1
|
Sastre J, Pérez S, Sabater L, Rius-Pérez S. Redox signaling in the pancreas in health and disease. Physiol Rev 2025; 105:593-650. [PMID: 39324871 DOI: 10.1152/physrev.00044.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 09/11/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024] Open
Abstract
This review addresses oxidative stress and redox signaling in the pancreas under healthy physiological conditions as well as in acute pancreatitis, chronic pancreatitis, pancreatic cancer, and diabetes. Physiological redox homeodynamics is maintained mainly by NRF2/KEAP1, NF-κB, protein tyrosine phosphatases, peroxisome proliferator-activated receptor-γ coactivator 1α (PGC1α), and normal autophagy. Depletion of reduced glutathione (GSH) in the pancreas is a hallmark of acute pancreatitis and is initially accompanied by disulfide stress, which is characterized by protein cysteinylation without increased glutathione oxidation. A cross talk between oxidative stress, MAPKs, and NF-κB amplifies the inflammatory cascade, with PP2A and PGC1α as key redox regulatory nodes. In acute pancreatitis, nitration of cystathionine-β synthase causes blockade of the transsulfuration pathway leading to increased homocysteine levels, whereas p53 triggers necroptosis in the pancreas through downregulation of sulfiredoxin, PGC1α, and peroxiredoxin 3. Chronic pancreatitis exhibits oxidative distress mediated by NADPH oxidase 1 and/or CYP2E1, which promotes cell death, fibrosis, and inflammation. Oxidative stress cooperates with mutant KRAS to initiate and promote pancreatic adenocarcinoma. Mutant KRAS increases mitochondrial reactive oxygen species (ROS), which trigger acinar-to-ductal metaplasia and progression to pancreatic intraepithelial neoplasia (PanIN). ROS are maintained at a sufficient level to promote cell proliferation, while avoiding cell death or senescence through formation of NADPH and GSH and activation of NRF2, HIF-1/2α, and CREB. Redox signaling also plays a fundamental role in differentiation, proliferation, and insulin secretion of β-cells. However, ROS overproduction promotes β-cell dysfunction and apoptosis in type 1 and type 2 diabetes.
Collapse
Affiliation(s)
- Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
| | - Luis Sabater
- Liver, Biliary and Pancreatic Unit, Hospital Clínico, Department of Surgery, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, Valencia, Spain
- Department of Cell Biology, Functional Biology and Physical Anthropology, Faculty of Biology, University of Valencia, Valencia, Spain
| |
Collapse
|
2
|
Wang D, Xie A, Luo J, Li L, Zhang Z, Deng W, Yang B, Chang Y, Liang Y. Thiotaurine inhibits melanoma progression by enhancing Ca 2+ overload-induced cellular apoptosis. J Dermatol Sci 2025; 118:29-37. [PMID: 40189970 DOI: 10.1016/j.jdermsci.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Melanoma is the most dangerous type of skin cancer with poor therapy outcomes. Since malignant cells are more susceptible to Ca2+ overload than normal cells, activating Ca2+ overload-mediated apoptosis may be a promising strategy to inhibit melanoma progression. Hydrogen sulfide (H2S) donors can regulate Ca2+ channels, but their effects on melanoma cells remain unclear. OBJECTIVE To explore the effects of Thiotaurine (TTAU), an H2S donor, on melanoma cells and its underlying mechanisms. METHODS We tested the effect of TTAU by culturing melanoma cells in vitro and establishing the xenograft model of mice in vivo. Cell proliferation and apoptosis were assessed using the CCK-8 test and flow cytometry. Molecules involved in apoptosis or Ca2+-related signal transduction were analyzed by western blotting. Immunofluorescence was used to measure Ca2+ levels, mitochondrial damage, and reactive oxygen species (ROS). RESULTS TTAU significantly reduced melanoma cell viability and induced apoptosis both in vitro and in vivo. Mechanistically, TTAU increased intracellular Ca2+, upregulated transient receptor potential vanilloid 1(TRPV1), and decreased activating transcription factor 3(ATF3) by nuclear factor of activated T cell cytoplasmic 1(NFATc1). TTAU also caused mitochondrial damage and ROS overproduction, which also promoted apoptosis. CONCLUSION We first elucidate that TTAU inhibits melanoma progression by activating Ca2+ influx-NFATc1-ATF3 signaling and aggravating mitochondrial oxidative stress, in which TRPV1 may act as an amplifier for Ca2+ influx. Our research is expected to provide new ideas for the treatment of tumors such as melanoma, as well as the clinical application of reactive sulfur species-based drugs.
Collapse
Affiliation(s)
- Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ansheng Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiwen Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Li D, Jin S, Teng X, Wang P, He K, Cao L, Du J, Guo Q, Xiao L, Xue H, Tian D, An C, Wu Y. Hydrogen sulfide attenuates sepsis-induced cardiac dysfunction in infant rats by inhibiting the expression of cold-inducible RNA-binding protein. Biosci Rep 2025; 45:BSR20241398. [PMID: 39907066 DOI: 10.1042/bsr20241398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/02/2024] [Accepted: 02/04/2025] [Indexed: 02/06/2025] Open
Abstract
Sepsis-induced cardiac dysfunction is one of the most common complications of sepsis. It is also a major cause of death in pediatric intensive care units. The underlying mechanism of sepsis-induced cardiac dysfunction remains elusive. Cold-inducible RNA-binding protein (CIRP) is a damage-associated molecular pattern that is up-regulated during sepsis. Hydrogen sulfide (H2S) has been shown to play a protective role in sepsis-induced cardiac dysfunction in adult animals. The present study aimed to determine whether H2S ameliorates the cardiac function in infant rats by inhibiting CIRP-mediated sepsis-induced cardiac dysfunction. Rat pups aged 17-18 days were subjected to cecal ligation and puncture (CLP) to induce sepsis. Six hours after CLP, hemodynamic results demonstrated that there was a significant decrease in +dP/dtmax, -dP/dtmax, left ventricular ejection fraction, and left ventricular shortening fraction, indicating cardiac dysfunction. The plasma levels of myocardial injury markers such as creatine kinase-myocardial band and cardiac troponin I were significantly increased at 6 h after CLP. The inhibition of CIRP with C23 improved the cardiac function of the rats with CLP-induced sepsis, accompanied by a significant decrease in endoplasmic reticulum stress (ERS) activation. Moreover, treatment with sodium 4-phenylbutyrate (an inhibitor of ERS) ameliorated myocardial injury and dysfunction, accompanied by a significant decrease in ERS activation. Sodium hydrosulfide, a H2S donor, ameliorated CLP-induced cardiac dysfunction and decreased CIRP levels and ERS. In contrast, the inhibition of endogenous H2S production by propargylglycine (a cystathionine-γ-lyase inhibitor) aggravated CLP-induced cardiac dysfunction and increased CIRP levels. In conclusion, the present study demonstrated that H2S exerted cardioprotective effects by inhibiting the CIRP/ERS pathway in infant rats with sepsis. These findings might indicate a novel target in the treatment of sepsis in infants.
Collapse
Affiliation(s)
- Desi Li
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Department of Medical, Hebei Medical University Third Hospital, Hebei 050051, China
| | - Sheng Jin
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Xu Teng
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Ping Wang
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Kaichuan He
- Clinical Medicine Research Center, Hebei General Hospital, Hebei 050051, China
| | - Lijing Cao
- Department of Pediatric Intensive Care Unit, Hebei Children's Hospital, Hebei 050031, China
| | - Jiexian Du
- Gynecology and Obstetrics, The Second Hospital of Hebei Medical University, Hebei 050000, China
| | - Qi Guo
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Lin Xiao
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Hongmei Xue
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Danyang Tian
- Department of Physiology, Hebei Medical University, Hebei 050017, China
| | - Cuixia An
- Department of Psychiatry, The First Hospital of Hebei Medical University, Hebei 050000, China
| | - Yuming Wu
- Department of Physiology, Hebei Medical University, Hebei 050017, China
- Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, Hebei 050031, China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei 050017, China
- Hebei Key Laboratory of Cardiovascular Homeostasis and Aging, Hebei 050017, China
| |
Collapse
|
4
|
Zhang R, Shi W, Wu X, Yu Q, Xiao Y. Application of hydrogen sulfide donor conjugates in different diseases. Nitric Oxide 2025; 154:128-139. [PMID: 39662602 DOI: 10.1016/j.niox.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/05/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
As an endogenous gas signaling molecule, hydrogen sulfide (H2S) has been proved to have a variety of biological activities. Studies have shown that in some disease state H2S concentration in the body is lower than normal state. Based on these findings, exogenous H2S supplementation is expected to be an effective treatment for many diseases. In recent years, a lot of H2S-releasing substances, namely H2S donors, have emerged as H2S sources. Specifically, various H2S donors also could be connected to drugs or compounds to form H2S donor conjugates. Many studies have found that H2S donor conjugates can not only retain the activity of the parent drug, but also reduce the adverse effects of the parent drug, this makes H2S donor conjugates to be a new kind of drug candidates. In this article, H2S donor conjugates will be reviewed and classified according to different diseases, such as inflammation, cardiovascular and cerebrovascular diseases, diseases of central nervous system and cancer. This review aims to provide an idea for researchers for further study of H2S and H2S donor conjugates.
Collapse
Affiliation(s)
- Rui Zhang
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Wumei Shi
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaoyan Wu
- College of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Qingfeng Yu
- College of Science, China Pharmaceutical University, Nanjing, 211198, China.
| | - Ying Xiao
- College of Science, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
5
|
Zhu YX, Yang Q, Zhang YP, Liu ZG. FGF2 Functions in H 2S's Attenuating Effect on Brain Injury Induced by Deep Hypothermic Circulatory Arrest in Rats. Mol Biotechnol 2024; 66:3526-3537. [PMID: 37919618 PMCID: PMC11564249 DOI: 10.1007/s12033-023-00952-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Deep hypothermic circulatory arrest (DHCA) can protect the brain during cardiac and aortic surgery by cooling the body, but meanwhile, temporary or permanent brain injury may arise. H2S protects neurons and the central nervous system, especially from secondary neuronal injury. We aim to unveil part of the mechanism of H2S's attenuating effect on brain injury induced by DHCA by exploring crucial target genes, and further promote the clinical application of H2S in DHCA. Nine SD rats were utilized to provide histological and microarray samples, and further the differential expression analysis. Then we conducted GO and KEGG pathway enrichment analyses on candidate genes. The protein-protein interaction (PPI) networks were performed by STRING and GeneMANIA. Crucial target genes' expression was validated by qRT-PCR and western blot. Histological study proved DHCA's damaging effect and H2S's repairing effect on brain. Next, we got 477 candidate genes by analyzing differentially expressed genes. The candidate genes were enriched in 303 GO terms and 28 KEGG pathways. Then nine genes were selected as crucial target genes. The function prediction by GeneMANIA suggested their close relation to immunity. FGF2 was identified as the crucial gene. FGF2 plays a vital role in the pathway when H2S attenuates brain injury after DHCA. Our research provides more information for understanding the mechanism of H2S attenuating brain injury after DHCA. We infer the process might probably be closely associated with immunity.
Collapse
Affiliation(s)
- Yu-Xiang Zhu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China
| | - Qin Yang
- Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Binhai District, Tianjin, 300457, People's Republic of China
| | - You-Peng Zhang
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China
| | - Zhi-Gang Liu
- Department of Cardiovascular Surgery, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 61 No. 3 Ave, Binhai District, Tianjin, 300457, People's Republic of China.
| |
Collapse
|
6
|
Shahid A, Bhatia M. Hydrogen Sulfide: A Versatile Molecule and Therapeutic Target in Health and Diseases. Biomolecules 2024; 14:1145. [PMID: 39334911 PMCID: PMC11430449 DOI: 10.3390/biom14091145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, research has unveiled the significant role of hydrogen sulfide (H2S) in many physiological and pathological processes. The role of endogenous H2S, H2S donors, and inhibitors has been the subject of studies that have aimed to investigate this intriguing molecule. The mechanisms by which H2S contributes to different diseases, including inflammatory conditions, cardiovascular disease, viral infections, and neurological disorders, are complex. Despite noteworthy progress, several questions remain unanswered. H2S donors and inhibitors have shown significant therapeutic potential for various diseases. This review summarizes our current understanding of H2S-based therapeutics in inflammatory conditions, cardiovascular diseases, viral infections, and neurological disorders.
Collapse
Affiliation(s)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| |
Collapse
|
7
|
Jain SK, Margret JJ, Parsanathan R, Velusamy T. Efficacy of L-cysteine in increasing circulatory hydrogen sulfide, nitrite, and 25(OH)VD levels in ZDF rats and in vitro treatment of H 2S and NO 2 in upregulating VD hydroxylase genes in monocytes. J Dairy Sci 2024:S0022-0302(24)01116-0. [PMID: 39245163 DOI: 10.3168/jds.2024-25169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
Dairy products, such as whey proteins, have been effectively utilized to enhance the effectiveness of vitamin D fortification and optimize circulating 25(OH)VD levels. Whey protein is rich in L-cysteine (LC) which is the precursor of hydrogen sulfide (H2S), enhances glutathione (GSH) biosynthesis, and promotes positive nitrogen balance. Zucker diabetic rats (ZDF) were used as a model in this study, to examine the hypothesis that LC supplementation enhances blood levels of H2S and nitrite (NO2) while reducing inflammation biomarkers. Rats were gavaged daily (orally) with either saline placebo or L-cysteine along with a high-calorie diet starting at 6 weeks of age. Fasting blood levels showed LC supplementation significantly increased circulatory levels of H2S and NO2 compared with placebo rats. LC supplementation increased plasma concentration of 25(OH)VD and vitamin C and lowered leptin and body weight gain in ZDF rats. Furthermore, to assess the impact of H2S and NO2 in raising 25(OH)VD levels, the in vitro effect of H2S/NO2 on vitamin D metabolism genes was examined using THP-1 monocytes. The exogenous H2S and NO2 treatment upregulated the relative expression of CYP2R1 and CYP27B1 genes in cultured monocytes. This study suggests a potential mechanism for the observed increase in circulating 25(OH)VD levels following L-cysteine supplementation.
Collapse
Affiliation(s)
- Sushil K Jain
- Department of Pediatrics, LSU Health Sciences Center, Shreveport, LA 71103 USA.
| | | | - Rajesh Parsanathan
- Department of Pediatrics, LSU Health Sciences Center, Shreveport, LA 71103 USA
| | | |
Collapse
|
8
|
Jin Y, Yuan H, Liu Y, Zhu Y, Wang Y, Liang X, Gao W, Ren Z, Ji X, Wu D. Role of hydrogen sulfide in health and disease. MedComm (Beijing) 2024; 5:e661. [PMID: 39156767 PMCID: PMC11329756 DOI: 10.1002/mco2.661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 08/20/2024] Open
Abstract
In the past, hydrogen sulfide (H2S) was recognized as a toxic and dangerous gas; in recent years, with increased research, we have discovered that H2S can act as an endogenous regulatory transmitter. In mammals, H2S-catalyzing enzymes, such as cystathionine-β-synthase, cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase, are differentially expressed in a variety of tissues and affect a variety of biological functions, such as transcriptional and posttranslational modification of genes, activation of signaling pathways in the cell, and metabolic processes in tissues, by producing H2S. Various preclinical studies have shown that H2S affects physiological and pathological processes in the body. However, a detailed systematic summary of these roles in health and disease is lacking. Therefore, this review provides a thorough overview of the physiological roles of H2S in different systems and the diseases associated with disorders of H2S metabolism, such as ischemia-reperfusion injury, hypertension, neurodegenerative diseases, inflammatory bowel disease, and cancer. Meanwhile, this paper also introduces H2S donors and novel release modes, as well as the latest preclinical experimental results, aiming to provide researchers with new ideas to discover new diagnostic targets and therapeutic options.
Collapse
Affiliation(s)
- Yu‐Qing Jin
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Ya‐Fang Liu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Yi‐Wen Zhu
- School of Clinical MedicineHenan UniversityKaifengHenanChina
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xiao‐Yi Liang
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Zhi‐Guang Ren
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
| | - Xin‐Ying Ji
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- Faculty of Basic Medical SubjectsShu‐Qing Medical College of ZhengzhouZhengzhouHenanChina
| | - Dong‐Dong Wu
- Henan International Joint Laboratory for Nuclear Protein RegulationSchool of Basic Medical Sciences, School of StomatologyHenan UniversityKaifengHenanChina
- School of StomatologyHenan UniversityKaifengHenanChina
- Department of StomatologyHuaihe Hospital of Henan UniversityKaifengHenanChina
| |
Collapse
|
9
|
Jeitner TM, Azcona JA, Ables GP, Cooke D, Horowitz MC, Singh P, Kelly JM, Cooper AJL. Cystine rather than cysteine is the preferred substrate for β-elimination by cystathionine γ-lyase: implications for dietary methionine restriction. GeroScience 2024; 46:3617-3634. [PMID: 37217633 PMCID: PMC11229439 DOI: 10.1007/s11357-023-00788-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/31/2023] [Indexed: 05/24/2023] Open
Abstract
Dietary methionine restriction (MR) increases longevity by improving health. In experimental models, MR is accompanied by decreased cystathionine β-synthase activity and increased cystathionine γ-lyase activity. These enzymes are parts of the transsulfuration pathway which produces cysteine and 2-oxobutanoate. Thus, the decrease in cystathionine β-synthase activity is likely to account for the loss of tissue cysteine observed in MR animals. Despite this decrease in cysteine levels, these tissues exhibit increased H2S production which is thought to be generated by β-elimination of the thiol moiety of cysteine, as catalyzed by cystathionine β-synthase or cystathionine γ-lyase. Another possibility for this H2S production is the cystathionine γ-lyase-catalyzed β-elimination of cysteine persulfide from cystine, which upon reduction yields H2S and cysteine. Here, we demonstrate that MR increases cystathionine γ-lyase production and activities in the liver and kidneys, and that cystine is a superior substrate for cystathionine γ-lyase catalyzed β-elimination as compared to cysteine. Moreover, cystine and cystathionine exhibit comparable Kcat/Km values (6000 M-1 s-1) as substrates for cystathionine γ-lyase-catalyzed β-elimination. By contrast, cysteine inhibits cystathionine γ-lyase in a non-competitive manner (Ki ~ 0.5 mM), which limits its ability to function as a substrate for β-elimination by this enzyme. Cysteine inhibits the enzyme by reacting with its pyridoxal 5'-phosphate cofactor to form a thiazolidine and in so doing prevents further catalysis. These enzymological observations are consistent with the notion that during MR cystathionine γ-lyase is repurposed to catabolize cystine and thereby form cysteine persulfide, which upon reduction produces cysteine.
Collapse
Affiliation(s)
- Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA.
| | - Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| | - Gene P Ables
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Diana Cooke
- Orentreich Foundation for the Advancement of Science, Inc, 855 Route 301, Cold Spring, NY, 10516, USA
| | - Mark C Horowitz
- Department of Orthopedics and Rehabilitation, Yale University School of Medicine, New Haven, CT, 06510, USA
| | - Pradeep Singh
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, 516 East 72Nd St, New York, NY, 10021, USA
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, NY, 10595, USA
| |
Collapse
|
10
|
Zou J, Yuan Z, Chen X, Chen Y, Yao M, Chen Y, Li X, Chen Y, Ding W, Xia C, Zhao Y, Gao F. Hydrogen sulfide responsive nanoplatforms: Novel gas responsive drug delivery carriers for biomedical applications. Asian J Pharm Sci 2024; 19:100858. [PMID: 38362469 PMCID: PMC10867614 DOI: 10.1016/j.ajps.2023.100858] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 07/30/2023] [Accepted: 10/06/2023] [Indexed: 02/17/2024] Open
Abstract
Hydrogen sulfide (H2S) is a toxic, essential gas used in various biological and physical processes and has been the subject of many targeted studies on its role as a new gas transmitter. These studies have mainly focused on the production and pharmacological side effects caused by H2S. Therefore, effective strategies to remove H2S has become a key research topic. Furthermore, the development of novel nanoplatforms has provided new tools for the targeted removal of H2S. This paper was performed to review the association between H2S and disease, related H2S inhibitory drugs, as well as H2S responsive nanoplatforms (HRNs). This review first analyzed the role of H2S in multiple tissues and conditions. Second, common drugs used to eliminate H2S, as well as their potential for combination with anticancer agents, were summarized. Not only the existing studies on HRNs, but also the inhibition H2S combined with different therapeutic methods were both sorted out in this review. Furthermore, this review provided in-depth analysis of the potential of HRNs about treatment or detection in detail. Finally, potential challenges of HRNs were proposed. This study demonstrates the excellent potential of HRNs for biomedical applications.
Collapse
Affiliation(s)
- Jiafeng Zou
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zeting Yuan
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaojie Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - You Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Min Yao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yang Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xiang Li
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yi Chen
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Wenxing Ding
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Chuanhe Xia
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yuzheng Zhao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- CAS Center for Excellence in Brain Science, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Feng Gao
- Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Optogenetics and Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
11
|
Sun Y, Liu C. Application and value of hydrogen sulfide modulated autophagy in sepsis. Int Immunopharmacol 2023; 122:110662. [PMID: 37473711 DOI: 10.1016/j.intimp.2023.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/22/2023]
Abstract
Sepsis is is anabnormalhost immune responsecausedbyinfection. Antibiotics, anti-viral drugs, and vasoactive drugs have always been used in the traditional treatment of sepsis, but there are no specific and effective drugs in clinical practice. Autophagy is a highly conservative process in biological evolution, and plays an important role in maintaining intracellular homeostasis and cellular self-renewal. Autophagy can remove and degrade misfolding proteins and damaged organelles in cells, providing materials for cell repair and self-renewal. Hydrogen sulfide (H2S) is a colorless gas that smells likerotteneggs. It is the third endogenous gas signal molecule discovered after nitric oxide and carbon monoxide and has become a research hotspot in recent years. H2S has a variety of biological functions and plays an important role in various physiological and pathological processes. Thereisgrowingevidencethat H2S can regulate autophagy. The intervention of autophagy is a promising therapeutic strategy to improve sepsis organ damage. This article reviews the organ protection of autophagy in sepsis and the role of H2S in regulating autophagy in sepsis, revealing that H2S intervention with autophagy may be a a worthy target in sepsis treatment.
Collapse
Affiliation(s)
- Yao Sun
- Department of Critical Care Medicine, Peking University People's Hospital, China
| | - Chang Liu
- School of Medicine, Nankai University, Tianjin, China.
| |
Collapse
|
12
|
Oza PP, Kashfi K. The Triple Crown: NO, CO, and H 2S in cancer cell biology. Pharmacol Ther 2023; 249:108502. [PMID: 37517510 PMCID: PMC10529678 DOI: 10.1016/j.pharmthera.2023.108502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/16/2023] [Accepted: 07/19/2023] [Indexed: 08/01/2023]
Abstract
Nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are three endogenously produced gases with important functions in the vasculature, immune defense, and inflammation. It is increasingly apparent that, far from working in isolation, these three exert many effects by modulating each other's activity. Each gas is produced by three enzymes, which have some tissue specificities and can also be non-enzymatically produced by redox reactions of various substrates. Both NO and CO share similar properties, such as activating soluble guanylate cyclase (sGC) to increase cyclic guanosine monophosphate (cGMP) levels. At the same time, H2S both inhibits phosphodiesterase 5A (PDE5A), an enzyme that metabolizes sGC and exerts redox regulation on sGC. The role of NO, CO, and H2S in the setting of cancer has been quite perplexing, as there is evidence for both tumor-promoting and pro-inflammatory effects and anti-tumor and anti-inflammatory activities. Each gasotransmitter has been found to have dual effects on different aspects of cancer biology, including cancer cell proliferation and apoptosis, invasion and metastasis, angiogenesis, and immunomodulation. These seemingly contradictory actions may relate to each gas having a dual effect dependent on its local flux. In this review, we discuss the major roles of NO, CO, and H2S in the context of cancer, with an effort to highlight the dual nature of each gas in different events occurring during cancer progression.
Collapse
Affiliation(s)
- Palak P Oza
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, NY 10031, USA; Graduate Program in Biology, City University of New York Graduate Center, New York 10091, USA.
| |
Collapse
|
13
|
Hydrogen sulfide attenuates lung injury instigated by Bisphenol-A via suppressing inflammation and oxidative stress. BMC Pharmacol Toxicol 2022; 23:98. [PMID: 36585682 PMCID: PMC9805095 DOI: 10.1186/s40360-022-00636-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/13/2022] [Indexed: 12/31/2022] Open
Abstract
The xenoestrogen bisphenol A (BPA), a commonly used industrial chemical, has been linked to endocrine disruption. The point of the study was to consider the effects of chronic BPA exposure on the respiratory system of adult female rats, and the potential mitigating benefits of Sodium hydrosulfide (NaHS), a donor of hydrogen sulfide (H2S) administration. Detect biomarkers in Bronchoalveolar lavage fluid (BALF), including total protein content, Total cell counts, Neutrophils %, ICAM (intercellular adhesion molecule)-1 and TGF-β (Transforming growth factor beta). NaHS significantly reduced pro-inflammatory cytokines (IFN-β and MCAF,) also reduce (i.e. VCAM-1, VEGF, VIM, MMP-2, MMP-9), and reduced malondialdehyde and augmented activities of SOD and GSH-PX. Notably, H2S induced a marked decrease in the expression levels of p-extracellular signal-regulated protein kinase (p-ERK), p-c-Jun N-terminal kinase (p-JNK), and p-p38, H2S inhibits BPA-induced inflammation and injury in alveolar epithelial cells. These results suggest NaHS may prevent inflammation via the suppression of the ERK/JNK/ p-p38MAPK signaling pathway, Subsequent inhibition of inflammation, epithelial cell injury, and apoptosis may be providing insight into potential avenues for the treatment of lung injury.
Collapse
|
14
|
Chen H, Guan X, Liu Q, Yang L, Guo J, Gao F, Qi Y, Wu X, Zhang F, Tian X. Co-assembled Nanocarriers of De Novo Thiol-Activated Hydrogen Sulfide Donors with an RGDFF Pentapeptide for Targeted Therapy of Non-Small-Cell Lung Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53475-53490. [PMID: 36413755 DOI: 10.1021/acsami.2c14570] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Hydrogen sulfide releasing agents (or H2S donors) have been recognized gasotransmitters with potent cytoprotective and anticancer properties. However, the clinical application of H2S donors has been hampered by their fast H2S-release, instability, and lack of tumor targeting, despite the unclear molecular mechanism of H2S action. Here we rationally designed an amphiphilic pentapeptide (RGDFF) to coassemble with the de novo designed thiol-activated H2S donors (CL2/3) into nanocarriers for targeted therapy of non-small-cell lung cancer, which has been proved as a one-stone-three-birds strategy. The coassembly approach simply solved the solubility issue of CL2/3 by the introduction of electron-donating groups (phenyl rings) to slow down the H2S release while dramatically improving their biocompatible interface, circulation time, slow release of H2S, and tumor targeting. Experimental results confirmed that as-prepared coassembled nanocarriers can significantly induce the intrinsic apoptotic, effectively arrest cell cycle at the G2/M phase, inhibit H2S-producing enzymes, and lead to mitochondrial dysfunction by increasing intracellular ROS production in H1299 cells. The mouse tumorigenesis experiments further confirmed the in vivo anticancer effects of the coassembled nanocarriers, and such treatment made tumors more sensitive to radiotherapy then improved the prognosis of tumor-bearing mice, which holds great promise for developing a new combined approach for NSCLC.
Collapse
Affiliation(s)
- Hong Chen
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiaoying Guan
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Qianqian Liu
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| | - Longcui Yang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
| | - Jun Guo
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Feng Gao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Yueheng Qi
- Luoyang Key Laboratory of Organic Functional Molecules, College of Food and Drug, Luoyang Normal University, Luoyang 471934, China
| | - Xiongting Wu
- Respiratory and Critical Care Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Feng Zhang
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- Key Laboratory of Optical Technology and Instrument for Medicine, Ministry of Education, University of Shanghai for Science and Technology, Shanghai 200093, China
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, Wenzhou 325000, China
| | - Xiumei Tian
- The School of Biomedical Engineering, Guangzhou Medical University, Xinzao Town, Panyu District, Guangzhou 511436, China
- The Emergency Department, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan 511518, China
| |
Collapse
|
15
|
Ma B, Mao Y, Chang L, Dai T, Xin X, Ma F, Wang Z, Shen Z, Mei Q, Zhu Y. S-Propargyl-cysteine prevents concanavalin A-induced immunological liver injury in mice. PHARMACEUTICAL BIOLOGY 2022; 60:1169-1176. [PMID: 35701112 PMCID: PMC9225694 DOI: 10.1080/13880209.2022.2080234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
Abstract
CONTEXT S-Propargyl-cysteine (SPRC), an endogenous H2S modulator, exerts anti-inflammatory effects on cardiovascular and neurodegenerative disease, but it remains unknown whether SPRC can prevent autoimmune hepatitis. OBJECTIVE To evaluate the preventive effect of SPRC on concanavalin A (Con A)-induced liver injury and uncover the underlying mechanisms. MATERIALS AND METHODS Mice were randomly divided into five groups: control, Con A, SPRC (5 and 10 mg/kg injected intravenously once a day for 7 days), and propargylglycine (PAG; 50 mg/kg injected intraperitoneally 0.5 h before SPRC for 7 days). All mice except the controls were intravenously injected with Con A (20 mg/kg) on day 7. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels were evaluated using kits. Inflammatory cytokines (TNF-α and IFN-γ) in the blood and in the liver were detected by ELISA Kit and real-time PCR, respectively. The expression of mitogen-activated protein kinase (MAPK) pathway proteins (p-JNK and p-Akt) and apoptosis proteins (Bax and Bcl-2) was detected using western blotting. RESULTS SPRC reduced the levels of AST (p < 0.05) and ALT (p < 0.01) and decreased the release of the inflammatory cytokines. Mechanistically, SPRC increased H2S level (p < 0.05) and promoted cystathionine γ-lyase (CSE) expression (p < 0.05). SPRC inhibited the MAPK pathway activation and the apoptosis pathway. All the effects of SPRC were blocked by the CSE inhibitor PAG. CONCLUSIONS SPRC prevents Con A-induced liver injury in mice by promoting CSE expression and producing endogenous H2S. The mechanisms include reducing the release of inflammatory cytokines, attenuating MAPK pathway activation, and alleviating apoptosis.
Collapse
Affiliation(s)
- Beilei Ma
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Yicheng Mao
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Lingling Chang
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Tao Dai
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Xiaoming Xin
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Fenfen Ma
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhijun Wang
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Zhuqing Shen
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
| | - Qibing Mei
- China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yizhun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules, School of Pharmacy, Fudan University, Shanghai, China
- State Key Laboratory of Quality Research in Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau, China
| |
Collapse
|
16
|
Zhu Z, Lian X, Bhatia M. Hydrogen Sulfide: A Gaseous Mediator and Its Key Role in Programmed Cell Death, Oxidative Stress, Inflammation and Pulmonary Disease. Antioxidants (Basel) 2022; 11:2162. [PMID: 36358533 PMCID: PMC9687070 DOI: 10.3390/antiox11112162] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/21/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S) has been acknowledged as a novel gaseous mediator. The metabolism of H2S in mammals is tightly controlled and is mainly achieved by many physiological reactions catalyzed by a suite of enzymes. Although the precise actions of H2S in regulating programmed cell death, oxidative stress and inflammation are yet to be fully understood, it is becoming increasingly clear that H2S is extensively involved in these crucial processes. Since programmed cell death, oxidative stress and inflammation have been demonstrated as three important mechanisms participating in the pathogenesis of various pulmonary diseases, it can be inferred that aberrant H2S metabolism also functions as a critical contributor to pulmonary diseases, which has also been extensively investigated. In the meantime, substantial attention has been paid to developing therapeutic approaches targeting H2S for pulmonary diseases. In this review, we summarize the cutting-edge knowledge on the metabolism of H2S and the relevance of H2S to programmed cell death, oxidative stress and inflammation. We also provide an update on the crucial roles played by H2S in the pathogenesis of several pulmonary diseases. Finally, we discuss the perspective on targeting H2S metabolism in the treatment of pulmonary diseases.
Collapse
Affiliation(s)
- Zhixing Zhu
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Xihua Lian
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
- Department of Internal Medicine (Pulmonary and Critical Care Medicine), The Second Clinical Medical School of Fujian Medical University, Quanzhou 362002, China
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand
| |
Collapse
|
17
|
Ahn BK, Ahn YJ, Lee YJ, Lee YH, Lee GJ. Simple and Sensitive Detection of Bacterial Hydrogen Sulfide Production Using a Paper-Based Colorimetric Assay. SENSORS (BASEL, SWITZERLAND) 2022; 22:5928. [PMID: 35957485 PMCID: PMC9371415 DOI: 10.3390/s22155928] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 06/15/2023]
Abstract
Hydrogen sulfide (H2S) is known to participate in bacteria-induced inflammatory response in periodontal diseases. Therefore, it is necessary to quantify H2S produced by oral bacteria for diagnosis and treatment of oral diseases including halitosis and periodontal disease. In this study, we introduce a paper-based colorimetric assay for detecting bacterial H2S utilizing silver/Nafion/polyvinylpyrrolidone membrane and a 96-well microplate. This H2S-sensing paper showed a good sensitivity (8.27 blue channel intensity/μM H2S, R2 = 0.9996), which was higher than that of lead acetate paper (6.05 blue channel intensity/μM H2S, R2 = 0.9959). We analyzed the difference in H2S concentration released from four kinds of oral bacteria (Eikenella corrodens, Streptococcus sobrinus, Streptococcus mutans, and Lactobacillus casei). Finally, the H2S level in Eikenella corrodens while varying the concentration of cysteine and treatment time was quantified. This paper-based colorimetric assay can be utilized as a simple and effective tool for in vitro screening of H2S-producing ability of many bacteria as well as salivary H2S analysis.
Collapse
Affiliation(s)
- Byung-Ki Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yong-Jin Ahn
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Young-Ju Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Yeon-Hee Lee
- Department of Orofacial Pain and Oral Medicine, Kyung Hee University Dental Hospital, Kyung Hee University School of Dentistry, Seoul 02447, Korea
| | - Gi-Ja Lee
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
- Department of Medical Engineering, Kyung Hee University Graduate School, Seoul 02447, Korea
| |
Collapse
|
18
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
19
|
Magli E, Perissutti E, Santagada V, Caliendo G, Corvino A, Esposito G, Esposito G, Fiorino F, Migliaccio M, Scognamiglio A, Severino B, Sparaco R, Frecentese F. H 2S Donors and Their Use in Medicinal Chemistry. Biomolecules 2021; 11:1899. [PMID: 34944543 PMCID: PMC8699746 DOI: 10.3390/biom11121899] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/30/2022] Open
Abstract
Hydrogen sulfide (H2S) is a ubiquitous gaseous signaling molecule that has an important role in many physiological and pathological processes in mammalian tissues, with the same importance as two others endogenous gasotransmitters such as NO (nitric oxide) and CO (carbon monoxide). Endogenous H2S is involved in a broad gamut of processes in mammalian tissues including inflammation, vascular tone, hypertension, gastric mucosal integrity, neuromodulation, and defense mechanisms against viral infections as well as SARS-CoV-2 infection. These results suggest that the modulation of H2S levels has a potential therapeutic value. Consequently, synthetic H2S-releasing agents represent not only important research tools, but also potent therapeutic agents. This review has been designed in order to summarize the currently available H2S donors; furthermore, herein we discuss their preparation, the H2S-releasing mechanisms, and their -biological applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Via D. Montesano 49, 80131 Napoli, Italy; (E.M.); (E.P.); (V.S.); (G.C.); (A.C.); (G.E.); (G.E.); (F.F.); (M.M.); (A.S.); (B.S.); (R.S.)
| |
Collapse
|
20
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
21
|
Sun HJ, Wu ZY, Nie XW, Wang XY, Bian JS. An Updated Insight Into Molecular Mechanism of Hydrogen Sulfide in Cardiomyopathy and Myocardial Ischemia/Reperfusion Injury Under Diabetes. Front Pharmacol 2021; 12:651884. [PMID: 34764865 PMCID: PMC8576408 DOI: 10.3389/fphar.2021.651884] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases are the most common complications of diabetes, and diabetic cardiomyopathy is a major cause of people death in diabetes. Molecular, transcriptional, animal, and clinical studies have discovered numerous therapeutic targets or drugs for diabetic cardiomyopathy. Within this, hydrogen sulfide (H2S), an endogenous gasotransmitter alongside with nitric oxide (NO) and carbon monoxide (CO), is found to play a critical role in diabetic cardiomyopathy. Recently, the protective roles of H2S in diabetic cardiomyopathy have attracted enormous attention. In addition, H2S donors confer favorable effects in myocardial infarction, ischaemia-reperfusion injury, and heart failure under diabetic conditions. Further studies have disclosed that multiplex molecular mechanisms are responsible for the protective effects of H2S against diabetes-elicited cardiac injury, such as anti-oxidative, anti-apoptotic, anti-inflammatory, and anti-necrotic properties. In this review, we will summarize the current findings on H2S biology and pharmacology, especially focusing on the novel mechanisms of H2S-based protection against diabetic cardiomyopathy. Also, the potential roles of H2S in diabetes-aggravated ischaemia-reperfusion injury are discussed.
Collapse
Affiliation(s)
- Hai-Jian Sun
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Zhi-Yuan Wu
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xiao-Wei Nie
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xin-Yu Wang
- Department of Endocrinology, The First Affiliated Hospital of Shenzhen University (Shenzhen Second People's Hospital), Shenzhen, China
| | - Jin-Song Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, China.,National University of Singapore (Suzhou) Research Institute, Suzhou, China
| |
Collapse
|
22
|
Kumar A, Bhatia M. Role of Hydrogen Sulfide, Substance P and Adhesion Molecules in Acute Pancreatitis. Int J Mol Sci 2021; 22:12136. [PMID: 34830018 PMCID: PMC8622943 DOI: 10.3390/ijms222212136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/02/2023] Open
Abstract
Inflammation is a natural response to tissue injury. Uncontrolled inflammatory response leads to inflammatory disease. Acute pancreatitis is one of the main reasons for hospitalization amongst gastrointestinal disorders worldwide. It has been demonstrated that endogenous hydrogen sulfide (H2S), a gasotransmitter and substance P, a neuropeptide, are involved in the inflammatory process in acute pancreatitis. Cell adhesion molecules (CAM) are key players in inflammatory disease. Immunoglobulin (Ig) gene superfamily, selectins, and integrins are involved at different steps of leukocyte migration from blood to the site of injury. When the endothelial cells get activated, the CAMs are upregulated which leads to them interacting with leukocytes. This review summarizes our current understanding of the roles H2S, substance P and adhesion molecules play in acute pancreatitis.
Collapse
Affiliation(s)
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch 8140, New Zealand;
| |
Collapse
|
23
|
Ouyang X, Becker E, Bone NB, Johnson MS, Craver J, Zong WX, Darley-Usmar VM, Zmijewski JW, Zhang J. ZKSCAN3 in severe bacterial lung infection and sepsis-induced immunosuppression. J Transl Med 2021; 101:1467-1474. [PMID: 34504306 PMCID: PMC8868012 DOI: 10.1038/s41374-021-00660-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 11/22/2022] Open
Abstract
The mortality rates among patients who initially survive sepsis are, in part, associated with a high risk of secondary lung infections and respiratory failure. Given that phagolysosomes are important for intracellular killing of pathogenic microbes, we investigated how severe lung infections associated with post-sepsis immunosuppression affect phagolysosome biogenesis. In mice with P. aeruginosa-induced pneumonia, we found a depletion of both phagosomes and lysosomes, as evidenced by decreased amounts of microtubule associated protein light chain 3-II (LC3-II) and lysosomal-associated membrane protein (LAMP1). We also found a loss of transcription factor E3 (TFE3) and transcription factor EB (TFEB), which are important activators for transcription of genes encoding autophagy and lysosomal proteins. These events were associated with increased expression of ZKSCAN3, a repressor for transcription of genes encoding autophagy and lysosomal proteins. Zkscan3-/- mice had increased expression of genes involved in the autophagy-lysosomal pathway along with enhanced killing of P. aeruginosa in the lungs, as compared to wild-type mice. These findings highlight the involvement of ZKSCAN3 in response to severe lung infection, including susceptibility to secondary bacterial infections due to immunosuppression.
Collapse
Affiliation(s)
- Xiaosen Ouyang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Eugene Becker
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nathaniel B Bone
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Michelle S Johnson
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason Craver
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei-Xing Zong
- Department of Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Victor M Darley-Usmar
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jaroslaw W Zmijewski
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Jianhua Zhang
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA.
- Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
24
|
Ravi R, Kumaraswamy A, Chauhan P, Subramaniam Rajesh B. Exogenous administration of hydrogen sulfide alleviates homocysteine induced inflammation in ARPE-19 cells. Exp Eye Res 2021; 212:108759. [PMID: 34499917 DOI: 10.1016/j.exer.2021.108759] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 08/21/2021] [Accepted: 09/01/2021] [Indexed: 02/03/2023]
Abstract
Plasma homocysteine (Hcy) is an independent risk factor for Age related macular degeneration (AMD) and an inducer of inflammation. Homocysteine catabolism releases hydrogen sulfide (H2S). H2S has controversial effects on inflammation. In this study we have analysed the endogenous and exogenous H2S in modulating inflammation using adult retinal pigment epithelial (ARPE-19) cells as an in vitro model for AMD. ARPE-19 cells were treated with various concentrations of Hcy (15, 30 and 50 μM) for 3 h. Expression of Hcy transulfuration genes (CBS, CSE) by qPCR and western blot. H2S levels were measured using Free Radical Analyzer System (WPI, USA). The inflammatory markers (IL-6 and IL-8) were evaluated using real-time PCR and ELISA. Hcy exposure increased CBS protein expression, hydrogen sulfide levels and pro-inflammatory cytokines, modulating CBS by silencing did not alter H2S levels, but inhibition of CSE with PAG inhibited H2S production and decreased cytokine (IL-6 and IL-8) levels. On the contrary exogenous supply of hydrogen sulfide with NaHS and by compound 1c showed anti-inflammatory effects even in the presence of Hcy. This study shows that exogenous delivery of H2S decreases inflammation in retinal pigment epithelial cells on exposure to Hcy in ARPE-19 cells.
Collapse
Affiliation(s)
- Ramya Ravi
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India; School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, India
| | - Anand Kumaraswamy
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India
| | - Preeti Chauhan
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan Pune, 411 008, Maharashtra, India
| | - Bharathidevi Subramaniam Rajesh
- R.S. Mehta Jain Department of Biochemistry and Cell Biology, KBIRVO, Vision Research Foundation, Sankara Nethralaya, Chennai, 600006, India.
| |
Collapse
|
25
|
Grace J, Bowden NB. Synthesis and Hydrogen Sulfide Releasing Properties of Diaminodisulfides and Dialkoxydisulfides. ACS OMEGA 2021; 6:17741-17747. [PMID: 34278160 PMCID: PMC8280695 DOI: 10.1021/acsomega.1c02585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Heterosubstituted disulfides are an understudied class of molecules that have been used in biological studies, but they have not been investigated for their ability to release hydrogen sulfide (H2S). The synthesis of two sets of chemicals with the diaminodisulfide (NSSN) and dialkoxydisulfide (OSSO) functional groups was reported. These chemicals were synthesized from commercially available sulfur monochloride or a simple disulfur transfer reagent. Both the diaminodisulfide and dialkoxydisulfide functional groups were found to have rapid rates of H2S release in the presence of excess thiol. The release of H2S was complete with 10 min, and the only byproducts were conversion of the thiols into disulfides and the amines or alcohols originally used in the synthesis of the diaminodisulfide or dialkoxydisulfide functional groups. These results will allow the design of H2S releasing chemicals that also release natural, biocompatible alcohols or amines. Chemicals with the diaminodisulfide and dialkoxydisulfide functional groups may find applications in medicine where a controlled, burst release of H2S is needed.
Collapse
|
26
|
Abstract
Significance: Inflammation is a normal response to injury, but uncontrolled inflammation can lead to several diseases. In recent years, research has shown endogenously synthesized hydrogen sulfide (H2S) to be a novel mediator of inflammation. This review summarizes the current understanding and recent advances of H2S role with respect to inflammation in different diseases. Recent Advances: Promising early results from clinical studies suggest an important role of H2S in human inflammatory disease. Critical Issues: Defining the precise mechanism by which H2S contributes to inflammation is a complex challenge, and there is active ongoing research that is focused on addressing this question. Most of this work has been conducted on animal models of human disease and isolated/cultured cells, and its translation to the clinic is another challenge in the area of H2S research. Future Directions: Defining the mechanism by which H2S acts as an inflammatory mediator will help us better understand different inflammatory diseases and help develop novel therapeutic approaches for these diseases.
Collapse
Affiliation(s)
- Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Ravinder Reddy Gaddam
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| |
Collapse
|
27
|
The Role of Hydrogen Sulfide in Respiratory Diseases. Biomolecules 2021; 11:biom11050682. [PMID: 34062820 PMCID: PMC8147381 DOI: 10.3390/biom11050682] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 02/08/2023] Open
Abstract
Respiratory diseases are leading causes of death and disability around the globe, with a diverse range of health problems. Treatment of respiratory diseases and infections has been verified to be thought-provoking because of the increasing incidence and mortality rate. Hydrogen sulfide (H2S) is one of the recognized gaseous transmitters involved in an extensive range of cellular functions, and physiological and pathological processes in a variety of diseases, including respiratory diseases. Recently, the therapeutic potential of H2S for respiratory diseases has been widely investigated. H2S plays a vital therapeutic role in obstructive respiratory disease, pulmonary fibrosis, emphysema, pancreatic inflammatory/respiratory lung injury, pulmonary inflammation, bronchial asthma and bronchiectasis. Although the therapeutic role of H2S has been extensively studied in various respiratory diseases, a concrete literature review will have an extraordinary impact on future therapeutics. This review provides a comprehensive overview of the effective role of H2S in respiratory diseases. Besides, we also summarized H2S production in the lung and its metabolism processes in respiratory diseases.
Collapse
|
28
|
Suzuki Y, Saito J, Munakata M, Shibata Y. Hydrogen sulfide as a novel biomarker of asthma and chronic obstructive pulmonary disease. Allergol Int 2021; 70:181-189. [PMID: 33214087 DOI: 10.1016/j.alit.2020.10.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/03/2020] [Accepted: 10/10/2020] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has recently been recognised as the third important gas-signalling molecule, besides nitric oxide and carbon monoxide. H2S has been reported to be produced by many cell types in mammalian tissues and organs throughout the actions of H2S-generating enzymes or redox reactions between the oxidation of glucose and element of sulfur. Although the pathological role of H2S has not yet been fully elucidated, accumulative data suggest that H2S may have biphasic effects. Briefly, it mainly has anti-inflammatory and antioxidant roles, although it can also have pro-inflammatory effects under certain conditions where rapid release of H2S in tissues occur, such as sepsis. To date, there have been several clinical studies published on H2S in respiratory disorders, including asthma and chronic obstructive pulmonary disease (COPD). According to previous studies, H2S is detectable in serum, sputum, and exhaled breath, although a gold standard method for detection has not yet been established. In asthma and COPD, H2S levels in serum and sputum can vary depending on the underlying conditions such as an acute exacerbation. Furthermore, sputum H2S in particular correlates with sputum neutrophils and the degree of airflow limitation, indicating that H2S has potential as a novel promising biomarker for neutrophilic airway inflammation for predicting current control state as well as future risks of asthma. In the future, concurrent measures of H2S with conventional inflammatory biomarkers (fractional exhaled nitric oxide, eosinophils etc) may provide more useful information regarding the identification of inflammatory phenotypes of asthma and COPD for personalised treatment.
Collapse
Affiliation(s)
- Yasuhito Suzuki
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Junpei Saito
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan.
| | - Mitsuru Munakata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| | - Yoko Shibata
- Department of Pulmonary Medicine, Fukushima Medical University, School of Medicine, Fukushima, Japan
| |
Collapse
|
29
|
Chen HJ, Ngowi EE, Qian L, Li T, Qin YZ, Zhou JJ, Li K, Ji XY, Wu DD. Role of Hydrogen Sulfide in the Endocrine System. Front Endocrinol (Lausanne) 2021; 12:704620. [PMID: 34335475 PMCID: PMC8322845 DOI: 10.3389/fendo.2021.704620] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 06/25/2021] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S), as one of the three known gaseous signal transduction molecules in organisms, has attracted a surging amount of attention. H2S is involved in a variety of physiological and pathological processes in the body, such as dilating blood vessels (regulating blood pressure), protecting tissue from ischemia-reperfusion injury, anti-inflammation, carcinogenesis, or inhibition of cancer, as well as acting on the hypothalamus and pancreas to regulate hormonal metabolism. The change of H2S concentration is related to a variety of endocrine disorders, and the change of hormone concentration also affects the synthesis of H2S. Understanding the effect of biosynthesis and the concentration of H2S on the endocrine system is useful to develop drugs for the treatment of hypertension, diabetes, and other diseases.
Collapse
Affiliation(s)
- Hao-Jie Chen
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ebenezeri Erasto Ngowi
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Department of Biological Sciences, Faculty of Science, Dar es Salaam University College of Education, Dar es Salaam, Tanzania
| | - Lei Qian
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Tao Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Yang-Zhe Qin
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Jing-Jing Zhou
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Ke Li
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
| | - Xin-Ying Ji
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- Kaifeng Key Laboratory of Infection and Biological Safety, School of Basic Medical Sciences, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| | - Dong-Dong Wu
- School of Basic Medical Sciences, Henan University, Kaifeng, China
- Henan International Joint Laboratory for Nuclear Protein Regulation, Henan University, Kaifeng, China
- School of Stomatology, Henan University, Kaifeng, China
- *Correspondence: Dong-Dong Wu, ; Xin-Ying Ji,
| |
Collapse
|
30
|
Manandhar S, Sinha P, Ejiwale G, Bhatia M. Hydrogen Sulfide and its Interaction with Other Players in Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1315:129-159. [PMID: 34302691 DOI: 10.1007/978-981-16-0991-6_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) plays a vital role in human physiology and in the pathophysiology of several diseases. In addition, a substantial role of H2S in inflammation has emerged. This chapter will discuss the involvement of H2S in various inflammatory diseases. Furthermore, the contribution of reactive oxygen species (ROS), adhesion molecules, and leukocyte recruitment in H2S-mediated inflammation will be discussed. The interrelationship of H2S with other gasotransmitters in inflammation will also be examined. There is mixed literature on the contribution of H2S to inflammation due to studies reporting both pro- and anti-inflammatory actions. These apparent discrepancies in the literature could be resolved with further studies.
Collapse
Affiliation(s)
- Sumeet Manandhar
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Priyanka Sinha
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Grace Ejiwale
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Madhav Bhatia
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand.
| |
Collapse
|
31
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
32
|
Rahman MA, Glasgow JN, Nadeem S, Reddy VP, Sevalkar RR, Lancaster JR, Steyn AJC. The Role of Host-Generated H 2S in Microbial Pathogenesis: New Perspectives on Tuberculosis. Front Cell Infect Microbiol 2020; 10:586923. [PMID: 33330130 PMCID: PMC7711268 DOI: 10.3389/fcimb.2020.586923] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/13/2020] [Indexed: 12/14/2022] Open
Abstract
For centuries, hydrogen sulfide (H2S) was considered primarily as a poisonous gas and environmental hazard. However, with the discovery of prokaryotic and eukaryotic enzymes for H2S production, breakdown, and utilization, H2S has emerged as an important signaling molecule in a wide range of physiological and pathological processes. Hence, H2S is considered a gasotransmitter along with nitric oxide (•NO) and carbon monoxide (CO). Surprisingly, despite having overlapping functions with •NO and CO, the role of host H2S in microbial pathogenesis is understudied and represents a gap in our knowledge. Given the numerous reports that followed the discovery of •NO and CO and their respective roles in microbial pathogenesis, we anticipate a rapid increase in studies that further define the importance of H2S in microbial pathogenesis, which may lead to new virulence paradigms. Therefore, this review provides an overview of sulfide chemistry, enzymatic production of H2S, and the importance of H2S in metabolism and immunity in response to microbial pathogens. We then describe our current understanding of the role of host-derived H2S in tuberculosis (TB) disease, including its influences on host immunity and bioenergetics, and on Mycobacterium tuberculosis (Mtb) growth and survival. Finally, this review discusses the utility of H2S-donor compounds, inhibitors of H2S-producing enzymes, and their potential clinical significance.
Collapse
Affiliation(s)
| | - Joel N Glasgow
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Sajid Nadeem
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Vineel P Reddy
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Ritesh R Sevalkar
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jack R Lancaster
- Department of Pharmacology and Chemical Biology, Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Adrie J C Steyn
- Africa Health Research Institute, Durban, South Africa.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, United States.,Centers for AIDS Research and Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
33
|
Wang J, Huo F, Yue Y, Yin C. A review: Red/near-infrared (NIR) fluorescent probes based on nucleophilic reactions of H 2 S since 2015. LUMINESCENCE 2020; 35:1156-1173. [PMID: 32954618 DOI: 10.1002/bio.3831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 12/14/2022]
Abstract
The topics of human health and disease are always the focus of much attention. Hydrogen sulfide (H2 S), as a double-edged sword, plays an important role in biological systems. Studies have revealed that endogenous H2 S is important to maintain normal physiological functions. Conversely, abnormal levels of H2 S may contribute to various diseases. Due to the importance of H2 S in physiology and pathology, research into the effects of H2 S has been active in recent years. Fluorescent probes with red/near-infrared (NIR) emissions (620-900 nm) are more suitable for imaging applications in vivo, because of their negligible photodamage, deep tissue penetration, and maximum lack of interference from background autofluorescence. H2 S, an 'evil and positive' molecule, is not only toxic, but also produces significant effects; a 'greedy' molecule, is not only a strong nucleophile under physiological conditions, but also undergoes a continuous double nucleophilic reaction. Therefore, in this tutorial review, we will highlight recent advances made since 2015 in the development and application of red/NIR fluorescent probes based on nucleophilic reactions of H2 S.
Collapse
Affiliation(s)
- JunPing Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Fangjun Huo
- Research Institute of Applied Chemistry, Shanxi University, Taiyuan, China
| | - Yongkang Yue
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| | - Caixia Yin
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi, China.,Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University, Taiyuan, China
| |
Collapse
|
34
|
Inhibition of Rb phosphorylation leads to H 2S-mediated inhibition of NF-kB in acute pancreatitis and associated lung injury in mice. Pancreatology 2020; 20:647-658. [PMID: 32402695 DOI: 10.1016/j.pan.2020.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Acute pancreatitis (AP), an inflammatory condition of pancreas, destructs the exocrine cells by releasing various pro-inflammatory cytokines that activates the stellate cells. However, the underlying molecular mechanism remains unclear. The present study investigated the role of retinoblastoma (Rb), hydrogen sulphide and nuclear factor-κB (NF-κB) in the regulation of exocrine cell proliferation under inflammatory condition. METHODS The randomly grouped male swiss mice were administered with 6 consecutive hourly i.p injections of caerulein to induce AP. Palbociclib (PD) (25 mg/kg body weight), a CDK4/6 inhibitor, was administered 1 h after the first cerulein injection intraperitoneally to block the RB pathway by inhibiting the activity of the CDK4/6 complexes and DL propargylglycine (PAG) which blocks the endogenous H2S production. RESULTS Pharmacological inhibition of CDK4/6 and H2S significantly improved pancreas and lung histopathological changes, decreased serum amylase level, both lung and pancreas myeloperoxidase (MPO) activity, TNFα expression and elevated IL10 expression. Furthermore, inhibition of RB pathway reduced cerulein-induced H2S level by reducing the expression of cystathionine gamma lyase (CSE) and NF-κB activation in pancreas and lungs. Also, blocking the RB signalling reduced the α-SMA expression in pancreas preventing the risk for pancreatic fibrosis. Whereas administration of H2S inhibitor PAG resulted in a decrease in CDK4/6-Rb expression in cerulein-induced AP. CONCLUSION These results reveal a novel link between H2S/RB/NF-κB pathways, in AP and provide insight into possible mechanism that can be targeted in prevention of inflammation to cancer development.
Collapse
|
35
|
Chung CL, Lin YS, Chan NJ, Chen YY, Hsu CC. Hypersensitivity of Airway Reflexes Induced by Hydrogen Sulfide: Role of TRPA1 Receptors. Int J Mol Sci 2020; 21:ijms21113929. [PMID: 32486252 PMCID: PMC7312894 DOI: 10.3390/ijms21113929] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/14/2023] Open
Abstract
The activation of capsaicin-sensitive lung vagal (CSLV) afferents can elicit airway reflexes. Hypersensitivity of these afferents is known to contribute to the airway hypersensitivity during airway inflammation. Hydrogen sulfide (H2S) has been suggested as a potential therapeutic agent for airway hypersensitivity diseases, such as asthma, because of its relaxing effect on airway smooth muscle and anti-inflammatory effect. However, it is still unknown whether H2S affects airway reflexes. Our previous study demonstrated that exogenous application of H2S sensitized CSLV afferents and enhanced Ca2+ transients in CSLV neurons. The present study aimed to determine whether the H2S-induced sensitization leads to functional changes in airway reflexes and elevates the electrical excitability of the CSLV neurons. Our results showed that, first and foremost, in anesthetized, spontaneously breathing rats, the inhalation of aerosolized sodium hydrosulfide (NaHS, a donor of H2S; 5 mg/mL, 3 min) caused an enhancement in apneic response evoked by several stimulants of the CSLV afferents. This enhancement effect was found 5 min after NaHS inhalation and returned to control 30 min later. However, NaHS no longer enhanced the apneic response after perineural capsaicin treatment on both cervical vagi that blocked the conduction of CSLV fibers. Furthermore, the enhancing effect of NaHS on apneic response was totally abolished by pretreatment with intravenous HC-030031 (a TRPA1 antagonist; 8 mg/kg), whereas the potentiating effect was not affected by the pretreatment with the vehicle of HC-030031. We also found that intracerebroventricular infusion pretreated with HC-030031 failed to alter the potentiating effect of NaHS on the apneic response. Besides, the cough reflex elicited by capsaicin aerosol was enhanced by inhalation of NaHS in conscious guinea pigs. Nevertheless, this effect was entirely eliminated by pretreatment with HC-030031, not by its vehicle. Last but not least, voltage-clamp electrophysiological analysis of isolated rat CSLV neurons showed a similar pattern of potentiating effects of NaHS on capsaicin-induced inward current, and the involvement of TRPA1 receptors was also distinctly shown. In conclusion, these results suggest that H2S non-specifically enhances the airway reflex responses, at least in part, through action on the TRPA1 receptors expressed on the CSLV afferents. Therefore, H2S should be used with caution when applying for therapeutic purposes in airway hypersensitivity diseases.
Collapse
Affiliation(s)
- Chi-Li Chung
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - You Shuei Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
| | - Nai-Ju Chan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
| | - Yueh-Yin Chen
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
| | - Chun-Chun Hsu
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, Taipei Medical University Hospital, Taipei 110, Taiwan
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (N.-J.C.); (Y.-Y.C.)
- Correspondence:
| |
Collapse
|
36
|
Hydrogen sulfide dysregulates the immune response by suppressing central carbon metabolism to promote tuberculosis. Proc Natl Acad Sci U S A 2020; 117:6663-6674. [PMID: 32139610 PMCID: PMC7104411 DOI: 10.1073/pnas.1919211117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ubiquitous gasotransmitter hydrogen sulfide (H2S) has been recognized to play a crucial role in human health. Using cystathionine γ-lyase (CSE)-deficient mice, we demonstrate an unexpected role of H2S in Mycobacterium tuberculosis (Mtb) pathogenesis. We showed that Mtb-infected CSE-/- mice survive longer than WT mice, and support reduced pathology and lower bacterial burdens in the lung, spleen, and liver. Similarly, in vitro Mtb infection of macrophages resulted in reduced colony forming units in CSE-/- cells. Chemical complementation of infected WT and CSE-/- macrophages using the slow H2S releaser GYY3147 and the CSE inhibitor DL-propargylglycine demonstrated that H2S is the effector molecule regulating Mtb survival in macrophages. Furthermore, we demonstrate that CSE promotes an excessive innate immune response, suppresses the adaptive immune response, and reduces circulating IL-1β, IL-6, TNF-α, and IFN-γ levels in response to Mtb infection. Notably, Mtb infected CSE-/- macrophages show increased flux through glycolysis and the pentose phosphate pathway, thereby establishing a critical link between H2S and central metabolism. Our data suggest that excessive H2S produced by the infected WT mice reduce HIF-1α levels, thereby suppressing glycolysis and production of IL-1β, IL-6, and IL-12, and increasing bacterial burden. Clinical relevance was demonstrated by the spatial distribution of H2S-producing enzymes in human necrotic, nonnecrotic, and cavitary pulmonary tuberculosis (TB) lesions. In summary, CSE exacerbates TB pathogenesis by altering immunometabolism in mice and inhibiting CSE or modulating glycolysis are potential targets for host-directed TB control.
Collapse
|
37
|
Hydrogen Sulfide Impairs Meiosis Resumption in Xenopus laevis Oocytes. Cells 2020; 9:cells9010237. [PMID: 31963573 PMCID: PMC7017156 DOI: 10.3390/cells9010237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/19/2023] Open
Abstract
The role of hydrogen sulfide (H2S) is addressed in Xenopus laevis oocytes. Three enzymes involved in H2S metabolism, cystathionine β-synthase, cystathionine γ-lyase, and 3-mercaptopyruvate sulfurtransferase, were detected in prophase I and metaphase II-arrested oocytes and drove an acceleration of oocyte meiosis resumption when inhibited. Moreover, meiosis resumption is associated with a significant decrease in endogenous H2S. On another hand, a dose-dependent inhibition was obtained using the H2S donor, NaHS (1 and 5 mM). NaHS impaired translation. NaHS did not induce the dissociation of the components of the M-phase promoting factor (MPF), cyclin B and Cdk1, nor directly impacted the MPF activity. However, the M-phase entry induced by microinjection of metaphase II MPF-containing cytoplasm was diminished, suggesting upstream components of the MPF auto-amplification loop were sensitive to H2S. Superoxide dismutase and catalase hindered the effects of NaHS, and this sensitivity was partially dependent on the production of reactive oxygen species (ROS). In contrast to other species, no apoptosis was promoted. These results suggest a contribution of H2S signaling in the timing of amphibian oocytes meiosis resumption.
Collapse
|
38
|
Rius-Pérez S, Pérez S, Torres-Cuevas I, Martí-Andrés P, Taléns-Visconti R, Paradela A, Guerrero L, Franco L, López-Rodas G, Torres L, Corrales F, Sastre J. Blockade of the trans-sulfuration pathway in acute pancreatitis due to nitration of cystathionine β-synthase. Redox Biol 2020; 28:101324. [PMID: 31539805 PMCID: PMC6811996 DOI: 10.1016/j.redox.2019.101324] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/03/2019] [Accepted: 09/07/2019] [Indexed: 02/07/2023] Open
Abstract
Acute pancreatitis is an inflammatory process of the pancreatic gland that may lead to dysregulation of the trans-sulfuration pathway. The aims of this work were firstly to study the methionine cycle as well as the trans-sulfuration pathway using metabolomic and proteomic approaches identifying the causes of this dysregulation in an experimental model of acute pancreatitis; and secondly to reveal the effects of S-adenosylmethionine administration on these pathways. Acute pancreatitis was induced by cerulein in mice, and a group of animals received S-adenosylmethionine treatment. Cerulein-induced acute pancreatitis rapidly caused marked depletion of methionine, S-adenosylmethionine, 5'-methylthioadenosine, cystathionine, cysteine, and glutathione levels in pancreas, but S-adenosylhomocysteine and homocysteine remained unchanged. Protein steady-state levels of S-adenosylhomocysteine-hydrolase and cystathionine gamma-lyase diminished but methylthioadenosine phosphorylase levels increased in pancreas with acute pancreatitis. Although cystathionine β-synthase protein levels did not change with acute pancreatitis, Nos2 mRNA and protein levels were markedly up-regulated and caused tyrosine nitration of cystathionine β-synthase in pancreas. S-adenosylmethionine administration enhanced Nos2 mRNA expression and cystathionine β-synthase nitration and triggered homocysteine accumulation in acute pancreatitis. Furthermore, S-adenosylmethionine administration promoted enrichment of the euchromatin marker H3K4me3 in the promoters of Tnf-α, Il-6, and Nos2 and enhanced the mRNA up-regulation of these genes. Accordingly, S-adenosylmethionine administration increased inflammatory infiltrate and edema in pancreas with acute pancreatitis. In conclusion, tyrosine-nitration of cystathionine β-synthase blockades the trans-sulfuration pathway in acute pancreatitis promoting homocysteine accumulation upon S-adenosylmethionine treatment.
Collapse
Affiliation(s)
- Sergio Rius-Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Salvador Pérez
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| | | | - Pablo Martí-Andrés
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Raquel Taléns-Visconti
- Department of Pharmacy and Pharmaceutical Technology and Parasitology, University of Valencia, 46100, Burjassot, Valencia, Spain
| | - Alberto Paradela
- Proteomics Unit, Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | - Laura Guerrero
- Proteomics Unit, Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | - Luis Franco
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research, INCLIVA, Valencia, Spain
| | - Gerardo López-Rodas
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research, INCLIVA, Valencia, Spain
| | - Luis Torres
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Valencia, Spain; Institute of Health Research, INCLIVA, Valencia, Spain
| | - Fernando Corrales
- Proteomics Unit, Centro Nacional de Biotecnología, CSIC, 28049, Madrid, Spain
| | - Juan Sastre
- Department of Physiology, Faculty of Pharmacy, University of Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
39
|
ATP-sensitive K + channels and mitochondrial permeability transition pore mediate effects of hydrogen sulfide on cytosolic Ca 2+ homeostasis and insulin secretion in β-cells. Pflugers Arch 2019; 471:1551-1564. [PMID: 31713764 DOI: 10.1007/s00424-019-02325-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/29/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Hydrogen sulfide (H2S) is endogenously produced in pancreatic ß cells and its level is elevated in diabetes. Here, we report that H2S affects insulin secretion via two mechanisms that converge on cytosolic free Ca2+ ([Ca2+]i), a key mediator of insulin exocytosis. Cellular calcium imaging, using Fura-2 or Fluo-4, showed that exposure of INS-1E cells to H2S (30-100 μM) reduced both [Ca2+]i levels (by 21.7 ± 2.3%) and oscillation frequency (p < 0.01, n = 4). Consistent with a role of plasma membrane KATP channels (plasma-KATP), the effects of H2S on [Ca2+]i were blocked by gliclazide (a blocker of plasma-KATP channels), but were mimicked by diazoxide (an activator of plasma-KATP channels). Surprisingly, when Ca2+ entry via plasma membrane was inhibited using Ca2+-free external solutions, H2S increased [Ca2+]i by 39.7 ± 3.6% suggesting Ca2+ release from intracellular stores. H2S-induced [Ca2+]i increases were abolished by either FCCP (which depletes Ca2+ stored in mitochondria) or cyclosporine A (an inhibitor of mitochondrial permeability transition pore, mPTP) suggesting that H2S induces Ca2+ release from mitochondria. Measurement of mitochondrial membrane potential (MMP) suggested that H2S causes MMP depolarization, which was blocked by cyclosporine A. Finally, insulin measurements by ELISA indicated that H2S decreased insulin release from INS-1E cells, but after plasma membrane Ca2+ entry was blocked by nifedipine, H2S-induced mitochondrial Ca2+ release is able to increase insulin release. Together, our results indicate that H2S has dual effects on insulin release suggesting that, with different metabolic conditions, H2S may differentially modulate the insulin release from pancreatic ß cells and play a role in ß cell dysfunction.
Collapse
|
40
|
Song G, Liu D, Geng X, Ma Z, Wang Y, Xie W, Qian D, Meng H, Zhou B, Song Z. Bone marrow-derived mesenchymal stem cells alleviate severe acute pancreatitis-induced multiple-organ injury in rats via suppression of autophagy. Exp Cell Res 2019; 385:111674. [PMID: 31678171 DOI: 10.1016/j.yexcr.2019.111674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 10/01/2019] [Accepted: 10/15/2019] [Indexed: 02/09/2023]
Abstract
Patients with severe acute pancreatitis (SAP) represent a substantial challenge to medical practitioners due to the high associated rates of morbidity and mortality and a lack of satisfactory therapeutic outcomes. In a previous study, our group demonstrated that bone marrow-derived mesenchymal stem cells (BMSCs) can ameliorate SAP; however, the mechanisms of action remain to be fully understood. BMSCs were intravenously injected into SAP rats 12 h after experimental induction of SAP using sodium taurocholate (NaT). Histopathological changes and the levels of pro-inflammatory mediators were assessed by hematoxylin and eosin (H&E) staining and ELISA, respectively. Autophagy levels were assessed using qRT-PCR, western blotting, immunohistochemistry, immunofluorescence, and transmission electron microscopy. AR42J cells and human umbilical vein endothelial cells (HUVECs) were administered BMSC-conditioned media (BMSC-CM) after NaT treatment, and cell viability was measured using a Cell Counting Kit-8 (CCK-8) and flow cytometry. In vivo, BMSCs effectively reduced multiple systematic inflammatory responses, suppressed the activation of autophagy, and improved intestinal dysfunction. In vitro, BMSC-CM significantly improved the viability of injured cells, promoted angiogenesis, and decreased autophagy. We therefore propose that the administration of BMSCs alleviates SAP-induced multiple organ injury by inhibiting autophagy.
Collapse
Affiliation(s)
- Guodong Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Dalu Liu
- Shanghai Clinical Medical College of Anhui Medical University, Hefei, Anhui, 230032, China
| | - Xiang Geng
- Department of General Surgery, Changzhou NO.2 People's Hospital, Changzhou, Jiangsu, 213164, China
| | - Zhilong Ma
- Department of General Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuxiang Wang
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Wangcheng Xie
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Daohai Qian
- Department of Hepatobiliary Surgery, Yijishan Hospital, Wannan Medical College, Wuhu, Anhui, 241001, China
| | - Hongbo Meng
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Bo Zhou
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhenshun Song
- Department of General Surgery, Shanghai Tenth People's Hospital, Affiliated to Tongji University School of Medicine, Shanghai, 200072, China.
| |
Collapse
|
41
|
Lange M, Ok K, Shimberg GD, Bursac B, Markó L, Ivanović-Burmazović I, Michel SLJ, Filipovic MR. Direct Zinc Finger Protein Persulfidation by H 2 S Is Facilitated by Zn 2. Angew Chem Int Ed Engl 2019; 58:7997-8001. [PMID: 30924279 DOI: 10.1002/anie.201900823] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Indexed: 12/21/2022]
Abstract
H2 S is a gaseous signaling molecule that modifies cysteine residues in proteins to form persulfides (P-SSH). One family of proteins modified by H2 S are zinc finger (ZF) proteins, which contain multiple zinc-coordinating cysteine residues. Herein, we report the reactivity of H2 S with a ZF protein called tristetraprolin (TTP). Rapid persulfidation leading to complete thiol oxidation of TTP mediated by H2 S was observed by low-temperature ESI-MS and fluorescence spectroscopy. Persulfidation of TTP required O2 , which reacts with H2 S to form superoxide, as detected by ESI-MS, a hydroethidine fluorescence assay, and EPR spin trapping. H2 S was observed to inhibit TTP function (binding to TNFα mRNA) by an in vitro fluorescence anisotropy assay and to modulate TNFα in vivo. H2 S was unreactive towards TTP when the protein was bound to RNA, thus suggesting a protective effect of RNA.
Collapse
Affiliation(s)
- Mike Lange
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058, Erlangen, Germany.,Current address: Center for Biotechnology and Biomedicine, Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy, University of Leipzig, 04103, Leipzig, Germany
| | - Kiwon Ok
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Geoffrey D Shimberg
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Biljana Bursac
- CNRS, Institut de Biochimie et Génétique Cellulaires-UMR5095, University of Bordeaux, 33077, Bordeaux, France
| | - Lajos Markó
- Experimental and Clinical Research Center, Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | | | - Sarah L J Michel
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, 20 Penn Street, Baltimore, MD, 21201, USA
| | - Milos R Filipovic
- Department of Chemistry and Pharmacy, University of Erlangen-Nürnberg, 91058, Erlangen, Germany.,CNRS, Institut de Biochimie et Génétique Cellulaires-UMR5095, University of Bordeaux, 33077, Bordeaux, France
| |
Collapse
|
42
|
Lange M, Ok K, Shimberg GD, Bursac B, Markó L, Ivanović‐Burmazović I, Michel SLJ, Filipovic MR. Direct Zinc Finger Protein Persulfidation by H
2
S Is Facilitated by Zn
2+. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201900823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Mike Lange
- Department of Chemistry and Pharmacy University of Erlangen-Nürnberg 91058 Erlangen Germany
- Current address: Center for Biotechnology and Biomedicine Institute of Bioanalytical Chemistry Faculty of Chemistry and Mineralogy University of Leipzig 04103 Leipzig Germany
| | - Kiwon Ok
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn Street Baltimore MD 21201 USA
| | - Geoffrey D. Shimberg
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn Street Baltimore MD 21201 USA
| | - Biljana Bursac
- CNRS, Institut de Biochimie et Génétique Cellulaires—UMR5095 University of Bordeaux 33077 Bordeaux France
| | - Lajos Markó
- Experimental and Clinical Research Center Charité Medical Faculty and Max Delbrück Center (MDC) for Molecular Medicine Berlin Germany
| | | | - Sarah L. J. Michel
- Department of Pharmaceutical Sciences University of Maryland School of Pharmacy 20 Penn Street Baltimore MD 21201 USA
| | - Milos R. Filipovic
- Department of Chemistry and Pharmacy University of Erlangen-Nürnberg 91058 Erlangen Germany
- CNRS, Institut de Biochimie et Génétique Cellulaires—UMR5095 University of Bordeaux 33077 Bordeaux France
| |
Collapse
|
43
|
Liu J, Li J, Tian P, Guli B, Weng G, Li L, Cheng Q. H 2S attenuates sepsis-induced cardiac dysfunction via a PI3K/Akt-dependent mechanism. Exp Ther Med 2019; 17:4064-4072. [PMID: 31007743 PMCID: PMC6468938 DOI: 10.3892/etm.2019.7440] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022] Open
Abstract
The heart is the most vulnerable target organ in sepsis, and it has been previously reported that hydrogen sulfide (H2S) has a protective role in heart dysfunction caused by sepsis. Additionally, studies have demonstrated that the phosphatidylinositol-3-kinase (PI3K)/protein kinase B (Akt) signaling pathway has a protective function during sepsis. However, the potential association between H2S and PI3K/Akt in sepsis-induced cardiac dysfunction is unclear. Therefore, the PI3K inhibitor LY294002 was used to investigate the role of PI3K/Akt signaling in the protective effects of H2S during sepsis-induced myocardial injury. A rat sepsis model was established using cecal ligation and puncture (CLP) surgery. Sodium hydrosulfide, a H2S donor, was administered intraperitoneally (8.9 µmol/kg), and serum myocardial enzyme levels, inflammatory cytokine levels, cardiac histology and cardiomyocyte apoptosis were assessed to determine the extent of myocardial damage. The results demonstrated that exogenous H2S reduced serum myocardial enzyme levels, decreased the levels of the inflammatory factors tumor necrosis factor (TNF)-α and interleukin (IL)-6, and increased the level of anti-inflammatory IL-10 following CLP. Staining of histological sections demonstrated that myocardial damage and cardiomyocyte apoptosis were alleviated by the administration of exogenous H2S. Western blot analysis was used to detect phosphorylated and total PI3K and Akt levels, as well as NF-κB, B-cell lymphoma-2, Bcl-2-associated X protein (Bax) and caspase levels, and the results demonstrated that H2S significantly increased PI3K and Akt phosphorylation. This indicated that the PI3K/Akt signaling pathway was activated by H2S. Additionally, H2S reduced Bax and caspase expression, indicating that apoptosis was inhibited, and decreased NF-κB levels, indicating that inflammation was reduced. Furthermore, the PI3K inhibitor LY294002 eliminated the protective effects of H2S. In conclusion, the results of the current study suggest that exogenous H2S activates PI3K/Akt signaling to attenuate myocardial damage in sepsis.
Collapse
Affiliation(s)
- Jianping Liu
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Jianhua Li
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Peigang Tian
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Bahaer Guli
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Guopeng Weng
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Lei Li
- Department of Critical Care Medicine, Medical School of Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| | - Qinghong Cheng
- Department of Critical Care Medicine, The First Affiliated Hospital, School of Medicine, Shihezi University, Shihezi, Xinjiang 832008, P.R. China
| |
Collapse
|
44
|
Amiti, Tamizhselvi R, Manickam V. Menadione (vitamin K3) inhibits hydrogen sulfide and substance P via NF-кB pathway in caerulein-induced acute pancreatitis and associated lung injury in mice. Pancreatology 2019; 19:266-273. [PMID: 30685119 DOI: 10.1016/j.pan.2019.01.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE We aim to study the protective effect of menadione on caerulein-induced acute pancreatitis (AP) and associated lung injury and to explore the possible mechanism. METHODS Male Swiss mice randomized into control and different experimental groups. AP was induced in mice by six hourly intraperitoneal (i.p) injections of caerulein (50 μg/kg at 1 h interval). Menadione (10 mg/kg) was administered one hour (i.p, 10 mg/kg) after the first caerulein injection and control animals were given hourly intraperitoneal (i.p) injection of isotonic sodium chloride solution for 6 hours. RESULTS Administration of menadione attenuated the severity of AP and associated lung injury as shown by the histopathology, reduced MPO and serum amylase activity. Further, the anti-inflammatory effect of menadione was associated with a reduction of pancreatic and pulmonary proinflammatory cytokine interleukin 1β (IL-1β) and hydrogen sulfide (H2S). Moreover, menadione inhibited caerulein-induced cystathionine-γ-lyase, preprotachykinin-A (PPTA) and neurokinin-1 receptor (NK-1R) expression in pancreas and lungs. Also menadione further enhances the beneficial effect by reducing caerulein-induced nuclear factor (NF) -κB activation in both pancreas and lung. CONCLUSION The present findings show for the first time that in AP, menadione may exhibit an anti-inflammatory effect by down-regulating substance-P and H2S signaling via the NF-кB pathway.
Collapse
Affiliation(s)
- Amiti
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Venkatraman Manickam
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
45
|
Liu Y, Jia Q, Zhai X, Mao F, Jiang A, Zhou J. Rationally designed pure-inorganic upconversion nanoprobes for ultra-highly selective hydrogen sulfide imaging and elimination in vivo. Chem Sci 2019; 10:1193-1200. [PMID: 30774918 PMCID: PMC6349023 DOI: 10.1039/c8sc04464c] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 11/12/2018] [Indexed: 12/28/2022] Open
Abstract
Lung injury is a hydrogen sulfide (H2S)-associated complication with high mortality in acute pancreatitis (AP) cases. Herein, we used Prussian Blue (PB) as a H2S-responsive acceptor to develop a novel pure-inorganic upconversion nanoprobe for detecting and eliminating H2S, which can be used for diagnosing AP and alleviating lung injury. Upconversion nanoprobes with 5 nm PB shells were optimized to achieve outstanding in vitro H2S detection capacity (linear range: 0-150 μM, LOD: 50 nM), which met the in vivo serum H2S range, and thus were feasible for imaging H2S in vivo. More importantly, when combined with the traditional H2S synthetase inhibitor dl-PAG, the nanoprobes also served as a therapeutic agent that synergistically alleviated lung injury. As PB is an FDA-approved drug, our work proposes a potential clinical modality for the early diagnosis of AP, which will decrease lung injury-induced mortality and increase the survival rates of AP cases.
Collapse
Affiliation(s)
- Yuxin Liu
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Qi Jia
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Xuejiao Zhai
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Fang Mao
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Anqi Jiang
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| | - Jing Zhou
- Department of Chemistry , Capital Normal University , Beijing 100048 , China . ; Tel: +86-010-68902491
| |
Collapse
|
46
|
Tsubota M, Kawabata A. [Regulation of Ca v3.2-mediated pain signals by hydrogen sulfide]. Nihon Yakurigaku Zasshi 2019; 154:128-132. [PMID: 31527362 DOI: 10.1254/fpj.154.128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, is generated from L-cysteine by 3 distinct enzymes including cystathionine-γ-lyase (CSE), and targets multiple molecules, thereby playing various roles in health and disease. H2S triggers or accelerates somatic pain and visceral nociceptive signals in the pancreas, colon and bladder by enhancing the activity of Cav3.2 T-type calcium channels. H2S also activates TRPA1, which participates in H2S-induced somatic pain signaling. However, Cav3.2 predominantly mediates colonic nociception by H2S, because genetic deletion of TRPA1 does not reduce H2S-induced colonic pain. The functional upregulation of the CSE/H2S/Cav3.2 system is involved in neuropathic pain and visceral pain accompanying pancreatitis and cystitis. Cav3.2 also appears to participate in irritable bowel syndrome (IBS), although the role of endogenous H2S generation by CSE in IBS is still open to question. In this review, we describe how H2S regulates pain signals, particularly by interacting with Cav3.2.
Collapse
Affiliation(s)
- Maho Tsubota
- Division of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University
| | - Atsufumi Kawabata
- Division of Pharmacology & Pathophysiology, Faculty of Pharmacy, Kindai University
| |
Collapse
|
47
|
Fagone P, Mazzon E, Bramanti P, Bendtzen K, Nicoletti F. Gasotransmitters and the immune system: Mode of action and novel therapeutic targets. Eur J Pharmacol 2018; 834:92-102. [PMID: 30016662 DOI: 10.1016/j.ejphar.2018.07.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/29/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022]
Abstract
Gasotransmitters are a group of gaseous molecules, with pleiotropic biological functions. These molecules include nitric oxide (NO), hydrogen sulfide (H2S), and carbon monoxide (CO). Abnormal production and metabolism of these molecules have been observed in several pathological conditions. The understanding of the role of gasotransmitters in the immune system has grown significantly in the past years, and independent studies have shed light on the effect of exogenous and endogenous gasotransmitters on immune responses. Moreover, encouraging results come from the efficacy of NO-, CO- and H2S -donors in preclinical animal models of autoimmune, acute and chronic inflammatory diseases. To date, data on the influence of gasotransmitters in immunity and immunopathology are often scattered and partial, and the scarcity of clinical trials using NO-, CO- and H2S -donors, reveals that more effort is warranted. This review focuses on the role of gasotransmitters in the immune system and covers the evidences on the possible use of gasotransmitters for the treatment of inflammatory conditions.
Collapse
Affiliation(s)
- Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi Bonino Pulejo, Stada Statale 113, C.da Casazza, 98124 Messina, Italy
| | - Klaus Bendtzen
- Institute for Inflammation Research, Rigshospitalet, Copenhagen, Denmark
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
48
|
Velusamy RK, Tamizhselvi R. Protective effect of methylsulfonylmethane in caerulein-induced acute pancreatitis and associated lung injury in mice. J Pharm Pharmacol 2018; 70:1188-1199. [DOI: 10.1111/jphp.12946] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 05/19/2018] [Indexed: 12/17/2022]
Abstract
Abstract
Objectives
In the present study, we have elaborated the anti-inflammatory mechanism of MSM through homing of CD34+ stem cells towards an inflamed region by regulating hydrogen sulfide (H2S) in an in vivo model of caerulein-induced acute pancreatitis (AP) and associated lung injury.
Methods
Male Swiss mice were treated with hourly intraperitoneal injections of caerulein (50 μg/kg) for 6 h. MSM (500 mg/kg) was administered intraperitoneally 1 h after the first caerulein injection (therapeutic). The serum amylase activity and myeloperoxidase (MPO) activity in lung and pancreas were measured. The levels of H2S and interleukin (IL)-1β, cystathionine-γ-lyase (CSE) and CD34+ expressions in pancreas and lungs were determined by RT-PCR and ELISA.
Key Findings
Methylsulfonylmethane significantly ameliorated pancreas and lung histopathological changes, decreased serum amylase, MPO activity and inhibited caerulein-induced IL-1β expression. Furthermore, MSM reduced caerulein-induced H2S levels by alleviating the expression of CSE in pancreas and lungs and increased CD34 expression and inhibited nuclear factor (NF)-κB translocation in caerulein-induced AP and associated lung injury.
Conclusions
These findings indicate that MSM can effectively reduce inflammatory responses and induce the homing of CD34+ cells to the injured tissues.
Collapse
Affiliation(s)
| | - Ramasamy Tamizhselvi
- School of Biosciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
49
|
Suzuki Y, Saito J, Kikuchi M, Uematsu M, Fukuhara A, Sato S, Munakata M. Sputum-to-serum hydrogen sulphide ratio as a novel biomarker of predicting future risks of asthma exacerbation. Clin Exp Allergy 2018; 48:1155-1163. [PMID: 29758106 DOI: 10.1111/cea.13173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Increased level of hydrogen sulphide (H2 S) in sputum is reported to be a new biomarker of neutrophilic airway inflammation in chronic airway disorders. However, the relationship between H2 S and disease activity remains unclear. OBJECTIVE We investigated whether H2 S levels could vary during different conditions in asthma. METHOD H2 S levels in sputum and serum were measured using a sulphide-sensitive electrode in 47 stable asthmatic subjects (S-BA), 21 uncontrolled asthmatic subjects (UC-BA), 26 asthmatic subjects with acute exacerbation (AE-BA) and 15 healthy subjects. Of these, H2 S levels during stable, as well as exacerbation states, were obtained in 13 asthmatic subjects. RESULTS Sputum H2 S levels were significantly higher in the AE-BA subjects compared to the UC-BA and healthy subjects (P < .05). However, serum H2 S levels in the AE-BA subjects were lower than in the S-BA subjects (P < .001) and similar to those in healthy subjects. Thus, the sputum-to-serum ratio of H2 S (H2 S ratio) in the AE-BA subjects was significantly higher than in the S-BA, UC-BA and healthy subjects (P < .05). Among all subjects, sputum H2 S levels showed a trend to decrease with FEV1 %predicted and significantly positive correlations with sputum neutrophils (%), sputum IL-8 and serum IL-8. A multiple linear regression analysis showed that sputum H2 S was independently associated with increased sputum neutrophils (%) and decreased FEV1 %predicted (P < .05). The cut-off level of H2 S ratio to indicate an exacerbation was ≥0.34 (area under the curve; 0.88, with a sensitivity of 81.8% and specificity of 72.7%, P < .001). Furthermore, half of the asthmatic subjects with H2 S ratios higher than the cut-off level experienced asthma exacerbations over the following 3 months after enrolment. CONCLUSIONS The H2 S ratio may provide useful information on predicting future risks of asthma exacerbation, as well as on obstructive neutrophilic airway inflammation as one of the non-Th2 biomarkers, in asthma.
Collapse
Affiliation(s)
- Y Suzuki
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - J Saito
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Kikuchi
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Uematsu
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - A Fukuhara
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - S Sato
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - M Munakata
- Department of Pulmonary Medicine, School of Medicine, Fukushima Medical University, Fukushima, Japan
| |
Collapse
|
50
|
Kashfi K. The dichotomous role of H 2S in cancer cell biology? Déjà vu all over again. Biochem Pharmacol 2018; 149:205-223. [PMID: 29397935 PMCID: PMC5866221 DOI: 10.1016/j.bcp.2018.01.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/17/2018] [Indexed: 02/09/2023]
Abstract
Nitric oxide (NO) a gaseous free radical is one of the ten smallest molecules found in nature, while hydrogen sulfide (H2S) is a gas that bears the pungent smell of rotten eggs. Both are toxic yet they are gasotransmitters of physiological relevance. There appears to be an uncanny resemblance between the general actions of these two gasotransmitters in health and disease. The role of NO and H2S in cancer has been quite perplexing, as both tumor promotion and inflammatory activities as well as anti-tumor and antiinflammatory properties have been described. These paradoxes have been explained for both gasotransmitters in terms of each having a dual or biphasic effect that is dependent on the local flux of each gas. In this review/commentary, I have discussed the major roles of NO and H2S in carcinogenesis, evaluating their dual nature, focusing on the enzymes that contribute to this paradox and evaluate the pros and cons of inhibiting or inducing each of these enzymes.
Collapse
Affiliation(s)
- Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, NY, USA.
| |
Collapse
|