1
|
Quatela AS, Cangren P, de Lima Ferreira P, Woudstra Y, Zsoldos-Skahjem A, Bacon CD, de Boer HJ, Oxelman B. Phylogenetic relationships and the identification of allopolyploidy in circumpolar Silene sect. Physolychnis. AMERICAN JOURNAL OF BOTANY 2025:e70051. [PMID: 40405418 DOI: 10.1002/ajb2.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 03/18/2025] [Accepted: 03/20/2025] [Indexed: 05/24/2025]
Abstract
PREMISE Species complexes are groups of closely related species with ambiguous delimitation, often composed of recently diverged lineages. Polyploidization and uniparental reproduction (i.e., selfing and apomixis) can play important roles in the origin of species complexes. These complexes pose challenges for species-based scientific questions, such as the estimation of species richness or conservation prioritization. METHODS We determined the potential of resolving taxonomically complex groups using target enrichment in the circumpolar Silene uralensis complex (Caryophyllaceae). We proposed a metric using genetic distances between phased alleles to distinguish diploids from allopolyploids. RESULTS Our results identified geographic structure of populations, with the northern American and Greenlandic samples having a common ancestor. We found little phylogenetic support for the most recent taxonomic treatment of the Silene uralensis complex. CONCLUSIONS The study highlights the use of target enrichment in testing taxonomic hypotheses in diploids and the challenges of studying recently diverged lineages.
Collapse
Affiliation(s)
- Anne-Sophie Quatela
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, University of Gothenburg, Gothenburg, Sweden
| | - Patrik Cangren
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Andreas Zsoldos-Skahjem
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Christine D Bacon
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, University of Gothenburg, Gothenburg, Sweden
| | - Hugo J de Boer
- Natural History Museum, University of Oslo, Oslo, Norway
| | - Bengt Oxelman
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
- Gothenburg Global Biodiversity Center, University of Gothenburg, Gothenburg, Sweden
- Stellenbosch Institute of Advanced Studies, Stellenbosch, South Africa
| |
Collapse
|
2
|
Ishikawa N, Sakaguchi S, Hasekura C, Shipunov A, Matsuo A, Suyama Y, Tsukaya H, Ikeda H, Ito M. Allotetraploid Origin and Putative Ancient Introgression in Plantago hakusanensis (Plantaginaceae). Ecol Evol 2025; 15:e71144. [PMID: 40104632 PMCID: PMC11917114 DOI: 10.1002/ece3.71144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 02/12/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025] Open
Abstract
Plantago hakusanensis (2n = 4x = 24) is an endangered endemic species that occurs in subalpine zones in Japan. To clarify the unresolved phylogenetic position of P. hakusanensis within subgenus Plantago, we constructed a phylogenetic tree based on the nuclear-encoded single-copy gene sucrose-proton symporter 1 (SUC1) using 60 previously reported alleles from 24 taxa in subgenus Plantago. We found that P. hakusanensis was closely related to Plantago asiatica var. densiuscula. The phylogenetic relationships between P. hakusanensis and P. asiatica var. densiuscula were further examined by analyses of the SUC1 nuclear regions and the internal transcribed spacer (ITS) of rDNA, genome-wide single-nucleotide polymorphism genotyping (via multiplexed inter-simple sequence repeat genotyping by sequencing), as well as by additional analyses of three chloroplast (cp) regions (trnL-F, ndhF-rpl32, and rpl32-trnL) in 25 individuals of P. hakusanensis and 53 individuals of P. asiatica var. densiuscula covering the species' geographical distribution. Monophyly of P. hakusanensis was suggested by the nuclear marker analyses, whereas the cp haplotypes of P. hakusanensis were shared with P. asiatica var. densiuscula and P. asiatica in China. The disparity between the nuclear and cp data may be explained by the introgression of the cp genome (cp capture). This research provides a phylogenetic tree showing the position of P. hakusanensis within subgenus Plantago and molecular evidence that implies complicated introgressions between P. hakusanensis and P. asiatica var. densiuscula.
Collapse
Affiliation(s)
- Naoko Ishikawa
- Kawatabi Field Science Center, Graduate School of Agricultural Science Tohoku University Osaki Miyagi Japan
| | - Shota Sakaguchi
- Graduate School of Human and Environmental Studies Kyoto University, Yoshida-Nihonmatsu-Cho Kyoto Japan
| | - Chikako Hasekura
- Faculty of Agriculture Tokyo University of Agriculture Atsugi Kanagawa Japan
| | - Alexey Shipunov
- Department of Biology Minot State University Minot North Dakota USA
| | - Ayumi Matsuo
- GENODAS Inc Urbannet Sendai-Chuo Bld Sendai Miyagi Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science Tohoku University Osaki Miyagi Japan
| | | | - Hiroshi Ikeda
- The University Museum The University of Tokyo Tokyo Japan
| | - Motomi Ito
- Graduate School of Arts and Sciences the University of Tokyo Tokyo Japan
| |
Collapse
|
3
|
Trunova D, Borowska-Zuchowska N, Mykhailyk S, Xia K, Zhu Y, Sancho R, Rojek-Jelonek M, Garcia S, Wang K, Catalan P, Kovarik A, Hasterok R, Kolano B. Does time matter? Intraspecific diversity of ribosomal RNA genes in lineages of the allopolyploid model grass Brachypodium hybridum with different evolutionary ages. BMC PLANT BIOLOGY 2024; 24:981. [PMID: 39420249 PMCID: PMC11488067 DOI: 10.1186/s12870-024-05658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Polyploidisation often results in genome rearrangements that may involve changes in both the single-copy sequences and the repetitive genome fraction. In this study, we performed a comprehensive comparative analysis of repetitive DNA, with a particular focus on ribosomal DNA (rDNA), in Brachypodium hybridum (2n = 4x = 30, subgenome composition DDSS), an allotetraploid resulting from a natural cross between two diploid species that resemble the modern B. distachyon (2n = 10; DD) and B. stacei (2n = 20; SS). Taking advantage of the recurrent origin of B. hybridum, we investigated two genotypes, Bhyb26 and ABR113, differing markedly in their evolutionary age (1.4 and 0.14 Mya, respectively) and which resulted from opposite cross directions. To identify the origin of rDNA loci we employed cytogenetic and molecular methods (FISH, gCAPS and Southern hybridisation), phylogenetic and genomic approaches. RESULTS Unlike the general maintenance of doubled gene dosage in B. hybridum, the rRNA genes showed a remarkable tendency towards diploidisation at both locus and unit levels. While the partial elimination of 35S rDNA units occurred in the younger ABR113 lineage, unidirectional elimination of the entire locus was observed in the older Bhyb26 lineage. Additionally, a novel 5S rDNA family was amplified in Bhyb26 replacing the parental units. The 35S and 5S rDNA units were preferentially eliminated from the S- and D-subgenome, respectively. Thus, in the more ancient B. hybridum lineage, Bhyb26, 5S and 35S rRNA genes are likely expressed from different subgenomes, highlighting the complexity of polyploid regulatory networks. CONCLUSION Comparative analyses between two B. hybridum lineages of distinct evolutionary ages revealed that although the recent lineage ABR113 exhibited an additive pattern of rDNA loci distribution, the ancient lineage Bhyb26 demonstrated a pronounced tendency toward diploidisation manifested by the reduction in the number of both 35S and 5S loci. In conclusion, the age of the allopolyploid appears to be a decisive factor in rDNA turnover in B. hybridum.
Collapse
Affiliation(s)
- Dana Trunova
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Natalia Borowska-Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Serhii Mykhailyk
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Kai Xia
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Yuanbin Zhu
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Ruben Sancho
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Magdalena Rojek-Jelonek
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Sònia Garcia
- Institut Botànic de Barcelona IBB (CSIC-CMCNB), Barcelona, Catalonia, 08038, Spain
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, China
| | - Pilar Catalan
- Department of Agricultural and Environmental Sciences, High Polytechnic School of Huesca, University of Zaragoza, Huesca, 22071, Spain
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Czech Academy of Sciences, Brno, CZ- 61200, Czech Republic
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Bozena Kolano
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland.
| |
Collapse
|
4
|
Dias S, Souza RC, Vasconcelos EV, Vasconcelos S, da Silva Oliveira AR, do Vale Martins L, de Oliveira Bustamante F, da Costa VA, Souza G, da Costa AF, Benko-Iseppon AM, Knytl M, Brasileiro-Vidal AC. Cytomolecular diversity among Vigna Savi (Leguminosae) subgenera. PROTOPLASMA 2024; 261:859-875. [PMID: 38467939 DOI: 10.1007/s00709-024-01944-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The genus Vigna (Leguminosae) comprises about 150 species grouped into five subgenera. The present study aimed to improve the understanding of karyotype diversity and evolution in Vigna, using new and previously published data through different cytogenetic and DNA content approaches. In the Vigna subgenera, we observed a random distribution of rDNA patterns. The 35S rDNA varied in position, from terminal to proximal, and in number, ranging from one (V. aconitifolia, V. subg. Ceratotropis) to seven pairs (V. unguiculata subsp. unguiculata, V. subg. Vigna). On the other hand, the number of 5S rDNA was conserved (one or two pairs), except for V. radiata (V. subg. Ceratotropis), which had three pairs. Genome size was relatively conserved within the genus, ranging from 1C = 0.43 to 0.70 pg in V. oblongifolia and V. unguiculata subsp. unguiculata, respectively, both belonging to V. subg. Vigna. However, we observed a positive correlation between DNA content and the number of 35S rDNA sites. In addition, data from chromosome-specific BAC-FISH suggest that the ancestral 35S rDNA locus is conserved on chromosome 6 within Vigna. Considering the rapid diversification in the number and position of rDNA sites, such conservation is surprising and suggests that additional sites may have spread out from this ancestral locus.
Collapse
Affiliation(s)
- Sibelle Dias
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Rosilda Cintra Souza
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Imunopatologia Keizo Asami, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Lívia do Vale Martins
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Campus Amilcar Ferreira Sobral, Universidade Federal Do Piauí, Floriano, PI, Brazil
| | - Fernanda de Oliveira Bustamante
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade Do Estado de Minas Gerais - Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Victor Alves da Costa
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gustavo Souza
- Departamento de Botânica, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Ana Maria Benko-Iseppon
- Departamento de Genética, Centro de Biociências, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Martin Knytl
- Department of Biology, McMaster University, 1280 Main Street West, Hamilton, ON, L8S4K1, Canada
- Department of Cell Biology, Faculty of Science, Charles University, Viničná 7, Prague, 12843, Czech Republic
| | | |
Collapse
|
5
|
Jiang C, Shi T, Mo Z, Zhao C. Across a phylogeographic break in the Qinling Mountains-Huaihe River Line: Quaternary evolutionary history of a medicinal and edible homologous plant (Allium macrostemon) in China. BMC Ecol Evol 2024; 24:107. [PMID: 39138401 PMCID: PMC11323607 DOI: 10.1186/s12862-024-02297-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/31/2024] [Indexed: 08/15/2024] Open
Abstract
Biogeographic barriers to gene flow are central to studies of plant phylogeography. There are many physical and geographic barriers in China, but few studies have used molecular ecological evidence to investigate the natural geographic isolation barrier of the Qinling Mountains-Huaihe River Line (QHL). Allium macrostemon is a precious Chinese perennial herb belonging to the Amaryllidaceae family. It is used as a food and medicine, with a variety of health and healing properties. Five SSR markers, three chloroplast DNA (cpDNA) markers (psbA-trnH, rps16 and trnL-F), one nuclear ribosomal DNA (nrDNA) marker (ITS), and simplified genome GBS sequencing were used to analyse the genetic diversity and structure of A. macrostemon. Combining SSR, cpDNA, nrDNA ITS data and GBS analysis results, we divided A. macrostemon populations into northern and southern groups, with the southern group further divided into southwestern and central-southeastern groups. Niche simulation results reveal that the distribution area of A. macrostemon will reach its maximum in the future. These data indicate that the regional separation of A. macrostemon has been maintained by the combined influence of a geographical barrier and Quaternary climate, and that the back-and-forth fluctuations of QHL and Quaternary climate have played an important role in this process. QHL acts as a north-south dividing line in phylogeography and population genetic structure, promoting physical geographic isolation. This study provides a theoretical basis for the conservation, development, and utilization of A. macrostemon resources. It further provides a reference for understanding the systematic geographical pattern of the large-scale spatial distribution of plants in China and enriches our understanding of Quaternary plant evolution in areas with complex terrain.
Collapse
Affiliation(s)
- Chunxue Jiang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Tian Shi
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Zhongmei Mo
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China
| | - Cai Zhao
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering(CICMEAB), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, 550025, Guizhou Province, China.
| |
Collapse
|
6
|
Chen YB, Chen XY, Ma L, Zhao Z, Chen SP. Mazusjiangshiense (Mazaceae), a new species from China: evidence from morphological and molecular analyses. PHYTOKEYS 2024; 241:81-90. [PMID: 38638579 PMCID: PMC11024514 DOI: 10.3897/phytokeys.241.117787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
Utilising both morphological and molecular analyses, this study unveils Mazusjiangshiensesp. nov., a novel addition to the Mazaceae family, discovered in Shaowu County, Fujian Province, China. The comprehensive description and illustrations provided here are a result of a meticulous exploration of its morphological features. While bearing a resemblance to M.gracilis, this new-found species is distinguished by three distinct characteristics: its stems are delicately soft, its leaves possess a membranous quality and the ovary is notably villous at the apex. Integration of molecular evidence, derived from the nuclear ribosomal DNA (nrITS) and three plastid DNA sequences (rps16, rbcL and trnL-trnF), unequivocally supports the classification of M.jiangshiense as a distinct species. Notably, the molecular analysis positions it as a sister species to M.spicatus, underscoring the phylogenetic relationships within the genus Mazus. Our research not only introduces M.jiangshiense as a novel taxonomic entity, but also provides a nuanced understanding of its morphological differences and molecular affinities, enriching our comprehension of the diversity and evolutionary relationships of Mazaceae.
Collapse
Affiliation(s)
- Yong-Bin Chen
- Fujian Vocational College of Bioengineering, Fuzhou, Fujian 350002, ChinaFujian Vocational College of BioengineeringFuzhouChina
| | - Xin-Yan Chen
- Sanming Garden Center, Sanming, Fujian 365000, ChinaSanming Garden CenterSanmingChina
| | - Liang Ma
- Fujian Health College, Fuzhou, Fujian 350101, ChinaFujian Health CollegeFuzhouChina
| | - Zhuang Zhao
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, ChinaKey Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Fujian Agriculture and Forestry UniversityFuzhouChina
| | - Shi-Pin Chen
- Key Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, ChinaKey Laboratory of National Forestry and Grassland Administration for Orchid Conservation and Utilization at Fujian Agriculture and Forestry UniversityFuzhouChina
| |
Collapse
|
7
|
Wang W, Zhang X, Garcia S, Leitch AR, Kovařík A. Intragenomic rDNA variation - the product of concerted evolution, mutation, or something in between? Heredity (Edinb) 2023; 131:179-188. [PMID: 37402824 PMCID: PMC10462631 DOI: 10.1038/s41437-023-00634-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 07/06/2023] Open
Abstract
The classical model of concerted evolution states that hundreds to thousands of ribosomal DNA (rDNA) units undergo homogenization, making the multiple copies of the individual units more uniform across the genome than would be expected given mutation frequencies and gene redundancy. While the universality of this over 50-year-old model has been confirmed in a range of organisms, advanced high throughput sequencing techniques have also revealed that rDNA homogenization in many organisms is partial and, in rare cases, even apparently failing. The potential underpinning processes leading to unexpected intragenomic variation have been discussed in a number of studies, but a comprehensive understanding remains to be determined. In this work, we summarize information on variation or polymorphisms in rDNAs across a wide range of taxa amongst animals, fungi, plants, and protists. We discuss the definition and description of concerted evolution and describe whether incomplete concerted evolution of rDNAs predominantly affects coding or non-coding regions of rDNA units and if it leads to the formation of pseudogenes or not. We also discuss the factors contributing to rDNA variation, such as interspecific hybridization, meiotic cycles, rDNA expression status, genome size, and the activity of effector genes involved in genetic recombination, epigenetic modifications, and DNA editing. Finally, we argue that a combination of approaches is needed to target genetic and epigenetic phenomena influencing incomplete concerted evolution, to give a comprehensive understanding of the evolution and functional consequences of intragenomic variation in rDNA.
Collapse
Affiliation(s)
- Wencai Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Xianzhi Zhang
- Department of Horticulture, College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Sònia Garcia
- Institut Botànic de Barcelona, IBB (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | - Andrew R Leitch
- School of Biological and Behavioral Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Aleš Kovařík
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, CZ-61200, Czech Republic.
| |
Collapse
|
8
|
Adhikari J, Chandnani R, Vitrakoti D, Khanal S, Ployaram W, Paterson AH. Comparative transmission genetics of introgressed chromatin in reciprocal advanced backcross populations in Gossypium (cotton) polyploids. Heredity (Edinb) 2023; 130:209-222. [PMID: 36754975 PMCID: PMC10076365 DOI: 10.1038/s41437-023-00594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
Introgression is a potential source of valuable genetic variation and interspecific introgression lines are important resources for plant breeders to access novel alleles. Experimental advanced-generation backcross populations contain individuals with genomic compositions similar to those resulting from natural interspecific hybridization and provide opportunities to study the nature and transmission pattern of donor chromatin in recipient genomes. Here, we analyze transmission of donor chromatin in reciprocal backcrosses between G. hirsutum and G. barbadense. Across the genome, recurrent backcrossing in both backgrounds yielded donor chromatin at slightly higher frequencies than the Mendelian expectation in BC5F1 plants, while the average frequency of donor alleles in BC5F2 segregating families was less than expected. In the two subgenomes of polyploid cotton, the rate of donor chromatin introgression was similar. Although donor chromatin was tolerated over much of the recipient genomes, 21 regions recalcitrant to donor alleles were identified. Only limited correspondence is observed between the recalcitrant regions in the two backgrounds, suggesting the effect of species background on introgression of donor segments. Genetic breakdown was progressive, with floral abscission and seed inviability ongoing during backcrossing cycles. Regions of either high or low introgression tended to be in terminal chromosomal regions that are generally rich in both genes and crossover events, with long stretches around the centromere having limited crossover activity resulting in relatively constant low introgression frequencies. Constraints on fixation and selection of donor alleles highlights the challenges of utilizing introgression breeding in crop improvement.
Collapse
Affiliation(s)
- Jeevan Adhikari
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | | | - Deepak Vitrakoti
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Sameer Khanal
- Institute of Plant Breeding Genetics and Genomics, Department of Crop and Soil Sciences, University of Georgia, Tifton, GA, USA
| | - Wiriyanat Ployaram
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
9
|
Joshi P, Ansari H, Dickson R, Ellison NW, Skema C, Tate JA. Polyploidy on islands - concerted evolution and gene loss amid chromosomal stasis. ANNALS OF BOTANY 2023; 131:33-44. [PMID: 35390127 PMCID: PMC9904340 DOI: 10.1093/aob/mcac051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/04/2022] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS Polyploidy is an important process that often generates genomic diversity within lineages, but it can also cause changes that result in loss of genomic material. Island lineages, while often polyploid, typically show chromosomal stasis but have not been investigated in detail regarding smaller-scale gene loss. Our aim was to investigate post-polyploidization genome dynamics in a chromosomally stable lineage of Malvaceae endemic to New Zealand. METHODS We determined chromosome numbers and used fluorescence in situ hybridization to localize 18S and 5S rDNA. Gene sequencing of 18S rDNA, the internal transcribed spacers (ITS) with intervening 5.8S rDNA, and a low-copy nuclear gene, GBSSI-1, was undertaken to determine if gene loss occurred in the New Zealand lineage following polyploidy. KEY RESULTS The chromosome number for all species investigated was 2n = 42, with the first published report for the monotypic Australian genus Asterotrichion. The five species investigated all had two 5S rDNA signals localized interstitially on the long arm of one of the largest chromosome pairs. All species, except Plagianthus regius, had two 18S rDNA signals localized proximally on the short arm of one of the smallest chromosome pairs. Plagianthus regius had two additional 18S rDNA signals on a separate chromosome, giving a total of four. Sequencing of nuclear ribosomal 18S rDNA and the ITS cistron indicated loss of historical ribosomal repeats. Phylogenetic analysis of a low-copy nuclear gene, GBSSI-1, indicated that some lineages maintained three copies of the locus, while others have lost one or two copies. CONCLUSIONS Although island endemic lineages show chromosomal stasis, with no additional changes in chromosome number, they may undergo smaller-scale processes of gene loss and concerted evolution ultimately leading to further genome restructuring and downsizing.
Collapse
Affiliation(s)
- Prashant Joshi
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | - Helal Ansari
- AgResearch Grasslands Research Centre, Palmerston North, New Zealand
| | - Rowan Dickson
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
| | | | - Cynthia Skema
- School of Natural Sciences, Massey University, Palmerston North, New Zealand
- Morris Arboretum of the University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
10
|
Giant Fern Genomes Show Complex Evolution Patterns: A Comparative Analysis in Two Species of Tmesipteris (Psilotaceae). Int J Mol Sci 2023; 24:ijms24032708. [PMID: 36769031 PMCID: PMC9916801 DOI: 10.3390/ijms24032708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Giant genomes are rare across the plant kingdom and their study has focused almost exclusively on angiosperms and gymnosperms. The scarce genetic data that are available for ferns, however, indicate differences in their genome organization and a lower dynamism compared to other plant groups. Tmesipteris is a small genus of mainly epiphytic ferns that occur in Oceania and several Pacific Islands. So far, only two species with giant genomes have been reported in the genus, T. tannensis (1C = 73.19 Gbp) and T. obliqua (1C = 147.29 Gbp). Low-coverage genome skimming sequence data were generated in these two species and analyzed using the RepeatExplorer2 pipeline to identify and quantify the repetitive DNA fraction of these genomes. We found that both species share a similar genomic composition, with high repeat diversity compared to taxa with small (1C < 10 Gbp) genomes. We also found that, in general, characterized repetitive elements have relatively high heterogeneity scores, indicating ancient diverging evolutionary trajectories. Our results suggest that a whole genome multiplication event, accumulation of repetitive elements, and recent activation of those repeats have all played a role in shaping these genomes. It will be informative to compare these data in the future with data from the giant genome of the angiosperm Paris japonica, to determine if the structures observed here are an emergent property of massive genomic inflation or derived from lineage specific processes.
Collapse
|
11
|
Garcia S, Pascual-Díaz JP, Krumpolcová A, Kovarík A. Analysis of 5S rDNA Genomic Organization Through the RepeatExplorer2 Pipeline: A Simplified Protocol. Methods Mol Biol 2023; 2672:501-512. [PMID: 37335496 DOI: 10.1007/978-1-0716-3226-0_30] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The ribosomal RNA genes (rDNA) are universal genome components with a housekeeping function, given the crucial role of ribosomal RNA in the synthesis of ribosomes and thus for life-on-Earth. Therefore, their genomic organization is of considerable interest for biologists, in general. Ribosomal RNA genes have also been largely used to establish phylogenetic relationships, and to identify allopolyploid or homoploid hybridization.Here, we demonstrate how high-throughput sequencing data, through graph clustering implemented in RepeatExplorer2 pipeline ( https://repeatexplorer-elixir.cerit-sc.cz/galaxy/ ), can be helpful to decipher the genomic organization of 5S rRNA genes. We show that the linear shapes of cluster graphs are reminiscent to the linked organization of 5S and 35S rDNA (L-type arrangement) while the circular graphs correspond to their separate arrangement (S-type). We further present a simplified protocol based on the paper by (Garcia et al., Front Plant Sci 11:41, 2020) about the use of graph clustering of 5S rDNA homoeologs (S-type) to identify hybridization events in the species history. We found that the graph complexity (i.e., graph circularity in this case) is related to ploidy and genome complexity, with diploids typically showing circular-shaped graphs while allopolyploids and other interspecific hybrids display more complex graphs, with usually two or more interconnected loops representing intergenic spacers. When a three-genomic comparative clustering analysis from a given hybrid (homoploid/allopolyploid) and its putative progenitor species (diploids) is performed, it is possible to identify the corresponding homoeologous 5S rRNA gene families, and to elucidate the contribution of each putative parental genome to the 5S rDNA pool of the hybrid. Thus, the analysis of 5S rDNA cluster graphs by RepeatExplorer, together with information coming from other sources (e.g., morphology, cytogenetics) is a complementary approach for the determination of allopolyploid or homoploid hybridization and even ancient introgression events.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (CSIC - Ajuntament de Barcelona), Barcelona, Spain
| | | | - Alice Krumpolcová
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ales Kovarík
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.
| |
Collapse
|
12
|
Belyakov EA, Mikhaylova YV, Machs EM, Zhurbenko PM, Rodionov AV. Hybridization and diversity of aquatic macrophyte Sparganium L. (Typhaceae) as revealed by high-throughput nrDNA sequencing. Sci Rep 2022; 12:21610. [PMID: 36517537 PMCID: PMC9750990 DOI: 10.1038/s41598-022-25954-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Sparganium is an emergent aquatic macrophyte widely spread in temperate and subtropical zones. Taxa of this genus feature high phenotypic plasticity and can produce interspecific hybrids. By means of high-throughput sequencing of the internal transcribed spacer (ITS1) of 35S rDNA, the status of 15 Eurasian Sparganium species and subspecies was clarified and the role of hybridization events in the recent evolution of the genus was investigated. It has been shown that a number of species such as S. angustifolium, S. fallax and S. subglobosum have homogenized rDNA represented by one major ribotype. The rDNA of other taxa is represented by two or more major ribotypes. Species with high rDNA heterogeneity are apparently of hybrid origin. Based on the differences in rDNA patterns, intraspecific diversity was identified in S. probatovae and S. emersum. Thus, we have concluded that Sparganium has extensive interspecific hybridization at the subgenus level, and there may also be occasional hybridization between species from different subgenera.
Collapse
Affiliation(s)
- Evgeny A. Belyakov
- grid.464570.40000 0001 1092 3616Papanin Institute for Biology of Inland Waters, Russian Academy of Sciences, Yaroslavl Region, Nekouz District, 109, Borok, Russia 152742 ,grid.446199.70000 0000 8543 3323Cherepovets State University, Lunacharsky Ave., 5, Cherepovets, Russia 162600
| | - Yulia V. Mikhaylova
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Eduard M. Machs
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376
| | - Peter M. Zhurbenko
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| | - Aleksandr V. Rodionov
- grid.465298.4Komarov Botanical Institute, Russian Academy of Sciences, Prof. Popova St., 2, St. Petersburg, Russia 199376 ,grid.15447.330000 0001 2289 6897St. Petersburg State University, Universitetskaya Embankment, 7-9, St. Petersburg, Russia 199034
| |
Collapse
|
13
|
Tynkevich YO, Novikov AV, Chorney II, Volkov RA. Organization of the 5S rDNA Intergenic Spacer and Its Use in the Molecular Taxonomy of the Genus Aconitum L. CYTOL GENET+ 2022. [DOI: 10.3103/s0095452722060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Zhang J, Chi X, Zhong J, Fernie A, Alseekh S, Huang L, Qian D. Extensive nrDNA ITS polymorphism in Lycium: Non-concerted evolution and the identification of pseudogenes. FRONTIERS IN PLANT SCIENCE 2022; 13:984579. [PMID: 36092433 PMCID: PMC9453804 DOI: 10.3389/fpls.2022.984579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 08/01/2022] [Indexed: 06/01/2023]
Abstract
The internal transcribed spacer (ITS) is one of the most extensively sequenced molecular markers in plant systematics due to its generally concerted evolution. While non-concerted evolution has been found in some plant taxa, such information is missing in Lycium. Molecular studies of six species and two variants of the genus Lycium revealed high levels of intra- and inter-individual polymorphism in the ITS, indicating non-concerted evolution. All genomic DNA ITS paralogues were identified as putative pseudogenes or functional paralogues through a series of comparisons of sequence features, including length and substitution variation, GC content, secondary structure stability, and the presence of conserved motifs in the 5.8S gene, and the rate of evolution. Approximately, 60% of ITS pseudogenes could be easily detected. Based on phylogenetic analysis, all pseudogenes were highly distinct from their corresponding functional copies, tended to evolve neutrally, and clustered randomly together in the evolutionary tree. The results probably suggest that this ITS non-concerted evolution is related to the recent divergence between tandem repeats within the Lycium genome and hybridization between species. Our study complements those of pseudogenes in plant taxa and provides a theoretical basis for the phylogeny and genetic origin of the genus Lycium while having important implications for the use of ITS molecular markers for phylogenetic reconstruction.
Collapse
Affiliation(s)
- Jiao Zhang
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiulian Chi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Juying Zhong
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| | - Alisdair Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Luqi Huang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Dan Qian
- Beijing Key Laboratory of Research of Chinese Medicine on Prevention and Treatment for Major Diseases, Experimental Research Center, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Intragenomic variation in nuclear ribosomal markers and its implication in species delimitation, identification and barcoding in fungi. FUNGAL BIOL REV 2022. [DOI: 10.1016/j.fbr.2022.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
16
|
Sharbrough J, Conover JL, Fernandes Gyorfy M, Grover CE, Miller ER, Wendel JF, Sloan DB. Global Patterns of Subgenome Evolution in Organelle-Targeted Genes of Six Allotetraploid Angiosperms. Mol Biol Evol 2022; 39:msac074. [PMID: 35383845 PMCID: PMC9040051 DOI: 10.1093/molbev/msac074] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Whole-genome duplications (WGDs) are a prominent process of diversification in eukaryotes. The genetic and evolutionary forces that WGD imposes on cytoplasmic genomes are not well understood, despite the central role that cytonuclear interactions play in eukaryotic function and fitness. Cellular respiration and photosynthesis depend on successful interaction between the 3,000+ nuclear-encoded proteins destined for the mitochondria or plastids and the gene products of cytoplasmic genomes in multi-subunit complexes such as OXPHOS, organellar ribosomes, Photosystems I and II, and Rubisco. Allopolyploids are thus faced with the critical task of coordinating interactions between the nuclear and cytoplasmic genes that were inherited from different species. Because the cytoplasmic genomes share a more recent history of common descent with the maternal nuclear subgenome than the paternal subgenome, evolutionary "mismatches" between the paternal subgenome and the cytoplasmic genomes in allopolyploids might lead to the accelerated rates of evolution in the paternal homoeologs of allopolyploids, either through relaxed purifying selection or strong directional selection to rectify these mismatches. We report evidence from six independently formed allotetraploids that the subgenomes exhibit unequal rates of protein-sequence evolution, but we found no evidence that cytonuclear incompatibilities result in altered evolutionary trajectories of the paternal homoeologs of organelle-targeted genes. The analyses of gene content revealed mixed evidence for whether the organelle-targeted genes are lost more rapidly than the non-organelle-targeted genes. Together, these global analyses provide insights into the complex evolutionary dynamics of allopolyploids, showing that the allopolyploid subgenomes have separate evolutionary trajectories despite sharing the same nucleus, generation time, and ecological context.
Collapse
Affiliation(s)
- Joel Sharbrough
- Department of Biology, Colorado State University, Fort Collins, CO, USA
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Justin L. Conover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | | | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Emma R. Miller
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, USA
| | - Daniel B. Sloan
- Department of Biology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
17
|
Range-wide phylogeography of the flightless steppe beetle Lethrus apterus (Geotrupidae) reveals recent arrival to the Pontic Steppes from the west. Sci Rep 2022; 12:5069. [PMID: 35332221 PMCID: PMC8948295 DOI: 10.1038/s41598-022-09007-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
The Eurasian Steppe belt is one of the largest biomes in the Northern Hemisphere. We provide here a range-wide phylogeography of the flightless steppe beetle Lethrus apterus that inhabits the western part of the Steppe belt through the study of population-level variance of mitochondrial cytochrome oxidase I sequences and nuclear microsatellites. We detected a concordant geographic structure of genetic data with a significant isolation-by-distance pattern. We found more genetic variation in the western part of the area and identified Northern Bulgaria and the Pannonian Basin as possible refugia. Genetic clusters were separated by main rivers in the eastern part of the area. This implies west-to-east colonisation and argues for an evolutionarily recent arrival of this species to its current main distribution area, the Pontic Steppes. This contradicts the classical biogeographical wisdom that assumed an east-to-west colonisation pattern.
Collapse
|
18
|
Borowska-Zuchowska N, Senderowicz M, Trunova D, Kolano B. Tracing the Evolution of the Angiosperm Genome from the Cytogenetic Point of View. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11060784. [PMID: 35336666 PMCID: PMC8953110 DOI: 10.3390/plants11060784] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 05/05/2023]
Abstract
Cytogenetics constitutes a branch of genetics that is focused on the cellular components, especially chromosomes, in relation to heredity and genome structure, function and evolution. The use of modern cytogenetic approaches and the latest microscopes with image acquisition and processing systems enables the simultaneous two- or three-dimensional, multicolour visualisation of both single-copy and highly-repetitive sequences in the plant genome. The data that is gathered using the cytogenetic methods in the phylogenetic background enable tracing the evolution of the plant genome that involve changes in: (i) genome sizes; (ii) chromosome numbers and morphology; (iii) the content of repetitive sequences and (iv) ploidy level. Modern cytogenetic approaches such as FISH using chromosome- and genome-specific probes have been widely used in studies of the evolution of diploids and the consequences of polyploidy. Nowadays, modern cytogenetics complements analyses in other fields of cell biology and constitutes the linkage between genetics, molecular biology and genomics.
Collapse
|
19
|
Lukjanová E, Řepková J. Chromosome and Genome Diversity in the Genus Trifolium (Fabaceae). PLANTS (BASEL, SWITZERLAND) 2021; 10:2518. [PMID: 34834880 PMCID: PMC8621578 DOI: 10.3390/plants10112518] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Trifolium L. is an economically important genus that is characterized by variable karyotypes relating to its ploidy level and basic chromosome numbers. The advent of genomic resources combined with molecular cytogenetics provides an opportunity to develop our understanding of plant genomes in general. Here, we summarize the current state of knowledge on Trifolium genomes and chromosomes and review methodologies using molecular markers that have contributed to Trifolium research. We discuss possible future applications of cytogenetic methods in research on the Trifolium genome and chromosomes.
Collapse
Affiliation(s)
| | - Jana Řepková
- Department of Experimental Biology, Faculty of Sciences, Masaryk University, 611 37 Brno, Czech Republic;
| |
Collapse
|
20
|
Wang J, Lin Y, Xi M. Analysis of Codon Usage Patterns of Six Sequenced Brachypodium distachyon Lines Reveals a Declining CG Skew of the CDSs from the 5'-ends to the 3'-ends. Genes (Basel) 2021; 12:1467. [PMID: 34680862 PMCID: PMC8535453 DOI: 10.3390/genes12101467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/09/2021] [Accepted: 09/20/2021] [Indexed: 02/01/2023] Open
Abstract
Brachypodium distachyon, a new monocotyledonous model plant, has received wide attention in biological research due to its small genome and numerous genetic resources. Codon usage bias is an important feature of genes and genomes, and it can be used in transgenic and evolutionary studies. In this study, the nucleotide compositions and patterns of codon usage bias were calculated using Codon W. Additionally, an ENC plot, Parity rule 2 and correspondence analyses were used to explore the major factors influencing codon usage bias patterns. The numbers of hydrogen bonds and skews were used to analyze the GC trend in the 5'-ends of the coding sequences. The results showed that minor differences in the codon usage bias patterns were revealed by the ENC plot, Parity rule 2 and correspondence analyses. The analyses of the CG-skew and the number of hydrogen bonds showed a declining trend in the number of cytosines at the 5'-ends of the CDSs (from the 5'-ends to the 3'-ends), indicating that GC may play a major role in codon usage bias. In addition, our results laid a foundation for the study of codon usage bias patterns in Brachypodium genus and suggested that the GC plays a major role in determining these patterns.
Collapse
Affiliation(s)
- Jianyong Wang
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Yujing Lin
- Shanghai Center for Plant Stress Biology and Center for Excellence in Molecular Plant Sciences, University of Chinese Academy of Sciences, Shanghai 200032, China;
| | - Mengli Xi
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| |
Collapse
|
21
|
Darshetkar AM, Datar MN, Prabhukumar K, Kim SY, Tamhankar S, Choudhary RK. Systematic analysis of the genus Eriocaulon L. in India based on molecular and morphological evidence. SYST BIODIVERS 2021. [DOI: 10.1080/14772000.2021.1914764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
| | - Mandar N. Datar
- Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004, Maharashtra, India
| | - K.M. Prabhukumar
- Plant Diversity Systematics & Herbarium Division, CSIR-National Botanical Research Institute, 236, Rana Pratap Marg, Lucknow, 226 001, Uttar Pradesh, India
| | - Soo-Yong Kim
- International Biological Material Research Center, Korea Research Institute of Bioscience & Biotechnology, Daejeon, 34141, Republic of Korea
| | - Shubhada Tamhankar
- Agharkar Research Institute, G.G. Agarkar Road, Pune, 411 004, Maharashtra, India
| | | |
Collapse
|
22
|
Krak K, Caklová P, Kopecký D, Blattner FR, Mahelka V. Horizontally Acquired nrDNAs Persist in Low Amounts in Host Hordeum Genomes and Evolve Independently of Native nrDNA. FRONTIERS IN PLANT SCIENCE 2021; 12:672879. [PMID: 34079572 PMCID: PMC8165317 DOI: 10.3389/fpls.2021.672879] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
Nuclear ribosomal DNA (nrDNA) has displayed extraordinary dynamics during the evolution of plant species. However, the patterns and evolutionary significance of nrDNA array expansion or contraction are still relatively unknown. Moreover, only little is known of the fate of minority nrDNA copies acquired between species via horizontal transfer. The barley genus Hordeum (Poaceae) represents a good model for such a study, as species of section Stenostachys acquired nrDNA via horizontal transfer from at least five different panicoid genera, causing long-term co-existence of native (Hordeum-like) and non-native (panicoid) nrDNAs. Using quantitative PCR, we investigated copy number variation (CNV) of nrDNA in the diploid representatives of the genus Hordeum. We estimated the copy number of the foreign, as well as of the native ITS types (ribotypes), and followed the pattern of their CNV in relation to the genus' phylogeny, species' genomes size and the number of nrDNA loci. For the native ribotype, we encountered an almost 19-fold variation in the mean copy number among the taxa analysed, ranging from 1689 copies (per 2C content) in H. patagonicum subsp. mustersii to 31342 copies in H. murinum subsp. glaucum. The copy numbers did not correlate with any of the genus' phylogeny, the species' genome size or the number of nrDNA loci. The CNV was high within the recognised groups (up to 13.2 × in the American I-genome species) as well as between accessions of the same species (up to 4×). Foreign ribotypes represent only a small fraction of the total number of nrDNA copies. Their copy numbers ranged from single units to tens and rarely hundreds of copies. They amounted, on average, to between 0.1% (Setaria ribotype) and 1.9% (Euclasta ribotype) of total nrDNA. None of the foreign ribotypes showed significant differences with respect to phylogenetic groups recognised within the sect. Stenostachys. Overall, no correlation was found between copy numbers of native and foreign nrDNAs suggesting the sequestration and independent evolution of native and non-native nrDNA arrays. Therefore, foreign nrDNA in Hordeum likely poses a dead-end by-product of horizontal gene transfer events.
Collapse
Affiliation(s)
- Karol Krak
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Prague 6, Czechia
| | - Petra Caklová
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| | - David Kopecký
- Czech Academy of Sciences, Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czechia
| | - Frank R. Blattner
- Experimental Taxonomy, Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben, Germany
- German Centre of Integrative Biodiversity Research (iDiv) Halle–Jena–Leipzig, Leipzig, Germany
| | - Václav Mahelka
- Czech Academy of Sciences, Institute of Botany, Prùhonice, Czechia
| |
Collapse
|
23
|
Zhu Y, Bao Y. Genome-Wide Mining of MYB Transcription Factors in the Anthocyanin Biosynthesis Pathway of Gossypium Hirsutum. Biochem Genet 2021; 59:678-696. [PMID: 33502632 DOI: 10.1007/s10528-021-10027-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 01/06/2021] [Indexed: 10/22/2022]
Abstract
The MYB family, one of the largest transcription factor (TF) families, plays an important role in plant growth, development, and stress response. Although genome-wide analysis of the MYB family has been performed in many species based on sequence similarity, predicting the potential functions of the MYB genes and classifying the regulators into specific metabolic pathways remains difficult. In this study, using a hidden Markov model search and co-expression regulatory network analysis, we demonstrated a process to screen and identify potential MYB TFs in the anthocyanin biosynthesis pathway of Gossypium hirsutum. As a result, we identified 617 and 784 MYB genes (812 in total) from the previously reported and recently released genomes, respectively. Using 126 structural genes involved in the anthocyanin biosynthesis pathway as targets for several co-expression network analyses, we sorted out 31 R2R3-MYB genes, which are potential regulators in the specific pathway. Phylogenetic and collinearity analyses indicated that 83.9% of the 31 MYB genes originated from whole genome duplication or polyploidization. In addition, we revealed relatively specific regulatory relationships between the MYB TFs and their target structural genes. Approximately, 71% of the MYBs could regulate only a single anthocyanin-related structural gene. Moreover, we found that the A- and D- subgenome homoeologs of MYB TFs in G. hirsutum rarely co-regulate the same target gene. The current study not only demonstrated an easy method to rapidly predict potential TFs in a specific metabolic pathway, but also enhanced our understanding of the evolution, gene characteristics, expression, and regulatory pattern of MYB TFs in G. hirsutum.
Collapse
Affiliation(s)
- Yingjie Zhu
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China
| | - Ying Bao
- School of Life Sciences, Qufu Normal University, Qufu, 273165, Shandong, China.
| |
Collapse
|
24
|
Rosazlina R, Jacobsen N, Ørgaard M, Othman AS. Molecular evidence of the hybrid origin of Cryptocoryne ×purpurea Ridl. nothovar. purpurea (Araceae). PLoS One 2021; 16:e0239499. [PMID: 33476321 PMCID: PMC7819605 DOI: 10.1371/journal.pone.0239499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/12/2020] [Indexed: 11/18/2022] Open
Abstract
Natural hybridization has been considered a source of taxonomic complexity in Cryptocoryne. A combined study of DNA sequencing data from the internal transcribed spacer (ITS) of nuclear ribosomal DNA and the trnK-matK region of chloroplast DNA was used to identify the parents of Cryptocoryne putative hybrids from Peninsular Malaysia. Based on the intermediate morphology and sympatric distribution area, the plants were tentatively identified as the hybrid Cryptocoryne ×purpurea nothovar. purpurea. The plants were pollen sterile and had long been considered as hybrids, supposedly between two related and co-existing species, C. cordata var. cordata and C. griffithii. The status of C. ×purpurea nothovar. purpurea was independently confirmed by the presence of an additive ITS sequence pattern from these two parental species in hybrid individuals. An analysis of the chloroplast trnK-matK sequences showed that the hybridization is bidirectional with the putative hybrids sharing identical sequences from C. cordata var. cordata and C. griffithii, indicating that both putative parental species had been the maternal parent in different accessions.
Collapse
Affiliation(s)
- Rusly Rosazlina
- School of Biological Sciences, University Sains Malaysia, Minden, Penang, Malaysia
- * E-mail: (RR); (ASO)
| | - Niels Jacobsen
- Department of Plant and Environmental Sciences, Section of Organismal Biology, Faculty of Science, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Marian Ørgaard
- Department of Plant and Environmental Sciences, Section of Organismal Biology, Faculty of Science, University of Copenhagen, Frederiksberg C, Copenhagen, Denmark
| | - Ahmad Sofiman Othman
- School of Biological Sciences, University Sains Malaysia, Minden, Penang, Malaysia
- * E-mail: (RR); (ASO)
| |
Collapse
|
25
|
Li ZZ, Lehtonen S, Martins K, Gichira AW, Wu S, Li W, Hu GW, Liu Y, Zou CY, Wang QF, Chen JM. Phylogenomics of the aquatic plant genus Ottelia (Hydrocharitaceae): Implications for historical biogeography. Mol Phylogenet Evol 2020; 152:106939. [PMID: 32791299 DOI: 10.1016/j.ympev.2020.106939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 08/06/2020] [Accepted: 08/06/2020] [Indexed: 11/17/2022]
Abstract
Ottelia Pers. is the second largest genus of the family Hydrocharitaceae, including approximately 23 extant species. The genus exhibits a diversity of both bisexual and unisexual flowers, and complex reproductive system comprising cross-pollinated to cleistogamous flowers. Ottelia has been regarded as a pivotal group to study the evolution of Hydrocharitaceae, but the phylogenic relationships and evolutionary history of the genus remain unresolved. Here, we reconstructed a robust phylogenetic framework for Ottelia using 40 newly assembled complete plastomes. Our results resolved Ottelia as a monophyletic genus consisting of two major clades, which correspond to the main two centers of diversity in Asia and Africa. According to the divergence time estimation analysis, the crown group Ottelia began to diversify around 13.09 Ma during the middle Miocene. The biogeographical analysis indicated the existence of the most recent common ancestor somewhere in Africa/Australasia/Asia. Basing on further insights from the morphological evolution of Ottelia, we hypothesized that the ancestral center of origin was in Africa, from where the range expanded by transoceanic dispersal to South America and Australasia, and further from Australasia to Asia. We suggested that the climatic change and global cooling since the mid-Miocene, such as the development of East Asian monsoon climate and tectonic movement of the Yunnan-Guizhou Plateau (YGP), might have played a crucial role in the evolution of Ottelia in China.
Collapse
Affiliation(s)
- Zhi-Zhong Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Samuli Lehtonen
- Herbarium, Biodiversity Unit, University of Turku, Turku 20014, Finland
| | - Karina Martins
- Departamento de Biologia, Universidade Federal de São Carlos, Sorocaba 18052-780, Brazil
| | - Andrew W Gichira
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Shuang Wu
- Guangxi Association for Science and Technology, Nanning 530022, China
| | - Wei Li
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Guang-Wan Hu
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yan Liu
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Chun-Yu Zou
- Guangxi Institute of Botany, Chinese Academy of Sciences, Guilin 541006, China
| | - Qing-Feng Wang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China; Sino-Africa Joint Research Center, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jin-Ming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China; Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
26
|
Borowska‐Zuchowska N, Kovarik A, Robaszkiewicz E, Tuna M, Tuna GS, Gordon S, Vogel JP, Hasterok R. The fate of 35S rRNA genes in the allotetraploid grass Brachypodium hybridum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1810-1825. [PMID: 32506573 PMCID: PMC7497271 DOI: 10.1111/tpj.14869] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/20/2020] [Accepted: 05/28/2020] [Indexed: 05/22/2023]
Abstract
Nucleolar dominance (ND) consists of the reversible silencing of 35S/45S rDNA loci inherited from one of the ancestors of an allopolyploid. The molecular mechanisms by which one ancestral rDNA set is selected for silencing remain unclear. We applied a combination of molecular (Southern blot hybridization and reverse-transcription cleaved amplified polymorphic sequence analysis), genomic (analysis of variants) and cytogenetic (fluorescence in situ hybridization) approaches to study the structure, expression and epigenetic landscape of 35S rDNA in an allotetraploid grass that exhibits ND, Brachypodium hybridum (genome composition DDSS), and its putative progenitors, Brachypodium distachyon (DD) and Brachypodium stacei (SS). In progenitor genomes, B. stacei showed a higher intragenomic heterogeneity of rDNA compared with B. distachyon. In all studied accessions of B. hybridum, there was a reduction in the copy number of S homoeologues, which was accompanied by their inactive transcriptional status. The involvement of DNA methylation in CG and CHG contexts in the silencing of the S-genome rDNA loci was revealed. In the B. hybridum allotetraploid, ND is stabilized towards the D-genome units, irrespective of the polyphyletic origin of the species, and does not seem to be influenced by homoeologous 35S rDNA ratios and developmental stage.
Collapse
Affiliation(s)
- Natalia Borowska‐Zuchowska
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Ales Kovarik
- Department of Molecular EpigeneticsInstitute of BiophysicsAcademy of Sciences of the Czech Republic, v.v.i.Královopolská 135Brno612 65Czech Republic
| | - Ewa Robaszkiewicz
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| | - Metin Tuna
- Department of Field CropsFaculty of AgricultureTekirdag Namik Kemal UniversitySuleymanpasaTekirdag59030Turkey
| | | | - Sean Gordon
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
| | - John P. Vogel
- US Department of Energy (DOE) Joint Genome Institute (JGI)BerkeleyCA94720USA
- University CaliforniaBerkeley, BerkeleyCA94720USA
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental ProtectionFaculty of Natural SciencesUniversity of Silesia in KatowiceJagiellonska 28Katowice40‐032Poland
| |
Collapse
|
27
|
del Valle JC, Herman JA, Whittall JB. Genome skimming and microsatellite analysis reveal contrasting patterns of genetic diversity in a rare sandhill endemic (Erysimum teretifolium, Brassicaceae). PLoS One 2020; 15:e0227523. [PMID: 32459825 PMCID: PMC7252598 DOI: 10.1371/journal.pone.0227523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/28/2020] [Indexed: 11/19/2022] Open
Abstract
Barriers between islands often inhibit gene flow creating patterns of isolation by distance. In island species, the majority of genetic diversity should be distributed among isolated populations. However, a self-incompatible mating system leads to higher genetic variation within populations and very little between-population subdivision. We examine these two contrasting predictions in Erysimum teretifolium, a rare self-incompatible plant endemic to island-like sandhill habitats in Santa Cruz County, California. We used genome skimming and nuclear microsatellites to assess the distribution of genetic diversity within and among eight of the 13 remaining populations. Phylogenetic analyses of the chloroplast genomes revealed a deep separation of three of the eight populations. The nuclear ribosomal DNA cistron showed no genetic subdivision. Nuclear microsatellites suggest 83% of genetic variation resides within populations. Despite this, 18 of 28 between-population comparisons exhibited significant population structure (mean FST = 0.153). No isolation by distance existed among all populations, however when one outlier population was removed from the analysis due to uncertain provenance, significant isolation by distance emerged (r2 = 0.5611, p = 0.005). Population census size did not correlate with allelic richness as predicted on islands. Bayesian population assignment detected six genetic groupings with substantial admixture. Unique genetic clusters were concentrated at the periphery of the species’ range. Since the overall distribution of nuclear genetic diversity reflects E. tereifolium’s self-incompatible mating system, the vast majority of genetic variation could be sampled within any individual population. Yet, the chloroplast genome results suggest a deep split and some of the nuclear microsatellite analyses indicate some island-like patterns of genetic diversity. Restoration efforts intending to maximize genetic variation should include representatives from both lineages of the chloroplast genome and, for maximum nuclear genetic diversity, should include representatives of the smaller, peripheral populations.
Collapse
Affiliation(s)
- José Carlos del Valle
- Department of Molecular Biology and Biochemical Engineering, Pablo de Olavide University, Seville, Spain
| | - Julie A. Herman
- Department of Biology, Santa Clara University, Santa Clara, CA, United States of America
| | - Justen B. Whittall
- Department of Biology, Santa Clara University, Santa Clara, CA, United States of America
- * E-mail:
| |
Collapse
|
28
|
Lopes JML, de Carvalho HH, Zorzatto C, Azevedo ALS, Machado MA, Salimena FRG, Grazul RM, Gitzendanner MA, Soltis DE, Soltis PS, Viccini LF. Genetic relationships and polyploid origins in the Lippia alba complex. AMERICAN JOURNAL OF BOTANY 2020; 107:466-476. [PMID: 32115694 DOI: 10.1002/ajb2.1443] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/04/2019] [Indexed: 06/10/2023]
Abstract
PREMISE Plant genomes vary in size and complexity due in part to polyploidization. Latitudinal analyses of polyploidy are biased toward floras of temperate regions, with much less research done in the tropics. Lippia alba has been described as a tropical polyploid complex with diploid, triploid, tetraploid, and hexaploid accessions. However, no data regarding relationships among the ploidal levels and their origins have been reported. Our goals are to clarify the relationships among accessions of Lippia alba and the origins of each ploidal level. METHODS We investigated 98 samples representing all five geographical regions of Brazil and all ploidal levels using microsatellite (SSR) allelic variation and DNA sequences of ITS and trnL-F. Nine morphological structures were analyzed from 33 herbarium samples, and the chemical compounds of 78 accessions were analyzed by GC-MS. RESULTS Genetic distance analysis, the alignment block pattern, as well as RAxML and Bayesian trees showed that accessions grouped by ploidal level. The triploids form a well-defined group that originated from a single group of diploids. The tetraploids and hexaploid grouped together in SSR and trnL-F analyses. The recovered groups agree with chemical data and morphology. CONCLUSIONS The accessions grouped by ploidal level. Only one origin of triploids from a single group of diploids was observed. The tetraploid origin is uncertain; however, it appears to have contributed to the origin of the hexaploid. This framework reveals linkages among the ploidal levels, providing new insights into the evolution of a polyploid complex of tropical plants.
Collapse
Affiliation(s)
- Juliana M L Lopes
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-241, Brazil
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | | | - Cristiane Zorzatto
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-241, Brazil
| | | | | | | | - Richard M Grazul
- Department of Chemistry, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-241, Brazil
| | | | - Douglas E Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Pamela S Soltis
- Florida Museum of Natural History, University of Florida, Gainesville, FL, 32611, USA
| | - Lyderson F Viccini
- Department of Biology, Federal University of Juiz de Fora, Juiz de Fora, MG, 36036-241, Brazil
| |
Collapse
|
29
|
Garcia S, Wendel JF, Borowska-Zuchowska N, Aïnouche M, Kuderova A, Kovarik A. The Utility of Graph Clustering of 5S Ribosomal DNA Homoeologs in Plant Allopolyploids, Homoploid Hybrids, and Cryptic Introgressants. FRONTIERS IN PLANT SCIENCE 2020; 11:41. [PMID: 32117380 PMCID: PMC7025596 DOI: 10.3389/fpls.2020.00041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/13/2020] [Indexed: 05/18/2023]
Abstract
INTRODUCTION Ribosomal DNA (rDNA) loci have been widely used for identification of allopolyploids and hybrids, although few of these studies employed high-throughput sequencing data. Here we use graph clustering implemented in the RepeatExplorer (RE) pipeline to analyze homoeologous 5S rDNA arrays at the genomic level searching for hybridogenic origin of species. Data were obtained from more than 80 plant species, including several well-defined allopolyploids and homoploid hybrids of different evolutionary ages and from widely dispersed taxonomic groups. RESULTS (i) Diploids show simple circular-shaped graphs of their 5S rDNA clusters. In contrast, most allopolyploids and other interspecific hybrids exhibit more complex graphs composed of two or more interconnected loops representing intergenic spacers (IGS). (ii) There was a relationship between graph complexity and locus numbers. (iii) The sequences and lengths of the 5S rDNA units reconstituted in silico from k-mers were congruent with those experimentally determined. (iv) Three-genomic comparative cluster analysis of reads from allopolyploids and progenitor diploids allowed identification of homoeologous 5S rRNA gene families even in relatively ancient (c. 1 Myr) Gossypium and Brachypodium allopolyploids which already exhibit uniparental partial loss of rDNA repeats. (v) Finally, species harboring introgressed genomes exhibit exceptionally complex graph structures. CONCLUSION We found that the cluster graph shapes and graph parameters (k-mer coverage scores and connected component index) well-reflect the organization and intragenomic homogeneity of 5S rDNA repeats. We propose that the analysis of 5S rDNA cluster graphs computed by the RE pipeline together with the cytogenetic analysis might be a reliable approach for the determination of the hybrid or allopolyploid plant species parentage and may also be useful for detecting historical introgression events.
Collapse
Affiliation(s)
- Sònia Garcia
- Institut Botànic de Barcelona (IBB, CSIC - Ajuntament de Barcelona), Barcelona, Spain
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Jonathan F. Wendel
- Department of Ecology, Evolution & Organismal Biology, Iowa State University, Ames, IA, United States
| | - Natalia Borowska-Zuchowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Katowice, Poland
| | - Malika Aïnouche
- UMR CNRS 6553 ECOBIO, Université de Rennes 1, Rennes, France
| | - Alena Kuderova
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| | - Ales Kovarik
- Department of Molecular Epigenetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czechia
| |
Collapse
|
30
|
Liu Y, Wang X, Wei Y, Liu Z, Lu Q, Liu F, Zhang T, Peng R. Chromosome Painting Based on Bulked Oligonucleotides in Cotton. FRONTIERS IN PLANT SCIENCE 2020; 11:802. [PMID: 32695125 PMCID: PMC7338755 DOI: 10.3389/fpls.2020.00802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/19/2020] [Indexed: 05/06/2023]
Abstract
Chromosome painting is one of the key technologies in cytogenetic research, which can accurately identify chromosomes or chromosome regions. Oligonucleotide (oligo) probes designed based on genome sequences have both flexibility and specificity, which would be ideal probes for fluorescence in situ hybridization (FISH) analysis of genome structure. In this study, the bulked oligos of the two arms of chromosome seven of cotton were developed based on the genome sequence of Gossypium raimondii (DD, 2n = 2× = 26), and each arm contains 12,544 oligos. Chromosome seven was easily identified in both D genome and AD genome cotton species using the bulked chromosome-specific painting probes. Together with 45S ribosomal DNA (rDNA) probe, the chromosome-specific painting probe was also successfully used to correct the chromosomal localization of 45S rDNA in G. raimondii. The study reveals that bulked oligos specific to a chromosome is a useful tool for chromosome painting in cotton.
Collapse
Affiliation(s)
- Yuling Liu
- Anyang Institute of Technology, Anyang, China
| | | | | | - Zhen Liu
- Anyang Institute of Technology, Anyang, China
| | - Quanwei Lu
- Anyang Institute of Technology, Anyang, China
| | - Fang Liu
- State Key Laboratory of Cotton Biology/Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Agricultural College of Yangzhou University, Yangzhou, China
- *Correspondence: Tao Zhang,
| | - Renhai Peng
- Anyang Institute of Technology, Anyang, China
- Renhai Peng,
| |
Collapse
|
31
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
32
|
Xuan Y, Wu Y, Li P, Liu R, Luo Y, Yuan J, Xiang Z, He N. Molecular phylogeny of mulberries reconstructed from ITS and two cpDNA sequences. PeerJ 2019; 7:e8158. [PMID: 31844573 PMCID: PMC6911693 DOI: 10.7717/peerj.8158] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 11/04/2019] [Indexed: 11/20/2022] Open
Abstract
Background Species in the genus Morus (Moraceae) are deciduous woody plants of great economic importance. The classification and phylogenetic relationships of Morus, especially the abundant mulberry resources in China, is still undetermined. Internal transcribed spacer (ITS) regions are among the most widely used molecular markers in phylogenetic analyses of angiosperms. However, according to the previous phylogenetic analyses of ITS sequences, most of the mulberry accessions collected in China were grouped into the largest clade lacking for phylogenetic resolution. Compared with functional ITS sequences, ITS pseudogenes show higher sequence diversity, so they can provide useful phylogenetic information. Methods We sequenced the ITS regions and the chloroplast DNA regions TrnL-TrnF and TrnT-TrnL from 33 mulberry accessions, and performed phylogenetic analyses to explore the evolution of mulberry. Results We found ITS pseudogenes in 11 mulberry accessions. In the phylogenetic tree constructed from ITS sequences, clade B was separated into short-type sequence clades (clades 1 and 2), and a long-type sequence clade (clade 3). Pseudogene sequences were separately clustered into two pseudogroups, designated as pseudogroup 1 and pseudogroup 2. The phylogenetic tree generated from cpDNA sequences also separated clade B into two clades. Conclusions Two species were separated in clade B. The existence of three connection patterns and incongruent distribution patterns between the phylogenetic trees generated from cpDNA and ITS sequences suggested that the ITS pseudogene sequences connect with genetic information from the female progenitor. Hybridization has played important roles in the evolution of mulberry, resulting in low resolution of the phylogenetic analysis based on ITS sequences. An evolutionary pattern illustrating the evolution history of mulberry is proposed. These findings have significance for the conservation of local mulberry resources. Polyploidy, hybridization, and concerted evolution have all played the roles in the evolution of ITS sequences in mulberry. This study will expand our understanding of mulberry evolution.
Collapse
Affiliation(s)
- Yahui Xuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yue Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Peng Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ruiling Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yiwei Luo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Jianglian Yuan
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Zhonghuai Xiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ningjia He
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
33
|
Ji Y, Yang L, Chase MW, Liu C, Yang Z, Yang J, Yang JB, Yi TS. Plastome phylogenomics, biogeography, and clade diversification of Paris (Melanthiaceae). BMC PLANT BIOLOGY 2019; 19:543. [PMID: 31805856 PMCID: PMC6896732 DOI: 10.1186/s12870-019-2147-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/19/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Paris (Melanthiaceae) is an economically important but taxonomically difficult genus, which is unique in angiosperms because some species have extremely large nuclear genomes. Phylogenetic relationships within Paris have long been controversial. Based on complete plastomes and nuclear ribosomal DNA (nrDNA) sequences, this study aims to reconstruct a robust phylogenetic tree and explore historical biogeography and clade diversification in the genus. RESULTS All 29 species currently recognized in Paris were sampled. Whole plastomes and nrDNA sequences were generated by the genome skimming approach. Phylogenetic relationships were reconstructed using the maximum likelihood and Bayesian inference methods. Based on the phylogenetic framework and molecular dating, biogeographic scenarios and historical diversification of Paris were explored. Significant conflicts between plastid and nuclear datasets were identified, and the plastome tree is highly congruent with past interpretations of the morphology. Ancestral area reconstruction indicated that Paris may have originated in northeastern Asia and northern China, and has experienced multiple dispersal and vicariance events during its diversification. The rate of clade diversification has sharply accelerated since the Miocene/Pliocene boundary. CONCLUSIONS Our results provide important insights for clarifying some of the long-standing taxonomic debates in Paris. Cytonuclear discordance may have been caused by ancient and recent hybridizations in the genus. The climatic and geological changes since the late Miocene, such as the intensification of Asian monsoon and the rapid uplift of Qinghai-Tibet Plateau, as well as the climatic fluctuations during the Pleistocene, played essential roles in driving range expansion and radiative diversification in Paris. Our findings challenge the theoretical prediction that large genome sizes may limit speciation.
Collapse
Affiliation(s)
- Yunheng Ji
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Lifang Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Mark W. Chase
- Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, TW9 3DS UK
| | - Changkun Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Zhenyan Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Jin Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Jun-Bo Yang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Ting-Shuang Yi
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| |
Collapse
|
34
|
Taming the Red Bastards: Hybridisation and species delimitation in the Rhodanthemum arundanum-group (Compositae, Anthemideae). Mol Phylogenet Evol 2019; 144:106702. [PMID: 31812569 DOI: 10.1016/j.ympev.2019.106702] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 01/13/2023]
Abstract
Delineating species boundaries in a group of recently diverged lineages is challenging due to minor morphological differences, low genetic differentiation and the occurrence of gene flow among taxa. Here, we employ traditional Sanger sequencing and restriction-site associated DNA (RAD) sequencing, to investigate species delimitation in the close-knit Moroccan daisy group around Rhodanthemum arundanum B.H.Wilcox & al. that diverged recently during the Quaternary. After evaluation of genotyping errors and parameter optimisation in the course of de-novo assembly of RADseq reads in Ipyrad, we assess hybridisation patterns in the study group based on different data assemblies and methods (Neighbor-Net networks, FastStructure and ABBA-BABA tests). RADseq data and Sanger sequences are subsequently used for delimitation of species, using both, multi-species coalescent methods (Stacey and Snapp) and a novel approach based on consensus k-means clustering. In addition to the unveiling of two novel subspecies in the R. arundanum-group, our study provides insights into the performance of different species delimitation methods in the presence of hybridisation and varying quantities of data.
Collapse
|
35
|
Behling AH, Shepherd LD, Cox MP. The importance and prevalence of allopolyploidy in Aotearoa New Zealand. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1676797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Anna H. Behling
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
| | - Lara D. Shepherd
- Museum of New Zealand Te Papa Tongarewa, Wellington, New Zealand
| | - Murray P. Cox
- School of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Bio-Protection Research Centre, Massey University, Palmerston North, New Zealand
| |
Collapse
|
36
|
Brandrud MK, Paun O, Lorenz R, Baar J, Hedrén M. Restriction-site associated DNA sequencing supports a sister group relationship of Nigritella and Gymnadenia (Orchidaceae). Mol Phylogenet Evol 2019; 136:21-28. [PMID: 30914398 DOI: 10.1016/j.ympev.2019.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 03/22/2019] [Indexed: 11/30/2022]
Abstract
The orchid genus Nigritella is closely related to Gymnadenia and has from time to time been merged with the latter. Although Nigritella is morphologically distinct, it has been suggested that the separating characters are easily modifiable and subject to rapid evolutionary change. So far, molecular phylogenetic studies have either given support for the inclusion of Nigritella in Gymnadenia, or for their separation as different genera. To resolve this issue, we analysed data obtained from Restriction-site associated DNA sequencing, RADseq, which provides a large number of SNPs distributed across the entire genome. To analyse samples of different ploidies, we take an analytical approach of building a reduced genomic reference based on de novo RADseq loci reconstructed from diploid accessions only, which we further use to map and call variants across both diploid and polyploid accessions. We found that Nigritella is distinct from Gymnadenia forming a well-supported separate clade, and that genetic diversity within Gymnadenia is high. Within Gymnadenia, taxa characterized by an ITS-E ribotype (G. conopsea s.str. (early flowering) and G. odoratissima), are divergent from taxa characterized by ITS-L ribotype (G. frivaldii, G. densiflora and late flowering G. conopsea). Gymnigritella runei is confirmed to have an allopolyploid origin from diploid Gymnadenia conopsea and tetraploid N. nigra ssp. nigra on the basis of RADseq data. Within Nigritella the aggregation of polyploid members into three clear-cut groups as suggested by allozyme and nuclear microsatellite data was further supported.
Collapse
Affiliation(s)
- Marie K Brandrud
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Ovidiu Paun
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Richard Lorenz
- AHO Baden-Württemberg, Leibnizstrasse 1, D-69459 Weinheim, Germany
| | - Juliane Baar
- Department of Botany and Biodiversity Research, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| | - Mikael Hedrén
- Department of Biology, University of Lund, Sölvegatan 37, SE-223 62 Lund, Sweden.
| |
Collapse
|
37
|
Finch KN, Jones FA, Cronn RC. Genomic resources for the Neotropical tree genus Cedrela (Meliaceae) and its relatives. BMC Genomics 2019; 20:58. [PMID: 30658593 PMCID: PMC6339301 DOI: 10.1186/s12864-018-5382-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/16/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tree species in the genus Cedrela P. Browne are threatened by timber overexploitation across the Neotropics. Genetic identification of processed timber can be used to supplement wood anatomy to assist in the taxonomic and source validation of protected species and populations of Cedrela. However, few genetic resources exist that enable both species and source identification of Cedrela timber products. We developed several 'omic resources including a leaf transcriptome, organelle genome (cpDNA), and diagnostic single nucleotide polymorphisms (SNPs) that may assist the classification of Cedrela specimens to species and geographic origin and enable future research on this widespread Neotropical tree genus. RESULTS We designed hybridization capture probes to enrich for thousands of genes from both freshly preserved leaf tissue and from herbarium specimens across eight Meliaceae species. We first assembled a draft de novo transcriptome for C. odorata, and then identified putatively low-copy genes. Hybridization probes for 10,001 transcript models successfully enriched 9795 (98%) of these targets, and analysis of target capture efficiency showed that probes worked effectively for five Cedrela species, with each species showing similar mean on-target sequence yield and depth. The probes showed greater enrichment efficiency for Cedrela species relative to the other three distantly related Meliaceae species. We provide a set of candidate SNPs for species identification of four of the Cedrela species included in this analysis, and present draft chloroplast genomes for multiple individuals of eight species from four genera in the Meliaceae. CONCLUSIONS Deforestation and illegal logging threaten forest biodiversity globally, and wood screening tools offer enforcement agencies new approaches to identify illegally harvested timber. The genomic resources described here provide the foundation required to develop genetic screening methods for Cedrela species identification and source validation. Due to their transferability across the genus and family as well as demonstrated applicability for both fresh leaves and herbarium specimens, the genomic resources described here provide additional tools for studies examining the ecology and evolutionary history of Cedrela and related species in the Meliaceae.
Collapse
Affiliation(s)
- Kristen N. Finch
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
| | - F. Andrew Jones
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331 USA
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | - Richard C. Cronn
- USDA Forest Service Pacific Northwest Research Station, Corvallis, Oregon 97331 USA
| |
Collapse
|
38
|
Frajman B, Schönswetter P, Weiss-Schneeweiss H, Oxelman B. Origin and Diversification of South American Polyploid Silene Sect. Physolychnis (Caryophyllaceae) in the Andes and Patagonia. Front Genet 2018; 9:639. [PMID: 30619464 PMCID: PMC6297176 DOI: 10.3389/fgene.2018.00639] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022] Open
Abstract
The Andes are an important biogeographic region in South America extending for about 8000 km from Venezuela to Argentina. They are - along with the Patagonian steppes - the main distribution area of ca. 18 polyploid species of Silene sect. Physolychnis. Using nuclear ITS and plastid psbE-petG and matK sequences, flow cytometric ploidy level estimations and chromosome counts, and including 13 South American species, we explored the origin and diversification of this group. Our data suggest a single, late Pliocene or early Pleistocene migration of the North American S. verecunda lineage to South America, which was followed by dispersal and diversification of this tetraploid lineage in the Andes, other Argentinian mountain ranges and the Patagonian steppes. Later in the Pleistocene South American populations hybridized with the S. uralensis lineage, which led to allopolyploidisation and origin of decaploid S. chilensis and S. echegarayi occurring at high elevations. Additionally, we show that the morphological differentiation in leaf shape correlated with divergent habitats (high elevation Andes vs. lower elevation Patagonian steppes) is also supported phylogenetically, especially in the ITS tree. Lastly, the species boundaries among the narrow-leaved Patagonian steppe species are poorly resolved and need more thorough taxonomic revision.
Collapse
Affiliation(s)
- Božo Frajman
- Department of Botany, University of Innsbruck, Innsbruck, Austria
| | | | | | - Bengt Oxelman
- Department of Plant and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
39
|
Rodionov AV, Dobryakova KS, Punina EO. Polymorphic Sites in ITS1-5.8S rDNA-ITS2 Region in Hybridogenic Genus × Elyhordeum and Putative Interspecific Hybrids Elymus (Poaceae: Triticeae). RUSS J GENET+ 2018. [DOI: 10.1134/s1022795418090120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
40
|
Yang Y, Davis TM. A New Perspective on Polyploid Fragaria (Strawberry) Genome Composition Based on Large-Scale, Multi-Locus Phylogenetic Analysis. Genome Biol Evol 2018; 9:3433-3448. [PMID: 29045639 PMCID: PMC5751083 DOI: 10.1093/gbe/evx214] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2017] [Indexed: 12/25/2022] Open
Abstract
The subgenomic compositions of the octoploid (2n = 8× = 56) strawberry (Fragaria) species, including the economically important cultivated species Fragaria x ananassa, have been a topic of long-standing interest. Phylogenomic approaches utilizing next-generation sequencing technologies offer a new window into species relationships and the subgenomic compositions of polyploids. We have conducted a large-scale phylogenetic analysis of Fragaria (strawberry) species using the Fluidigm Access Array system and 454 sequencing platform. About 24 single-copy or low-copy nuclear genes distributed across the genome were amplified and sequenced from 96 genomic DNA samples representing 16 Fragaria species from diploid (2×) to decaploid (10×), including the most extensive sampling of octoploid taxa yet reported. Individual gene trees were constructed by different tree-building methods. Mosaic genomic structures of diploid Fragaria species consisting of sequences at different phylogenetic positions were observed. Our findings support the presence in octoploid species of genetic signatures from at least five diploid ancestors (F. vesca, F. iinumae, F. bucharica, F. viridis, and at least one additional allele contributor of unknown identity), and questions the extent to which distinct subgenomes are preserved over evolutionary time in the allopolyploid Fragaria species. In addition, our data support divergence between the two wild octoploid species, F. virginiana and F. chiloensis.
Collapse
Affiliation(s)
- Yilong Yang
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire
| | - Thomas M Davis
- Department of Agriculture, Nutrition, and Food Systems, University of New Hampshire
| |
Collapse
|
41
|
O'Donnell K, Cigelnik E, Nirenberg HI. Molecular systematics and phylogeography of theGibberella fujikuroispecies complex. Mycologia 2018. [DOI: 10.1080/00275514.1998.12026933] [Citation(s) in RCA: 268] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Kerry O'Donnell
- Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois 61604-3999
| | - Elizabeth Cigelnik
- Microbial Properties Research, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, Peoria, Illinois 61604-3999
| | - Helgard I. Nirenberg
- Biologische Bundesanstalt für Land- und Forstwirtschaft, Institut für Mikrobiologie, Königin-Luise-Straβe 19, D-14119 Berlin, Germany
| |
Collapse
|
42
|
Zhang L, Xi Z, Wang M, Guo X, Ma T. Plastome phylogeny and lineage diversification of Salicaceae with focus on poplars and willows. Ecol Evol 2018; 8:7817-7823. [PMID: 30250665 PMCID: PMC6145263 DOI: 10.1002/ece3.4261] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/27/2018] [Accepted: 05/17/2018] [Indexed: 11/09/2022] Open
Abstract
Phylogenetic relationships and lineage diversification of the family Salicaceae sensu lato (s.l.) remain poorly understood. In this study, we examined phylogenetic relationships between 42 species from six genera based on the complete plastomes. Phylogenetic analyses of 77 protein coding genes of the plastomes produced good resolution of the interrelationships among most sampled species and the recovered clades. Of the sampled genera from the family, Flacourtia was identified as the most basal and the successive clades comprised both Itoa and Poliothyrsis, Idesia, two genera of the Salicaceae sensu stricto (s.s.) (Populus and Salix). Five major subclades were recovered within the Populus clade. These subclades and their interrelationships are largely inconsistent with morphological classifications and molecular phylogeny based on nuclear internal transcribed spacer sequence variations. Two major subclades were identified for the Salix clade. Molecular dating suggested that species diversification of the major subclades in the Populus and Salix clades occurred mainly within the recent Pliocene. In addition, we found that the rpl32 gene was lost and the rps7 gene evolved into a pseudogene multiple times in the sampled genera of the Salicaceae s.l. Compared with previous studies, our results provide a well-resolved phylogeny from the perspective of the plastomes.
Collapse
Affiliation(s)
- Lei Zhang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Zhenxiang Xi
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Mingcheng Wang
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Xinyi Guo
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| | - Tao Ma
- Key Laboratory of Bio‐Resource and Eco‐Environment of Ministry of EducationCollege of Life SciencesSichuan UniversityChengduSichuanChina
| |
Collapse
|
43
|
Kalinka A, Achrem M. Reorganization of wheat and rye genomes in octoploid triticale (× Triticosecale). PLANTA 2018; 247:807-829. [PMID: 29234880 PMCID: PMC5856900 DOI: 10.1007/s00425-017-2827-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 12/03/2017] [Indexed: 06/01/2023]
Abstract
The analysis of early generations of triticale showed numerous rearrangements of the genome. Complexed transformation included loss of chromosomes, t-heterochromatin content changes and the emergence of retrotransposons in new locations. This study investigated certain aspects of genomic transformations in the early generations (F5 and F8) of the primary octoploid triticale derived from the cross of hexaploid wheat with the diploid rye. Most of the plants tested were hypoploid; among eliminated chromosomes were rye chromosomes 4R and 5R and variable number of wheat chromosomes. Wheat chromosomes were eliminated to a higher extent. The lower content of telomeric heterochromatin was also found in rye chromosomes in comparison with parental rye. Studying the location of selected retrotransposons from Ty1-copia and Ty3-gypsy families using fluorescence in situ hybridization revealed additional locations of these retrotransposons that were not present in chromosomes of parental species. ISSR, IRAP and REMAP analyses showed significant changes at the level of specific DNA nucleotide sequences. In most cases, the disappearance of certain types of bands was observed, less frequently new types of bands appeared, not present in parental species. This demonstrates the scale of genome rearrangement and, above all, the elimination of wheat and rye sequences, largely due to the reduction of chromosome number. With regard to the proportion of wheat to rye genome, the rye genome was more affected by the changes, thus this study was focused more on the rye genome. Observations suggest that genome reorganization is not finished in the F5 generation but is still ongoing in the F8 generation.
Collapse
Affiliation(s)
- Anna Kalinka
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland
| | - Magdalena Achrem
- Department of Cell Biology, Faculty of Biology, Institute for Research on Biodiversity, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
- Faculty of Biology, Molecular Biology and Biotechnology Center, University of Szczecin, Wąska 13, 71-415, Szczecin, Poland.
| |
Collapse
|
44
|
Surveswaran S, Gowda V, Sun M. Using an integrated approach to identify cryptic species, divergence patterns and hybrid species in Asian ladies' tresses orchids (Spiranthes, Orchidaceae). Mol Phylogenet Evol 2018; 124:106-121. [PMID: 29501785 DOI: 10.1016/j.ympev.2018.02.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 01/08/2023]
Abstract
Spiranthes (∼36 species, Orchidaceae) is a small genus with a global distribution. It has a center of diversity in North America with only a few species occurring in Asia. This study focuses on the Asian Spiranthes with an emphasis on understanding their biogeographic relationships and species delimitations using molecular markers. Our phylogenetic trees based on nuclear (ITS) and chloroplast (trnL-trnLF, matK and trnS-G) sequences from samples across their range in Asia revealed the Asian Spiranthes are monophyletic. Ancestral area optimization suggested that North America forms the ancestral region for the Asian Spiranthes rather than Europe suggesting that they originated from a single long-distance dispersal event. Our study also revealed the presence of a cryptic species S. himalayensis, which was discovered based on molecular data thus emphasizing the importance of wide geographical sampling in phylogenetic studies. Sequences of cloned ITS provided support for the hypothesis that natural hybridization between S. sinensis and the newly described S. himalayensis resulted in the allotetraploid S. hongkongensis, with S. himalayensis as the paternal parent. One of the species complexes known in Asia is the S. sinensis complex, which shows a wide occurrence and is known for local geographical variants. Some of these variants have been described as new species in Australia and New Zealand. Our studies show that all the sampled variants including the Australian and New Zealand species show monophyly despite having long branches. This suggests that there may be high rates of gene flow between the geographically distinct forms resulting in lack of species resolution within the S. sinensis complex.
Collapse
Affiliation(s)
- Siddharthan Surveswaran
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| | - Vinita Gowda
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal 462066, India.
| | - Mei Sun
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
45
|
Touzet P, Villain S, Buret L, Martin H, Holl A, Poux C, Cuguen J. Chloroplastic and nuclear diversity of wild beets at a large geographical scale: Insights into the evolutionary history of the Beta section. Ecol Evol 2018; 8:2890-2900. [PMID: 29531703 PMCID: PMC5838056 DOI: 10.1002/ece3.3774] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 12/06/2017] [Accepted: 12/11/2017] [Indexed: 11/09/2022] Open
Abstract
Historical demographic processes and mating systems are believed to be major factors in the shaping of the intraspecies genetic diversity of plants. Among Caryophyllales, the Beta section of the genus Beta, within the Amaranthaceae/Chenopodiaceae alliance, is an interesting study model with species and subspecies (Beta macrocarpa, Beta patula, Beta vulgaris maritima and B.v. adanensis) differing in geographical distribution and mating system. In addition, one of the species, B. macrocarpa, mainly diploid, varies in its level of ploidy with a tetraploid cytotype described in the Canary Islands and in Portugal. In this study, we analyzed the nucleotide diversity of chloroplastic and nuclear sequences on a representative sampling of species and subspecies of the Beta section (except B. patula). Our objectives were (1) to assess their genetic relationships through phylogenetic and multivariate analyses, (2) relate their genetic diversity to their mating system, and (3) reconsider the ploidy status and the origin of the Canarian Beta macrocarpa.
Collapse
Affiliation(s)
- Pascal Touzet
- Univ. LilleCNRS, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| | - Sarah Villain
- Univ. LilleCNRS, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| | | | - Hélène Martin
- Univ. LilleCNRS, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| | | | - Céline Poux
- Univ. LilleCNRS, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| | - Joël Cuguen
- Univ. LilleCNRS, UMR 8198 – Evo‐Eco‐PaleoLilleFrance
| |
Collapse
|
46
|
de Boer HJ, Ghorbani A, Manzanilla V, Raclariu AC, Kreziou A, Ounjai S, Osathanunkul M, Gravendeel B. DNA metabarcoding of orchid-derived products reveals widespread illegal orchid trade. Proc Biol Sci 2018; 284:rspb.2017.1182. [PMID: 28931735 DOI: 10.1098/rspb.2017.1182] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 08/10/2017] [Indexed: 11/12/2022] Open
Abstract
In eastern Mediterranean countries orchids continue to be collected from the wild for the production of salep, a beverage made of dried orchid tubers. In this study we used nrITS1 and nrITS2 DNA metabarcoding to identify orchid and other plant species present in 55 commercial salep products purchased in Iran, Turkey, Greece and Germany. Thirty samples yielded a total of 161 plant taxa, and 13 products (43%) contained orchid species and these belonged to 10 terrestrial species with tuberous roots. Another 70% contained the substitute ingredient Cyamopsis tetraganoloba (Guar). DNA metabarcoding using the barcoding markers nrITS1 and nrITS2 shows the potential of these markers and approach for identification of species used in salep products. The analysis of interspecific genetic distances between sequences of these markers for the most common salep orchid genera shows that species level identifications can be made with a high level of confidence. Understanding the species diversity and provenance of salep orchid tubers will enable the chain of commercialization of endangered species to be traced back to the harvesters and their natural habitats, and thus allow for targeted efforts to protect or sustainably use wild populations of these orchids.
Collapse
Affiliation(s)
- Hugo J de Boer
- Natural History Museum, University of Oslo, Oslo, Norway .,Department of Organismal Biology, Uppsala University, Uppsala, Sweden.,Naturalis Biodiversity Center, Leiden, The Netherlands
| | | | | | - Ancuta-Cristina Raclariu
- Natural History Museum, University of Oslo, Oslo, Norway.,Stejarul Research Centre for Biological Sciences, NIRDBIS, Piatra Neamt, Romania
| | | | - Sarawut Ounjai
- Department of Biology, Chiang Mai University, Chiang Mai, Thailand
| | | | | |
Collapse
|
47
|
Szlachetko DL, Kolanowska M, Naczk A, Górniak M, Dudek M, Rutkowski P, Chiron G. Taxonomy of Cyrtochilum-alliance (Orchidaceae) in the light of molecular and morphological data. BOTANICAL STUDIES 2017; 58:8. [PMID: 28510191 PMCID: PMC5430592 DOI: 10.1186/s40529-017-0164-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 01/08/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The generic separateness and specific composition of the orchid genus Cyrtochilum was discussed for almost two centuries. Over the years several smaller taxa were segregated from this taxon, but their separateness was recently questioned based on molecular studies outcomes. The aim of our study was to revise concepts of morphological-based generic delimitation in Cyrtochilum-alliance and to compare it with the results of genetic analysis. We used phylogenetic framework in combination with phenetical analysis to provide proposal of the generic delimitation within Cyrtochilum-alliance. Two molecular markers, ITS and matK were used to construct phylogenetic tree. A total of over 5000 herbarium specimens were included in the morphological examination and the phenetical analysis included 29 generative and vegetative characters. RESULTS Comparative morphology of the previously recognized genera: Buesiella, Dasyglossum, Neodryas, Rusbyella, Siederella and Trigonochilum is presented. A new species within the the latter genus is described. Fourteen new combinations are proposed. The key to the identification of the genera of the Cyrtochilum-alliance and morphological characteristics of each genus are provided. CONCLUSIONS A total of six separated genera are recognized within Cyrtochilum-alliance. The reasons of the incompatibility between morphological differences observed within studied taxa and phylogenetic tree are argued and the taxonomic implications of such inconsistency, resulting in fragmentation or lumping of taxonomic units, are discussed.
Collapse
Affiliation(s)
- Dariusz L. Szlachetko
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marta Kolanowska
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
- Department of Biodiversity Research, Global Change Research Institute AS CR, Bělidla 4a., 603 00 Brno, Czech Republic
| | - Aleksandra Naczk
- Department of Molecular Evolution, The University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Marcin Górniak
- Department of Molecular Evolution, The University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Magdalena Dudek
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Piotr Rutkowski
- Department of Plant Taxonomy and Nature Conservation, The University of Gdańsk, ul. Wita Stwosza 59, 80-308 Gdańsk, Poland
| | - Guy Chiron
- Herbiers, Université de Lyon I, 69622 Villeurbanne Cedex, France
| |
Collapse
|
48
|
Li FW, Rushworth CA, Beck JB, Windham MD. Boechera microsatellite website: an online portal for species identification and determination of hybrid parentage. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2017; 2017:3057076. [PMID: 28365726 PMCID: PMC5467466 DOI: 10.1093/database/baw169] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 12/13/2016] [Indexed: 11/14/2022]
Abstract
Boechera (Brassicaceae) has many features to recommend it as a model genus for ecological and evolutionary research, including species richness, ecological diversity, experimental tractability and close phylogenetic proximity to Arabidopsis . However, efforts to realize the full potential of this model system have been thwarted by the frequent inability of researchers to identify their samples and place them in a broader evolutionary context. Here we present the Boechera Microsatellite Website (BMW), a portal that archives over 55 000 microsatellite allele calls from 4471 specimens (including 133 nomenclatural types). The portal includes analytical tools that utilize data from 15 microsatellite loci as a highly effective DNA barcoding system. The BMW facilitates the accurate identification of Boechera samples and the investigation of reticulate evolution among the ±83 sexual diploid taxa in the genus, thereby greatly enhancing Boechera 's potential as a model system. Database URL http://sites.biology.duke.edu/windhamlab/.
Collapse
Affiliation(s)
- Fay-Wei Li
- Department of Biology, Duke University, Durham, NC 27708, USA.,University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - Catherine A Rushworth
- Department of Biology, Duke University, Durham, NC 27708, USA.,University and Jepson Herbaria and Department of Integrative Biology, University of California, Berkeley, CA 94720, USA
| | - James B Beck
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA.,Botanical Research Institute of Texas, 1700 University Drive, Fort Worth, TX 76107, USA
| | | |
Collapse
|
49
|
Saarela JM, Bull RD, Paradis MJ, Ebata SN, Paul M. Peterson, Soreng RJ, Paszko B. Molecular phylogenetics of cool-season grasses in the subtribes Agrostidinae, Anthoxanthinae, Aveninae, Brizinae, Calothecinae, Koeleriinae and Phalaridinae (Poaceae, Pooideae, Poeae, Poeae chloroplast group 1). PHYTOKEYS 2017; 87:1-139. [PMID: 29114171 PMCID: PMC5672130 DOI: 10.3897/phytokeys.87.12774] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 08/04/2017] [Indexed: 08/22/2023]
Abstract
Circumscriptions of and relationships among many genera and suprageneric taxa of the diverse grass tribe Poeae remain controversial. In an attempt to clarify these, we conducted phylogenetic analyses of >2400 new DNA sequences from two nuclear ribosomal regions (ITS, including internal transcribed spacers 1 and 2 and the 5.8S gene, and the 3'-end of the external transcribed spacer (ETS)) and five plastid regions (matK, trnL-trnF, atpF-atpH, psbK-psbI, psbA-rps19-trnH), and of more than 1000 new and previously published ITS sequences, focused particularly on Poeae chloroplast group 1 and including broad and increased species sampling compared to previous studies. Deep branches in the combined plastid and combined ITS+ETS trees are generally well resolved, the trees are congruent in most aspects, branch support across the trees is stronger than in trees based on only ITS and fewer plastid regions, and there is evidence of conflict between data partitions in some taxa. In plastid trees, a strongly supported clade corresponds to Poeae chloroplast group 1 and includes Agrostidinae p.p., Anthoxanthinae, Aveninae s.str., Brizinae, Koeleriinae (sometimes included in Aveninae s.l.), Phalaridinae and Torreyochloinae. In the ITS+ETS tree, a supported clade includes these same tribes as well as Sesleriinae and Scolochloinae. Aveninae s.str. and Sesleriinae are sister taxa and form a clade with Koeleriinae in the ITS+ETS tree whereas Aveninae s.str. and Koeleriinae form a clade and Sesleriinae is part of Poeae chloroplast group 2 in the plastid tree. All species of Trisetum are part of Koeleriinae, but the genus is polyphyletic. Koeleriinae is divided into two major subclades: one comprises Avellinia, Gaudinia, Koeleria, Rostraria, Trisetaria and Trisetum subg. Trisetum, and the other Calamagrostis/Deyeuxia p.p. (multiple species from Mexico to South America), Peyritschia, Leptophyllochloa, Sphenopholis, Trisetopsis and Trisetum subg. Deschampsioidea. Graphephorum, Trisetum cernuum, T. irazuense and T. macbridei fall in different clades of Koeleriinae in plastid vs. nuclear ribosomal trees, and are likely of hybrid origin. ITS and matK trees identify a third lineage of Koeleriinae corresponding to Trisetum subsect. Sibirica, and affinities of Lagurus ovatus with respect to Aveninae s.str. and Koeleriinae are incongruent in nuclear ribosomal and plastid trees, supporting recognition of Lagurus in its own subtribe. A large clade comprises taxa of Agrostidinae, Brizinae and Calothecinae, but neither Agrostidinae nor Calothecinae are monophyletic as currently circumscribed and affinities of Brizinae differ in plastid and nuclear ribosomal trees. Within this clade, one newly identified lineage comprises Calamagrostis coarctata, Dichelachne, Echinopogon (Agrostidinae p.p.) and Relchela (Calothecinae p.p.), and another comprises Chascolytrum (Calothecinae p.p.) and Deyeuxia effusa (Agrostidinae p.p.). Within Agrostidinae p.p., the type species of Deyeuxia and Calamagrostis s.str. are closely related, supporting classification of Deyeuxia as a synonym of Calamagrostis s.str. Furthermore, the two species of Ammophila are not sister taxa and are nested among different groups of Calamagrostis s.str., supporting their classification in Calamagrostis. Agrostis, Lachnagrostis and Polypogon form a clade and species of each are variously intermixed in plastid and nuclear ribosomal trees. Additionally, all but one species from South America classified in Deyeuxia sect. Stylagrostis resolve in Holcinae p.p. (Deschampsia). The current phylogenetic results support recognition of the latter species in Deschampsia, and we also demonstrate Scribneria is part of this clade. Moreover, Holcinae is not monophyletic in its current circumscription because Deschampsia does not form a clade with Holcus and Vahlodea, which are sister taxa. The results support recognition of Deschampsia in its own subtribe Aristaveninae. Substantial further changes to the classification of these grasses will be needed to produce generic circumscriptions consistent with phylogenetic evidence. The following 15 new combinations are made: Calamagrostis × calammophila, C. breviligulata, C. breviligulata subsp. champlainensis, C. × don-hensonii, Deschampsia aurea, D. bolanderi, D. chrysantha, D. chrysantha var. phalaroides, D. eminens, D. eminens var. fulva, D. eminens var. inclusa, D. hackelii, D. ovata, and D. ovata var. nivalis. D. podophora; the new name Deschampsia parodiana is proposed; the new subtribe Lagurinae is described; and a second-step lectotype is designated for the name Deyeuxia phalaroides.
Collapse
Affiliation(s)
- Jeffery M. Saarela
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Roger D. Bull
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Michel J. Paradis
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Sharon N. Ebata
- Botany Section, Research and Collections, Canadian Museum of Nature, Ottawa, Ontario, Canada
| | - Paul M. Peterson
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Robert J. Soreng
- Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, United States of America
| | - Beata Paszko
- Department of Vascular Plant Systematics and Phytogeography, W. Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland
| |
Collapse
|
50
|
Chandnani R, Wang B, Draye X, Rainville LK, Auckland S, Zhuang Z, Lubbers EL, May OL, Chee PW, Paterson AH. Segregation distortion and genome-wide digenic interactions affect transmission of introgressed chromatin from wild cotton species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2219-2230. [PMID: 28801756 DOI: 10.1007/s00122-017-2952-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 07/26/2017] [Indexed: 06/07/2023]
Abstract
This study reports transmission genetics of chromosomal segments into Gossypium hirsutum from its most distant euploid relative, Gossypium mustelinum . Mutilocus interactions and structural rearrangements affect introgression and segregation of donor chromatin. Wild allotetraploid relatives of cotton are a rich source of genetic diversity that can be used in genetic improvement, but linkage drag and non-Mendelian transmission genetics are prevalent in interspecific crosses. These problems necessitate knowledge of transmission patterns of chromatin from wild donor species in cultivated recipient species. From an interspecific cross, Gossypium hirsutum × Gossypium mustelinum, we studied G. mustelinum (the most distant tetraploid relative of Upland cotton) allele retention in 35 BC3F1 plants and segregation patterns in BC3F2 populations totaling 3202 individuals, using 216 DNA marker loci. The average retention of donor alleles across BC3F1 plants was higher than expected and the average frequency of G. mustelinum alleles in BC3F2 segregating families was less than expected. Despite surprisingly high retention of G. mustelinum alleles in BC3F1, 46 genomic regions showed no introgression. Regions on chromosomes 3 and 15 lacking introgression were closely associated with possible small inversions previously reported. Nonlinear two-locus interactions are abundant among loci with single-locus segregation distortion, and among loci originating from one of the two subgenomes. Comparison of the present results with those of prior studies indicates different permeability of Upland cotton for donor chromatin from different allotetraploid relatives. Different contributions of subgenomes to two-locus interactions suggest different fates of subgenomes in the evolution of allotetraploid cottons. Transmission genetics of G. hirsutum × G. mustelinum crosses reveals allelic interactions, constraints on fixation and selection of donor alleles, and challenges with retention of introgressed chromatin for crop improvement.
Collapse
Affiliation(s)
- Rahul Chandnani
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Baohua Wang
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Xavier Draye
- Unité d'écophysiologie et amélioration végétale, Université Catholique de Louvain, Croix du Sud 1-10, 1348, Louvain-la-Neuve, Belgium
| | - Lisa K Rainville
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Susan Auckland
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA
| | - Zhimin Zhuang
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
- School of Life Sciences, Nantong University, Nantong, 226019, Jiangsu, China
| | - Edward L Lubbers
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
| | - O Lloyd May
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
- Monsanto Cotton Breeding, Tifton, GA, 31793, USA
| | - Peng W Chee
- NESPAL Molecular Cotton Breeding Laboratory, University of Georgia, Tifton, GA, 31793, USA
| | - Andrew H Paterson
- Plant Genome Mapping Laboratory, University of Georgia, 111 Riverbend Road, Athens, GA, 30605, USA.
| |
Collapse
|