1
|
Yao M, Rosario ER, Soper JC, Pike CJ. Androgens Regulate Tau Phosphorylation Through Phosphatidylinositol 3-Kinase-Protein Kinase B-Glycogen Synthase Kinase 3β Signaling. Neuroscience 2025; 568:503-518. [PMID: 35777535 PMCID: PMC9797620 DOI: 10.1016/j.neuroscience.2022.06.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/11/2022] [Accepted: 06/23/2022] [Indexed: 12/31/2022]
Abstract
Age-related testosterone depletion in men is a risk factor for Alzheimer's disease (AD). How testosterone modulates AD risk remains to be fully elucidated, although regulation of tau phosphorylation has been suggested as a contributing protective action. To investigate the relationship between testosterone and tau phosphorylation, we first evaluated the effect of androgen status on tau phosphorylation in 3xTg-AD mice. Depletion of endogenous androgens via gonadectomy resulted in increased tau phosphorylation that was prevented by acute testosterone treatment. Parallel alterations in the phosphorylation of both glycogen synthase kinase 3β (GSK3β) and protein kinase B (Akt) suggest possible components of the underlying signaling pathway. To further explore mechanism, primary cultured neurons were treated with a physiological concentration of testosterone or its active metabolite dihydrotestosterone (DHT). Results showed that testosterone and DHT induced significant decreases in phosphorylated tau and significant increases in phosphorylation of Akt and GSK3β. Pharmacological inhibition of phosphatidylinositol 3-kinase (PI3K) effectively inhibited androgen-induced increases in Akt and GSK3β phosphorylation, and decreases in tau phosphorylation. In addition, androgen receptor (AR) knock-down by small interfering RNA prevented androgen-induced changes in the phosphorylation of Akt, GSK3β and tau, suggesting an AR-dependent mechanism. Additional experiments demonstrated androgen-induced changes in Akt, GSK3β and tau phosphorylation in AR-expressing PC12 cells but not in AR-negative PC12 cells. Together, these results suggest an AR-dependent pathway involving PI3K-Akt-GSK3β signaling through which androgens can reduce tau phosphorylation. These findings identify an additional protective mechanism of androgens that can improve neural health and inhibit development of AD.
Collapse
Affiliation(s)
- Mingzhong Yao
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Emily R Rosario
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Jenna Carroll Soper
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Christian J Pike
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
2
|
Li CJ, Zhang QY, Zhang B, Liang HY, Ma LN, Salman M. Study on the response mechanism of MicroRNA novel-13 and novel-44 to Vibrio parahaemolyticus infection in Pinctada fucata martensii. BMC Vet Res 2025; 21:35. [PMID: 39856657 PMCID: PMC11760096 DOI: 10.1186/s12917-024-04467-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
Pinctada fucata martensii (P. f. martensii) is one of the main pearl oysters cultured in artificial seawater in China. However, it is highly susceptible to pathogen infection under intensive cultivation near the coast. MicroRNAs (miRNAs), as an innovative and potent regulator of immune function, play a pivotal role in the immune response of pearl oysters to external stimuli and are a potent marker for the response of P. f. martensii to infection. This study identified two novel miRNAs, novel-13 and novel-44, from the whole transcriptome of the P. f. martensii hemocyte before and after infection with Vibrio parahaemolyticus. The dual luciferase results showed that novel-13 negatively regulated LAAO and novel-44 negatively regulated ILK. The activity of antioxidant-related enzymes increased significantly in the synthetic miRNA (novel-13 and novel-44) inhibitors and decreased significantly in the synthetic miRNA mimics. In the challenge experiment, injection with miRNA inhibitor increased the relative survival percentage by 10% compared with the control group. In conclusion, the overexpression of novel-13 and novel-44 can decrease the activity of immune and antioxidant-related enzymes, possibly affecting immune regulation in P. f. martensii by negatively regulating the LAAO and ILK target genes.
Collapse
Affiliation(s)
- Chao Jie Li
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Qi Yuan Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Bin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Hai Ying Liang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, Zhanjiang, Guangdong, 524088, China.
| | - Li Ning Ma
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Muhammad Salman
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| |
Collapse
|
3
|
Hassan D, Menges CW, Testa JR, Bellacosa A. AKT kinases as therapeutic targets. J Exp Clin Cancer Res 2024; 43:313. [PMID: 39614261 PMCID: PMC11606119 DOI: 10.1186/s13046-024-03207-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/03/2024] [Indexed: 12/01/2024] Open
Abstract
AKT, or protein kinase B, is a central node of the PI3K signaling pathway that is pivotal for a range of normal cellular physiologies that also underlie several pathological conditions, including inflammatory and autoimmune diseases, overgrowth syndromes, and neoplastic transformation. These pathologies, notably cancer, arise if either the activity of AKT or its positive or negative upstream or downstream regulators or effectors goes unchecked, superimposed on by its intersection with a slew of other pathways. Targeting the PI3K/AKT pathway is, therefore, a prudent countermeasure. AKT inhibitors have been tested in many clinical trials, primarily in combination with other drugs. While some have recently garnered attention for their favorable profile, concern over resistance and off-target effects have continued to hinder their widespread adoption in the clinic, mandating a discussion on alternative modes of targeting. In this review, we discuss isoform-centric targeting that may be more effective and less toxic than traditional pan-AKT inhibitors and its significance for disease prevention and treatment, including immunotherapy. We also touch on the emerging mutant- or allele-selective covalent allosteric AKT inhibitors (CAAIs), as well as indirect, novel AKT-targeting approaches, and end with a briefing on the ongoing quest for more reliable biomarkers predicting sensitivity and response to AKT inhibitors, and their current state of affairs.
Collapse
Affiliation(s)
- Dalal Hassan
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
- Thomas Jefferson University, 901 Walnut St, Philadelphia, PA, 19107, USA
| | - Craig W Menges
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Joseph R Testa
- Cancer Prevention and Control Program, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA
| | - Alfonso Bellacosa
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA, 19111, USA.
| |
Collapse
|
4
|
Morihara H, Yokoe S, Wakabayashi S, Takai S. TMEM182 inhibits myocardial differentiation of human iPS cells by maintaining the activated state of Wnt/β-catenin signaling through an increase in ILK expression. FASEB Bioadv 2024; 6:565-579. [PMID: 39512841 PMCID: PMC11539028 DOI: 10.1096/fba.2024-00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/19/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Transmembrane protein 182 (TMEM182) is notably abundant in muscle and adipose tissue, but its role in the heart remains unknown. This study examined the contribution of TMEM182 in the differentiation of human induced pluripotent stem cells (hiPSCs) into cardiomyocytes. For this, we generated hiPSCs overexpressing TMEM182 in a doxycycline-inducible manner and induced their differentiation into cardiomyocytes. On Day 12 of differentiation, expression of the cardiomyocyte markers, TNNT2 and MYH6, was significantly decreased in TMEM182-overexpressing cells. Additionally, we found that phosphorylation of GSK-3β (Ser9) and β-catenin (Ser552) was increased during TMEM182 overexpression, suggesting activation of Wnt/β-catenin signaling. We further focused on integrin-linked kinase (ILK) as the mechanism by which TMEM182 activates Wnt/β-catenin signaling. Evaluation showed that ILK expression was increased in cells overexpressing TMEM182. These results suggest that TMEM182 maintains Wnt/β-catenin signaling in an activated state after mesoderm formation by increasing ILK expression, thereby suppressing hiPSCs differentiation into cardiomyocytes.
Collapse
Affiliation(s)
- Hirofumi Morihara
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shunichi Yokoe
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| | - Shigeo Wakabayashi
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Nursing, Faculty of Health SciencesOsaka Aoyama UniversityMinohJapan
| | - Shinji Takai
- Department of Pharmacology, Faculty of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
- Department of Innovative Medicine, Graduate School of MedicineOsaka Medical and Pharmaceutical UniversityTakatsukiJapan
| |
Collapse
|
5
|
Chen L, Wang X, Tian S, Zhou L, Wang L, Liu X, Yang Z, Fu G, Liu X, Ding C, Zou D. Integrin-linked kinase control dental pulp stem cell senescence via the mTOR signaling pathway. Stem Cells 2024; 42:861-873. [PMID: 39169713 PMCID: PMC11464141 DOI: 10.1093/stmcls/sxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 06/25/2024] [Indexed: 08/23/2024]
Abstract
Human dental pulp stem cells (HDPSCs) showed an age-dependent decline in proliferation and differentiation capacity. Decline in proliferation and differentiation capacity affects the dental stromal tissue homeostasis and impairs the regenerative capability of HDPSCs. However, which age-correlated proteins regulate the senescence of HDPSCs remain unknown. Our study investigated the proteomic characteristics of HDPSCs isolated from subjects of different ages and explored the molecular mechanism of age-related changes in HDPSCs. Our study showed that the proliferation and osteogenic differentiation of HDPSCs were decreased, while the expression of aging-related genes (p21, p53) and proportion of senescence-associated β-galactosidase (SA-β-gal)-positive cells were increased with aging. The bioinformatic analysis identified that significant proteins positively correlated with age were enriched in response to the mammalian target of rapamycin (mTOR) signaling pathway (ILK, MAPK3, mTOR, STAT1, and STAT3). We demonstrated that OSU-T315, an inhibitor of integrin-linked kinase (ILK), rejuvenated aged HDPSCs, similar to rapamycin (an inhibitor of mTOR). Treatment with OSU-T315 decreased the expression of aging-related genes (p21, p53) and proportion of SA-β-gal-positive cells in HDPSCs isolated from old (O-HDPSCs). Additionally, OSU-T315 promoted the osteoblastic differentiation capacity of O-HDPSCs in vitro and bone regeneration of O-HDPSCs in rat calvarial bone defects model. Our study indicated that the proliferation and osteoblastic differentiation of HDPSCs were impaired with aging. Notably, the ILK/AKT/mTOR/STAT1 signaling pathway may be a major factor in the regulation of HDPSC senescence, which help to provide interventions for HDPSC senescence.
Collapse
Affiliation(s)
- Lu Chen
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
| | - Xiping Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Sha Tian
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, People’s Republic of China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine; College of Stomatology, Shanghai Jiao Tong University; National Center for Stomatology; National Clinical Research Center for Oral Diseases; Shanghai Key Laboratory of Stomatology, Shanghai, People’s Republic of China
| | - Li Wang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Xiaohan Liu
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
| | - Zihan Yang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| | - Guiqiang Fu
- Stomatology Hospital and College, Key Laboratory of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, People’s Republic of China
| | - Xingguang Liu
- National Key Laboratory of Medical Immunology & Institute of Immunology, Second Military Medical University, Shanghai 200433, People’s Republic of China
| | - Chen Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute, Fudan University, Shanghai 200433, People’s Republic of China
| | - Duohong Zou
- Department of Oral Surgery, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine; National Clinical Research Center for Oral Diseases Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, Shanghai 200011, People’s Republic of China
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, People’s Republic of China
| |
Collapse
|
6
|
Ishii T, Kaya M, Muroi Y. Oral Administration of Probiotic Bifidobacterium breve Ameliorates Tonic-Clonic Seizure in a Pentylenetetrazole-Induced Kindling Mouse Model via Integrin-Linked Kinase Signaling. Int J Mol Sci 2024; 25:9259. [PMID: 39273208 PMCID: PMC11395544 DOI: 10.3390/ijms25179259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/18/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Epilepsy is a chronic neurological disorder characterized by recurrent seizures that affects over 70 million people worldwide. Although many antiepileptic drugs that block seizures are available, they have little effect on preventing and curing epilepsy, and their side effects sometimes lead to serious morbidity. Therefore, prophylactic agents with anticonvulsant properties and no adverse effects need to be identified. Recent studies on probiotic administration have reported a variety of beneficial effects on the central nervous system via the microbiota-gut-brain axis. In this study, we investigated the effects of the oral administration of Bifidobacterium breve strain A1 [MCC1274] (B. breve A1) on tonic-clonic seizure in a pentylenetetrazole (PTZ)-induced kindling mouse (KD mouse) model. We found that the oral administration of B. breve A1 every other day for 15 days significantly reduced the seizure score, which gradually increased with repetitive injections of PTZ in KD mice. The administration of B. breve A1, but not saline, to KD mice significantly increased the level of Akt Ser473 phosphorylation (p-Akt) in the hippocampus; this increase was maintained for a minimum of 24 h after PTZ administration. Treatment of B. breve A1-administered KD mice with the selective inhibitor of integrin-linked kinase (ILK) Cpd22 significantly increased the seizure score and blocked the antiepileptic effect of B. breve A1. Moreover, Cpd22 blocked the B. breve A1-induced increase in hippocampal p-Akt levels. These results suggest that the ILK-induced phosphorylation of Akt Ser473 in the hippocampus might be involved in the antiepileptic effect of B. breve A1.
Collapse
Affiliation(s)
- Toshiaki Ishii
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Motohiro Kaya
- Center for Industry-University Collaboration, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| | - Yoshikage Muroi
- Department of Basic Veterinary Medicine, Obihiro University of Agriculture and Veterinary Medicine, Obihiro 080-8555, Hokkaido, Japan
| |
Collapse
|
7
|
Atwani R, Nagare RP, Rogers A, Prasad M, Lazar V, Sandusky G, Tong Y, Pin F, Condello S. Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer. J Exp Clin Cancer Res 2024; 43:156. [PMID: 38822429 PMCID: PMC11143768 DOI: 10.1186/s13046-024-03083-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024] Open
Abstract
BACKGROUND Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. METHODS TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. RESULTS In response to increased fibronectin secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and correlated with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. CONCLUSIONS This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may lead to new therapeutic approaches to eradicate OCSCs and improve patient outcomes.
Collapse
Affiliation(s)
- Rula Atwani
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Rohit Pravin Nagare
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Amber Rogers
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mayuri Prasad
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - Virginie Lazar
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
| | - George Sandusky
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Yan Tong
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Fabrizio Pin
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, 46202, USA.
- Department of Pharmacology & Toxicology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
| |
Collapse
|
8
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
9
|
Atwani R, Rogers A, Nagare R, Prasad M, Lazar V, Sandusky G, Pin F, Condello S. Integrin-linked kinase-frizzled 7 interaction maintains cancer stem cells to drive platinum resistance in ovarian cancer. RESEARCH SQUARE 2024:rs.3.rs-4086737. [PMID: 38559125 PMCID: PMC10980163 DOI: 10.21203/rs.3.rs-4086737/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Platinum-based chemotherapy regimens are a mainstay in the management of ovarian cancer (OC), but emergence of chemoresistance poses a significant clinical challenge. The persistence of ovarian cancer stem cells (OCSCs) at the end of primary treatment contributes to disease recurrence. Here, we hypothesized that the extracellular matrix protects CSCs during chemotherapy and supports their tumorigenic functions by activating integrin-linked kinase (ILK), a key enzyme in drug resistance. Methods TCGA datasets and OC models were investigated using an integrated proteomic and gene expression analysis and examined ILK for correlations with chemoresistance pathways and clinical outcomes. Canonical Wnt pathway components, pro-survival signaling, and stemness were examined using OC models. To investigate the role of ILK in the OCSC-phenotype, a novel pharmacological inhibitor of ILK in combination with carboplatin was utilized in vitro and in vivo OC models. Results In response to increased fibronectin (FN) secretion and integrin β1 clustering, aberrant ILK activation supported the OCSC phenotype, contributing to OC spheroid proliferation and reduced response to platinum treatment. Complexes formed by ILK with the Wnt receptor frizzled 7 (Fzd7) were detected in tumors and showed a strong correlation with metastatic progression. Moreover, TCGA datasets confirmed that combined expression of ILK and Fzd7 in high grade serous ovarian tumors is correlated with reduced response to chemotherapy and poor patient outcomes. Mechanistically, interaction of ILK with Fzd7 increased the response to Wnt ligands, thereby amplifying the stemness-associated Wnt/β-catenin signaling. Notably, preclinical studies showed that the novel ILK inhibitor compound 22 (cpd-22) alone disrupted ILK interaction with Fzd7 and CSC proliferation as spheroids. Furthermore, when combined with carboplatin, this disruption led to sustained AKT inhibition, apoptotic damage in OCSCs and reduced tumorigenicity in mice. Conclusions This "outside-in" signaling mechanism is potentially actionable, and combined targeting of ILK-Fzd7 may represent a new therapeutic strategy to eradicate OCSCs and improve patient outcomes.
Collapse
|
10
|
Shangguan H, Huang X, Lin J, Chen R. Knockdown of Kmt2d leads to growth impairment by activating the Akt/β-catenin signaling pathway. G3 (BETHESDA, MD.) 2024; 14:jkad298. [PMID: 38263533 PMCID: PMC10917512 DOI: 10.1093/g3journal/jkad298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024]
Abstract
The KMT2D variant-caused Kabuki syndrome (KS) is characterized by short stature as a prominent clinical characteristic. The initiation and progression of body growth are fundamentally influenced by chondrocyte proliferation. Uncertainty persists regarding the possibility that KMT2D deficiency affects growth by impairing chondrocyte proliferation. In this study, we used the CRISPR/Cas13d technique to knockdown kmt2d in zebrafish embryos and lentivirus to create a stable Kmt2d gene knockdown cell line in chondrocytes (ATDC5 cells). We also used CCK8 and flow cytometric studies, respectively, to determine proliferation and cell cycle state. The relative concentrations of phosphorylated Akt (ser473), phosphorylated β-catenin (ser552), and cyclin D1 proteins in chondrocytes and zebrafish embryos were determined by using western blots. In addition, Akt inhibition was used to rescue the phenotypes caused by kmt2d deficiency in chondrocytes, as well as a zebrafish model that was generated. The results showed that a knockdown of kmt2d significantly decreased body length and resulted in aberrant cartilage development in zebrafish embryos. Furthermore, the knockdown of Kmt2d in ATDC5 cells markedly increased proliferation and accelerated the G1/S transition. In addition, the knockdown of Kmt2d resulted in the activation of the Akt/β-catenin signaling pathway in ATDC5 cells. Finally, Akt inhibition could partly rescue body length and chondrocyte development in the zebrafish model. Our study demonstrated that KMT2D modulates bone growth conceivably via regulation of the Akt/β-catenin pathway.
Collapse
Affiliation(s)
- Huakun Shangguan
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Xiaozhen Huang
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Jinduan Lin
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| | - Ruimin Chen
- Department of Endocrinology, Genetics and Metabolism, Fuzhou Children’s Hospital of Fujian Medical University, Fuzhou 350000, China
| |
Collapse
|
11
|
Liu R, Shang W, Liu Y, Xie Y, Luan J, Zhang T, Ma Y, Wang Z, Sun Y, Song X, Han F. Inhibition of the ILK-AKT pathway by upregulation of PARVB contributes to the cochlear cell death in Fascin2 gene knockout mice. Cell Death Discov 2024; 10:89. [PMID: 38374196 PMCID: PMC10876960 DOI: 10.1038/s41420-024-01851-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/21/2024] Open
Abstract
The Fscn2 (Fascin2) gene encodes an actin cross-linking protein that is involved in the formation of hair cell stereocilia and retina structure. Mutations in Fscn2 gene have been linked to hearing impairment and retinal degeneration in humans and mice. To understand the function of the Fscn2 gene, we generated the Fscn2 knockout mice, which showed progressive loss of hearing and hair cells. Our goal of the present study was to investigate the mechanism underlying cochlear cell death in the Fscn2 knockout mice. Microarray analysis revealed upregulation of expression of PARVB, a local adhesion protein, in the inner ears of Fscn2 knockout mice at 8 weeks of age. Further studies showed increased levels of PARVB together with cleaved-Caspase9 and decreased levels of ILK, p-ILK, p-AKT, and Bcl-2 in the inner ears of Fscn2 knockout mice of the same age. Knockdown of Fscn2 in HEI-OCI cells led to decreased cell proliferation ability and migration rate, along with increased levels of PARVB and decreased levels of ILK, p-ILK, p-AKT, Bcl-2 and activated Rac1 and Cdc42. Overexpression of Fscn2 or inhibition of Parvb expression in HEI-OC1 cells promoted cell proliferation and migration, with increased levels of ILK, p-ILK, p-AKT, and Bcl-2. Finally, FSCN2 binds with PPAR-γ to reduce its nuclear translocation in HEI-OC1 cells, and inhibition of PPAR-γ by GW9662 decreased the level of PARVB and increased the levels of p-AKT, p-ILK, and Bcl-2. Our results suggest that FSCN2 negatively regulates PARVB expression by inhibiting the entry of PPAR-γ into the cell nucleus, resulting in inhibition of ILK-AKT related pathways and of cochlear cell survival in Fscn2 knockout mice. Our findings provide new insights and ideas for the prevention and treatment of genetic hearing loss.
Collapse
Affiliation(s)
- Rongrong Liu
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China
| | - Wenjing Shang
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Yi Xie
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Jun Luan
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Ting Zhang
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Ying Ma
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China
| | - Zengxian Wang
- Institute of Neurobiology, School of Medicine, Xi'an Siyuan University, 28 Shui An Road, Xi'an, 710038, Shaanxi, PR China
| | - Yan Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China.
| | - Xicheng Song
- Department of Otorhinolaryngology-Head and Neck Surgery, Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, PR China.
| | - Fengchan Han
- Department of Biochemistry and Molecular Biology, and Key Laboratory for Genetic Hearing Disorders in Shandong, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, Shandong, PR China.
- Institute of Neurobiology, School of Medicine, Xi'an Siyuan University, 28 Shui An Road, Xi'an, 710038, Shaanxi, PR China.
| |
Collapse
|
12
|
Blitsman Y, Hollander E, Benafsha C, Yegodayev KM, Hadad U, Goldbart R, Traitel T, Rudich A, Elkabets M, Kost J. The Potential of PIP3 in Enhancing Wound Healing. Int J Mol Sci 2024; 25:1780. [PMID: 38339058 PMCID: PMC10855400 DOI: 10.3390/ijms25031780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
Given the role of phosphatidylinositol 3,4,5-trisphosphate (PIP3) in modulating cellular processes such as proliferation, survival, and migration, we hypothesized its potential as a novel therapeutic agent for wound closure enhancement. In this study, PIP3 was examined in its free form or as a complex with cationic starch (Q-starch) as a carrier. The intracellular bioactivity and localization of free PIP3 and the Q-starch/PIP3 complexes were examined. Our results present the capability of Q-starch to form complexes with PIP3, facilitate its cellular membrane internalization, and activate intracellular paths leading to enhanced wound healing. Both free PIP3 and Q-starch/PIP3 complexes enhanced monolayer gap closure in scratch assays and induced amplified collagen production within HaCAT and BJ fibroblast cells. Western blot presented enhanced AKT activation by free or complexed PIP3 in BJ fibroblasts in which endogenous PIP3 production was pharmacologically inhibited. Furthermore, both free PIP3 and Q-starch/PIP3 complexes expedited wound closure in mice, after single or daily dermal injections into the wound margins. Free PIP3 and the Q-starch/PIP3 complexes inherently activated the AKT signaling pathway, which is responsible for crucial wound healing processes such as migration; this was also observed in wound assays in mice. PIP3 was identified as a promising molecule for enhancing wound healing, and its ability to circumvent PI3K inhibition suggests possible implications for chronic wound healing.
Collapse
Affiliation(s)
- Yossi Blitsman
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Etili Hollander
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Chen Benafsha
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Ksenia M. Yegodayev
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.M.Y.); (M.E.)
| | - Uzi Hadad
- The Ilse Katz Institute for Nanoscale Science and Technology, Marcus Campus, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Riki Goldbart
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Tamar Traitel
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| | - Assaf Rudich
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel;
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (K.M.Y.); (M.E.)
| | - Joseph Kost
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (Y.B.); (C.B.); (R.G.); (T.T.)
| |
Collapse
|
13
|
Zafar S, Fatima SI, Schmitz M, Zerr I. Current Technologies Unraveling the Significance of Post-Translational Modifications (PTMs) as Crucial Players in Neurodegeneration. Biomolecules 2024; 14:118. [PMID: 38254718 PMCID: PMC10813409 DOI: 10.3390/biom14010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Neurodegenerative disorders, such as Parkinson's disease, Alzheimer's disease, and Huntington's disease, are identified and characterized by the progressive loss of neurons and neuronal dysfunction, resulting in cognitive and motor impairment. Recent research has shown the importance of PTMs, such as phosphorylation, acetylation, methylation, ubiquitination, sumoylation, nitration, truncation, O-GlcNAcylation, and hydroxylation, in the progression of neurodegenerative disorders. PTMs can alter protein structure and function, affecting protein stability, localization, interactions, and enzymatic activity. Aberrant PTMs can lead to protein misfolding and aggregation, impaired degradation, and clearance, and ultimately, to neuronal dysfunction and death. The main objective of this review is to provide an overview of the PTMs involved in neurodegeneration, their underlying mechanisms, methods to isolate PTMs, and the potential therapeutic targets for these disorders. The PTMs discussed in this article include tau phosphorylation, α-synuclein and Huntingtin ubiquitination, histone acetylation and methylation, and RNA modifications. Understanding the role of PTMs in neurodegenerative diseases may provide new therapeutic strategies for these devastating disorders.
Collapse
Affiliation(s)
- Saima Zafar
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
- Biomedical Engineering and Sciences Department, School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST), Bolan Road, H-12, Islamabad 44000, Pakistan
| | - Shehzadi Irum Fatima
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Matthias Schmitz
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| | - Inga Zerr
- Department of Neurology, Clinical Dementia Center and DZNE, University Medical Center Goettingen (UMG), Georg-August University, Robert-Koch-Str. 40, 37075 Goettingen, Germany
| |
Collapse
|
14
|
Wang X, Zhang D, Zhu Y, Li D, Shen L, Wang Q, Gao Y, Li X, Yu M. Protein lysine acetylation played an important role in NH 3-induced AEC2 damage and pulmonary fibrosis in piglets. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168303. [PMID: 37939958 DOI: 10.1016/j.scitotenv.2023.168303] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 10/10/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Gaseous ammonia (NH3), as a main air pollutant in pig farms and surrounding areas, directly affects animal and human health. The lung, as an important organ for gas exchange in the respiratory system, is damaged after NH3 exposure, but the underlying mechanism needs to be further explored. In this study, seven weeks old piglets were exposed to 50 ppm NH3 for 30 days, and displayed pulmonary fibrosis. Then, the toxicological mechanism of NH3-induced pulmonary fibrosis was explored from the aspects of whole genome wide protein expression and post-translational modification. Totally, 404 differentially expressed proteins (DEPs) and 136 differentially lysine acetylated proteins (DAPs) were identified. The expression or lysine acetylation levels of proteins involved in mitochondrial energy metabolism including fatty acid oxidation (CPT1A, ACADVL, ACADS, HADHA, and HADHB), TCA cycle (IDH2 and MDH2), and oxidative phosphorylation (NDUFB7, NDUFV1, ATP5PB, ATP5F1A, COX5A, and COX5B) were significantly changed after NH3 exposure, which suggested that NH3 disrupted mitochondrial energy metabolism in the lung of piglets. Next, we found that type 2 alveolar epithelial cells (AEC2) damaged after NH3 exposure in vivo and in vitro. Integrin-linked kinase (ILK) was enriched in focal adhesion pathway, and showed significantly up-regulated acetylation levels at K191 (FC = 2.99) and K209 sites (FC = 1.52) after NH3 exposure. We illustrated that ILK-K191 hyper-acetylation inhibited AEC2 proliferation and induced AEC2 apoptosis by down-regulating pAKT-S473 in vitro. In conclusion, for the first time, our study revealed that protein acetylation played an important role in the process of NH3-induced pulmonary fibrosis in piglets. Our findings provided valuable insights into toxicological harm of NH3 to human health.
Collapse
Affiliation(s)
- Xiaotong Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Zhang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaxue Zhu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Daojie Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Long Shen
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiankun Wang
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| | - Yun Gao
- College of Engineering, the Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoping Li
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Smart Animal Farming Technology, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mei Yu
- College of Animal Science and Technology, Center for Advanced Science in Animal Breeding and Health Breeding, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
15
|
Chen X, Chen Y, Li C, Li J, Zhang S, Liang C, Deng Q, Guo Z, Guo C, Yan H. Glutaredoxin 2 protects lens epithelial cells from epithelial-mesenchymal transition by suppressing mitochondrial oxidative stress-related upregulation of integrin-linked kinase. Exp Eye Res 2023; 234:109609. [PMID: 37541331 DOI: 10.1016/j.exer.2023.109609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/09/2023] [Accepted: 07/30/2023] [Indexed: 08/06/2023]
Abstract
Glutaredoxin 2 (Grx2), a mitochondrial glutathione-dependent oxidoreductase, is crucial for maintaining redox homeostasis and cellular functions in the lens. The oxidative stress-induced epithelial-mesenchymal transition (EMT) of lens epithelial cells (LECs) is related to posterior capsule opacification. In this study, we investigated the effects of Grx2 on oxidative stress-induced EMT in LECs during posterior capsule opacification. We found that Grx2 expression was substantially decreased during the EMT of LECs and in a mouse model of cataract surgery. Deletion of Grx2 aggravated the generation of reactive oxygen species, including those that are mitochondria-derived, and promoted the proliferation and EMT of the LECs. This was reversed by Grx2 overexpression. In vivo, proteomic liquid chromatography-mass spectrometry analysis showed that integrin-linked kinase (ILK) was significantly upregulated in the lens posterior capsule of a Grx2 knockout (KO) mouse model. Compared with that of the wild-type group, the expression of ILK and EMT markers was increased in the Grx2 KO group which was reversed in the Grx2 knock-in group. Inhibition of ILK partially blocked Grx2 knockdown-induced EMT and prevented the increased phosphorylation of Akt and GSK-3β and the nuclear translocation of β-catenin in the Grx2 KO group. Finally, inhibition of the Wnt/β-catenin pathway partially blocked the Grx2 knockdown-induced EMT. In conclusion, we demonstrated that Grx2 protects LECs from oxidative stress-related EMT by regulating the ILK/Akt/GSK-3β axis.
Collapse
Affiliation(s)
- Xi Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China
| | - Ying Chen
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China
| | - Chenshuang Li
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Jiankui Li
- Department of Gynecology & Obstetrics, NO. 960 Hospital of PLA, Jinan, 250000, Shandong, China
| | - Siqi Zhang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Chen Liang
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China
| | - Qi Deng
- Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China
| | - Zaoxia Guo
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Hong Yan
- Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, Xi'an, 710004, Shaanxi, China; Xi'an Key Laboratory of Stem Cell and Regenerative Medicine, Institute of Medical Research, Northwestern Polytechnical University, Xi'an, 710068, Shaanxi, China; Department of Ophthalmology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, Shaanxi, China.
| |
Collapse
|
16
|
Musale V, Wasserman DH, Kang L. Extracellular matrix remodelling in obesity and metabolic disorders. LIFE METABOLISM 2023; 2:load021. [PMID: 37383542 PMCID: PMC10299575 DOI: 10.1093/lifemeta/load021] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 05/07/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Obesity causes extracellular matrix (ECM) remodelling which can develop into serious pathology and fibrosis, having metabolic effects in insulin-sensitive tissues. The ECM components may be increased in response to overnutrition. This review will focus on specific obesity-associated molecular and pathophysiological mechanisms of ECM remodelling and the impact of specific interactions on tissue metabolism. In obesity, complex network of signalling molecules such as cytokines and growth factors have been implicated in fibrosis. Increased ECM deposition contributes to the pathogenesis of insulin resistance at least in part through activation of cell surface integrin receptors and CD44 signalling cascades. These cell surface receptors transmit signals to the cell adhesome which orchestrates an intracellular response that adapts to the extracellular environment. Matrix proteins, glycoproteins, and polysaccharides interact through ligand-specific cell surface receptors that interact with the cytosolic adhesion proteins to elicit specific actions. Cell adhesion proteins may have catalytic activity or serve as scaffolds. The vast number of cell surface receptors and the complexity of the cell adhesome have made study of their roles challenging in health and disease. Further complicating the role of ECM-cell receptor interactions is the variation between cell types. This review will focus on recent insights gained from studies of two highly conserved, ubiquitously axes and how they contribute to insulin resistance and metabolic dysfunction in obesity. These are the collagen-integrin receptor-IPP (ILK-PINCH-Parvin) axis and the hyaluronan-CD44 interaction. We speculate that targeting ECM components or their receptor-mediated cell signalling may provide novel insights into the treatment of obesity-associated cardiometabolic complications.
Collapse
Affiliation(s)
- Vishal Musale
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - David H Wasserman
- Department of Molecular Physiology and Biophysics, Mouse Metabolic Phenotyping Center, Vanderbilt University, Nashville, TN 37235, United States
| | - Li Kang
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 9SY, United Kingdom
| |
Collapse
|
17
|
Kao YS, Wang LC, Chang PC, Lin HM, Lin YS, Yu CY, Chen CC, Lin CF, Yeh TM, Wan SW, Wang JR, Ho TS, Chu CC, Zhang BC, Chang CP. Negative regulation of type I interferon signaling by integrin-linked kinase permits dengue virus replication. PLoS Pathog 2023; 19:e1011241. [PMID: 36930690 PMCID: PMC10057834 DOI: 10.1371/journal.ppat.1011241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/29/2023] [Accepted: 02/25/2023] [Indexed: 03/18/2023] Open
Abstract
Dengue virus (DENV) infection can induce life-threatening dengue hemorrhagic fever/dengue shock syndrome in infected patients. DENV is a threat to global health due to its growing numbers and incidence of infection in the last 50 years. During infection, DENV expresses ten structural and nonstructural proteins modulating cell responses to benefit viral replication. However, the lack of knowledge regarding the cellular proteins and their functions in enhancing DENV pathogenesis impedes the development of antiviral drugs and therapies against fatal DENV infection. Here, we identified that integrin-linked kinase (ILK) is a novel enhancing factor for DENV infection by suppressing type I interferon (IFN) responses. Mechanistically, ILK binds DENV NS1 and NS3, activates Akt and Erk, and induces NF-κB-driven suppressor of cytokine signaling 3 (SOCS3) expression. Elevated SOCS3 in DENV-infected cells inhibits phosphorylation of STAT1/2 and expression of interferon-stimulated genes (ISGs). Inhibiting ILK, Akt, or Erk activation abrogates SOCS3 expression. In DENV-infected mice, the treatment of an ILK inhibitor significantly reduces viral loads in the brains, disease severity, and mortality rate. Collectively, our results show that ILK is a potential therapeutic target against DENV infection.
Collapse
Affiliation(s)
- Yi-Sheng Kao
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| | - Po-Chun Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Heng-Ming Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Yi Yu
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Tainan, Taiwan
| | - Chien-Chin Chen
- Department of Pathology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Cosmetic Science, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
| | - Chiou-Feng Lin
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Trai-Ming Yeh
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shu-Wen Wan
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Jen-Ren Wang
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzong-Shiann Ho
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chien-Chou Chu
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bo-Cheng Zhang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology & Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- The Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
- * E-mail:
| |
Collapse
|
18
|
Condello S, Prasad M, Atwani R, Matei D. Tissue transglutaminase activates integrin-linked kinase and β-catenin in ovarian cancer. J Biol Chem 2022; 298:102242. [PMID: 35810788 PMCID: PMC9358478 DOI: 10.1016/j.jbc.2022.102242] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 06/21/2022] [Accepted: 06/21/2022] [Indexed: 10/26/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecological cancer. OC cells have high proliferative capacity, are invasive, resist apoptosis, and tumors often display rearrangement of extracellular matrix (ECM) components, contributing to accelerated tumor progression. The multifunctional protein tissue transglutaminase (TG2) is known to be secreted in the tumor microenvironment (TME), where it interacts with fibronectin (FN) and the cell surface receptor β1 integrin. However, the mechanistic role of TG2 in cancer cell proliferation is unknown. Here, we demonstrate TG2 directly interacts with and facilitates the phosphorylation and activation of the integrin effector protein integrin-linked kinase (ILK) at Ser246. We show TG2 and p-Ser246-ILK form a complex that is detectable in patient-derived OC primary cells grown on FN-coated slides. In addition, we show co-expression of TGM2 and ILK correlates with poor clinical outcome. Mechanistically, we demonstrate TG2-mediated ILK activation causes phosphorylation of glycogen synthase kinase-3α/β (GSK-3α/β), allowing β-catenin nuclear translocation and transcriptional activity. Furthermore, inhibition of TG2 and ILK using small molecules, neutralizing antibodies, or shRNA-mediated knockdown block cell adhesion to the FN matrix, as well as the Wnt receptor response to the Wnt-3A ligand, and ultimately, cell adhesion, growth, and migration. In conclusion, we demonstrate TG2 directly interacts with and activates ILK in OC cells and tumors, and define a new mechanism which links ECM cues with β-catenin signaling in OC. These results suggest a central role of TG2/FN/integrin clusters in ECM rearrangement and indicate downstream effector ILK may represent a potential new therapeutic target in OC.
Collapse
Affiliation(s)
- Salvatore Condello
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202.
| | - Mayuri Prasad
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Rula Atwani
- Department of Obstetrics and Gynecology, Indiana University School of Medicine, Indianapolis, IN 46202; Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Daniela Matei
- Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611; Robert H Lurie Comprehensive Cancer Center, Chicago, IL, USA; Jesse Brown VA Medical Center, Chicago, IL, USA
| |
Collapse
|
19
|
Tsai MS, Chen SH, Chang CP, Hsiao YL, Wang LC. Integrin-Linked Kinase Reduces H3K9 Trimethylation to Enhance Herpes Simplex Virus 1 Replication. Front Cell Infect Microbiol 2022; 12:814307. [PMID: 35350437 PMCID: PMC8957879 DOI: 10.3389/fcimb.2022.814307] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
Histone modifications control the lytic gene expression of herpes simplex virus 1 (HSV-1). The heterochromatin mark, trimethylation of histone H3 on lysine (K) 9 (H3K9me3), is detected on HSV-1 genomes at early phases of infection to repress viral gene transcription. However, the components and mechanisms involved in the process are mostly unknown. Integrin-linked kinase (ILK) is activated by PI3K to phosphorylate Akt and promote several RNA virus infections. Akt has been shown to enhance HSV-1 infection, suggesting a pro-viral role of ILK in HSV-1 infection that has not been addressed before. Here, we reveal that ILK enhances HSV-1 replication in an Akt-independent manner. ILK reduces the accumulation of H3K9me3 on viral promoters and replication compartments. Notably, ILK reduces H3K9me3 in a manner independent of ICP0. Instead, we show an increased binding of H3K9 methyltransferase SUV39H1 and corepressor TRIM28 on viral promoters in ILK knockdown cells. Knocking down SUV39H1 or TRIM28 increases HSV-1 lytic gene transcription in ILK knockdown cells. These results show that ILK antagonizes SVU39H1- and TRIM28-mediated repression on lytic gene transcription. We further demonstrate that ILK knockdown reduces TRIM28 phosphorylation on serine 473 and 824 in HSV-1-infected cells, suggesting that ILK facilitates TRIM28 phosphorylation to abrogate its inhibition on lytic gene transcription. OSU-T315, an ILK inhibitor, suppresses HSV-1 replication in cells and mice. In conclusion, we demonstrate that ILK decreases H3K9me3 on HSV-1 DNA by reducing SUV39H1 and TRIM28 binding. Moreover, our results suggest that targeting ILK could be a broad-spectrum antiviral strategy for DNA and RNA virus infections, especially for DNA viruses controlled by histone modifications.
Collapse
Affiliation(s)
- Meng-Shan Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Shun-Hua Chen
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Chih-Peng Chang
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, National Cheng Kung University, Tainan, Taiwan
| | - Yi-Ling Hsiao
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Li-Chiu Wang
- School of Medicine, I-Shou University, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Bang ML, Bogomolovas J, Chen J. Understanding the molecular basis of cardiomyopathy. Am J Physiol Heart Circ Physiol 2022; 322:H181-H233. [PMID: 34797172 PMCID: PMC8759964 DOI: 10.1152/ajpheart.00562.2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/16/2021] [Indexed: 02/03/2023]
Abstract
Inherited cardiomyopathies are a major cause of mortality and morbidity worldwide and can be caused by mutations in a wide range of proteins located in different cellular compartments. The present review is based on Dr. Ju Chen's 2021 Robert M. Berne Distinguished Lectureship of the American Physiological Society Cardiovascular Section, in which he provided an overview of the current knowledge on the cardiomyopathy-associated proteins that have been studied in his laboratory. The review provides a general summary of the proteins in different compartments of cardiomyocytes associated with cardiomyopathies, with specific focus on the proteins that have been studied in Dr. Chen's laboratory.
Collapse
Affiliation(s)
- Marie-Louise Bang
- Institute of Genetic and Biomedical Research (IRGB), National Research Council (CNR), Milan Unit, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Julius Bogomolovas
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| | - Ju Chen
- Division of Cardiovascular Medicine, Department of Medicine Cardiology, University of California, San Diego, La Jolla, California
| |
Collapse
|
21
|
Górska A, Mazur AJ. Integrin-linked kinase (ILK): the known vs. the unknown and perspectives. Cell Mol Life Sci 2022; 79:100. [PMID: 35089438 PMCID: PMC8799556 DOI: 10.1007/s00018-021-04104-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/29/2021] [Accepted: 12/17/2021] [Indexed: 02/08/2023]
Abstract
Integrin-linked kinase (ILK) is a multifunctional molecular actor in cell-matrix interactions, cell adhesion, and anchorage-dependent cell growth. It combines functions of a signal transductor and a scaffold protein through its interaction with integrins, then facilitating further protein recruitment within the ILK-PINCH-Parvin complex. ILK is involved in crucial cellular processes including proliferation, survival, differentiation, migration, invasion, and angiogenesis, which reflects on systemic changes in the kidney, heart, muscle, skin, and vascular system, also during the embryonal development. Dysfunction of ILK underlies the pathogenesis of various diseases, including the pro-oncogenic activity in tumorigenesis. ILK localizes mostly to the cell membrane and remains an important component of focal adhesion. We do know much about ILK but a lot still remains either uncovered or unclear. Although it was initially classified as a serine/threonine-protein kinase, its catalytical activity is now questioned due to structural and functional issues, leaving the exact molecular mechanism of signal transduction by ILK unsolved. While it is known that the three isoforms of ILK vary in length, the presence of crucial domains, and modification sites, most of the research tends to focus on the main isoform of this protein while the issue of functional differences of ILK2 and ILK3 still awaits clarification. The activity of ILK is regulated on the transcriptional, protein, and post-transcriptional levels. The crucial role of phosphorylation and ubiquitylation has been investigated, but the functions of the vast majority of modifications are still unknown. In the light of all those open issues, here we present an extensive literature survey covering a wide spectrum of latest findings as well as a past-to-present view on controversies regarding ILK, finishing with pointing out some open questions to be resolved by further research.
Collapse
Affiliation(s)
- Agata Górska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| | - Antonina Joanna Mazur
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, ul. Joliot-Curie 14a, 50-383, Wrocław, Poland.
| |
Collapse
|
22
|
Mathison AJ, Kerketta R, de Assuncao TM, Leverence E, Zeighami A, Urrutia G, Stodola TJ, di Magliano MP, Iovanna JL, Zimmermann MT, Lomberk G, Urrutia R. Kras G12D induces changes in chromatin territories that differentially impact early nuclear reprogramming in pancreatic cells. Genome Biol 2021; 22:289. [PMID: 34649604 PMCID: PMC8518179 DOI: 10.1186/s13059-021-02498-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma initiation is most frequently caused by Kras mutations. RESULTS Here, we apply biological, biochemical, and network biology methods to validate GEMM-derived cell models using inducible KrasG12D expression. We describe the time-dependent, chromatin remodeling program that impacts function during early oncogenic signaling. We find that the KrasG12D-induced transcriptional response is dominated by downregulated expression concordant with layers of epigenetic events. More open chromatin characterizes the ATAC-seq profile associated with a smaller group of upregulated genes and epigenetic marks. RRBS demonstrates that promoter hypermethylation does not account for the silencing of the extensive gene promoter network. Moreover, ChIP-Seq reveals that heterochromatin reorganization plays little role in this early transcriptional program. Notably, both gene activation and silencing primarily depend on the marking of genes with a combination of H3K27ac, H3K4me3, and H3K36me3. Indeed, integrated modeling of all these datasets shows that KrasG12D regulates its transcriptional program primarily through unique super-enhancers and enhancers, and marking specific gene promoters and bodies. We also report chromatin remodeling across genomic areas that, although not contributing directly to cis-gene transcription, are likely important for KrasG12D functions. CONCLUSIONS In summary, we report a comprehensive, time-dependent, and coordinated early epigenomic program for KrasG12D in pancreatic cells, which is mechanistically relevant to understanding chromatin remodeling events underlying transcriptional outcomes needed for the function of this oncogene.
Collapse
Affiliation(s)
- Angela J Mathison
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Romica Kerketta
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Elise Leverence
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Atefeh Zeighami
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
| | - Guillermo Urrutia
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Timothy J Stodola
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Michael T Zimmermann
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA
- Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gwen Lomberk
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Raul Urrutia
- Genomic Science and Precision Medicine Center (GSPMC), Medical College of Wisconsin, Milwaukee, WI, USA.
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
23
|
Zhou P, Yang X, Yang D, Jiang X, Wang WE, Yue R, Fang Y. Integrin-Linked Kinase Activation Prevents Ventricular Arrhythmias Induced by Ischemia/Reperfusion Via Inhibition of Connexin 43 Remodeling. J Cardiovasc Transl Res 2021; 14:610-618. [PMID: 32144627 PMCID: PMC8397684 DOI: 10.1007/s12265-020-09979-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/24/2020] [Indexed: 12/16/2022]
Abstract
Ischemia reperfusion (I/R)-induced arrhythmia is a serious complication in patients with cardiac infarction. Remodeling of connexin (Cx) 43, manifested as phosphorylation, contributes significantly to arrhythmogenesis. Integrin-linked kinase (ILK) attenuated ventricular remodeling and improved cardiac function in rats after myocardial infarction. We hypothesized that ILK, through Cx43 phosphorylation, would be protective against I/R-induced ventricular arrhythmias. Our study showed that I/R-induced ventricular arrhythmias were attenuated by an ILK agonist LPTP and worsened by the ILK inhibitor Cpd22. I/R disrupted Cx43 distribution, but it was partially normalized in the presence of LPTP. Compared with I/R, the phosphorylation of Akt was increased significantly after pretreatment with LPTP. The increase in phosphorylated Akt was physiologically significant because, in the presence of the Akt inhibitor MK2206, the protective effects of LPTP were blocked. This indicated that ILK activation prevented I/R-induced-ventricular arrhythmia, an effect potentially related to inhibition of Cx43 remodeling via Akt activation.
Collapse
Affiliation(s)
- Ping Zhou
- Department of Cardiology, The First People's Hospital of Chongqing Liang Jiang New Area, Chongqing, 401121, China
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China
| | - Xiaoli Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China
| | - Dezhong Yang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China
| | - Xin Jiang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China
| | - Wei Eric Wang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China
| | - Rongchuan Yue
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China
| | - Yuqiang Fang
- Department of Cardiology, Chongqing Institute of Cardiology, Daping Hospital, Army Medical University, 10 Changjiang Branch Road,Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
24
|
Mrówczyńska E, Mazur AJ. Integrin-Linked Kinase (ILK) Plays an Important Role in the Laminin-Dependent Development of Dorsal Root Ganglia during Chicken Embryogenesis. Cells 2021; 10:cells10071666. [PMID: 34359835 PMCID: PMC8304069 DOI: 10.3390/cells10071666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/25/2022] Open
Abstract
Integrin-linked kinase (ILK) is mainly localized in focal adhesions where it interacts and modulates the downstream signaling of integrins affecting cell migration, adhesion, and survival. The interaction of dorsal root ganglia (DRG) cells, being part of the peripheral nervous system (PNS), with the extracellular matrix (ECM) via integrins is crucial for proper PNS development. A few studies have focused on ILK’s role in PNS development, but none of these have focused on chicken. Therefore, we decided to investigate ILK’s role in the development of Gallus gallus domesticus’s DRG. First, using RT-PCR, Western blotting, and in situ hybridization, we show that ILK is expressed in DRG. Next, by immunocytochemistry, we show ILK’s localization both intracellularly and on the cell membrane of DRG neurons and Schwann cell precursors (SCPs). Finally, we describe ILK’s involvement in multiple aspects of DRG development by performing functional experiments in vitro. IgG-mediated interruption of ILK’s action improved DRG neurite outgrowth, modulated their directionality, stimulated SCPs migration, and impacted growth cone morphology in the presence of laminin-1 or laminin-1 mimicking peptide IKVAV. Taken together, our results show that ILK is important for chicken PNS development, probably via its exposure to the ECM.
Collapse
Affiliation(s)
- Ewa Mrówczyńska
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| | - Antonina Joanna Mazur
- Correspondence: (E.M.); (A.J.M.); Tel.: +48-71-375-7972 (E.M.); +48-71-375-6206 (A.J.M.)
| |
Collapse
|
25
|
Castro-Martinez F, Candelario-Martinez A, Encarnacion-Garcia MR, Piedra-Quintero Z, Bonilla-Moreno R, Betanzos A, Perez-Orozco R, Hernandez-Cueto MA, Muñoz-Medina JE, Patiño-Lopez G, Schnoor M, Villegas-Sepulveda N, Nava P. Rictor/Mammalian Target of Rapamycin Complex 2 Signaling Protects Colonocytes from Apoptosis and Prevents Epithelial Barrier Breakdown. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:1537-1549. [PMID: 34139193 DOI: 10.1016/j.ajpath.2021.06.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
Epithelial barrier impairment is a hallmark of several pathologic processes in the gut, including inflammatory bowel diseases. Several intracellular signals prevent apoptosis in intestinal epithelial cells. Herein, we show that in colonocytes, rictor/mammalian target of rapamycin complex 2 (mTORC2) signaling is a prosurvival stimulus. Mechanistically, mTORC2 activates Akt, which, in turn, inhibits apoptosis by phosphorylating B-cell lymphoma 2 (BCL2) associated agonist of cell death (Bad) and preventing caspase-3 activation. Nevertheless, during inflammation, rictor/mTORC2 signaling declines and Akt activity is reduced. Consequently, active caspase-3 increases in surface colonocytes undergoing apoptosis/anoikis and causes epithelial barrier breakdown. Likewise, Rictor ablation in intestinal epithelial cells interrupts mTORC2/Akt signaling and increases apoptosis/anoikis of surface colonocytes without affecting the crypt architecture. The increase in epithelial permeability induced by Rictor ablation produces a mild inflammatory response in the colonic mucosa, but minimally affects the development/establishment of colitis. The data identify a previously unknown mechanism by which rictor/mTORC2 signaling regulates apoptosis/anoikis in intestinal epithelial cells during colitis and clarify its role in the maintenance of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Felipe Castro-Martinez
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Aurora Candelario-Martinez
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Maria R Encarnacion-Garcia
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Zayda Piedra-Quintero
- Department of Molecular Biomedicine, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Raul Bonilla-Moreno
- Department of Molecular Biomedicine, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Abigail Betanzos
- Department of Infectomics and Molecular Pathogenesis, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Rocio Perez-Orozco
- Medicine Program for the Teaching and Development of Scientific Research in Iztacala (MEDICI Program), Faculty of Advanced Studies Iztacala, National Autonomous University of Mexico, Mexico-City, Mexico
| | - Maria A Hernandez-Cueto
- Central Laboratory of Epidemiology, Mexican. Institute of Social Security, Mexico-City, Mexico
| | - Jose E Muñoz-Medina
- Central Laboratory of Epidemiology, Mexican. Institute of Social Security, Mexico-City, Mexico
| | - Genaro Patiño-Lopez
- Laboratory of Research in Immunology and Proteomics, Federico Gómez Children's Hospital of Mexico, Mexico-City, Mexico
| | - Michael Schnoor
- Department of Molecular Biomedicine, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico
| | - Nicolas Villegas-Sepulveda
- Department of Molecular Biomedicine, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico.
| | - Porfirio Nava
- Departments of Physiology, Biophysics and Neurosciences, Center for Research and Advanced Studies- National Polytechnic Institute (CINVESTAV-IPN), Mexico-City, Mexico.
| |
Collapse
|
26
|
Abstract
Integrin linked kinase (ILK) is a vital signaling protein ubiquitously expressed throughout the body. It binds to intracellular integrins to help promote signaling related to cell adhesion, apoptosis, proliferation, migration, and a plethora of other common cellular functions. In this review, ILKs role in the liver is detailed. Studies have shown ILK to be a major participant in hepatic ECM organization, liver regeneration, insulin resistance, and hepatocellular carcinoma.
Collapse
Affiliation(s)
- Nicole Martucci
- Department of Pathology, University of Pittsburgh School of MedicinePittsburgh, PAUSA
| | | | - Wendy M Mars
- Department of Pathology, University of Pittsburgh School of MedicinePittsburgh, PAUSA
| |
Collapse
|
27
|
Wu Y, Huang Y, Zhang W, Gunst SJ. The proprotein convertase furin inhibits IL-13-induced inflammation in airway smooth muscle by regulating integrin-associated signaling complexes. Am J Physiol Lung Cell Mol Physiol 2021; 321:L102-L115. [PMID: 34009050 DOI: 10.1152/ajplung.00618.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Furin is a proprotein convertase that regulates the activation and the inactivation of multiple proteins including matrix metalloproteinases, integrins, and cytokines. It is a serine endoprotease that localizes to the plasma membrane and can be secreted into the extracellular space. The role of furin in regulating inflammation in isolated canine airway smooth muscle tissues was investigated. The treatment of airway tissues with recombinant furin (rFurin) inhibited the activation of Akt and eotaxin secretion induced by IL-13, and it prevented the IL-13-induced suppression of smooth muscle myosin heavy chain expression. rFurin promoted a differentiated phenotype by activating β1-integrin proteins and stimulating the activation of the adhesome proteins vinculin and paxillin by talin. Activated paxillin induced the binding of Akt to β-parvin IPP [integrin-linked kinase (ILK), PINCH, parvin] complexes, which inhibits Akt activation. Treatment of tissues with a furin inhibitor or the depletion of endogenous furin using shRNA resulted in Akt activation and inflammatory responses similar to those induced by IL-13. Furin inactivation or IL-13 caused talin cleavage and integrin inactivation, resulting in the inactivation of vinculin and paxillin. Paxillin inactivation resulted in the coupling of Akt to α-parvin IPP complexes, which catalyze Akt activation and an inflammatory response. The results demonstrate that furin inhibits inflammation in airway smooth muscle induced by IL-13 and that the anti-inflammatory effects of furin are mediated by activating integrin proteins and integrin-associated signaling complexes that regulate Akt-mediated pathways to the nucleus. Furin may have therapeutic potential for the treatment of inflammatory conditions of the lungs and airways.
Collapse
Affiliation(s)
- Yidi Wu
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Youliang Huang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Wenwu Zhang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
28
|
Varshney R, Ranjit R, Chiao YA, Kinter M, Ahn B. Myocardial Hypertrophy and Compensatory Increase in Systolic Function in a Mouse Model of Oxidative Stress. Int J Mol Sci 2021; 22:2039. [PMID: 33670798 PMCID: PMC7921997 DOI: 10.3390/ijms22042039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/28/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
Free radicals, or reactive oxygen species, have been implicated as one of the primary causes of myocardial pathologies elicited by chronic diseases and age. The imbalance between pro-oxidants and antioxidants, termed "oxidative stress", involves several pathological changes in mouse hearts, including hypertrophy and cardiac dysfunction. However, the molecular mechanisms and adaptations of the hearts in mice lacking cytoplasmic superoxide dismutase (Sod1KO) have not been investigated. We used echocardiography to characterize cardiac function and morphology in vivo. Protein expression and enzyme activity of Sod1KO were confirmed by targeted mass spectrometry and activity gel. The heart weights of the Sod1KO mice were significantly increased compared with their wildtype peers. The increase in heart weights was accompanied by concentric hypertrophy, posterior wall thickness of the left ventricles (LV), and reduced LV volume. Activated downstream pathways in Sod1KO hearts included serine-threonine kinase and ribosomal protein synthesis. Notably, the reduction in LV volume was compensated by enhanced systolic function, measured by increased ejection fraction and fractional shortening. A regulatory sarcomeric protein, troponin I, was hyper-phosphorylated in Sod1KO, while the vinculin protein was upregulated. In summary, mice lacking cytoplasmic superoxide dismutase were associated with an increase in heart weights and concentric hypertrophy, exhibiting a pathological adaptation of the hearts to oxidative stress.
Collapse
Affiliation(s)
- Rohan Varshney
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
- Harold Hamm Diabetes Center, University of Oklahoma Health Science Center, Oklahoma City, OK 73104, USA
| | - Rojina Ranjit
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| | - Ying Ann Chiao
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| | - Michael Kinter
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| | - Bumsoo Ahn
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73103, USA; (R.V.); (R.R.); (Y.A.C.); (M.K.)
| |
Collapse
|
29
|
Huang C, Shen Q, Song G, He S, Zhou L. Downregulation of PARVA promotes metastasis by modulating integrin-linked kinase activity and regulating MAPK/ERK and MLC2 signaling in prostate cancer. Transl Androl Urol 2021; 10:915-928. [PMID: 33718092 PMCID: PMC7947443 DOI: 10.21037/tau-21-108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Metastasis is the predominant cause of mortality in prostate cancer (PCa); however, the underlying mechanisms are largely uncharted. Here, we found that Parvin alpha (PARVA) is downregulated in PCa and its loss is associated with clinical metastasis. We further explored the mechanistic basis of this finding. Methods The mRNA expression of PARVA was identified by analysis of the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) data sets. Immunohistochemistry (IHC) analysis was performed to evaluate the PARVA expression pattern in 198 PCa tissues, and 36 metastatic lymph node tissues. The function and molecular mechanism by which PARVA affects PCa were investigated in vitro using knockdown and overexpression cell lines. The effect of PARVA in cell proliferation, migration, and invasion in PCa cells was detected by MTS assay and Transwell assay. Real-time polymerase chain reaction (PCR) and Western blot analysis were used to assess the gene expression in mRNA and protein level. Results The microarray data analysis indicated that PARVA was drastically downregulated in primary and metastatic PCa compared with normal and primary samples, respectively (all P<0.001). Multivariate Cox regression analysis suggested that downregulation of PARVA in PCa was an independent prognostic factor for poor biochemical recurrence (BCR)-free survival (P<0.01). IHC analysis confirmed that PARVA was frequently downregulated in metastatic and primary PCa tissues (All P<0.001). Furthermore, PARVA expression was found to be associated with Gleason score, pathological stage, extracapsular extension, and lymph node invasion (All P<0.05). Knockdown of PARVA triggered cell migration and invasion in vitro, whereas overexpression of PARVA reverted the invasive phenotypes. Mechanistic investigations identified that overexpression of PARVA repressed the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) phosphorylation via inhibiting the integrin-linked kinase (ILK) biological function. With knockdown of ILK, the downregulated MAPK/ERK phosphorylation and Myosin Light Chain 2 (MLC2) expression by PARVA overexpression were abolished, indicating that the PARVA effect on PCa is ILK/MAPK/ERK pathway dependent. Conclusions Our study revealed that loss of PARVA expression in PCa promotes metastasis by releasing the inhibition of ILK activity, followed by the activation of MAPK/ERK and MLC2 signaling.
Collapse
Affiliation(s)
- Cong Huang
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center of China, Beijing, China
| | - Qi Shen
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center of China, Beijing, China
| | - Gang Song
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center of China, Beijing, China
| | - Shiming He
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center of China, Beijing, China
| | - Liqun Zhou
- Department of Urology, Peking University First Hospital, Beijing, China.,Institute of Urology, Peking University, Beijing, China.,National Urological Cancer Center of China, Beijing, China
| |
Collapse
|
30
|
Adacan K, Obakan Yerlİkaya P. Epibrassinolide activates AKT to trigger autophagy with polyamine metabolism in SW480 and DLD-1 colon cancer cell lines. ACTA ACUST UNITED AC 2021; 44:417-426. [PMID: 33402868 PMCID: PMC7759188 DOI: 10.3906/biy-2005-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/18/2020] [Indexed: 11/29/2022]
Abstract
Epibrassinolide (EBR), a plant-derived polyhydroxylated derivative of 5α-cholestane, structurally shows similarities to animal steroid hormones. According to the present study, EBR treatment triggered a significant stress response via activating ER stress, autophagy, and apoptosis in cancer cells. EBR could also increase Akt phosphorylation in vitro. While the activation of Akt resulted in cellular metabolic activation in normal cells to proceed with cell survival, a rapid stress response was induced in cancer cells to reduce survival. Therefore, Akt as a mediator of cellular survival and death decision pathways is a crucial target in cancer cells. In this study, we determined that EBR induces stress responses through activating Akt, which reduced the mTOR complex I (mTORC1) activation in SW480 and DLD-1 colon cancer cells. As a consequence, EBR triggered macroautophagy and led to lipidation of LC3 most efficiently in SW480 cells. The cotreatment of spermidine (Spd) with EBR increased lipidation of LC3 synergistically in both cell lines. We also found that EBR promoted polyamine catabolism in SW480 cells. The retention of polyamine biosynthesis was remarkable following EBR treatment. We suggested that EBR-mediated Akt activation might determine the downstream cellular stress responses to induce autophagy related to polyamines.
Collapse
Affiliation(s)
- Kaan Adacan
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| | - Pınar Obakan Yerlİkaya
- Department of Molecular Biology and Genetics, Science and Literature Faculty, İstanbul Kültür University, İstanbul Turkey
| |
Collapse
|
31
|
Junaid M, Akter Y, Afrose SS, Tania M, Khan MA. Biological Role of AKT and Regulation of AKT Signaling Pathway by Thymoquinone: Perspectives in Cancer Therapeutics. Mini Rev Med Chem 2021; 21:288-301. [PMID: 33019927 DOI: 10.2174/1389557520666201005143818] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AKT/PKB is an important enzyme with numerous biological functions, and its overexpression is related to carcinogenesis. AKT stimulates different signaling pathways that are downstream of activated tyrosine kinases and phosphatidylinositol 3-kinase, hence functions as an important target for anti-cancer drugs. OBJECTIVE In this review article, we have interpreted the role of AKT signaling pathway in cancer and the natural inhibitory effect of Thymoquinone (TQ) in AKT and its possible mechanisms. METHOD We have collected the updated information and data on AKT, its role in cancer and the inhibitory effect of TQ in AKT signaling pathway from Google Scholar, PubMed, Web of Science, Elsevier, Scopus, and many more. RESULTS Many drugs are already developed, which can target AKT, but very few among them have passed clinical trials. TQ is a natural compound, mainly found in black cumin, which has been found to have potential anti-cancer activities. TQ targets numerous signaling pathways, including AKT, in different cancers. In fact, many studies revealed that AKT is one of the major targets of TQ. The preclinical success of TQ suggests its clinical studies on cancer. CONCLUSION This review article summarizes the role of AKT in carcinogenesis, its potent inhibitors in clinical trials, and how TQ acts as an inhibitor of AKT and TQ's future as a cancer therapeutic drug.
Collapse
Affiliation(s)
- Md Junaid
- Molecular Modeling Drug-design and Discovery Laboratory, Pharmacology Research Division, Bangladesh Council of Scientific and Industrial Research, Chattogram, Bangladesh
| | - Yeasmin Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science & Technology University, Noakhali, Bangladesh
| | | | - Mousumi Tania
- Division of Molecular Cancer, Red Green Research Center, Dhaka, Bangladesh
| | - Md Asaduzzaman Khan
- The research center for preclinical medicine, Southwest Medical University, Luzhou, China
| |
Collapse
|
32
|
Götting I, Jendrossek V, Matschke J. A New Twist in Protein Kinase B/Akt Signaling: Role of Altered Cancer Cell Metabolism in Akt-Mediated Therapy Resistance. Int J Mol Sci 2020; 21:ijms21228563. [PMID: 33202866 PMCID: PMC7697684 DOI: 10.3390/ijms21228563] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/23/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer resistance to chemotherapy, radiotherapy and molecular-targeted agents is a major obstacle to successful cancer therapy. Herein, aberrant activation of the phosphatidyl-inositol-3-kinase (PI3K)/protein kinase B (Akt) pathway is one of the most frequently deregulated pathways in cancer cells and has been associated with multiple aspects of therapy resistance. These include, for example, survival under stress conditions, apoptosis resistance, activation of the cellular response to DNA damage and repair of radiation-induced or chemotherapy-induced DNA damage, particularly DNA double strand breaks (DSB). One further important, yet not much investigated aspect of Akt-dependent signaling is the regulation of cell metabolism. In fact, many Akt target proteins are part of or involved in the regulation of metabolic pathways. Furthermore, recent studies revealed the importance of certain metabolites for protection against therapy-induced cell stress and the repair of therapy-induced DNA damage. Thus far, the likely interaction between deregulated activation of Akt, altered cancer metabolism and therapy resistance is not yet well understood. The present review describes the documented interactions between Akt, its target proteins and cancer cell metabolism, focusing on antioxidant defense and DSB repair. Furthermore, the review highlights potential connections between deregulated Akt, cancer cell metabolism and therapy resistance of cancer cells through altered DSB repair and discusses potential resulting therapeutic implications.
Collapse
|
33
|
Hunt DWC, Ivanova IA, Dagnino L. DRM02, a novel phosphodiesterase-4 inhibitor with cutaneous anti-inflammatory activity. Tissue Barriers 2020; 8:1765633. [PMID: 32479135 DOI: 10.1080/21688370.2020.1765633] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Chronic inflammatory skin disorders are frequently associated with impaired skin barrier function. Selective phosphodiesterase-4 (PDE4) inhibition constitutes an effective therapeutic strategy for the treatment of inflammatory skin diseases. We now report the pharmacological anti-inflammatory profile of DRM02, a novel pyrazolylbenzothiazole derivative with selective in vitro inhibitory activity toward PDE4 isoforms A, B and D. DRM02 treatment of cultured primary human and mouse epidermal keratinocytes interfered with pro-inflammatory cytokine production elicited by interleukin-1α and tumor necrosis factor-α. Similarly, DRM02 inhibited the production of pro-inflammatory cytokines by human peripheral blood mononuclear cells ex vivo and cultured THP-1 monocyte-like cells, with IC50 values of 0.6-14 µM. These anti-inflammatory properties of DRM02 were associated with dose-dependent repression of nuclear factor-κB (NF-κB) transcriptional activity. In skin inflammation in vivo mouse models, topically applied DRM02 inhibited the acute response to phorbol ester and induced Th2-type contact hypersensitivity reactivity. Further, DRM02 also decreased cutaneous clinical changes and expression of Th17 immune pathway cytokines in a mouse model of psoriasis evoked by repeated topical imiquimod application. Thus, the overall pharmacological profiling of the PDE4 inhibitor DRM02 has revealed its potential as a topical therapy for inflammatory skin disorders and restoration of skin homeostasis.
Collapse
Affiliation(s)
| | - Iordanka A Ivanova
- Department of Physiology and Pharmacology, University of Western Ontario , London, Canada
| | - Lina Dagnino
- Department of Physiology and Pharmacology, University of Western Ontario , London, Canada.,Department of Oncology, University of Western Ontario , London, Canada
| |
Collapse
|
34
|
Huang Y, Gunst SJ. Phenotype transitions induced by mechanical stimuli in airway smooth muscle are regulated by differential interactions of parvin isoforms with paxillin and Akt. Am J Physiol Lung Cell Mol Physiol 2020; 318:L1036-L1055. [PMID: 32130030 DOI: 10.1152/ajplung.00506.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Mechanical tension and humoral stimuli can induce transitions in airway smooth muscle phenotype between a synthetic inflammatory state that promotes cytokine secretion and a differentiated state that promotes the expression of smooth muscle phenotype-specific proteins. When tissues are maintained under high tension, Akt activation and eotaxin secretion are suppressed, but expression of the differentiation marker protein, smooth muscle myosin heavy chain (SmMHC), is promoted. When tissues are maintained under low tension, Akt activation and eotaxin secretion are stimulated, and the differentiated phenotype is suppressed. We hypothesized that mechanical stimuli are differentially transduced to Akt-mediated signaling pathways that regulate phenotype expression by α-parvin and β-parvin integrin-linked kinase/PINCH/parvin (IPP) signaling complexes within integrin adhesomes. High tension or ACh triggered paxillin phosphorylation and the binding of phospho-paxillin to β-parvin IPP complexes. This inhibited Akt activation and promoted SmMHC expression. Low tension or IL-4 did not elicit paxillin phosphorylation and triggered the binding of unphosphorylated paxillin to α-parvin IPP complexes, which promoted Akt activation and eotaxin secretion and suppressed SmMHC expression. Expression of a nonphosphorylatable paxillin mutant or β-parvin depletion by siRNA promoted the inflammatory phenotype, whereas the depletion of α-parvin promoted the differentiated phenotype. Results demonstrate that phenotype expression is regulated by the differential interaction of phosphorylated and unphosphorylated paxillin with α-parvin and β-parvin IPP complexes and that these complexes have opposite effects on the activation of Akt. Our results describe a novel molecular mechanism for transduction of mechanical and humoral stimuli within integrin signaling complexes to regulate phenotype expression in airway smooth muscle.
Collapse
Affiliation(s)
- Youliang Huang
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Susan J Gunst
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
35
|
Iida M, Harari PM, Wheeler DL, Toulany M. Targeting AKT/PKB to improve treatment outcomes for solid tumors. Mutat Res 2020; 819-820:111690. [PMID: 32120136 DOI: 10.1016/j.mrfmmm.2020.111690] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/31/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
The serine/threonine kinase AKT, also known as protein kinase B (PKB), is the major substrate to phosphoinositide 3-kinase (PI3K) and consists of three paralogs: AKT1 (PKBα), AKT2 (PKBβ) and AKT3 (PKBγ). The PI3K/AKT pathway is normally activated by binding of ligands to membrane-bound receptor tyrosine kinases (RTKs) as well as downstream to G-protein coupled receptors and integrin-linked kinase. Through multiple downstream substrates, activated AKT controls a wide variety of cellular functions including cell proliferation, survival, metabolism, and angiogenesis in both normal and malignant cells. In human cancers, the PI3K/AKT pathway is most frequently hyperactivated due to mutations and/or overexpression of upstream components. Aberrant expression of RTKs, gain of function mutations in PIK3CA, RAS, PDPK1, and AKT itself, as well as loss of function mutation in AKT phosphatases are genetic lesions that confer hyperactivation of AKT. Activated AKT stimulates DNA repair, e.g. double strand break repair after radiotherapy. Likewise, AKT attenuates chemotherapy-induced apoptosis. These observations suggest that a crucial link exists between AKT and DNA damage. Thus, AKT could be a major predictive marker of conventional cancer therapy, molecularly targeted therapy, and immunotherapy for solid tumors. In this review, we summarize the current understanding by which activated AKT mediates resistance to cancer treatment modalities, i.e. radiotherapy, chemotherapy, and RTK targeted therapy. Next, the effect of AKT on response of tumor cells to RTK targeted strategies will be discussed. Finally, we will provide a brief summary on the clinical trials of AKT inhibitors in combination with radiochemotherapy, RTK targeted therapy, and immunotherapy.
Collapse
Affiliation(s)
- M Iida
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA.
| | - P M Harari
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - D L Wheeler
- Department of Human Oncology, University of Wisconsin in Madison, Madison, WI, USA
| | - M Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany; German Cancer Consortium (DKTK), Partner Site Tuebingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
36
|
Shen Y, Goncharov DA, Avolio T, Ray A, Okorie E, DeLisser H, Mora AL, Vanderpool R, Kudryashova TV, Goncharova EA. Differential effects of integrin-linked kinase inhibitor Cpd22 on severe pulmonary hypertension in male and female rats. Pulm Circ 2020; 10:2045894019898593. [PMID: 32110386 PMCID: PMC7016388 DOI: 10.1177/2045894019898593] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 12/09/2019] [Indexed: 11/16/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive fatal disease with no cure. Inhibition of integrin-linked kinase (ILK) reverses experimental pulmonary hypertension (PH) in male mice, but its effect on severe experimental PH in either male or female animals is unknown. We examined effects of ILK inhibitor Cpd22 on rats with SU5416/hypoxia-induced PH; treatment was performed at six to eight weeks after PH initiation. Five weeks after PH initiation, male and female rats developed similar levels of PH. Eight weeks after PH induction, vehicle-treated male rats had more severe PH than females. Cpd22-treated males, but not females, showed complete suppression of phospho-Akt in small pulmonary arteries (PAs), significantly lower PA medial thickness and percentage of fully occluded arteries, decreased systolic right ventricle (RV) pressure, PA pressure, RV hypertrophy, RV end-diastolic pressure, and improved RV contractility index compared to vehicle-treated group. Cpd22 suppressed proliferation of human male and female PAH pulmonary artery vascular smooth muscle cell (PAVSMC). 17β-estradiol had no effect as a single agent but significantly attenuated Cpd22-dependent inhibition of proliferation in female, but not male, PAH PAVSMC. Taken together, these data demonstrate that male rats develop more severe PH than females but respond better to Cpd22 treatment by reducing pulmonary vascular remodeling, PH, and RV hypertrophy and improving RV functional outcomes. 17β-estradiol diminishes anti-proliferative effect of Cpd22 in female, but not male, human PAH PAVSMC. These findings suggest potential attractiveness of ILK inhibition to reduce established PH in males and suggest that the combination with estrogen-lowering drugs could be considered to maximize anti-proliferative and anti-remodeling effects of ILK inhibitors in females.
Collapse
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Dmitry A Goncharov
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Theodore Avolio
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Arnab Ray
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Evelyn Okorie
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA
| | - Horace DeLisser
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Pulmonary Vascular Disease Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ana L Mora
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Ageing Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA, USA
| | - Rebecca Vanderpool
- Division of Translational and Regenerative Medicine, The University of Arizona College of Medicine, Tucson, AZ, USA
| | | | - Elena A Goncharova
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, Pittsburgh, PA, USA.,Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,University of Pittsburgh Department of Bioengineering, Pittsburgh, PA, USA
| |
Collapse
|
37
|
Yuan M, Xie F, Xia X, Zhong K, Lian L, Zhang S, Yuan L, Ye J. UNC5C‑knockdown enhances the growth and metastasis of breast cancer cells by potentiating the integrin α6/β4 signaling pathway. Int J Oncol 2020; 56:139-150. [PMID: 31789389 PMCID: PMC6910211 DOI: 10.3892/ijo.2019.4931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
Unc‑5 Netrin Receptor C (UNC5C) is a netrin‑1 dependence receptor that mediates the induction of apoptosis in the absence of netrin‑1. The present study found that UNC5C is heterogeneously expressed in breast cancer cell lines. By knocking down UNC5C in SK‑BR‑3 and ZR‑75‑30 cells and overexpressing UNC5c in MDA‑MB‑231 cells, it was demonstrated that UNC5C exerts an inhibitory effect on the growth and metastasis of breast cancer cells. The mechanism involved a UNC5C‑knockdown‑induced enhancement of matrix metalloproteinase (MMP)3, MMP7, MMP9 and MMP10 expression via activation of the PI3K/AKT, ERK and p38 MAPK signaling pathways. Notably, UNC5C directly interacted with integrin α6, which is involved in the growth and metastasis of breast cancer cells. Additionally, UNC5C‑knockdown enhanced the phosphorylation of FAK and SRC, which are key kinases in the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. This suggests that netrin‑1 functions as an integrator for both the netrin‑1/Unc5C and netrin‑1/integrin α6/β4 signaling pathways. UNC5C‑knockdown potentiated netrin‑1/integrin α6/β4 signaling. Given that UNC5C‑knockdown inhibited integrin‑liked protein kinase phosphorylation at Thr‑173, at least in SK‑BR‑3 cells, this may be an inhibitory phosphorylation site rather than activating phosphorylation site for relaying integrin signaling.
Collapse
Affiliation(s)
- Mingjing Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Fuan Xie
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
- Organ Transplantation Institute, School of Medicine, Xiamen University, Xiamen, Fujian 361102
| | - Xianyuan Xia
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Kai Zhong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Lanlan Lian
- Department of Laboratory Medicine, Xiang'an Hospital of Xiamen University, Xiamen University, Xiamen, Fujian 361102
| | - Shihui Zhang
- School of Life Science, Central South University, Changsha, Hunan 410083, P.R. China
| | - Li Yuan
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| | - Jun Ye
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102
| |
Collapse
|
38
|
Integrin-linked kinase controls retinal angiogenesis and is linked to Wnt signaling and exudative vitreoretinopathy. Nat Commun 2019; 10:5243. [PMID: 31748531 PMCID: PMC6868140 DOI: 10.1038/s41467-019-13220-3] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 10/18/2019] [Indexed: 01/26/2023] Open
Abstract
Familial exudative vitreoretinopathy (FEVR) is a human disease characterized by defective retinal angiogenesis and associated complications that can result in vision loss. Defective Wnt/β-catenin signaling is an established cause of FEVR, whereas other molecular alterations contributing to the disease remain insufficiently understood. Here, we show that integrin-linked kinase (ILK), a mediator of cell-matrix interactions, is indispensable for retinal angiogenesis. Inactivation of the murine Ilk gene in postnatal endothelial cells results in sprouting defects, reduced endothelial proliferation and disruption of the blood-retina barrier, resembling phenotypes seen in established mouse models of FEVR. Retinal vascularization defects are phenocopied by inducible inactivation of the gene for α-parvin (Parva), an interactor of ILK. Screening genomic DNA samples from exudative vitreoretinopathy patients identifies three distinct mutations in human ILK, which compromise the function of the gene product in vitro. Together, our data suggest that defective cell-matrix interactions are linked to Wnt signaling and FEVR. Integrin-linked kinase (ILK) is an important mediator of integrin signaling. Here Park et al. show that mice with endothelial-specific deletion of Ilk develop vascular defects that resemble familial exudative vitreoretinopathy, and identify mutations in ILK in patients with exudative vitreoretinopathy suggesting a potential role in human pathogenesis.
Collapse
|
39
|
Rahm M, Merl-Pham J, Adamski J, Hauck SM. Time-resolved phosphoproteomic analysis elucidates hepatic 11,12-Epoxyeicosatrienoic acid signaling pathways. Prostaglandins Other Lipid Mediat 2019; 146:106387. [PMID: 31669255 DOI: 10.1016/j.prostaglandins.2019.106387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/24/2019] [Accepted: 10/16/2019] [Indexed: 01/20/2023]
Abstract
Epoxyeicosatrienoic acids (EETs) are potent lipid mediators with well-established effects in vascular tissues. Recent studies indicated an emerging role of these eicosanoids in metabolic diseases and the EET signaling pathway was shown to be involved in hepatic insulin sensitivity. However, compared to vascular tissues, there is only limited knowledge about the underlying signaling pathways in the liver. Therefore, we employed an LC-MS/MS-based time-resolved phosphoproteomics approach to characterize 11,12-EET-mediated signaling events in the liver cell line Hepa 1-6. 11,12-EET treatment resulted in the time-dependent regulation of phosphopeptides involved in processes as yet unknown to be affected by EETs, including RNA processing, splicing and translation regulation. Pathway analysis combined with western blot-based validation revealed enhanced AKT/mTOR/p70S6K signaling as demonstrated by increased acute phosphorylation of AKT (Ser473) and p70S6K (Thr389). In addition, 11,12-EET treatment led to differential regulation of phosphopeptides including important mediators of the DNA damage response and we observed a prolonged induction of the etoposide-induced DNA damage marker γH2AX in response to 11,12-EET. In summary, our findings extend current knowledge of 11,12-EET signaling events and emphasize the importance of the AKT/mTOR/p70S6K pathway in hepatic 11,12-EET signaling. Based on the results presented in this study, we furthermore propose a novel role of EET signaling in the regulation of the DNA damage response.
Collapse
Affiliation(s)
- Marco Rahm
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Juliane Merl-Pham
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Jerzy Adamski
- Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany.
| |
Collapse
|
40
|
Hou J, Liu B, Zhu B, Wang D, Qiao Y, Luo E, Nawabi AQ, Yan G, Tang C. Role of integrin-linked kinase in the hypoxia-induced phenotypic transition of pulmonary artery smooth muscle cells: Implications for hypoxic pulmonary hypertension. Exp Cell Res 2019; 382:111476. [PMID: 31255599 DOI: 10.1016/j.yexcr.2019.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 06/13/2019] [Accepted: 06/19/2019] [Indexed: 11/21/2022]
Abstract
The phenotypic transition of pulmonary artery smooth muscle cells (PASMCs) from a contractile/differentiated to synthetic/de-differentiated phenotype is an important mechanism for the occurrence and development of hypoxic pulmonary hypertension (HPH). Integrin-linked kinase (ILK) is an early hypoxic response factor whose kinase activity is significantly affected during early hypoxia. Myocardin and ETS-like protein 1 (Elk-1) are co-activators of serum response factor (SRF) and can bind to SRF to mediate the phenotypic transition of PASMCs. However, little is known about the role of ILK on the phenotypic transition of these PASMCs. Thus, in our study, we explored the role of ILK in this process. We found that the expression of ILK and myocardin decreased gradually with the increase in hypoxia exposure time in the pulmonary arteries of rats. We observed that hypoxia exposure for 1 h caused an increase in the phosphorylation of Elk-1 but did not affect the expression of ILK, myocardin, or SRF. Exposure to hypoxic treatment for 1 h decreased ILK kinase activity and caused Elk-1 to suppress myocardin binding to SRF and the smooth muscle (SM) α-actin gene promoters. In addition, hypoxia exposure for 24 h decreased the expression of ILK, myocardin, SM α-actin, and calponin but increased the expression of osteopontin. Silencing of the myocardin gene significantly decreased the expression of SM α-actin and calponin but increased the expression of osteopontin. Silencing of the ILK gene significantly decreased the expression of myocardin, SM α-actin, and calponin but increased the expression of osteopontin. ILK overexpression reversed the effects of 24 h of hypoxia on the expression of myocardin, SM α-actin, calponin, and osteopontin and reversed the decrease in binding of myocardin to the SM α-actin promoter caused by 24 h of hypoxia exposure. Thus, our results suggest that ILK initiates the phenotypic transition of PASMCs. The underlying mechanism may involve hypoxia downregulating ILK kinase activity and protein expression, causing Elk-1 to compete with myocardin for binding to the SM α-actin promoter, which downregulates the expression of the downstream target myocardin and results in the phenotypic transition of PASMCs from a contractile to a synthetic phenotype. This may be an important mechanism in the development of HPH.
Collapse
MESH Headings
- Actins/genetics
- Actins/metabolism
- Animals
- Biomarkers/metabolism
- Calcium-Binding Proteins/metabolism
- Cell Hypoxia/genetics
- Cobalt/pharmacology
- Down-Regulation/genetics
- Hemodynamics/genetics
- Hypertension, Pulmonary/complications
- Hypertension, Pulmonary/enzymology
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Hypoxia/enzymology
- Hypoxia/pathology
- Male
- Microfilament Proteins/metabolism
- Models, Biological
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Nuclear Proteins/metabolism
- Osteopontin/metabolism
- Phenotype
- Phosphorylation
- Promoter Regions, Genetic/genetics
- Protein Binding
- Protein Serine-Threonine Kinases/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats, Sprague-Dawley
- Serum Response Factor/metabolism
- Trans-Activators/metabolism
- Vascular Remodeling/genetics
- ets-Domain Protein Elk-1/metabolism
- Calponins
Collapse
Affiliation(s)
- Jiantong Hou
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Bo Liu
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Boqian Zhu
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Dong Wang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Yong Qiao
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Erfei Luo
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Abdul Qadir Nawabi
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China
| | - Gaoliang Yan
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China.
| | - Chengchun Tang
- Department of Cardiology, Zhongda Hospital of Southeast University Medical School, Nanjing, China.
| |
Collapse
|
41
|
Tan J, Digicaylioglu M, Wang SX, Dresselhuis J, Dedhar S, Mills J. Insulin attenuates apoptosis in neuronal cells by an integrin-linked kinase-dependent mechanism. Heliyon 2019; 5:e02294. [PMID: 31463398 PMCID: PMC6706370 DOI: 10.1016/j.heliyon.2019.e02294] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/04/2019] [Accepted: 08/08/2019] [Indexed: 01/19/2023] Open
Abstract
Insulin promotes neuronal survival by activating a phosphatidylinositol 3-kinase (PI 3-kinase)/AKT-dependent signaling pathway and reducing caspase activation. We investigated a role for integrin-linked kinase (ILK) in insulin-mediated cell survival in cultured neurons and differentiated R28 cells. We used a serum and depolarization withdrawal model to induce apoptosis in cerebellar granule neurons and a serum withdrawal model to induce apoptosis in differentiated R28 cells. ILK knock-out decreased insulin-mediated protection as did the addition of pharmacological inhibitors of ILK, KP-392 or QLT-0267. Prosurvival effects of insulin were rescued by Boc-Asp (O-methyl)-CH2F (BAF), a pancaspase inhibitor, in the presence of KP-392. Insulin and IGF-1 decreased caspase-3 activation, an effect that was inhibited by KP-392 and QLT-0267. Western blot analysis indicates that insulin-induced stimulation of AKT Ser-473 phosphorylation was decreased after the ILK gene was conditionally knocked-out, following overexpression of AKT-DN or in the presence of QLT-0267. Insulin and IGF-1 stimulated ILK kinase activity in primary neurons and this was inhibited following ILK-DN overexpression. Western blot analysis indicates that insulin exposure upregulated the expression of the cellular inhibitor of apoptosis protein c-IAP2 in an extracellular matrix-dependent manner, an effect blocked by KP-392. These results indicate that ILK is an important effector in insulin-mediated neuroprotection.
Collapse
Affiliation(s)
- Jacqueline Tan
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Murat Digicaylioglu
- Departments of Neurosurgery and Physiology, Scripps Research, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Stacy X.J. Wang
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Jonathan Dresselhuis
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
| | - Shoukat Dedhar
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Julia Mills
- Department of Biology, Trinity Western University, Langley, British Columbia, Canada
- Corresponding author.
| |
Collapse
|
42
|
Wang B, Cleary PP. Intracellular Invasion by Streptococcus pyogenes: Invasins, Host Receptors, and Relevance to Human Disease. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0049-2018. [PMID: 31267891 PMCID: PMC10957197 DOI: 10.1128/microbiolspec.gpp3-0049-2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Indexed: 12/23/2022] Open
Abstract
The human oral-nasal mucosa is the primary reservoir for Streptococcus pyogenes infections. Although the most common infection of consequence in temperate climates is pharyngitis, the past 25 years have witnessed a dramatic increase in invasive disease in many regions of the world. Historically, S. pyogenes has been associated with sepsis and fulminate systemic infections, but the mechanism by which these streptococci traverse mucosal or epidermal barriers is not understood. The discovery that S. pyogenes can be internalized by mammalian epithelial cells at high frequencies (1-3) and/or open tight junctions to pass between cells (4) provides potential explanations for changes in epidemiology and the ability of this species to breach such barriers. In this article, the invasins and pathways that S. pyogenes uses to reach the intracellular state are reviewed, and the relationship between intracellular invasion and human disease is discussed.
Collapse
Affiliation(s)
- Beinan Wang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing China
| | - P Patrick Cleary
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN
| |
Collapse
|
43
|
Neddylation inhibitor MLN4924 suppresses cilia formation by modulating AKT1. Protein Cell 2019; 10:726-744. [PMID: 30850948 PMCID: PMC6776484 DOI: 10.1007/s13238-019-0614-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 01/24/2019] [Indexed: 11/25/2022] Open
Abstract
The primary cilium is a microtubule-based sensory organelle. The molecular mechanism that regulates ciliary dynamics remains elusive. Here, we report an unexpected finding that MLN4924, a small molecule inhibitor of NEDD8-activating enzyme (NAE), blocks primary ciliary formation by inhibiting synthesis/assembly and promoting disassembly. This is mainly mediated by MLN4924-induced phosphorylation of AKT1 at Ser473 under serum-starved, ciliary-promoting conditions. Indeed, pharmaceutical inhibition (by MK2206) or genetic depletion (via siRNA) of AKT1 rescues MLN4924 effect, indicating its causal role. Interestingly, pAKT1-Ser473 activity regulates both ciliary synthesis/assembly and disassembly in a MLN4924 dependent manner, whereas pAKT-Thr308 determines the ciliary length in MLN4924-independent but VHL-dependent manner. Finally, MLN4924 inhibits mouse hair regrowth, a process requires ciliogenesis. Collectively, our study demonstrates an unexpected role of a neddylation inhibitor in regulation of ciliogenesis via AKT1, and provides a proof-of-concept for potential utility of MLN4924 in the treatment of human diseases associated with abnormal ciliogenesis.
Collapse
|
44
|
Poon AC, Inkol JM, Luu AK, Mutsaers AJ. Effects of the potassium-sparing diuretic amiloride on chemotherapy response in canine osteosarcoma cells. J Vet Intern Med 2018; 33:800-811. [PMID: 30556178 PMCID: PMC6430882 DOI: 10.1111/jvim.15382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
Background Osteosarcoma (OSA) is a common bone tumor of mesenchymal origin in dogs. Chemotherapy delays metastasis, yet most dogs die of this disease within 1 year of diagnosis. The high metabolic demand of cancer cells promotes proton pump upregulation, leading to acidification of the tumor microenvironment and chemoresistance. The potassium‐sparing diuretic amiloride is among a class of proton pump inhibitors prescribed for refractory heart failure treatment in dogs. Objective We hypothesized that amiloride treatment improves chemotherapy response by reducing acidification in canine OSA cells. Our objective was to assess the in vitro effects of amiloride on cell viability, apoptosis, and metabolism. Methods In vitro study. Assessments of cell viability and apoptosis were performed after single agent or combination treatment, along with calculations of pharmacological synergism using the combination index. Protein signaling during apoptosis was evaluated by Western blotting. Metabolic profiling was performed using a Seahorse bioanalyzer. Results Amiloride strongly synergized with doxorubicin in combination treatment and exhibited additive or antagonistic effects with carboplatin in canine OSA cells. Combination treatment with doxorubicin significantly upregulated p53‐mitochondrial signaling to activate apoptosis and downregulate Akt phosphorylation. Amiloride‐treated cells further exhibited metabolic switching with reductions in glycolytic capacity and maximal respiration. Conclusion and Clinical Importance Amiloride synergized with doxorubicin to potentiate apoptosis in canine OSA cells. These results justify further investigation into repurposing of amiloride as an oncology drug for the treatment of OSA in dogs.
Collapse
Affiliation(s)
- Andrew C Poon
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordon M Inkol
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anita K Luu
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Anthony J Mutsaers
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.,Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
45
|
Trans-resveratrol Inhibits Tau Phosphorylation in the Brains of Control and Cadmium Chloride-Treated Rats by Activating PP2A and PI3K/Akt Induced-Inhibition of GSK3β. Neurochem Res 2018; 44:357-373. [DOI: 10.1007/s11064-018-2683-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/10/2018] [Accepted: 11/13/2018] [Indexed: 10/27/2022]
|
46
|
Liu G, Li Y, Du B, Sun Q, Qi W, Liu Y, Zhang X, Jin M, Zheng Z. Primordial follicle activation is affected by the absence of Sohlh1 in mice. Mol Reprod Dev 2018; 86:20-31. [PMID: 30358927 DOI: 10.1002/mrd.23078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/21/2018] [Indexed: 11/07/2022]
Abstract
Previous studies have reported that only primordial follicles and empty follicles can be found in 7.5 days postparturition (dpp) Sohlh1-/- mouse ovaries and females are infertility. There appears to be a defect in follicle development during the primordial-to-primary follicle transition in Sohlh1-/- mouse ovaries. However, detailed analyses of these phenomena have not been performed. In this study, we used Sohlh1-/- transgenic mice to explore the role of Sohlh1 in folliculogenesis. The results showed that only primordial follicles and empty follicles can be observed in Sohlh1-/- ovaries from 0.5 to 23.5 dpp. The expression of Foxo3 and FOXO3 was downregulated; nucleocytoplasmic shuttling of FOXO3 was normal in 7.5-dpp Sohlh1+/+ but not Sohlh1-/- ovaries; and primordial follicle activation (PFA) was not observed in 7.5-dpp Sohlh1-/- mice. The expression levels of KIT, AKT, and P308-AKT were downregulated (p < 0.05), whereas that of P473-AKT was not significantly changed (p > 0.05). The KIT/PI3K/AKT pathway was inhibited. Furthermore, we conducted a dual luciferase assay and chromatin immunoprecipitation. The results showed that SOHLH1 can upregulate the Kit gene by binding to the -3698 bp E-box motif. The absence of Sohlh1 may affect PFA in mouse ovaries via downregulation of Kit and inhibition of the KIT/PI3K/AKT pathway.
Collapse
Affiliation(s)
- Gongqing Liu
- Department of Laboratory Animal Science, China Medical University, Shenyang, China.,Department of Police Dog Technology, Criminal Investigation Police University of China, Shenyang, China.,Police Dog Technical School of the Ministry of Public Security of P.R. China, Shenyang, China
| | - Yuan Li
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Bing Du
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Qi Sun
- Department of Laboratory Animal Science, China Medical University, Shenyang, China.,Basic College of Medicine, Jilin Medical University, Jilin, China
| | - Wanjing Qi
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Yuan Liu
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Xue Zhang
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Meiyu Jin
- Department of Laboratory Animal Science, China Medical University, Shenyang, China
| | - Zhihong Zheng
- Department of Laboratory Animal Science, China Medical University, Shenyang, China.,Key Laboratory of Transgenic Animal Research, Shenyang, China
| |
Collapse
|
47
|
Zur Y, Rosenfeld L, Keshelman CA, Dalal N, Guterman-Ram G, Orenbuch A, Einav Y, Levaot N, Papo N. A dual-specific macrophage colony-stimulating factor antagonist of c-FMS and αvβ3 integrin for osteoporosis therapy. PLoS Biol 2018; 16:e2002979. [PMID: 30142160 PMCID: PMC6126843 DOI: 10.1371/journal.pbio.2002979] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 09/06/2018] [Accepted: 08/07/2018] [Indexed: 11/18/2022] Open
Abstract
There is currently a demand for new highly efficient and specific drugs to treat osteoporosis, a chronic bone disease affecting millions of people worldwide. We have developed a combinatorial strategy for engineering bispecific inhibitors that simultaneously target the unique combination of c-FMS and αvβ3 integrin, which act in concert to facilitate bone resorption by osteoclasts. Using functional fluorescence-activated cell sorting (FACS)-based screening assays of random mutagenesis macrophage colony-stimulating factor (M-CSF) libraries against c-FMS and αvβ3 integrin, we engineered dual-specific M-CSF mutants with high affinity to both receptors. These bispecific mutants act as functional antagonists of c-FMS and αvβ3 integrin activation and hence of osteoclast differentiation in vitro and osteoclast activity in vivo. This study thus introduces a versatile platform for the creation of new-generation therapeutics with high efficacy and specificity for osteoporosis and other bone diseases. It also provides new tools for studying molecular mechanisms and the cell signaling pathways that mediate osteoclast differentiation and function. Many bone diseases—including osteoporosis, in which the bones become brittle and fragile from loss of tissue—are characterized by excessive and uncontrolled bone resorption by bone-destroying cells known as osteoclasts. Therefore, controlled and specific inhibition of osteoclast activity is a desired outcome in treatments for bone diseases. Osteoclast differentiation and function are coordinated by cell surface receptors, including c-FMS and αvβ3 integrin, which cooperate with one another to drive signals that are essential for osteoclast functions. Here, we describe the engineering, characterization, and testing of novel proteins that can target and inhibit both c-FMS and αvβ3 integrin at the same time, thereby providing a way of controlling osteoclast function. The study represents the first example of engineering a natural ligand, which acts as a signaling molecule, as a scaffold for binding not only its target protein but also a second target. We show that these engineered proteins inhibit osteoclast activity in a mouse model of osteoporosis. Our study describes potential inhibitors that target all the known functions resulting from c-FMS/integrin αvβ3 crosstalk and paves the way to create novel targeting proteins that could be used to treat osteoporosis. It also expands our understanding of the role of the c-FMS/αvβ3 integrin pathway in the regulation of osteoclast differentiation and function.
Collapse
Affiliation(s)
- Yuval Zur
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Rosenfeld
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Chen Anna Keshelman
- The National Institute for Biotechnology in the Negev (NIBN), Beer-Sheva, Israel
| | - Nofar Dalal
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Gali Guterman-Ram
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ayelet Orenbuch
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yulia Einav
- Faculty of Engineering, Holon Institute of Technology, Holon, Israel
| | - Noam Levaot
- Department of Physiology and Cell Biology, Regenerative Medicine and Stem Cell Research Center (RMSC), Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (NL)
| | - Niv Papo
- Department of Biotechnology Engineering and the National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (NP); (NL)
| |
Collapse
|
48
|
Sundaramoorthy S, Devanand P, Ryu MS, Song KY, Noh DY, Lim IK. TIS21 /BTG2 inhibits breast cancer growth and progression by differential regulation of mTORc1 and mTORc2-AKT1-NFAT1-PHLPP2 signaling axis. J Cancer Res Clin Oncol 2018; 144:1445-1462. [PMID: 29808317 DOI: 10.1007/s00432-018-2677-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/21/2018] [Indexed: 10/25/2022]
Abstract
PURPOSE It has been reported that PI3K/AKT pathway is altered in various cancers and AKT isoforms specifically regulate cell growth and metastasis of cancer cells; AKT1, but not AKT2, reduces invasion of cancer cells but maintains cancer growth. We propose here a novel mechanism of the tumor suppresser, TIS21/BTG2, that inhibits both growth and invasion of triple negative breast cancer cells via AKT1 activation by differential regulation of mTORc1 and mTORc2 activity. METHODS Transduction of adenovirus carrying TIS21/BTG2 gene and transfection of short interfering RNAs were employed to regulate TIS21/BTG2 gene expression in various cell lines. Treatment of mTOR inhibitors and mTOR kinase assays can evaluate the role of mTORc in the regulation of AKT phosphorylation at S473 residue by TIS21/BTG2 in breast cancer cells. Open data and immunohistochemical analysis were performed to confirm the role of TIS21/BTG2 expression in various human breast cancer tissues. RESULTS We observed that TIS21/BTG2 inhibited mTORc1 activity by reducing Raptor-mTOR interaction along with upregulation of tsc1 expression, which lead to significant reduction of p70S6K activation as opposed to AKT1S473, but not AKT2, phosphorylation via downregulating PHLPP2 (AKT1-specific phosphatase) in breast cancers. TIS21/BTG2-induced pAKTS473 required Rictor-bound mTOR kinase, indicating activation of mTORc2 by TIS21/BTG2 gene. Additionally, the TIS21/BTG2-induced pAKTS473 could reduce expression of NFAT1 (nuclear factor of activated T cells) and its target genes, which regulate cancer microenvironment. CONCLUSIONS TIS21/BTG2 significantly lost in the infiltrating ductal carcinoma, but it can inhibit cancer growth via the TIS21/BTG2-tsc1/2-mTORc1-p70S6K axis and downregulate cancer progression via the TIS21/BTG2-mTORc2-AKT1-NFAT1-PHLPP2 pathway.
Collapse
Affiliation(s)
- Santhoshkumar Sundaramoorthy
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Preethi Devanand
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Min Sook Ryu
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea
| | - Kye Yong Song
- Department of Pathology, Chung-Ang University College of Medicine, Seoul, 156-756, Republic of Korea
| | - Dong Young Noh
- Department of Surgery, Seoul National University, Seoul, 03080, Republic of Korea
| | - In Kyoung Lim
- Division of Medical Sciences, BK21 Plus program, Graduate School of Ajou University, Suwon, 16499, Republic of Korea.
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, Republic of Korea.
| |
Collapse
|
49
|
Szymonowicz K, Oeck S, Malewicz NM, Jendrossek V. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers (Basel) 2018; 10:cancers10030078. [PMID: 29562639 PMCID: PMC5876653 DOI: 10.3390/cancers10030078] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt’s activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
50
|
Zhang Q, Waqas Y, Yang P, Sun X, Liu Y, Ahmed N, Chen B, Li Q, Hu L, Huang Y, Chen H, Hu B, Chen Q. Cytological study on the regulation of lymphocyte homing in the chicken spleen during LPS stimulation. Oncotarget 2018; 8:7405-7419. [PMID: 28061467 PMCID: PMC5352331 DOI: 10.18632/oncotarget.14502] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 12/27/2016] [Indexed: 12/11/2022] Open
Abstract
The immune function of the chicken spleen depends on its different compartments of red and white pulps, but little is known about the mechanism underlying lymphocyte homing towards the different compartments. In the present study, the role of lymphocyte homing in the chicken spleen was investigated during lipopolysaccharide (LPS) stimulation. Morphological analysis demonstrated the cuboidal endothelial cells of the splenic sheathed capillary facilitated the passage of lymphocyte homing to the chicken spleen. The tissue-specific adhesion molecules- vascular cell adhesion molecule-1 (VCAM-1) and mucosal addressin cell adhesion molecule-1 (MADCAM-1) expressed on the sheathed capillary, which suggested the high endothelial venule (HEV)-like vessels of the chicken spleen. Electron microscope analysis showed LPS activated the endothelium of the sheathed capillary and recruited lymphocytes to the chicken spleen. Transferring of 5, 6- carboxyfluorescein diacetate, succinimidyl ester (CFSE) labeled lymphocytes depicted the rout of lymphocyte homing to the compartments of the chicken spleen was from the white pulp to the red pulp. Furthermore, the mRNA and protein levels of adhesion molecular integrin β1 and VCAM-1 increased after LPS stimulation. The mechanism underlying the integrin β1 and VCAM-1 during LPS stimulation might be associated with the integrin linked kinase (ILK)- dependent regulation of protein kinase B (PKB/AKT). This study firstly shows lymphocyte homing in the chicken spleen after LPS-induced inflammation. These results contribute to our knowledge of comparative immunology and provide a better means for investigating the pharmacological strategies concerning the possible role of lymphocyte homing in inflammation and immunological reactions in infectious disease.
Collapse
Affiliation(s)
- Qian Zhang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Key Laboratory of Antibody Techniques of Ministry of Health, Nanjing Medical University, Nanjing, China
| | - Yasir Waqas
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Ping Yang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xuejing Sun
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yi Liu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Nisar Ahmed
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bing Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Quanfu Li
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lisi Hu
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yufei Huang
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Hong Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Bing Hu
- Biological experiment and Teaching Center, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qiusheng Chen
- Laboratory of Animal Cell Biology and Embryology, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|