Gold Nanoparticles by Light-Modulated Protein Corona Reorganization for Tumor Ablation. ACS NANO 2025; 19:14351-14365. [PMID: 40173212 DOI: 10.1021/acsnano.5c01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
Nanoparticles (NPs) administered into the human body are spontaneously modified by forming a protein corona, which is crucial for their biological activity. While NP-based photothermal therapy is an established noninvasive modality for tumor ablation, the impact of light irradiation on protein corona formation and clinical outcomes is unclear. This study unveils the promotive role of light irradiation in cancer cell uptake of gold nanoparticles (GNPs) by modulating the GNP-protein and protein-protein interactions within the corona. Specifically, infrared light irradiation increases the local temperature around GNPs to induce partial unfolding of corona proteins, increasing the availability of binding sites and enhancing adsorption. Additionally, light intensifies competition among different proteins for adsorption, resulting in a 25% increase in the abundance of higher molecular weight proteins, such as human serum albumin (HSA), on the GNP surface after irradiation. Notably, GNPs with positively charged surfaces, compared to GNPs with other modifications, exhibit more significant changes in the protein corona due to stronger electrostatic interactions with proteins (1.32 ± 0.17 × 103 kJ/mol). These variations in the amount, structure, and composition of associated proteins result in a 14.26% increase in GNP uptake by cancer cells, likely due to modifications at the GNP-cell membrane interface. Our findings highlight the critical role of light irradiation in influencing protein corona dynamics and cellular interactions, suggesting its potential as a valuable engineering tool in nanomedicine.
Collapse
Affiliation(s)
- Lin Yang
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Shenqing Wang
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Chaofan Deng
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Jie Chen
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| | - Bing Yan
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, P.R. China
| | - Tongtao Yue
- Institute of Coastal Environmental Pollution Control, Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, P.R. China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, P.R. China
| |
Collapse
|
18
|
Martinez-Serra A, Saorin A, Serrano-Lotina A, Subrati A, Soliman MG, Hristozov D, Bañares MA, Demokritou P, Monopoli MP. Dispersion protocols have minimal impact on the biomolecular corona of advanced nanomaterials in cell culture assays. NANOIMPACT 2025; 38:100560. [PMID: 40233923 DOI: 10.1016/j.impact.2025.100560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/28/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
Industrial sectors have largely invested in the use of advanced nanomaterials (NMs), which are currently being implemented in a wide range of applications. However, the potential exposure to living beings and the environment still remains a concern. While some of these materials were not designed to be dispersible in aqueous media, the development of dispersion protocols to ensure compatibility with the in vitro and in vivo assays has become crucial for the correct assessment of the studies. NMs' identity in biological media is significantly influenced by the formation of a biomolecular corona on its surface. However, this corona might be affected by the dispersion method, altering their physicochemical characteristics and complicating the understanding of their interactions with biological systems. Therefore, understanding the efficiency of dispersion protocols and their influence on the biological identity of NMs is fundamental. However, systematic studies on the effects of dispersion protocols are still lacking, making this a crucial yet overlooked aspect in the field. This study aims to compare two standard dispersion protocols, commonly known as Harvard and Nanogenotox, and evaluate their impact on the biomolecular corona formation across a selection of advanced industrial NMs. To this aim, different techniques were used to assess particle size, colloidal stability and ion release, as well as protein and sialic acid content and abundance in the corona. Results show that the dispersion protocol modestly alters nanoparticle size and agglomeration state, and proteomics analysis revealed that each nanoparticle type forms a distinct corona, influenced by the distinct surface modifications. The presence of bovine serum albumin (BSA) in the Nanogenotox protocol minimally affected the overall trends in protein composition between the two protocols. These findings emphasize the significance of the dispersion protocol in nanotoxicology assays and demonstrate that variations between these methods do not play a decisive role in shaping the bio-identity and potential biological effects of advanced and multicomponent NMs.
Collapse
Affiliation(s)
- Alberto Martinez-Serra
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland
| | - Asia Saorin
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland
| | - Ana Serrano-Lotina
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/ Marie Curie, 2, 28049 Madrid, Spain
| | - Ahmed Subrati
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastian 20014, Spain
| | - Mahmoud G Soliman
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland
| | - Danail Hristozov
- East European Research and Innovation Enterprise (EMERGE), Otets Paisiy Str. 46, 1303 Sofia, Bulgaria
| | - Miguel A Bañares
- Instituto de Catálisis y Petroleoquímica (ICP), CSIC, C/ Marie Curie, 2, 28049 Madrid, Spain
| | - Philip Demokritou
- Nanoscience and Advanced Materials Center, Environmental and Occupational Health Sciences Institute (EOHSI), Rutgers University, Piscataway, NJ 08854, USA
| | - Marco P Monopoli
- Department of Chemistry, Royal College of Surgeons in Ireland (RCSI), 123 St Stephen's Green, Dublin, Ireland.
| |
Collapse
|
19
|
Ragonese F, Trovarelli L, Monarca L, Girolmoni S, Ballarino F, Costantino F, Fioretti B. Silver Nanoparticles Decorated UiO-66-NH 2 Metal-Organic Framework for Combination Therapy in Cancer Treatment. Pharmaceutics 2025; 17:512. [PMID: 40284507 PMCID: PMC12030114 DOI: 10.3390/pharmaceutics17040512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/21/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Nanomedicine has shown significant promise in advancing cancer diagnostics and therapeutics. In particular, nanoparticles (NPs) offer potential for overcoming limitations associated with conventional therapies, such as off-target toxicity and side effects. Among the various NPs, silver nanoparticles (AgNPs) have garnered attention due to their cytotoxic and genotoxic properties in cancer cells. However, despite their potential, the optimization of AgNPs efficacy often necessitates combination strategies with other therapeutic agents. This study explores the potential of AgNPs integrated with Zr-based metal-organic frameworks (MOFs) UiO-66 for drug delivery, to enhance cancer therapy. Methods: We decorated amino-terephthalic based UiO-66-NH2 with AgNPs and loaded it with the chemotherapeutic agent cisplatin (Cis-Pt) to make the UiO-66-NH2@AgNPs@Cis-Pt. A preliminary MTT assay was conducted to evaluate the cytotoxic effects of the nanocomposite on several glioblastoma and other tumour cell lines, including U251, U87, GL261, HeLa, RKO, and HepG2. Results: Our results demonstrate that UiO-66-NH2@AgNPs@Cis-Pt and its combinations exhibit enhanced cytotoxicity compared to individual components such as AgNPs and Cis-Pt. Conclusions: This work offers preliminary insights into the potential of AgNP-functionalized MOFs as effective drug and delivery platforms, particularly in the context of combination therapy for cancer treatment.
Collapse
Affiliation(s)
- Francesco Ragonese
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (L.T.); (L.M.); (S.G.); (F.B.); (F.C.)
| | | | | | | | | | | | - Bernard Fioretti
- Department of Chemistry, Biology and Biotechnologies, University of Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy; (L.T.); (L.M.); (S.G.); (F.B.); (F.C.)
| |
Collapse
|
20
|
Salvi A, Charak S, Kanojia R, Yadav K, Srivastava CM, Behera K, Vaya D, Majumdar S, Thakur A, Ali R, Saini D, Shandilya M. Comparative interaction of silver nanoparticles with diverse classes of proteins: Selectivity toward silk sericin protein from Antheraea assama. Int J Biol Macromol 2025; 311:143073. [PMID: 40220820 DOI: 10.1016/j.ijbiomac.2025.143073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/14/2025]
Abstract
Nanotechnology, which investigates matter at the 1-100 nm scale, has led to significant advancements, particularly in biomedical sciences. Among nanomaterials, silver nanoparticles (AgNPs) stand out due to their unique physicochemical properties and promising biological applications. However, the mechanisms underlying AgNPs' interactions with biological molecules-especially proteins-remain key questions. In this study, we examined AgNPs interactions with various protein classes, including bovine serum albumin, bovine hemoglobin, α-amylase, and sericin from Antheraea assama. AgNPs were synthesized and characterized using powder X-ray diffraction, high-resolution transmission electron microscopy, and Zeta Sizer, revealing a crystal size of 15 nm and a zeta potential of -24.4 mV. Techniques such as UV-visible, fluorescence, circular dichroism, time-resolved fluorescence spectroscopy, isothermal titration calorimetry, molecular docking, and enzyme kinetics were used to study AgNPs-protein interactions. Our results showed simultaneous adsorption, secondary structure changes, and enhanced enzyme activity upon AgNPs binding. Notably, sericin, a random coil protein, exhibited dynamic quenching at lower AgNPs concentrations and static quenching at higher concentrations, along with thermodynamically favorable binding and hard corona formation, surrounded by dynamic outer layers due to weak protein-protein interactions. These findings emphasize the need to understand diverse biomolecular interactions before employing AgNPs in biomedical applications.
Collapse
Affiliation(s)
- Anand Salvi
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Sonika Charak
- National Brain Research Centre, Manesar, Gurgaon, Haryana, India
| | - Renuka Kanojia
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Kajal Yadav
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Chandra Mohan Srivastava
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Kamalakanta Behera
- Department of Chemistry, University of Allahabad, Prayagraj, Uttar Pradesh, India
| | - Dipti Vaya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Sudip Majumdar
- International Institute of Innovation and Technology, Kolkata, West Bengal, India
| | - Atul Thakur
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India
| | - Rafat Ali
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Deeksha Saini
- Department of Biosciences, Jamia Millia Islamia University, New Delhi, India
| | - Manish Shandilya
- Department of Chemistry, Biochemistry and Forensic Science, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, India.
| |
Collapse
|
21
|
Bridges CA, Fu L, Yeow J, Huang X, Jackson M, Kuchel RP, Sterling JD, Baker SM, Lord MS. The interplay between endothelial glycocalyx maturity and both the toxicity and intracellular uptake of charged nanoparticles. Acta Biomater 2025; 196:293-306. [PMID: 40058617 DOI: 10.1016/j.actbio.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/27/2025] [Accepted: 03/06/2025] [Indexed: 04/05/2025]
Abstract
Nanoparticles are widely studied for delivering treatments to target tissues, but few have reached clinical use. Most nanoparticles encounter blood vessels on their way to target tissues. The inner surface of these vessels is lined with endothelial cells covered by a glycocalyx, an extracellular matrix rich in anionic glycans. The role of the glycocalyx in nanoparticle interactions is not well understood. Here, we demonstrate that endothelial cells need extended culture times to synthesize a mature glycocalyx. Our research shows that branched polyethyleneimine functionalized gold nanoparticles bind to endothelial cells expressing either a developing or mature glycocalyx, with the interaction involving hyaluronan and heparan sulfate. These nanoparticles are subsequently internalized. Similar results were seen with poly(L-arginine). A mature glycocalyx protects cells by reducing the toxicity of these cationic nanoparticles. In contrast, lipoic acid-functionalized gold nanoparticles are internalized by cells with a developing glycocalyx, but not a mature one. Poly(L-glutamic acid) only interacts with cells when major glycans in the glycocalyx are degraded. These findings highlight the complex relationship between nanoparticle charge and structure, and their effects on toxicity, binding, and uptake by endothelial cells. This offers important insights for improving nanoparticle interactions with blood vessels in health and disease. STATEMENT OF SIGNIFICANCE: Endothelial cells lining blood vessels form a barrier through which nanoparticles must cross to reach target tissues. These cells are covered with a layer called the glycocalyx, which is rich in anionic glycans. However, the role of the glycocalyx in how nanoparticles interact with cells remains underexplored. Our research revealed that cells with a mature glycocalyx internalize cationic nanoparticles and experience reduced cytotoxicity. Conversely, a mature glycocalyx prevents anionic nanoparticles from entering cells. These results suggest that the structure of both the nanoparticles and the glycocalyx should be considered in future studies to improve the use of nanoparticles for medical applications.
Collapse
Affiliation(s)
- Claire A Bridges
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Lu Fu
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Jonathan Yeow
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Xiaojing Huang
- Molecular Surface Interaction Laboratory, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - Miriam Jackson
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
| | - James D Sterling
- College of Innovation, Entrepreneurship, and Economic Development, Missouri University of Science and Technology, Rolla, MO 65409, USA
| | | | - Megan S Lord
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
22
|
Digiacomo L, Caputo D, Cammarata R, La Vaccara V, Coppola R, Quagliarini E, Iacobini M, Renzi S, Giulimondi F, Pozzi D, Caracciolo G, Amenitsch H. Nanoparticle-protein corona enhances accuracy of Ca-19.9-based pancreatic cancer classification. NANOSCALE 2025; 17:7066-7075. [PMID: 39868525 DOI: 10.1039/d4nr02435d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Among the various types of pancreatic cancers, pancreatic ductal adenocarcinoma (PDAC) is the most lethal and aggressive, due to its tendency to metastasize quickly and has a particularly low five-year survival rate. Carbohydrate antigen 19-9 (CA 19-9) is the only biomarker approved by the Food and Drug Administration for PDAC and has been a focal point in diagnostic strategies, but its sensitivity and specificity are not sufficient for early and accurate detection. To address this issue, we introduce a synergistic approach combining CA 19-9 levels with a graphene oxide (GO)-based blood test. This non-invasive technique relies on the analysis of personalized protein corona formed on GO sheets once they are embedded in human plasma. Pairing CA 19-9 values with GO protein patterns from N = 106 donors significantly improved the ability to differentiate between non-oncological and PDAC patients (up to 92%), also boosting the classification of PDAC subjects by 50% compared to CA 19-9 testing alone. Overall, this study sought to bridge the existing gaps in PDAC detection by exploiting the complementary strengths of conventional biomarkers and cutting-edge nanotechnology. Exploration of this combined strategy holds promise for advancing the early detection of PDAC, ultimately contributing to improved patient prognosis and treatment outcomes.
Collapse
Affiliation(s)
- Luca Digiacomo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Damiano Caputo
- Research Unit of General Surgery, Department of Medicine and Surgery, University Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Roberto Cammarata
- Operative Research Unit of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Vincenzo La Vaccara
- Operative Research Unit of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Roberto Coppola
- Operative Research Unit of General Surgery, Fondazione Policlinico Universitario Campus Bio-Medico, Roma, Italy
| | - Erica Quagliarini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Manuela Iacobini
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Serena Renzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Francesca Giulimondi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Daniela Pozzi
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Giulio Caracciolo
- NanoDelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291, 00161 Rome, Italy.
| | - Heinz Amenitsch
- Institute of Inorganic Chemistry, Graz University of Technology, 8010 Graz, Austria
| |
Collapse
|
23
|
Laturski AE, Dulay MT, Perry JL, DeSimone JM. Transfection via RNA-Based Nanoparticles: Comparing Encapsulation vs Adsorption Approaches of RNA Incorporation. Bioconjug Chem 2025; 36:367-376. [PMID: 39999074 DOI: 10.1021/acs.bioconjchem.5c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Historically, RNA delivery via nanoparticles has primarily relied on encapsulation, as demonstrated by lipid nanoparticles in SARS-CoV-2 vaccines. Concerns about RNA degradation on nanoparticle surfaces initially limited the exploration of adsorption-based approaches. However, recent advancements have renewed interest in adsorption as a viable alternative. This Viewpoint explores the approaches of RNA incorporation in nanoparticles, comparing encapsulation, adsorption, and the combination of encapsulation and adsorption, and presents a framework to guide the selection of the most suitable strategy based on general characteristics.
Collapse
Affiliation(s)
- Amy E Laturski
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Maria T Dulay
- Department of Radiology, Stanford University, Stanford, California 94305, United States
| | - Jillian L Perry
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599-7575, United States
| | - Joseph M DeSimone
- Department of Chemical Engineering and Department of Radiology, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
24
|
Rathee J, Kishore N. Interaction of solid lipid nanoparticles with bovine serum albumin: physicochemical mechanistic insights. Phys Chem Chem Phys 2025; 27:5876-5888. [PMID: 40028927 DOI: 10.1039/d4cp04737k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
This study investigates the interaction of solid lipid nanoparticles (SLNs) with the transport protein bovine serum albumin (BSA) in terms of thermodynamic signatures, employing both spectroscopic and calorimetric techniques. When nanoparticles are exposed to biological media, proteins are adsorbed on their surfaces, leading to protein corona formation. Therefore, controlling the formation of the protein corona is essential for in vivo therapeutic efficacy. Although SLNs have previously been explored solely as potential nano-carriers for drug delivery, no prior efforts have been made to study their interactions with biomolecules from a biophysical and mechanistic perspective. SLNs are colloidal dispersions of the solid lipid in an aqueous solution stabilized by surfactants. Herein, a hot emulsification methodology was employed to formulate SLNs, and their interactions with BSA were analyzed. The SLNs were characterized using transmission electron microscopy (TEM) and dynamic light scattering (DLS) techniques to obtain information on their size, zeta potential, and shape. Fluorescence data suggested the presence of weak interactions between the SLNs and BSA. Static quenching is confirmed using time-correlated single-photon counting (TCSPC) experiments. Differential scanning calorimetric (DSC) and fluorescence spectroscopic experiments suggest the thermal stabilization of BSA by the SLNs. This stabilization results from the enhancement of the secondary structure of the protein without significantly altering the tertiary structure. Isothermal calorimetry (ITC) results suggest weak interactions between the SLNs and BSA, although not in a site-specific manner. Overall, mechanistic insights into lipid nanoparticle-protein interactions obtained from such studies efficiently overcome the hurdles associated with targeted drug delivery.
Collapse
Affiliation(s)
- Jyoti Rathee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Nand Kishore
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
25
|
Pozzi D, Caracciolo G. Exploiting differences in personal nanoparticle corona profiles for cancer diagnostics. Nanomedicine (Lond) 2025; 20:431-433. [PMID: 39654132 PMCID: PMC11875501 DOI: 10.1080/17435889.2024.2439238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/04/2024] [Indexed: 03/05/2025] Open
Affiliation(s)
- Daniela Pozzi
- Nanodelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giulio Caracciolo
- Nanodelivery Lab, Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
26
|
Liu Q, Wang M, Dai X, Li S, Guo H, Huang H, Xie Y, Xu C, Liu Y, Tan W. Extreme Tolerance of Nanoparticle-Protein Corona to Ultra-High Abundance Proteins Enhances the Depth of Serum Proteomics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413713. [PMID: 39840619 PMCID: PMC11923864 DOI: 10.1002/advs.202413713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/15/2024] [Indexed: 01/23/2025]
Abstract
The serum nanoparticle-protein corona (NPC) provides specific disease information, thus opening a new avenue for high-throughput in-depth proteomics to facilitate biomarker discovery. Yet, little is known about the interactions between NPs and proteins, and its role in enhanced depth of serum proteomics. Herein, a series of protein spike-in experiments are conducted to systematically investigate protein depletion and enrichment during NPC formation. Proteomic depth is serum concentration-dependent, and NPC exhibits powerful tolerance to ultra-high abundant proteins. In addition, protein-protein interactions (PPI), especially those involving albumin, play a pivotal role in promoting proteomic depth. Furthermore, a triple-protein assay is established to interrogate the relationship between protein binding affinity and concentration. NPC formation is a product of balancing binding affinity, concentration, and PPI. Overall, this study elucidates how NPs achieve protein depletion and enrichment for enhanced serum proteomic depth to gain a better understanding of NPC as an essential tool of proteome profiling.
Collapse
Affiliation(s)
- Qiqi Liu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Mengjie Wang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Xin Dai
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- School of Molecular MedicineHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Shuangqin Li
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haoxiang Guo
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Haozhe Huang
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yueli Xie
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Chenlu Xu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
| | - Yuan Liu
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- School of Molecular MedicineHangzhou Institute for Advanced StudyUniversity of Chinese Academy of SciencesHangzhouZhejiang310024China
| | - Weihong Tan
- Zhejiang Cancer HospitalHangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouZhejiang310022China
- Institute of Molecular Medicine (IMM)Renji HospitalShanghai Jiao Tong University School of Medicineand College of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityHangzhouShanghai200240China
| |
Collapse
|
27
|
Hammond J, Richards CJ, Ko Y, Jonker T, Åberg C, Roos WH, Lira RB. Membrane Fusion-Based Drug Delivery Liposomes Transiently Modify the Material Properties of Synthetic and Biological Membranes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408039. [PMID: 40007088 PMCID: PMC11947515 DOI: 10.1002/smll.202408039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Many drug targets are located in intracellular compartments of cells but they often remain inaccessible to standard imaging and therapeutic agents. To aid intracellular delivery, drug carrier nanoparticles have been used to overcome the barrier imposed by the plasma membrane. The carrier must entrap large amounts of cargo, efficiently and quickly deliver the cargo in the cytosol or other intracellular compartments, and must be inert; they should not induce cellular responses or alter the cell state in the course of delivery. This study demonstrates that cationic liposomes with high charge density efficiently fuse with synthetic membranes and the plasma membrane of living cells. Direct fusion efficiently delivers large amounts of cargo to cells and cell-like vesicles within seconds, bypassing slow and often inefficient internalization-based pathways. These effects depend on liposome charge density, concentration, and the helper lipid. However, fusion-mediated cargo delivery results in the incorporation of large amounts of foreign lipids, causing changes to the material properties of these membranes, namely modifications in membrane packing and fluidity, induction of membrane curvature, decrease in surface tension, and the formation of (short-lived) pores. Importantly, these effects are transient and liposome removal allows cells to recover their state prior to liposome interaction.
Collapse
Affiliation(s)
- Jayna Hammond
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Ceri J. Richards
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyRijksuniversiteit GroningenGroningenThe Netherlands
| | - YouBeen Ko
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Thijs Jonker
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Christoffer Åberg
- Pharmaceutical AnalysisGroningen Research Institute of PharmacyRijksuniversiteit GroningenGroningenThe Netherlands
| | - Wouter H. Roos
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
| | - Rafael B. Lira
- Moleculaire BiofysicaZernike InstituutRijksuniversiteit GroningenGroningenThe Netherlands
- Present address:
Department of BionanoscienceKavli Institute of NanoscienceDelft University of TechnologyDelftThe Netherlands
| |
Collapse
|
28
|
Ahamad I, Nadeem M, Rizvi MMA, Fatma T. Bio-fabricated silver nanoparticles: therapeutic evaluation as a potential nanodrug against cervical and liver cancer cells. DISCOVER NANO 2025; 20:47. [PMID: 40000514 PMCID: PMC11861485 DOI: 10.1186/s11671-025-04212-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Nanobiotechnology has grown rapidly and is now widely used in the diagnosis and treatment of modern diseases. Biosynthesized silver nanoparticles (AgNPs) are eco-friendly, cost-effective, biocompatible route, and have biomedical properties at minimal concentrations. In the present study extract of cyanobacterium (Anabaena variabilis) was utilized to synthesize facile, reliable AgNPs, further biosynthesized AgNPs were characterized by physicochemical techniques. The atomic force microscope study confirmed the shape of AgNPs while the scanning electron microscopy study revealed 17 to 35 nm in the size range. The zeta potential value of -19.5 mV demonstrated the repulsion effect between the particles, which prevents their aggregations while the heating stability of AgNPs was confirmed by Thermogravimetry differential thermal analysis. Another important characteristic, such as elemental constituent of AgNPs was determined by inductively coupled plasma mass spectrometry and was observed 94.24, 95.19, 97.06, and 99.34% of silver present in their respective concentrations of AgNPs. In vitro cytotoxicity of AgNPs was screened on HeLa, SiHa, (Cervical carcinoma), and HepG2 (Human hepatocellular carcinoma), cell lines. To evaluate the biocompatibility of AgNPs immortalized human embryonic kidney (HEK-293) cell line was used. The IC50 values of AgNPs are were observed as 23.76 ± 2.4 µg/mL, 11.21 ± 1.7 µg/mL, and 22.27 ± 1.8 µg/mL against HeLa, SiHa and HepG2 cell lines respectively. AgNPs demonstrated the biocompatible nature against HEK-293 cells, Normal cell line (HEK-293) cytotoxicity results showed exhibited ≥ 95% cell viability at all the concentrations. During the DAPI (4',6-diamidino-2-phenylindole) staining study IC50 dose of AgNPs on cancer cell lines (HeLa, SiHa, and HepG2) showed nuclear morphological alterations which indicate the DNA damage and apoptosis in cancer cells. AgNPs treated cancer cells increased the cells number in the S phase while decreased the number of cells in the G0-G1 and G2/M phases of the cell cycle in all three cancer cells compared to the control.
Collapse
Affiliation(s)
- Irshad Ahamad
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
- Brown Cancer Center, School of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Masood Nadeem
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - M Moshahid Alam Rizvi
- Genome Biology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Tasneem Fatma
- Cyanobacterial Biotechnology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India.
| |
Collapse
|
29
|
Mehta M, Skinner W, Gardner B, Mosca S, Palombo F, Matousek P, Stone N. Gold Nanoraspberries for Surface-Enhanced Raman Scattering: Synthesis, Optimization, and Characterization. ACS OMEGA 2025; 10:4588-4598. [PMID: 39959079 PMCID: PMC11822696 DOI: 10.1021/acsomega.4c08791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/15/2025] [Accepted: 01/17/2025] [Indexed: 02/18/2025]
Abstract
In this work, we demonstrate the synthesis of gold nanoraspberries (AuNRB) using a HEPES buffer at room temperature. The study aimed to identify and compare the physicochemical conditions of the AuNRB and gold nanospheres (AuNS) of similar size to a selected set of reporter molecules. The dispersion stability of shape-controlled and AuNS of similar diameters was investigated in three different physiological media, ultrapure water, phosphate-buffered saline (PBS), and fetal bovine serum (FBS), and compared to understand the effect of NP shape, dispersion stability, and surface-enhanced Raman scattering (SERS) enhancement. We have used two nonresonant reporters, trans-1,2-bis(4-pyridyl) ethylene (BPE) and biphenyl-4-thiol (BPT), and a resonant reporter, IR820 (also known as new indocyanine green), a clinically approved dye for diagnostic studies, to explore the relative benefit of using molecular electronic resonance, i.e., comparing SERS vs surface-enhanced resonance Raman scattering (SERRS) with these nanoparticles. SERS has been explored extensively for biomedical applications, but the synthesis of bright gold nanoparticles and the appropriate Raman label is still challenging. To understand and optimize the SERS process, we have characterized both types of gold nanoparticles, ranging from their average size, ζ-potential, and ultraviolet-visible (UV-vis) absorption. It has been found that AuNRB and AuNS are most stable when dispersed in ultrapure water, while significant aggregation of both types has been observed when dispersed in PBS. With 10% FBS, there was a slight shift and increase in the surface plasmon absorbance peak, which resulted from an increase in particle size due to protein corona formation around the gold nanoparticles. For SERS efficiency, it has been found that AuNRB outperform AuNS with all reporters. Further, the resonant reporter, IR820, has provided a higher SERS signal compared to BPE and BPT and with its FDA approval for clinical use is clearly a strong candidate for future in vivo application.
Collapse
Affiliation(s)
- Megha Mehta
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - William Skinner
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - Benjamin Gardner
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - Sara Mosca
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, U.K.
| | - Francesca Palombo
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| | - Pavel Matousek
- Central
Laser Facility, Research Complex at Harwell, STFC Rutherford Appleton Laboratory, UKRI, Harwell Campus, Oxfordshire OX11 0QX, U.K.
| | - Nick Stone
- Department
of Physics and Astronomy, University of
Exeter, Exeter EX4 4QL, U.K.
| |
Collapse
|
30
|
Rennie C, Morshed N, Faria M, Collins-Praino L, Care A. Nanoparticle Association with Brain Cells Is Augmented by Protein Coronas Formed in Cerebrospinal Fluid. Mol Pharm 2025; 22:940-957. [PMID: 39805033 DOI: 10.1021/acs.molpharmaceut.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Neuronanomedicine harnesses nanoparticle technology for the treatment of neurological disorders. An unavoidable consequence of nanoparticle delivery to biological systems is the formation of a protein corona on the nanoparticle surface. Despite the well-established influence of the protein corona on nanoparticle behavior and fate, as well as FDA approval of neuro-targeted nanotherapeutics, the effect of a physiologically relevant protein corona on nanoparticle-brain cell interactions is insufficiently explored. Indeed, less than 1% of protein corona studies have investigated protein coronas formed in cerebrospinal fluid (CSF), the fluid surrounding the brain. Herein, we utilize two clinically relevant polymeric nanoparticles (PLGA and PLGA-PEG) to evaluate the formation of serum and CSF protein coronas. LC-MS analysis revealed distinct protein compositions, with selective enrichment/depletion profiles. Enhanced association of CSF precoated particles with brain cells demonstrates the importance of selecting physiologically relevant biological fluids to more accurately study protein corona formation and subsequent nanoparticle-cell interactions, paving the way for improved nanoparticle engineering for in vivo applications.
Collapse
Affiliation(s)
- Claire Rennie
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
- Australian Institute for Microbiology and Infection, Sydney 2007, New South Wales, Australia
| | - Nabila Morshed
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| | - Matthew Faria
- Department of Biomedical Engineering, The University of Melbourne, Melbourne 3010, Victoria, Australia
| | - Lyndsey Collins-Praino
- School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
| | - Andrew Care
- School of Life Sciences, University of Technology Sydney, Sydney 2007, New South Wales, Australia
| |
Collapse
|
31
|
Chen Y, Zhang Y, Dai W, Xue Y, Li J, Zhang K, Tang R, Mao C, Wan M. Dual responsive drug-loaded nanomotor based on zwitterionic materials for the treatment of peritoneal metastatic cancer. J Colloid Interface Sci 2025; 679:868-878. [PMID: 39396462 DOI: 10.1016/j.jcis.2024.10.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/15/2024]
Abstract
Innovative treatments for peritoneal metastatic cancer have attracted widespread attention from researchers. Here, we propose a drug-loaded nanomotor (PSBMA/l-Arg/DOX, PLD) based on zwitterionic materials for the treatment of peritoneal metastatic cancer through intraperitoneal injection. Zwitterionic polymer nanocarriers (PSBMA NPs) are obtained by radical polymerization with zwitterionic SBMA as the polymerization monomer and N,N'-Bis(acryloyl)cystamine (BAC) as the cross-linking agent. The zwitterionic substrate of this nanomotor has the ability to resist non-specific protein adsorption in ascites. The loaded l-arginine enables the nanomotor to have the ability to chemotaxis towards high concentrations of ROS/iNOS in tumors and be catalyzed to produce NO, achieving deep penetration into tumor tissue. Furthermore, the disulfide bond (SS) carried by the crosslinking agent used in the preparation of the nanomotor can respond to the high expression of reducing glutathione in the tumor microenvironment and undergo degradation, releasing a large amount of loaded drug DOX. Cell and animal disease model experiments confirme the good therapeutic effect of this drug-loaded nanomotor, providing new therapeutic concepts and strategies for the treatment of peritoneal metastatic cancer.
Collapse
Affiliation(s)
- Yidan Chen
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Yao Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Wenjun Dai
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yunxin Xue
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiawei Li
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Ke Zhang
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Rongjun Tang
- Thermotherapy Centre, Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou 310002, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
32
|
Vivas CV, Duarte EL, Barreto YB, deOliveira CLP, Toma SH, Santos JJ, Araki K, Alencar AM, Bloise AC. Interactions Between Silver Nanoparticles and Culture Medium Biomolecules with Dose and Time Dependencies. J Fluoresc 2025; 35:835-854. [PMID: 38183590 DOI: 10.1007/s10895-023-03564-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/20/2023] [Indexed: 01/08/2024]
Abstract
The interaction between silver nanoparticles (AgNPs) and molecules producing coronas plays a key role in cytotoxicity mechanisms. Once adsorbed coronas determine the destiny of nanomaterials in vivo, their effective deployment in the biomedical field requires a comprehensive understanding of the dynamic interactions of biomolecules with nanoparticles. In this work, we characterized 40 nm AgNPs in three different nutritional cell media at different molar concentrations and incubation times to study the binding mechanism of molecules on surface nanoparticles. In addition, their cytotoxic effects have been studied in three cell lineages used as tissue regeneration models: FN1, HUV-EC-C, RAW 264.7. According to the data, when biomolecules from DMEM medium were in contact with AgNPs, agglomeration and precipitation occurred. However, FBS medium proteins indicated the formation of coronas over the nanoparticles. Nonetheless, little adsorption of molecules around the nanoparticles was observed when compared to DMEM supplemented with 10% FBS. These findings indicate that when nanoparticles and bioproteins from supplemented media interact, inorganic salts from DMEM contribute to produce large bio-coronas, the size of which varies with the concentration and time. The static quenching mechanism was shown to be responsible for the fluorescence quenching of the bioprotein aggregates on the AgNPs surface. The calculated bioprotein-nanoparticle surface binding constants were on the order of 105 M-1 at 37 °C, with hydrophobic interactions driven by enthalpy and entropy playing a role, as confirmed by thermodynamic analysis. Cytotoxicity data showed a systematic degrowth in the viable cell population as the number of nanoparticles increased and the diameter of coronas decreased. Cytotoxic intervals associated with half decrease of cell population were established for AgNPs molar concentration of 75 µM for 24 h and 50 µM for 48 h. In summary, through the cytotoxicity mechanism of bio-coronas we are able to manipulate cells' expansion rates to promote specific processes, such inflammatory mechanisms, at different time instants.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Koiti Araki
- Instituto de Quimica, Universidade de Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
33
|
Gan N, Song Y, Li Y, Liu P, Chen S, He Y, Zeng T, Wang W, Wu D. Characterization of the effects of bridging linker on the β-Lactoglobulin binding mechanism on the nanoscale metal-organic frameworks. Food Chem 2025; 464:141715. [PMID: 39442220 DOI: 10.1016/j.foodchem.2024.141715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Revealing the interaction modes between nanoscale metal-organic frameworks (NMOFs) and food matrix is crucial for functional release but it still remains largely unknown to date. This study specifically focused on the milk protein adsorption mechanism of NMOFs using UiO66/UiO66-NH2 and β-lactoglobulin (β-LG) as models. UiO66 and UiO66-NH2 quenched the fluorescence of β-LG via static mechanism. Due to the enhanced electrostatic forces caused by NH2, UiO66-NH2-β-LG (2.83 × 105 mol·L-1) exhibited higher binding constant than UiO66-β-LG (2.61 × 105 mol·L-1), while UiO66 with higher hydrophobicity adsorbed more β-LG. The defects of UiO influenced the binding sites on the β-LG, and the higher the defect degree, the higher the binding energy. For the stability of the system, the H-bonding between UiO66 and SER30/PRO38, and the hydrophobic interaction between UiO66-NH2 and LYS101 played important roles. Furthermore, the secondary structure content of β-LG changed after interacting with both UiO, resulting in reduced density of β-LG.
Collapse
Affiliation(s)
- Na Gan
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Yali Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yilin Li
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Peiran Liu
- School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Si Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Yi He
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China
| | - Tingting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Sichuan Clinical Research Center for Laboratory Medicine, Clinical Laboratory Medicine Research Center of West China Hospital, Chengdu 610041, China
| | - Wei Wang
- Gastroenterology and Urology Department II, Hunan Cancer Hospital / the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Clinical Research Center For Gastrointestinal Cancer In Hunan Province, Changsha 410013, China.
| | - Di Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China; School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
34
|
Shaw JR, Caprio N, Truong N, Weldemariam M, Tran A, Pilli N, Pandey S, Jones JW, Kane MA, Pearson RM. Inflammatory disease progression shapes nanoparticle biomolecular corona-mediated immune activation profiles. Nat Commun 2025; 16:924. [PMID: 39843415 PMCID: PMC11754911 DOI: 10.1038/s41467-025-56210-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/10/2025] [Indexed: 01/24/2025] Open
Abstract
Polymeric nanoparticles (NPs) are promising tools used for immunomodulation and drug delivery in various disease contexts. The interaction between NP surfaces and plasma-resident biomolecules results in the formation of a biomolecular corona, which varies patient-to-patient and as a function of disease state. This study investigates how the progression of acute systemic inflammatory disease influences NP corona compositions and the corresponding effects on innate immune cell interactions, phenotypes, and cytokine responses. NP coronas alter cell associations in a disease-dependent manner, induce differential co-stimulatory and co-inhibitory molecule expression, and influence cytokine release. Integrated multi-omics analysis of proteomics, lipidomics, metabolomics, and cytokine datasets highlight a set of differentially enriched TLR4 ligands that correlate with dynamic NP corona-mediated immune activation. Pharmacological inhibition and genetic knockout studies validate that NP coronas mediate this response through TLR4/MyD88/NF-κB signaling. Our findings illuminate the personalized nature of corona formation under a dynamic inflammatory condition and its impact on NP-mediated immune activation profiles and inflammation, suggesting that disease progression-related alterations in plasma composition can manifest in the corona to cause unintended toxicity and altered therapeutic efficacy.
Collapse
Affiliation(s)
- Jacob R Shaw
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Nicholas Caprio
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Nhu Truong
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Mehari Weldemariam
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Anh Tran
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Nageswara Pilli
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Swarnima Pandey
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Jace W Jones
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
| | - Maureen A Kane
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA
| | - Ryan M Pearson
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 685 W. Baltimore Street, Baltimore, MD, 21201, USA.
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 N. Pine Street, Baltimore, MD, 21201, USA.
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 22 S. Greene Street, Baltimore, MD, 21201, USA.
| |
Collapse
|
35
|
Yin MM, Yuan YB, Ding X, Hu YJ, Jiang FL. Thermodynamics and models for small nanoparticles upon protein adsorption. Phys Chem Chem Phys 2025; 27:1222-1236. [PMID: 39717949 DOI: 10.1039/d4cp03518f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Proteins are some of the most important components in living organisms. When nanoparticles enter a living system, they swiftly interact with proteins to produce the so-called "protein corona", which depicts the adsorption of proteins on large nanoparticles (normally tens to hundreds of nanometers). However, the sizes of small nanoparticles (typically, fluorescent nanomaterials such as quantum dots, noble metal nanoclusters, carbon dots, etc.) are less than 10 nm, which are comparable or even much smaller than those of proteins. Can proteins also adsorb onto the surface of small nanoparticles to form a "protein corona"? In this perspective, the interactions between small nanoparticles with proteins are discussed in detail, including the main characterization methods and thermodynamic mechanisms. The interaction models are summarized. In particular, the concept of a "protein complex" is emphasized.
Collapse
Affiliation(s)
- Miao-Miao Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yi-Bo Yuan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Xin Ding
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Yan-Jun Hu
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, PR China.
| | - Feng-Lei Jiang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
36
|
Lee H. Effect of PEGylation on the Adsorption and Binding Strength of Plasma Proteins to Nanoparticle Surfaces. Mol Pharm 2025; 22:520-532. [PMID: 39718345 DOI: 10.1021/acs.molpharmaceut.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The adsorption of plasma proteins (human serum albumin, immunoglobulin γ-1, apolipoproteins A-I and E-III) onto polystyrene surfaces grafted with polyethylene glycol (PEG) at different grafting densities is simulated using an all-atom PEG model validated by comparing the conformations of isolated PEG chains with previous simulation and theoretical values. At high PEG density, the grafted PEG chains extend like brushes, while at low density, they significantly adsorb to the surface due to electrostatic attraction between polystyrene amines and PEG oxygens, forming a PEG layer much thinner than its Flory radius. Free energy calculations show that PEGylation can either increase or decrease the binding strength between proteins and surfaces, to an extent dependent on PEG density and specific proteins involved, in agreement with experiments. In particular, grafted PEG chains not only sterically block the binding between proteins and surfaces but also strongly interact with proteins via hydrogen bonds and electrostatic and hydrophobic interactions, with apolipoproteins exhibiting stronger hydrophobic interactions with PEG than other proteins, implying that these specific protein-PEG interactions help certain proteins remain on the PEGylated surface. These simulation findings help explain experimental observations regarding the abundance of specific plasma proteins adsorbed onto nanoparticles grafted with PEG at different densities.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical Engineering, Dankook University, Yongin-si 16890, South Korea
| |
Collapse
|
37
|
Das P, Saha S, Kumar Guha P, Kumar Bhunia A. Quantum dot-protein interface: Interaction of the CdS quantum dot with human hemoglobin for the study of the energy transfer process and binding mechanism along with detection of the unfolding of hemoglobin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 324:124937. [PMID: 39137709 DOI: 10.1016/j.saa.2024.124937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
In this study, the interaction of the human hemoglobin with cost effective and chemically fabricated CdS quantum dots (QDs) (average sizes ≈3nm) has been investigated. The semiconductor QDs showed maximum visible absorption at 445 nm with excitonic formation and band gap of ≈ 2.88 eV along with hexagonal crystalline phase. The binding of QDs-Hb occurs through corona formation to the ground sate complex formation. The life time of the heme pocket binding and reorganization were found to be t1 = 43 min and t2 = 642 min, respectively. The emission quenching of the Hb has been indicated large energy transfer between CdS QDs and Hb with tertiary deformation of Hb. The binding thermodynamics showed highly exothermic nature. The ultrafast decay during corona formation was studied from TCSPC. The results showed that the energy transfer efficiency increases with the increase of the QDs concentration and maximum ≈71.5 % energy transfer occurs and average ultrafast lifetime varies from 5.45 ns to1.51 ns. The deformation and unfolding of the secondary structure of Hb with changes of the α-helix (≈74 % to ≈51.07 %) and β-sheets (≈8.63 % to ≈10.25 %) have been observed from circular dichroism spectrum. The SAXS spectrum showed that the radius of gyration of CdS QDs-Hb bioconjugate increased (up to 23 ± 0.45 nm) with the increase of the concentration of QDs compare with pure Hb (11 ± 0.23 nm) and Hb becoming more unfolded.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Physics, Vidyasagar University, Paschim Medinipur 721102, West Bengal, India
| | - Satyajit Saha
- Department of Physics, Vidyasagar University, Paschim Medinipur 721102, West Bengal, India
| | - Prasanta Kumar Guha
- Department of Electronics and Electrical Communication Engineering, Indian Institute of Technology Kharagpur, Paschim Medinipur, 721302, India; School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Paschim Medinipur 721302, India
| | - Amit Kumar Bhunia
- Department of Physics, Government General Degree College Gopiballavpur-II, Jhargram 721517, India.
| |
Collapse
|
38
|
Hunt N, Kestens V, Rasmussen K, Badetti E, Soeteman-Hernández LG, Oomen AG, Peijnenburg W, Hristozov D, Rauscher H. Regulatory preparedness for multicomponent nanomaterials: Current state, gaps and challenges of REACH. NANOIMPACT 2025; 37:100538. [PMID: 39708954 DOI: 10.1016/j.impact.2024.100538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/06/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
In 2018 the European Commission adopted revisions to the Annexes of Regulation (EC) No 1907/2006 concerning registration, evaluation, authorisation and restriction of chemicals (REACH) to introduce nanomaterial-specific clarifications and provisions. Multicomponent nanomaterial (MCNM) is a non-regulatory term that has been used in recent EU-funded projects to describe nanomaterials with a complex structure and/or composition and which are expected to be increasingly used in products in the near future. This paper examines the regulatory preparedness of REACH, and its revised Annexes, for MCNMs. Several situations have been identified where there is potential confusion and uncertainty around how regulatory definitions used in REACH should be applied to MCNMs. If a MCNM cannot be identified as falling within a specific definition, understanding the regulatory obligations that apply to it is very difficult. Examples of these grey areas include how the term "surface functionalisation or modification" applies when a chemical is physisorbed to the surface of a nanoform, and the identity of the substance that should be registered when the modification takes it outside the definition of a nanoform. We conclude that the regulatory preparedness can be improved by amending the REACH guidance on information requirements for nanoforms and revising the definition of "nanoform" in line with the updated EC Recommendation on the definition of nanomaterial.
Collapse
Affiliation(s)
- Neil Hunt
- YORDAS Group, Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| | - Vikram Kestens
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | | | - Elena Badetti
- Department of Environmental Sciences, Informatics and Statistics, Ca' Foscari University of Venice, Via Torino, 155, Venice Mestre (VE) 30172, Italy
| | | | - Agnes G Oomen
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, the Netherlands
| | - Willie Peijnenburg
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, the Netherlands
| | | | - Hubert Rauscher
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| |
Collapse
|
39
|
Sanchez-Hernandez JC, Megharaj M. Insect farming: A bioeconomy-based opportunity to revalorize plastic wastes. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2025; 23:100521. [PMID: 39867963 PMCID: PMC11758129 DOI: 10.1016/j.ese.2024.100521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 01/28/2025]
Abstract
Managing plastic waste is one of the greatest challenges humanity faces in the coming years. Current strategies-landfilling, incineration, and recycling-remain insufficient or pose significant environmental concerns, failing to address the growing volume of plastic residues discharged into the environment. Recently, increasing attention has focused on the potential of certain insect larvae species to chew, consume, and partially biodegrade synthetic polymers such as polystyrene and polyethylene, offering novel biotechnological opportunities for plastic waste management. However, insect-assisted plastic depolymerization is incomplete, leaving significant amounts of microplastics in the frass (or manure), limiting its use as a soil amendment. In this perspective, we propose a novel two-step bioconversion system to overcome these limitations, using insects to sustainably manage plastic waste while revalorizing its by-products (frass). The first step involves pyrolyzing microplastic-containing frass from mealworms (Tenebrio molitor larvae) fed on plastic-rich diets to produce biochar with enhanced adsorptive properties. The second stage integrates this biochar into the entomocomposting of organic residues, such as food waste, using black soldier fly (Hermetia illucens) larvae to produce nutrient-rich substrates enriched with carbon and nitrogen. This integrated system offers a potential framework for large-scale industrial applications, contributing to the bioeconomy by addressing both plastic waste and organic residue management. We critically examine the advantages and limitations of the proposed system based on current literature on biochar technology and entomocomposting. Key challenges and research opportunities are identified, particularly concerning the physiological and toxicological processes involved, to guide future efforts aimed at ensuring the scalability and sustainability of this innovative approach.
Collapse
Affiliation(s)
- Juan C. Sanchez-Hernandez
- Laboratory of Ecotoxicology, Institute of Environmental Sciences, University of Castilla-La Mancha, 45071, Toledo, Spain
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
40
|
Dykman L, Khlebtsov B, Khlebtsov N. Drug delivery using gold nanoparticles. Adv Drug Deliv Rev 2025; 216:115481. [PMID: 39617254 DOI: 10.1016/j.addr.2024.115481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/23/2024] [Accepted: 11/26/2024] [Indexed: 12/16/2024]
Abstract
Modern nanotechnologies provide various possibilities for efficiently delivering drugs to biological targets. This review focuses on using functionalized gold nanoparticles (GNPs) as a drug delivery platform. Owing to their exceptional size and surface characteristics, GNPs are a perfect drug delivery vehicle for targeted and selective distribution. Several in vitro and in vivo tests have shown how simple it is to tailor these particles to administer chemical medications straight to tumors. The GNP surface can also be coated with ligands to modify drug release or improve selectivity. Moreover, the pharmacological activity can be enhanced by using the photothermal characteristics of the particles.
Collapse
Affiliation(s)
- Lev Dykman
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Boris Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia
| | - Nikolai Khlebtsov
- Institute of Biochemistry and Physiology of Plants and Microorganisms, "Saratov Scientific Centre of the Russian Academy of Sciences", 13 Prospekt Entuziastov, Saratov 410049, Russia; Saratov State University, 83 Ulitsa Astrakhanskaya, Saratov 410012, Russia.
| |
Collapse
|
41
|
Ta KM, Neal CJ, Coathup MJ, Seal S, Phillips RM, Molinari M. The interaction of phosphate species with cerium oxide: The known, the ambiguous and the unexplained. BIOMATERIALS ADVANCES 2025; 166:214063. [PMID: 39476683 DOI: 10.1016/j.bioadv.2024.214063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 11/13/2024]
Abstract
Cerium oxide based nanozymes are intensively studied due to their catalytic activity and structural flexibility. Such nanozymes have a great future potential in human therapeutics and antimicrobial activity. The structural complexity of their surfaces enables a great variety of enzyme mimetic activities. However, selection of a specific activity remains challenging, as such activities are sensitive to morphological and compositional changes as well as the physicochemical and biological environments. When delivered into biological systems, many processes occur at the surface, redefining the biological identity and activity of the nanozyme. Inorganic phosphates and phosphate-bearing molecules are some critical examples of items that can interact with cerium oxide nanozymes. Inorganic phosphates can interact directly with cerium oxide and even have a scavenging activity converting the material into cerium phosphate. Phosphate-bearing molecules can absorb on the surface of the nanozyme where phosphatase activity may occur. Given the abundance of phosphates in biological environments, cerium oxide nanozymes are strongly affected by their local concentration. Here, we discuss the interaction of cerium oxide with phosphates and phosphate-bearing molecules, providing a focussed review of the computational and experimental literature, with a focus on the surface morphology and chemistry of the nanozyme and their impact on the phosphate adsorption and phosphatase activity.
Collapse
Affiliation(s)
- Khoa Minh Ta
- Department of Physical and Life Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK
| | - Craig J Neal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816, USA; College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Melanie J Coathup
- Biionix Cluster, Department of Internal Medicine, College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Sudipta Seal
- Department of Materials Science and Engineering, Advanced Materials Processing and Analysis Center, Nanoscience and Technology Center, University of Central Florida, Orlando, FL 32816, USA; College of Medicine, University of Central Florida, Orlando, FL 32827, USA
| | - Roger M Phillips
- Department of Pharmacy, School of Applied Sciences, University of Huddersfield, Huddersfield HD13DH, UK
| | - Marco Molinari
- Department of Physical and Life Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, UK.
| |
Collapse
|
42
|
Deng S, Shao H, Shang H, Pang L, Chen X, Cao J, Wang Y, Zhao Z. Development of a Cationic Polymeric Micellar Structure with Endosomal Escape Capability Enables Enhanced Intramuscular Transfection of mRNA-LNPs. Vaccines (Basel) 2024; 13:25. [PMID: 39852804 PMCID: PMC11768556 DOI: 10.3390/vaccines13010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/02/2024] [Accepted: 12/10/2024] [Indexed: 01/26/2025] Open
Abstract
Background/Objectives: The endosomal escape of lipid nanoparticles (LNPs) is crucial for efficient mRNA-based therapeutics. Here, we present a cationic polymeric micelle (cPM) as a safe and potent co-delivery system with enhanced endosomal escape capabilities. Methods: We synthesized a cationic and ampholytic di-block copolymer, poly (poly (ethylene glycol)4-5 methacrylatea-co-hexyl methacrylateb)X-b-poly(butyl methacrylatec-co-dimethylaminoethyl methacrylated-co-propyl acrylatee)Y (p(PEG4-5MAa-co-HMAb)X-b-p(BMAc-co-DMAEMAd-co-PAAe)Y), via reversible addition-fragmentation chain transfer polymerization. The cPMs were then formulated using the synthesized polymer by the dispersion-diffusion method and characterized by dynamic light scattering (DLS) and cryo-transmission electron microscopy (CryoTEM). The membrane-destabilization activity of the cPMs was evaluated by a hemolysis assay. We performed an in vivo functional assay of firefly luciferase (Fluc) mRNA using two of the most commonly studied LNPs, SM102 LNP and Dlin-MC3-DMA LNPs. Results: With a particle size of 61.31 ± 0.68 nm and a zeta potential of 37.76 ± 2.18 mV, the cPMs exhibited a 2-3 times higher firefly luciferase signal at the injection site compared to the control groups without cPMs following intramuscular injection in mice, indicating the high potential of cPMs to enhance the endosomal escape efficiency of mRNA-LNPs. Conclusions: The developed cPM, with enhanced endosomal escape capabilities, presents a promising strategy to improve the expression efficiency of delivered mRNAs. This approach offers a novel alternative strategy with no modifications to the inherent properties of mRNA-LNPs, preventing any unforeseeable changes in formulation characteristics. Consequently, this polymer-based nanomaterial holds immense potential for clinical applications in mRNA-based vaccines.
Collapse
Affiliation(s)
- Siyuan Deng
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Han Shao
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Hongtao Shang
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Lingjin Pang
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Xiaomeng Chen
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| | - Jingyi Cao
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
- NeoCura Bio-Medical Technology Co., Ltd., 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China
| | - Yi Wang
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
- NeoCura Bio-Medical Technology Co., Ltd., 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China
| | - Zhao Zhao
- Shenzhen Neocurna Biotechnology Corporation, 12/F, Block B, Building 1, Yinxingzhijie Phase II, Longhua District, Shenzhen 518100, China; (S.D.); (H.S.); (H.S.); (L.P.); (X.C.); (J.C.)
| |
Collapse
|
43
|
Tang H, Wang H, Gan Z, Ding Z, Yu Q. Engineering the Hydrophilic-Hydrophobic Interface of Polymeric Micelles by Cationic Blocks for Enhanced Chemotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69011-69027. [PMID: 39639482 DOI: 10.1021/acsami.4c17024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
The cationic surface charge critically influences the biological functions and therapeutic outcomes of the cancer nanomedicines. However, the basic correlation between the cationic group categories and their therapeutic efficacy has not been elucidated. In this study, cationic polymeric nanoparticles with amino groups (primary, tertiary, and quaternary amines) as the single variable were leveraged to investigate the various effects of amino species for enhanced antitumor chemotherapy. The nanoparticles were constructed from a series of triblock polymers with varying cationic repeating units at the hydrophilic-hydrophobic interface. Our results suggested that quaternary ammonium outperforms its primary and tertiary counterparts in destroying mitochondrial membranes to induce apoptosis, penetrating deep inside the tumor tissue, and damaging tumor vasculatures. As a result, we were able to effectively inhibit tumor growth in mice by a quaternary ammonium conjugate without causing significant toxicity. Our work demonstrated that the chemical structures played vital roles in regulating their biological functions and provided valuable information for designing cationic drug delivery systems.
Collapse
Affiliation(s)
- Hao Tang
- Shenzhen Key Laboratory of Smart Healthcare Engineering, Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology; Shenzhen, Guangdong 518055, P. R. China
| | - Hanbing Wang
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhihua Gan
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhenshan Ding
- Department of Urology, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Qingsong Yu
- The State Key Laboratory of Organic Inorganic Composites, Beijing Laboratory of Biomedical Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules (Ministry of Education), College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
44
|
Van der Sanden N, Paun RA, Yitayew MY, Boyadjian O, Tabrizian M. An investigation of the effect of the protein corona on the cellular uptake of nanoliposomes under flow conditions using quartz crystal microgravimetry with dissipation. NANOSCALE ADVANCES 2024; 7:169-184. [PMID: 39569329 PMCID: PMC11575535 DOI: 10.1039/d4na00783b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024]
Abstract
When nanoparticle delivery systems are immersed in biological fluids, a complex assembly of proteins forms on their surface, creating a protein corona. The protein corona alters the physicochemical properties, toxicity, biodistribution, cellular uptake, and immune response of the nanoparticles, and consequently, their therapeutic efficacy. Currently, there is a lack of in vitro methods to assess the effects of the protein corona on nanoparticle uptake under dynamic flow and assess their binding kinetics in real-time. Here, we introduce quartz crystal microbalance with dissipation (QCM-D) as an in vitro technique, capable of incorporating dynamic flow, to study the effect of the protein corona on the binding of nanoliposome (NLP) formulations to cell surfaces as a first step in their cellular uptake. The interactions of four NLP formulations (low PEGylated, high PEGylated, negatively charged and positively charged NLPs) with A375 melanoma and THP1 cell lines were assessed by QCM-D, before and after the formation of a protein corona. Through real-time recording of the frequency and dissipation shifts (Δf and ΔD, respectively), the QCM-D results provided strong evidence of the role of the protein corona in the cellular interaction of these NLP formulations, with a variation in their adsorption kinetics depending on their initial composition. NLP's attachment to the cell surface was the lowest for PEGylated NLPs (<5%), while the positively charged NLPs showed the highest cellular attachment (≈100%), regardless of the presence of the protein corona or cell type. The effect of the protein corona was more pronounced for the negatively charged NLPs, where a significant reduction in the NLP attachment was observed. To complement the QCM-D data on the NLP attachment and to determine whether the NLP attachment leads to cellular uptake, confocal microscopy and flow cytometry were used to confirm NLP uptake by A375 and THP1 cells. Proteomic analysis revealed a differential composition of the protein corona on the various NLPs with possible implications for their sequestration and cellular uptake. Collectively, the findings suggest that QCM-D can be an important tool to study the binding of NLP formulations or other nanoparticles with cell membranes under dynamic flow, which very often differs from nanoparticle uptake under static conditions.
Collapse
Affiliation(s)
- Nicholas Van der Sanden
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Radu A Paun
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Michael Y Yitayew
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Oscar Boyadjian
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University Duff Medical Building, 3775 University Street Montreal Quebec H3A 2B4 Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University Montreal Canada
| |
Collapse
|
45
|
Li S, Cortez-Jugo C, Ju Y, Caruso F. Approaching Two Decades: Biomolecular Coronas and Bio-Nano Interactions. ACS NANO 2024; 18:33257-33263. [PMID: 39602410 DOI: 10.1021/acsnano.4c13214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
It has been nearly two decades since the term "protein corona" was coined. This term has since evolved to "biomolecular corona" or "biocorona" to capture the diverse biomolecules that spontaneously form on the surface of nanoparticles upon exposure to biological fluids and drive nanoparticle interactions with biological systems. In this Perspective, we highlight the significant progress in this field, including studies on nonprotein corona components, lipid nanoparticles, and the role of the corona in endogenous organ targeting. We also discuss research opportunities in this field, particularly the need for improved characterization and standardization of analysis and how recent advances in artificial intelligence and ex vivo models can improve our understanding of the biomolecular corona in guiding nanomedicine design.
Collapse
Affiliation(s)
- Shiyao Li
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Christina Cortez-Jugo
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yi Ju
- School of Science, RMIT University, Melbourne, Victoria 3000, Australia
| | - Frank Caruso
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
46
|
Maršík D, Danda M, Otta J, Thoresen PP, Mat́átková O, Rova U, Christakopoulos P, Matsakas L, Masák J. Preparation and Biological Activity of Lignin-Silver Hybrid Nanoparticles. ACS OMEGA 2024; 9:47765-47787. [PMID: 39651097 PMCID: PMC11618447 DOI: 10.1021/acsomega.4c08117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/01/2024] [Accepted: 11/07/2024] [Indexed: 12/11/2024]
Abstract
Silver nanoparticles (AgNPs) are excellent antimicrobial agents and promising candidates for preventing or treating bacterial infections caused by antibiotic resistant strains. However, their increasing use in commercial products raises concerns about their environmental impact. In addition, traditional physicochemical approaches often involve harmful agents and excessive energy consumption, resulting in AgNPs with short-term colloidal stability and silver ion leaching. To address these issues, we designed stable hybrid lignin-silver nanoparticles (AgLigNPs) intended to effectively hit bacterial envelopes as a main antimicrobial target. The lignin nanoparticles (LigNPs), serving as a reducing and stabilizing agent for AgNPs, have a median size of 256 nm and a circularity of 0.985. These LigNPs were prepared using the dialysis solvent exchange method, producing spherical particles stable under alkaline conditions and featuring reducing groups oriented toward a wrinkled surface, facilitating AgNPs synthesis and attachment. Maximum accumulation of silver on the LigNP surface was observed at a mass reaction ratio mAg:mLig of 0.25, at pH 11. The AgLigNPs completely inhibited suspension growth and reduced biofilm development by 50% in three tested strains of Pseudomonas aeruginosa at a concentration of 80/9.5 (lignin/silver) mg L-1. Compared to unattached AgNPs, AgLigNPs required two to eight times lower silver concentrations to achieve complete inhibition. Additionally, our silver-containing nanosystems were effective against bacteria at safe concentrations in HEK-293 and HaCaT tissue cultures. Stability experiments revealed that the nanosystems tend to aggregate in media used for bacterial cell cultures but remain stable in media used for tissue cultures. In all tested media, the nanoparticles retained their integrity, and the presence of lignin facilitated the prevention of silver ions from leaching. Overall, our data demonstrate the suitability of AgLigNPs for further valorization in the biomedical sector.
Collapse
Affiliation(s)
- Dominik Maršík
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Matěj Danda
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Jaroslav Otta
- Department
of Physics and Measurements, University
of Chemistry and Technology, Prague 166 28, Czech Republic
| | - Petter P. Thoresen
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Olga Mat́átková
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| | - Ulrika Rova
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Paul Christakopoulos
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Leonidas Matsakas
- Biochemical
Process Engineering, Division of Chemical Engineering, Department
of Civil, Environmental, and Natural Resources, Luleå University of Technology, Luleå 971 87, Sweden
| | - Jan Masák
- Department
of Biotechnology, University of Chemistry
and Technology, Prague 166 28, Czech Republic
| |
Collapse
|
47
|
Gong N, Zhong W, Alameh MG, Han X, Xue L, El-Mayta R, Zhao G, Vaughan AE, Qin Z, Xu F, Hamilton AG, Kim D, Xu J, Kim J, Teng X, Li J, Liang XJ, Weissman D, Guo W, Mitchell MJ. Tumour-derived small extracellular vesicles act as a barrier to therapeutic nanoparticle delivery. NATURE MATERIALS 2024; 23:1736-1747. [PMID: 39223270 PMCID: PMC11838174 DOI: 10.1038/s41563-024-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/25/2024] [Indexed: 09/04/2024]
Abstract
Nanoparticles are promising for drug delivery applications, with several clinically approved products. However, attaining high nanoparticle accumulation in solid tumours remains challenging. Here we show that tumour cell-derived small extracellular vesicles (sEVs) block nanoparticle delivery to tumours, unveiling another barrier to nanoparticle-based tumour therapy. Tumour cells secrete large amounts of sEVs in the tumour microenvironment, which then bind to nanoparticles entering tumour tissue and traffic them to liver Kupffer cells for degradation. Knockdown of Rab27a, a gene that controls sEV secretion, decreases sEV levels and improves nanoparticle accumulation in tumour tissue. The therapeutic efficacy of messenger RNAs encoding tumour suppressing and proinflammatory proteins is greatly improved when co-encapsulated with Rab27a small interfering RNA in lipid nanoparticles. Together, our results demonstrate that tumour cell-derived sEVs act as a defence system against nanoparticle tumour delivery and that this system may be a potential target for improving nanoparticle-based tumour therapies.
Collapse
Affiliation(s)
- Ningqiang Gong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Division of Life Sciences and Medicine, Center for BioAnalytical Chemistry, Hefei National Research Center for Physical Science at the Microscale, University of Science and Technology of China, Hefei, China
| | - Wenqun Zhong
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Xuexiang Han
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Lulu Xue
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Rakan El-Mayta
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Gan Zhao
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew E Vaughan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zhiyuan Qin
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Fengyuan Xu
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Alex G Hamilton
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Dongyoon Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Junchao Xu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Junhyong Kim
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Xucong Teng
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Jinghong Li
- Department of Chemistry, Tsinghua University, Beijing, China
| | - Xing-Jie Liang
- Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Drew Weissman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
| | - Wei Guo
- Department of Biology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Penn institute for RNA innovation, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Talab MJ, Valizadeh A, Tahershamsi Z, Housaindokht MR, Ranjbar B. Personalized biocorona as disease biomarker: The challenges and opportunities. Biochim Biophys Acta Gen Subj 2024; 1868:130724. [PMID: 39426758 DOI: 10.1016/j.bbagen.2024.130724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/22/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
It is well known that when nanoparticles interact with biological fluids, a layer of proteins and biological components forms on them. This layer may alter the biological fate and efficiency of the nanomaterial. Recent studies have shown that illness states have a major impact on the structure of the biocorona, sometimes referred to as the "personalized protein corona." Physiological factors like illness, which impact the proteome and metabolome pattern and result in conformational changes in proteins, give rise to this structure of discrimination in biocorona decoration. Improving the efficiency of precise platforms for developing new molecular biomarkers for accurate illness diagnosis is vitally necessary. The biocorona pattern's discrimination may be a diagnostic tool for designing biosensors. As a result, in this review, we summarize the most current studies on the relationship between physiological conditions and the variety of biocorona patterns that influence the biological responses of nanosystems. The biocorona pattern's flexibility may provide new research directions and be utilized to create nanoparticle-based therapeutic and diagnostic products suited to certain physiological situations.
Collapse
Affiliation(s)
- Mahtab Jahanshah Talab
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Valizadeh
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Tahershamsi
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mohammad Reza Housaindokht
- Biophysical Chemistry Laboratory, Department of Chemistry, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Bijan Ranjbar
- Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
49
|
Xiong X, Luo X, Zhao C, Hu N, Fang J, Zhang E, Zeng Y, Huang Y, Huang B, Li Y, Wu P, Wang H, Zou Q, Ye W, Wang S. Design of dinuclear osmium complex doped antifouling cellulose nanoparticles for targeting and dual photodynamic/photothermal therapy under near infrared irradiation. Int J Biol Macromol 2024; 283:137544. [PMID: 39537069 DOI: 10.1016/j.ijbiomac.2024.137544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 10/19/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
Transition metal complexes has been explored in the treatment of tumors in photodynamic theray (PDT) or photothermal therapy (PTT) and Osmium complex attracts attentration due to its lower toxicity and longer absorption wavelength. However, there was no report about binuclear Os complex for combined therapy of PDT and PTT which could have a synergistic effect and improve the effectiveness. Herein, we synthesis of mono/dinuclear Os complexes (OsY1, OsY2) with dual PDT/PTT capabilities under a single near-infrared (NIR) excitation wavelength. These features arise from the large π-conjugated structure of our dinuclear Os complex coupled with efficient metal-to-ligand charge transfer, which bring in ultralow energy gaps of 0.733 eV and 0.308 eV for OsY1 and OsY2, respectively. Furthermore, we prepared the Osmium complex-doped, aptamer-conjugated cellulose NPs via the emulsion polymerization method. These NPs exhibit a notable ability to target mitochondria and posse a "protein corona-free" status, showing much higher efficiency in tumor ablation (76 %) than the commercialized indocyanine green (ICG) doped cellulose NPs (24 %) under 808 nm irradiation. Consequently, our designed mono/dinuclear Os complex, featuring a single-molecule dual PDT/PTT effect within doped antifouling NPs, holds promise for potential applications in cancer therapy.
Collapse
Affiliation(s)
- Xilin Xiong
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Xinxin Luo
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Chong Zhao
- Guizhou Provincial Engineering Technology Research Center for Chemical Drug R&D, College of Pharmacy, Guizhou Medical University, Guiyang 550025, PR China
| | - Nanxi Hu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Jingying Fang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Enyin Zhang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuting Zeng
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yuan Huang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Bo Huang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Yanqi Li
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Pengyu Wu
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Hangxing Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Qichao Zou
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China
| | - Wenjing Ye
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| | - Suxiao Wang
- Hubei Key Laboratory for Precision Synthesis of Small Molecule Pharmaceuticals, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
50
|
Lee H. Hydrodynamics and Aggregation of Nanoparticles with Protein Corona: Effects of Protein Concentration and Ionic Strength. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403913. [PMID: 39082088 PMCID: PMC11657031 DOI: 10.1002/smll.202403913] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/28/2024] [Indexed: 12/20/2024]
Abstract
Multiple 10 nm-sized anionic nanoparticles complexed with plasma proteins (human serum albumin (SA) or immunoglobulin gamma-1 (IgG)) at different ratios are simulated using all-atom and coarse-grained models. Coarse-grained simulations show much larger hydrodynamic radii of individual particles at a low protein concentration (a protein-to-particle ratio of 1) than at high protein concentrations or without proteins, indicating particle aggregation only at such a low protein concentration, in agreement with experiments. This particle aggregation is attributed to both electrostatic and hydrophobic particle-protein interactions, to an extent dependent on different proteins. In all-atom simulations, IgG proteins induce particle aggregation with and without salt, while SA proteins promote particle aggregation only in the presence of salt that can weaken the electrostatic repulsion between anionic particles closely linked via SA that is smaller than IgG, which also agree well with experiments. Besides charge interactions, hydrophobic interactions between particles and proteins are also important especially at the high salt concentration, leading to the increased particle-protein contact area. These findings help explain experimental observations regarding that the effects of protein concentration and ionic strength on particle aggregation depend on different plasma proteins, which are interpreted by binding free energies, electrostatic, and hydrophobic interactions between particles and proteins.
Collapse
Affiliation(s)
- Hwankyu Lee
- Department of Chemical EngineeringDankook UniversityYongin‐si16890South Korea
| |
Collapse
|