1
|
Proskurina AS, Kupina VV, Efremov YR, Dolgova EV, Ruzanova VS, Ritter GS, Potter EA, Kirikovich SS, Levites EV, Ostanin AA, Chernykh ER, Babaeva OG, Sidorov SV, Bogachev SS. Karanahan: A Potential New Treatment Option for Human Breast Cancer and Its Validation in a Clinical Setting. BREAST CANCER: BASIC AND CLINICAL RESEARCH 2022; 16:11782234211059931. [PMID: 35185333 PMCID: PMC8851498 DOI: 10.1177/11782234211059931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction: Karanahan, a cancer treatment technology aimed at eradicating tumor-initiating stem cells, has already proven effective in 7 tumor models. Karanahan comprises the following procedures: (1) collecting surgical specimens, (2) determining the duration of the DNA repair process in tumor cells exposed to a cross-linking cytostatic agent, and (3) determining the time point, when cells, including tumor-initiating stem cells, are synchronized in the certain phase of the cell cycle after triple exposure to the cytostatic, becoming vulnerable for the terminal treatment, which is supposed to completely eliminate the rest of survived tumor-initiating stem cells. Determining these basic tumor properties allows to design the schedule for the administration of a cross-linking cytostatic and a complex composite DNA preparation. Being conducted in accordance with the schedule designed, Karanahan results in the large-scale apoptosis of tumor cells with elimination of tumor-initiating stem cells. Methods: Breast tumor specimens were obtained from patients, and basic tumor properties essential for conducting Karanahan therapy were determined. Results: We report the first use of Karanahan in patients diagnosed with breast cancer. Technical details of handling surgical specimens for determining the essential Karanahan parameters (tumor volume, cell number, cell proliferation status, etc) have been worked out. The terminally ill patient, who was undergoing palliative treatment and whose tumor specimen matched the required criteria, received a complete course of Karanahan. Conclusions: The results of the treatment conducted indicate that Karanahan technology has a therapeutic potency and can be used as a breast cancer treatment option.
Collapse
Affiliation(s)
- Anastasia S Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - Yaroslav R Efremov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vera S Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| | - Genrikh S Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A Potter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Svetlana S Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniy V Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Alexandr A Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Oksana G Babaeva
- Oncology Department, Municipal Hospital No 1, Novosibirsk, Russia
| | - Sergey V Sidorov
- Novosibirsk National Research State University, Novosibirsk, Russia.,Oncology Department, Municipal Hospital No 1, Novosibirsk, Russia
| | - Sergey S Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Proskurina AS, Gvozdeva TS, Potter EA, Dolgova EV, Orishchenko KE, Nikolin VP, Popova NA, Sidorov SV, Chernykh ER, Ostanin AA, Leplina OY, Dvornichenko VV, Ponomarenko DM, Soldatova GS, Varaksin NA, Ryabicheva TG, Uchakin PN, Rogachev VA, Shurdov MA, Bogachev SS. Five-year disease-free survival among stage II-IV breast cancer patients receiving FAC and AC chemotherapy in phase II clinical trials of Panagen. BMC Cancer 2016; 16:651. [PMID: 27538465 PMCID: PMC4990870 DOI: 10.1186/s12885-016-2711-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 08/11/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We report on the results of a phase II clinical trial of Panagen (tablet form of fragmented human DNA preparation) in breast cancer patients (placebo group n = 23, Panagen n = 57). Panagen was administered as an adjuvant leukoprotective agent in FAC and AC chemotherapy regimens. Pre-clinical studies clearly indicate that Panagen acts by activating dendritic cells and induces the development of adaptive anticancer immune response. METHODS We analyzed 5-year disease-free survival of patients recruited into the trial. RESULTS Five-year disease-free survival in the placebo group was 40 % (n = 15), compared with the Panagen arm - 53 % (n = 51). Among stage III patients, disease-free survival was 25 and 52 % for placebo (n = 8) and Panagen (n = 25) groups, respectively. Disease-free survival of patients with IIIB + C stage was as follows: placebo (n = 6)-17 % vs Panagen (n = 18)-50 %. CONCLUSIONS Disease-free survival rate (17 %) of patients with IIIB + C stage breast cancer receiving standard of care therapy is within the global range. Patients who additionally received Panagen demonstrate a significantly improved disease-free survival rate of 50 %. This confirms anticancer activity of Panagen. TRIAL REGISTRATION ClinicalTrials.gov NCT02115984 from 04/07/2014.
Collapse
Affiliation(s)
- Anastasia S Proskurina
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | | | - Ekaterina A Potter
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Evgenia V Dolgova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Konstantin E Orishchenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Valeriy P Nikolin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | - Nelly A Popova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia.,Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Sergey V Sidorov
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Oncology Department of Municipal Hospital No 1, Novosibirsk, 630047, Russia
| | - Elena R Chernykh
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099, Russia
| | - Alexandr A Ostanin
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099, Russia
| | - Olga Y Leplina
- Institute of Clinical Immunology, Siberian Branch of the Russian Academy of Medical Sciences, Novosibirsk, 630099, Russia
| | - Victoria V Dvornichenko
- Irkutsk State Medical Academy of Postgraduate Education, Irkutsk, 664049, Russia.,Regional Oncology Dispensary, Irkutsk, 664035, Russia
| | - Dmitriy M Ponomarenko
- Irkutsk State Medical Academy of Postgraduate Education, Irkutsk, 664049, Russia.,Regional Oncology Dispensary, Irkutsk, 664035, Russia
| | - Galina S Soldatova
- Novosibirsk State University, Novosibirsk, 630090, Russia.,Clinic Department of the Central Clinical Hospital, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | | | | | | | - Vladimir A Rogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia
| | | | - Sergey S Bogachev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, 10 Lavrentieva Ave, Novosibirsk, 630090, Russia.
| |
Collapse
|
3
|
Zhang J, Tian Q, Yung Chan S, Chuen Li S, Zhou S, Duan W, Zhu YZ. Metabolism and transport of oxazaphosphorines and the clinical implications. Drug Metab Rev 2006; 37:611-703. [PMID: 16393888 DOI: 10.1080/03602530500364023] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The oxazaphosphorines including cyclophosphamide (CPA), ifosfamide (IFO), and trofosfamide represent an important group of therapeutic agents due to their substantial antitumor and immuno-modulating activity. CPA is widely used as an anticancer drug, an immunosuppressant, and for the mobilization of hematopoetic progenitor cells from the bone marrow into peripheral blood prior to bone marrow transplantation for aplastic anemia, leukemia, and other malignancies. New oxazaphosphorines derivatives have been developed in an attempt to improve selectivity and response with reduced toxicity. These derivatives include mafosfamide (NSC 345842), glufosfamide (D19575, beta-D-glucosylisophosphoramide mustard), NSC 612567 (aldophosphamide perhydrothiazine), and NSC 613060 (aldophosphamide thiazolidine). This review highlights the metabolism and transport of these oxazaphosphorines (mainly CPA and IFO, as these two oxazaphosphorine drugs are the most widely used alkylating agents) and the clinical implications. Both CPA and IFO are prodrugs that require activation by hepatic cytochrome P450 (CYP)-catalyzed 4-hydroxylation, yielding cytotoxic nitrogen mustards capable of reacting with DNA molecules to form crosslinks and lead to cell apoptosis and/or necrosis. Such prodrug activation can be enhanced within tumor cells by the CYP-based gene directed-enzyme prodrug therapy (GDEPT) approach. However, those newly synthesized oxazaphosphorine derivatives such as glufosfamide, NSC 612567 and NSC 613060, do not need hepatic activation. They are activated through other enzymatic and/or non-enzymatic pathways. For example, both NSC 612567 and NSC 613060 can be activated by plain phosphodiesterase (PDEs) in plasma and other tissues or by the high-affinity nuclear 3'-5' exonucleases associated with DNA polymerases, such as DNA polymerases and epsilon. The alternative CYP-catalyzed inactivation pathway by N-dechloroethylation generates the neurotoxic and nephrotoxic byproduct chloroacetaldehyde (CAA). Various aldehyde dehydrogenases (ALDHs) and glutathione S-transferases (GSTs) are involved in the detoxification of oxazaphosphorine metabolites. The metabolism of oxazaphosphorines is auto-inducible, with the activation of the orphan nuclear receptor pregnane X receptor (PXR) being the major mechanism. Oxazaphosphorine metabolism is affected by a number of factors associated with the drugs (e.g., dosage, route of administration, chirality, and drug combination) and patients (e.g., age, gender, renal and hepatic function). Several drug transporters, such as breast cancer resistance protein (BCRP), multidrug resistance associated proteins (MRP1, MRP2, and MRP4) are involved in the active uptake and efflux of parental oxazaphosphorines, their cytotoxic mustards and conjugates in hepatocytes and tumor cells. Oxazaphosphorine metabolism and transport have a major impact on pharmacokinetic variability, pharmacokinetic-pharmacodynamic relationship, toxicity, resistance, and drug interactions since the drug-metabolizing enzymes and drug transporters involved are key determinants of the pharmacokinetics and pharmacodynamics of oxazaphosphorines. A better understanding of the factors that affect the metabolism and transport of oxazaphosphorines is important for their optional use in cancer chemotherapy.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore
| | | | | | | | | | | | | |
Collapse
|
4
|
Conner-Spady BL, Cumming C, Nabholtz JM, Jacobs P, Stewart D. A longitudinal prospective study of health-related quality of life in breast cancer patients following high-dose chemotherapy with autologous blood stem cell transplantation. Bone Marrow Transplant 2005; 36:251-9. [PMID: 15937502 DOI: 10.1038/sj.bmt.1705032] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This prospective longitudinal study examined both short- and long-term changes in health-related quality of life (HRQL) in 52 breast cancer patients with poor prognosis receiving high-dose chemotherapy (HDC) treatment with autologous blood stem cell transplantation (ASCT). HRQL was measured seven times from baseline to 2 years post enrollment with the Functional Living Index-Cancer (FLIC), the EuroQol (EQ-5D), and a quality of life visual analogue scale. The percentage of questionnaires returned at each assessment time ranged from 80 to 92%. All three measures showed a similar pattern of change, with HRQL decreasing following administration of HDC, and returning to baseline levels 8 weeks post HDC. A repeated-measures analysis of variance showed that the FLIC at 2 years was significantly better than baseline (P=<0.0001). Difficulty sleeping, headaches, and decreased sexual interest were the most common symptoms reported in the longer term. Our results have implications for early psychosocial intervention in the care of breast cancer patients with poor prognosis undergoing treatment with HDC and ASCT because such interventions can further improve the quality of their survival.
Collapse
|