1
|
Singh MA, Chang MM, Wang Q, Rodgers C, Lutz BR, Olanrewaju AO. Rapid Enzymatic Assay for Antiretroviral Drug Monitoring Using CRISPR-Cas12a-Enabled Readout. ACS Synth Biol 2025; 14:510-519. [PMID: 39933068 PMCID: PMC11852202 DOI: 10.1021/acssynbio.4c00674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/10/2025] [Accepted: 01/14/2025] [Indexed: 02/13/2025]
Abstract
Maintaining the efficacy of human immunodeficiency virus (HIV) medications is challenging among children because of dosing difficulties, the limited number of approved drugs, and low rates of medication adherence. Drug level feedback (DLF) can support dose optimization and timely interventions to prevent treatment failure, but current tests are heavily instrumented and centralized. We developed the REverse transcriptase ACTivity crispR (REACTR) for rapid measurement of HIV drugs based on the extent of DNA synthesis by HIV reverse transcriptase. CRISPR-Cas enzymes bind to the synthesized DNA, triggering collateral cleavage of quenched reporters and generating fluorescence. We measured azidothymidine triphosphate (AZT-TP), a key drug in pediatric HIV treatment, and investigated the impact of assay time and DNA template length on REACTR's sensitivity. REACTR selectively measured clinically relevant AZT-TP concentrations in the presence of genomic DNA and peripheral blood mononuclear cell lysate. REACTR has the potential to enable rapid point-of-care HIV DLF to improve pediatric HIV care.
Collapse
Affiliation(s)
- Maya A. Singh
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Megan M. Chang
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Qin Wang
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Catherine Rodgers
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Barry R. Lutz
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
| | - Ayokunle O. Olanrewaju
- Department
of Bioengineering, University of Washington, Seattle, Washington 98195, United States
- Department
of Mechanical Engineering, University of
Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Singh MA, Chang MM, Wang Q, Rodgers C, Lutz BR, Olanrewaju AO. Rapid enzymatic assay for antiretroviral drug monitoring using CRISPR-Cas12a enabled readout. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625292. [PMID: 39651213 PMCID: PMC11623613 DOI: 10.1101/2024.11.25.625292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Maintaining efficacy of human immunodeficiency virus (HIV) medications is challenging among children because of dosing difficulties, the limited number of approved drugs, and low rates of medication adherence. Drug level feedback (DLF) can support dose optimization and timely interventions to prevent treatment failure, but current tests are heavily instrumented and centralized. We developed the REverse-transcriptase ACTivity-crispR (REACTR) assay for rapid measurement of HIV drugs based on the extent of DNA synthesis by HIV reverse transcriptase. CRISPR-Cas enzymes bind to synthesized DNA, triggering collateral cleavage of quenched reporters and generating fluorescence. We measured azidothymidine triphosphate (AZT-TP), a key drug in pediatric HIV treatment, and investigated the impact of assay time and DNA template length on REACTR's sensitivity. REACTR selectively measured clinically relevant AZT-TP concentrations in the presence of genomic DNA and peripheral blood mononuclear cell lysate. REACTR has the potential to enable rapid point-of-care HIV DLF to improve pediatric HIV care.
Collapse
|
3
|
Zhang L, Iannuzzi S, Chaturvedula A, Irungu E, Haberer JE, Hendrix CW, von Kleist M. Model-based predictions of protective HIV pre-exposure prophylaxis adherence levels in cisgender women. Nat Med 2023; 29:2753-2762. [PMID: 37957377 PMCID: PMC10667095 DOI: 10.1038/s41591-023-02615-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 11/15/2023]
Abstract
Most human immunodeficiency virus (HIV) infections occur in cisgender women in resource-limited settings. In women, self-protection with emtricitabine/tenofovir disoproxil fumarate pre-exposure prophylaxis (FTC/TDF-PrEP) constitutes a major pillar of HIV prevention. However, clinical trials in women had inconsistent outcomes, sparking uncertainty about adherence requirements and reluctance in evaluating on-demand regimens. We analyzed data from published FTC/TDF-PrEP trials to establish efficacy ranges in cisgender women. In a 'bottom-up' approach, we modeled hypotheses in the context of risk-group-specific, adherence-efficacy profiles and challenged those hypotheses with clinical data. We found that different clinical outcomes were related to the proportion of women taking the product, allowing coherent interpretation of the data. Our analysis showed that 90% protection was achieved when women took some product. We found that hypotheses of putative male/female differences were either not impactful or statistically inconsistent with clinical data. We propose that differing clinical outcomes could arise from pill-taking behavior rather than biological factors driving specific adherence requirements in cisgender women.
Collapse
Affiliation(s)
- Lanxin Zhang
- Project group 5 'Systems Medicine of Infectious Diseases', Robert Koch Institute, Berlin, Germany
| | - Sara Iannuzzi
- Project group 5 'Systems Medicine of Infectious Diseases', Robert Koch Institute, Berlin, Germany
- International Max-Planck Research School 'Biology and Computation', Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ayyappa Chaturvedula
- Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA
| | | | - Jessica E Haberer
- Center for Global Health, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Craig W Hendrix
- Division of Clinical Pharmacology, Johns Hopkins University, Baltimore, MD, USA
| | - Max von Kleist
- Project group 5 'Systems Medicine of Infectious Diseases', Robert Koch Institute, Berlin, Germany.
- Department of Mathematics and Computer Science, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
4
|
Olanrewaju AO, Sullivan BP, Gim AH, Craig CA, Sevenler D, Bender AT, Drain PK, Posner JD. REverSe TRanscrIptase chain termination (RESTRICT) for selective measurement of nucleotide analogs used in HIV care and prevention. Bioeng Transl Med 2023; 8:e10369. [PMID: 36684094 PMCID: PMC9842053 DOI: 10.1002/btm2.10369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/16/2022] [Accepted: 06/20/2022] [Indexed: 01/25/2023] Open
Abstract
Sufficient drug concentrations are required for efficacy of antiretroviral drugs used in HIV care and prevention. Measurement of nucleotide analogs, included in most HIV medication regimens, enables monitoring of short- and long-term adherence and the risk of treatment failure. The REverSe TRanscrIptase Chain Termination (RESTRICT) assay rapidly infers the concentration of intracellular nucleotide analogs based on the inhibition of DNA synthesis by HIV reverse transcriptase enzyme. Here, we introduce a probabilistic model for RESTRICT and demonstrate selective measurement of multiple nucleotide analogs using DNA templates designed according to the chemical structure of each drug. We measure clinically relevant concentrations of tenofovir diphosphate, emtricitabine triphosphate, lamivudine triphosphate, and azidothymidine triphosphate with agreement between experiment and theory. RESTRICT represents a new class of activity-based assays for therapeutic drug monitoring in HIV care and could be extended to other diseases treated with nucleotide analogs.
Collapse
Affiliation(s)
- Ayokunle O. Olanrewaju
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Benjamin P. Sullivan
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Alicia H. Gim
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Cosette A. Craig
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Derin Sevenler
- Center for Engineering in Medicine and SurgeryMassachusetts General HospitalBostonMassachusettsUSA
| | - Andrew T. Bender
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Paul K. Drain
- Department of EpidemiologyUniversity of WashingtonSeattleWashingtonUSA
- Department of Global HealthUniversity of WashingtonSeattleWashingtonUSA
- Department of MedicineUniversity of WashingtonSeattleWashingtonUSA
| | - Jonathan D. Posner
- Department of Mechanical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of Chemical EngineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of Family MedicineUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
5
|
Wonganan P, Limpanasithikul W, Jianmongkol S, Kerr SJ, Ruxrungtham K. Pharmacokinetics of nucleoside/nucleotide reverse transcriptase inhibitors for the treatment and prevention of HIV infection. Expert Opin Drug Metab Toxicol 2020; 16:551-564. [PMID: 32508203 DOI: 10.1080/17425255.2020.1772755] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Despite dramatic increases in new drugs and regimens, a combination of two nucleoside/nucleotide reverse transcriptase inhibitors (NRTIs) remains the backbone of many regimens to treat HIV. AREA COVERED This article summarizes the pharmacokinetic characteristics of approved NRTIs that are currently in the international treatment and prevention guidelines. EXPERT OPINION Compared to other NRTIs, tenofovir alafenamide fumarate (TAF) is more advantageous in terms of potency and safety. It is therefore a preferred choice in combination with emtricitabine (FTC) in most HIV treatment guidelines. The efficacy of the two-drug combination of NRTI/Integrase strand-transfer inhibitor, i.e. lamivudine/dolutegravir has been approved as an option for initial therapy. This regimen however has some limitations in patients with HBV coinfection. The two NRTI combinations tenofovir disproxil fumarate (TDF)/FTC and TAF/FTC have also been approved for pre-exposure prophylaxis (PrEP). Interestingly, a promising long-acting nucleoside reverse transcriptase translocation inhibitor, islatravir, formulated for implant was well tolerated and remained effective for up to a year, suggesting its potential as a single agent for PrEP. In the next decade, it remains to be seen whether NRTI-based regimens will remain the backbone of preferred ART regimens, or if the treatment will eventually move toward NRTI-sparing regimens to avoid long-term NRTI-toxicity.
Collapse
Affiliation(s)
- Piyanuch Wonganan
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| | | | - Suree Jianmongkol
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University , Bangkok, Thailand
| | - Stephen J Kerr
- Biostatistics Excellence Centre, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand.,HIV-NAT, Thai Red Cross AIDS Research Centre , Bangkok, Thailand
| | - Kiat Ruxrungtham
- HIV-NAT, Thai Red Cross AIDS Research Centre , Bangkok, Thailand.,Department of Medicine, Faculty of Medicine, Chulalongkorn University , Bangkok, Thailand
| |
Collapse
|
6
|
Patel SH, Ismaiel OA, Mylott WR, Yuan M, McClay JL, Paris JJ, Hauser KF, McRae M. Cell-type specific differences in antiretroviral penetration and the effects of HIV-1 Tat and morphine among primary human brain endothelial cells, astrocytes, pericytes, and microglia. Neurosci Lett 2019; 712:134475. [PMID: 31491466 DOI: 10.1016/j.neulet.2019.134475] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/26/2019] [Accepted: 08/31/2019] [Indexed: 12/18/2022]
Abstract
The inability to achieve adequate intracellular antiretroviral concentrations may contribute to HIV persistence within the brain and to neurocognitive deficits in opioid abusers. To investigate, intracellular antiretroviral concentrations were measured in primary human astrocytes, microglia, pericytes, and brain microvascular endothelial cells (BMECs), and in an immortalized brain endothelial cell line (hCMEC/D3). HIV-1 Tat and morphine effects on intracellular antiretroviral concentrations also were evaluated. After pretreatment for 24 h with vehicle, HIV-1 Tat, morphine, or combined Tat and morphine, cells were incubated for 1 h with equal concentrations of a mixture of tenofovir, emtricitabine, and dolutegravir at one of two concentrations (5 μM or 10 μM). Intracellular drug accumulation was measured using LC-MS/MS. Drug penetration differed depending on the drug, the extracellular concentration used for dosing, and cell type. Significant findings included: 1) Dolutegravir (at 5 μM or 10 μM) accumulated more in HBMECs than other cell types. 2) At 5 μM, intracellular emtricitabine levels were higher in microglia than other cell types; while at 10 μM, emtricitabine accumulation was greatest in HBMECs. 3) Tenofovir (5 or 10 μM extracellular dosing) displayed greater accumulation inside HBMECs than in other cell types. 4) After Tat and/or morphine pretreatment, the relative accumulation of antiretroviral drugs was greater in morphine-exposed HBMECs compared to other treatments. The opposite effect was observed in astrocytes in which morphine exposure decreased drug accumulation. In summary, the intracellular accumulation of antiretroviral drugs differed depending on the particular drug involved, the concentration of the applied antiretroviral drug, and the cell type targeted. Moreover, morphine, and to a lesser extent Tat, exposure also had differential effects on antiretroviral accumulation. These data highlight the complexity of optimizing brain-targeted HIV therapeutics, especially in the setting of chronic opioid use or misuse.
Collapse
Affiliation(s)
- Sulay H Patel
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Omnia A Ismaiel
- PPD Laboratories, Richmond, VA, USA; Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | | | | | - Joseph L McClay
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA
| | - Jason J Paris
- Department of BioMolecular Sciences, School of Pharmacy, The University of Mississippi, University, MS, USA
| | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, Richmond, VA, USA.
| |
Collapse
|
7
|
Patel SH, Ismaiel OA, Mylott WR, Yuan M, Hauser KF, McRae M. Simultaneous determination of intracellular concentrations of tenofovir, emtricitabine, and dolutegravir in human brain microvascular endothelial cells using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Anal Chim Acta 2019; 1056:79-87. [PMID: 30797464 PMCID: PMC6486649 DOI: 10.1016/j.aca.2019.01.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/27/2018] [Accepted: 01/04/2019] [Indexed: 12/17/2022]
Abstract
Combination antiretroviral therapy (cART) regimens are recommended for HIV patients to better achieve and maintain plasma viral suppression. Despite adequate plasma viral suppression, HIV persists inside the brain, which is, in part thought to result from poor brain penetration of antiretroviral drugs. In this study, a simple and ultra-sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) method for simultaneous determination of tenofovir, emtricitabine, and dolutegravir in cell lysates of an immortalized human brain microvascular endothelial cell line (hCMEC/D3) was developed and validated. Analytes were separated on a reverse phase C18 column using water and 0.1% formic acid in acetonitrile as mobile phases. The analytes were detected using positive electrospray ionization mode with multiple reaction monitoring (MRM). The assay was linear in the concentration range of 0.1-100 ng mL-1 for all analytes. Intra- and inter-assay precision and accuracy were within ±13.33% and ±10.53%, respectively. This approach described herein was used to determine the intracellular accumulation of tenofovir, emtricitabine, dolutegravir simultaneously in hCMEC/D3 cells samples.
Collapse
Affiliation(s)
- Sulay H Patel
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, P.O Box 980533, 410 N 12th Street, Richmond, VA, 23298-0533, USA
| | - Omnia A Ismaiel
- PPD Laboratories, Richmond, VA, USA; Department of Analytical Chemistry, Faculty of Pharmacy, Zagazig University, Egypt
| | | | | | - Kurt F Hauser
- Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, P.O. Box 980613, 1217 East Marshall Street, Richmond, VA, 23298, USA
| | - MaryPeace McRae
- Department of Pharmacotherapy and Outcomes Science, School of Pharmacy, Virginia Commonwealth University, P.O Box 980533, 410 N 12th Street, Richmond, VA, 23298-0533, USA.
| |
Collapse
|
8
|
Billat PA, Saint-Marcoux F. Liquid chromatography–mass spectrometry methods for the intracellular determination of drugs and their metabolites: a focus on antiviral drugs. Anal Bioanal Chem 2017; 409:5837-5853. [DOI: 10.1007/s00216-017-0449-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/24/2017] [Accepted: 06/01/2017] [Indexed: 01/11/2023]
|
9
|
Dumond JB, Yang KH, Kendrick R, Reddy YS, Kashuba ADM, Troiani L, Bridges AS, Fiscus SA, Forrest A, Cohen MS. Pharmacokinetic Modeling of Lamivudine and Zidovudine Triphosphates Predicts Differential Pharmacokinetics in Seminal Mononuclear Cells and Peripheral Blood Mononuclear Cells. Antimicrob Agents Chemother 2015; 59:6395-401. [PMID: 26239974 PMCID: PMC4576057 DOI: 10.1128/aac.01148-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/20/2015] [Indexed: 12/27/2022] Open
Abstract
The male genital tract is a potential site of viral persistence. Therefore, adequate concentrations of antiretrovirals are required to eliminate HIV replication in the genital tract. Despite higher zidovudine (ZDV) and lamivudine (3TC) concentrations in seminal plasma (SP) than in blood plasma (BP) (SP/BP drug concentration ratios of 2.3 and 6.7, respectively), we have previously reported lower relative intracellular concentrations of their active metabolites, zidovudine triphosphate (ZDV-TP) and lamivudine triphosphate (3TC-TP), in seminal mononuclear cells (SMCs) than in peripheral blood mononuclear cells (PBMCs) (SMC/PBMC drug concentration ratios of 0.36 and 1.0, respectively). Here, we use population pharmacokinetic (PK) modeling-based methods to simultaneously describe parent and intracellular metabolite PK in blood, semen, and PBMCs and SMCs. From this model, the time to steady state in each matrix was estimated, and the results indicate that the PK of 3TC-TP and ZDV-TP in PBMCs are different from the PK of the two in SMCs and different for the two triphosphates. We found that steady-state conditions in PBMCs were achieved within 2 days for ZDV-TP and 3 days for 3TC-TP. However, steady-state conditions in SMCs were achieved within 2 days for ZDV-TP and 2 weeks for 3TC-TP. Despite this, or perhaps because of it, ZDV-TP in SMCs does not achieve the surrogate 50% inhibitory concentration (IC50) (as established for PBMCs, assuming SMC IC50 = PBMC IC50) at the standard 300-mg twice-daily dosing. Mechanistic studies are needed to understand these differences and to explore intracellular metabolite behavior in SMCs for other nucleoside analogues used in HIV prevention, treatment, and cure.
Collapse
Affiliation(s)
- Julie B Dumond
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, North Carolina, USA
| | - Kuo H Yang
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, North Carolina, USA
| | - Racheal Kendrick
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, North Carolina, USA
| | - Y Sunila Reddy
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, North Carolina, USA
| | - Angela D M Kashuba
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, North Carolina, USA School of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Luigi Troiani
- School of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Arlene S Bridges
- UNC Eshelman School of Pharmacy, Division of Pharmacotherapy and Experimental Therapeutics, Chapel Hill, North Carolina, USA
| | - Susan A Fiscus
- School of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Alan Forrest
- School of Pharmacy and Pharmaceutical Sciences, Department of Pharmacy Practice, State University of New York, University at Buffalo, Buffalo, New York, USA
| | - Myron S Cohen
- School of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
10
|
Abstract
Research in the many areas of HIV treatment, eradication and prevention has necessitated measurement of antiretroviral (ARV) concentrations in nontraditional specimen types. To determine the knowledgebase of critical details for accurate bioanalysis, a review of the literature was performed and summarized. Bioanalytical assays for 31 ARVs, including metabolites, were identified in 205 publications measuring various tissues and biofluids. 18 and 30% of tissue or biofluid methods, respectively, analyzed more than one specimen type; 35-37% of the tissue or biofluid methods quantitated more than one ARV. 20 and 76% of tissue or biofluid methods, respectively, were used for the analysis of human specimens. HPLC methods with UV detection predominated, but chronologically MS detection began to surpass. 40% of the assays provided complete intra- and inter-assay validation data, but only 9% of publications provided any stability data with even less for the prevalent ARV in treatments.
Collapse
|
11
|
Biphasic elimination of tenofovir diphosphate and nonlinear pharmacokinetics of zidovudine triphosphate in a microdosing study. J Acquir Immune Defic Syndr 2013. [PMID: 23187888 DOI: 10.1097/qai.0b013e3182717c98] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Phase 0 studies can provide initial pharmacokinetics (PKs) data in humans and help to facilitate early drug development, but their predictive value for standard dosing is controversial. To evaluate the prediction of microdosing for active intracellular drug metabolites, we compared the PK profile of 2 antiretroviral drugs, zidovudine (ZDV) and tenofovir (TFV), in microdose and standard dosing regimens. STUDY DESIGN We administered a microdose (100 μg) of C-labeled drug (ZDV or tenofovir disoproxil fumarate) with or without a standard unlabelled dose (300 mg) to healthy volunteers. Both the parent drug in plasma and the active metabolite, ZDV-triphosphate (ZDV-TP) or TFV-diphosphate (TFV-DP) in peripheral blood mononuclear cells (PBMCs) and CD4 cells were measured by accelerator mass spectrometry. RESULTS The intracellular ZDV-TP concentration increased less than proportionally over the dose range studied (100 μg-300 mg), whereas the intracellular TFV-DP PKs were linear over the same dose range. ZDV-TP concentrations were lower in CD4 cells versus total PBMCs, whereas TFV-DP concentrations were not different in CD4 cells and PBMCs. CONCLUSIONS Our data were consistent with a rate-limiting step in the intracellular phosphorylation of ZDV but not TFV. Accelerator mass spectrometry shows promise for predicting the PK of active intracellular metabolites of nucleosides, but nonlinearity of PK may be seen with some drugs.
Collapse
|
12
|
von Kleist M, Metzner P, Marquet R, Schütte C. HIV-1 polymerase inhibition by nucleoside analogs: cellular- and kinetic parameters of efficacy, susceptibility and resistance selection. PLoS Comput Biol 2012; 8:e1002359. [PMID: 22275860 PMCID: PMC3261923 DOI: 10.1371/journal.pcbi.1002359] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 12/05/2011] [Indexed: 11/30/2022] Open
Abstract
Nucleoside analogs (NAs) are used to treat numerous viral infections and cancer. They compete with endogenous nucleotides (dNTP/NTP) for incorporation into nascent DNA/RNA and inhibit replication by preventing subsequent primer extension. To date, an integrated mathematical model that could allow the analysis of their mechanism of action, of the various resistance mechanisms, and their effect on viral fitness is still lacking. We present the first mechanistic mathematical model of polymerase inhibition by NAs that takes into account the reversibility of polymerase inhibition. Analytical solutions for the model point out the cellular- and kinetic aspects of inhibition. Our model correctly predicts for HIV-1 that resistance against nucleoside analog reverse transcriptase inhibitors (NRTIs) can be conferred by decreasing their incorporation rate, increasing their excision rate, or decreasing their affinity for the polymerase enzyme. For all analyzed NRTIs and their combinations, model-predicted macroscopic parameters (efficacy, fitness and toxicity) were consistent with observations. NRTI efficacy was found to greatly vary between distinct target cells. Surprisingly, target cells with low dNTP/NTP levels may not confer hyper-susceptibility to inhibition, whereas cells with high dNTP/NTP contents are likely to confer natural resistance. Our model also allows quantification of the selective advantage of mutations by integrating their effects on viral fitness and drug susceptibility. For zidovudine triphosphate (AZT-TP), we predict that this selective advantage, as well as the minimal concentration required to select thymidine-associated mutations (TAMs) are highly cell-dependent. The developed model allows studying various resistance mechanisms, inherent fitness effects, selection forces and epistasis based on microscopic kinetic data. It can readily be embedded in extended models of the complete HIV-1 reverse transcription process, or analogous processes in other viruses and help to guide drug development and improve our understanding of the mechanisms of resistance development during treatment. Nucleoside analogs (NAs) represent an important drug class for the treatment of viral infections and cancer. They inhibit DNA/RNA polymerization after being incorporated into nascent DNA/RNA, which prevents primer extension. Viruses are particularly versatile and frequently develop mutations enabling them to avert the effects of NAs. The mechanisms of resistance development are, however, still poorly understood. Through mathematical modeling, we assess the mechanisms by which HIV-1 can develop resistance against nucleoside analog reverse transcriptase inhibitors (NRTI). We quantify the effects of treatment and estimate the fitness of drug resistant mutants. We correctly predict that HIV-1 can develop resistance by decreasing NRTI incorporation rate, increasing its excision rate, or decreasing its affinity for the viral polymerase enzyme. Our model also allows quantification of the cell specific factors affecting NRTI efficacy. Resistance development also changes drug susceptibility distinctly and we show, for the first time, that selection of drug resistance can occur in particular target cells. This finding could provide an explanation of how clinically observed resistant viral mutants may arise. It also pin-points important parameters that may impact clinical efficacy of NAs used to treat other viruses.
Collapse
Affiliation(s)
- Max von Kleist
- Department of Mathematics and Computer Science, Free University Berlin, Berlin, Germany.
| | | | | | | |
Collapse
|
13
|
Pharmacokinetics of lamivudine and lamivudine-triphosphate after administration of 300 milligrams and 150 milligrams once daily to healthy volunteers: results of the ENCORE 2 study. Antimicrob Agents Chemother 2011; 56:1427-33. [PMID: 22183172 DOI: 10.1128/aac.05599-11] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is interest in evaluating the efficacy of lower doses of certain antiretrovirals for clinical care. We determined here the bioequivalence of plasma lamivudine (3TC) and intracellular 3TC-triphosphate (3TC-TP) concentrations after the administration of two different doses. ENCORE 2 was a randomized crossover study. Subjects received 3TC at 300 and 150 mg once daily for 10 days (arm 1; n = 13) or vice versa (arm 2; n = 11), separated by a 10-day washout. Pharmacokinetic (PK) profiles (0 to 24 h) were assessed on days 10 and 30. Plasma 3TC and 3TC-TP levels in peripheral blood mononuclear cells were quantified by high-performance liquid chromatography-tandem mass spectrometry. Within-subject changes in PK parameters (the area under the concentration-time curve from 0 to 24 h [AUC(0-24)], the trough concentration of drug in plasma at 24 h [C(24)], and the maximum concentration of drug in plasma [C(max)]) were evaluated by determining the geometric mean ratios (GMRs) adjusted for study arm, period, and intra-individual variation. Regimens were considered bioequivalent if the 90% confidence interval (90% CI) fell within the range of 0.8 to 1.25. A total of 24 subjects completed the study. The GM (90% CI) 3TC AUC(0-24)), expressed as ng·h/ml, for the 300- and 150-mg doses were 8,354 (7,609 to 9,172) and 4,773 (4,408 to 5,169), respectively. Bioequivalence in 3TC PK following the administration of 300 and 150 mg was not demonstrated: the GMRs for AUC(0-24), C(24), and C(max) were 0.57 (0.55 to 0.60), 0.63 (0.59 to 0.67), and 0.56 (0.53 to 0.60), respectively. The GM (90% CI) 3TC-TP AUC(0-24) values (pmol·h/10(6) cells) for the 300- and 150-mg doses were 59.5 (51.8 to 68.3) and 44.0 (38.0 to 51.0), respectively. Bioequivalence in 3TC-TP PK following the administration of 300 and 150 mg was not demonstrated: the GMRs for AUC(0-24), C(24), and C(max) were 0.73 (0.64 to 0.83), 0.82 (0.68 to 0.99), and 0.70 (0.61 to 0.82), respectively. We found that 3TC at 150 mg is not bioequivalent to the standard regimen of 300 mg, indicating that saturation of cytosine phosphorylation pathways is not achieved at a dose of 150 mg.
Collapse
|
14
|
Bushman LR, Kiser JJ, Rower JE, Klein B, Zheng JH, Ray ML, Anderson PL. Determination of nucleoside analog mono-, di-, and tri-phosphates in cellular matrix by solid phase extraction and ultra-sensitive LC-MS/MS detection. J Pharm Biomed Anal 2011; 56:390-401. [PMID: 21715120 PMCID: PMC3153375 DOI: 10.1016/j.jpba.2011.05.039] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 05/19/2011] [Accepted: 05/27/2011] [Indexed: 12/17/2022]
Abstract
An ultra-sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) assay was developed and validated to facilitate the assessment of clinical pharmacokinetics of nucleotide analogs from lysed intracellular matrix. The method utilized a strong anion exchange isolation of mono-(MP), di-(DP), and tri-phosphates (TP) from intracellular matrix. Each fraction was then dephosphorylated to the parent moiety yielding a molar equivalent to the original nucleotide analog intracellular concentration. The analytical portion of the methodology was optimized in specific nucleoside analog centric modes (i.e. tenofovir (TFV) centric, zidovudine (ZDV) centric), which included desalting/concentration by solid phase extraction and detection by LC-MS/MS. Nucleotide analog MP-, DP-, and TP-determined on the TFV centric mode of analysis include TFV, lamivudine (3TC), and emtricitibine (FTC). The quantifiable linear range for TFV was 2.5-2000 fmol/sample, and that for 3TC/FTC was 0.1 200 pmol/sample. Nucleoside analog MP-, DP-, and TP-determined on the ZDV centric mode of analysis included 3TC and ZDV. The quantifiable linear range for 3TC was 0.1 100 pmol/sample, and 5-2000 fmol/sample for ZDV. Stable labeled isotopic internal standards facilitated accuracy and precision in alternative cell matrices, which supported the intended use of the method for MP, DP, and TP determinations in various cell types. The method was successfully applied to clinical research samples generating novel intracellular information for TFV, FTC, ZDV, and 3TC nucleotides. This document outlines method development, validation, and application to clinical research.
Collapse
Affiliation(s)
- Lane R Bushman
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Colorado Denver, Mail Stop V20-C238, 12850 E. Montview Blvd., Aurora, Colorado 80045, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Jansen RS, Rosing H, Schellens JHM, Beijnen JH. Mass spectrometry in the quantitative analysis of therapeutic intracellular nucleotide analogs. MASS SPECTROMETRY REVIEWS 2011; 30:321-343. [PMID: 20623700 DOI: 10.1002/mas.20280] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2009] [Accepted: 09/29/2009] [Indexed: 05/29/2023]
Abstract
Nucleoside analogs are widely used in anti-cancer, anti-(retro)viral, and immunosuppressive therapy. Nucleosides are prodrugs that require intracellular activation to mono-, di-, and finally triphosphates. Monitoring of these intracellular nucleotides is important to understand their pharmacology. The relatively involatile salts and ion-pairing agents traditionally used for the separation of these ionic analytes limit the applicability of mass spectrometry (MS) for detection. Both indirect and direct methods have been developed to circumvent this apparent incompatibility. Indirect methods consist of de-phosphorylation of the nucleotides into nucleosides before the actual analysis. Various direct approaches have been developed, ranging from the use of relatively volatile or very low levels of regular ion-pairing agents, hydrophilic interaction chromatography (HILIC), weak anion-exchange, or porous graphitic carbon columns to capillary electrophoresis and matrix-assisted light desorption--time of flight (MALDI-TOF) MS. In this review we present an overview of the publications describing the quantitative analysis of therapeutic intracellular nucleotide analogs using MS. The focus is on the different approaches for their direct analysis. We conclude that despite the technical hurdles, several useful MS-compatible chromatographic approaches have been developed, enabling the use of the excellent selectivity and sensitivity of MS for the quantitative analysis of intracellular nucleotides.
Collapse
Affiliation(s)
- Robert S Jansen
- Department of Pharmacy & Pharmacology, Slotervaart Hospital/The Netherlands Cancer Institute, Louwesweg 6, 1066 EC Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
16
|
Anderson PL, Kiser JJ, Gardner EM, Rower JE, Meditz A, Grant RM. Pharmacological considerations for tenofovir and emtricitabine to prevent HIV infection. J Antimicrob Chemother 2011; 66:240-50. [PMID: 21118913 PMCID: PMC3019086 DOI: 10.1093/jac/dkq447] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The use of antiretroviral medications in HIV-negative individuals as pre-exposure prophylaxis (PrEP) is a promising approach to prevent HIV infection. Tenofovir disoproxil fumarate (TDF) and emtricitabine exhibit desirable properties for PrEP including: favourable pharmacokinetics that support infrequent dosing; few major drug-drug or drug-food interactions; an excellent clinical safety record; and pre-clinical evidence for efficacy. Several large, randomized, controlled clinical trials are evaluating the safety and efficacy of TDF and emtricitabine for this new indication. A thorough understanding of variability in drug response will help determine future investigations in the field and/or implementation into clinical care. Because tenofovir and emtricitabine are nucleos(t)ide analogues, the HIV prevention and toxicity effects depend on the triphosphate analogue formed intracellularly. This review identifies important cellular pharmacology considerations for tenofovir and emtricitabine, which include drug penetration into relevant tissues and cell types, race/ethnicity/pharmacogenetics, gender, cellular activation state and appropriate episodic or alternative dosing strategies based on pharmacokinetic principles. The current state of knowledge in these areas is summarized and the future utility of intracellular pharmacokinetics/pharmacodynamics for the PrEP field is discussed.
Collapse
Affiliation(s)
- Peter L Anderson
- Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO, USA.
| | | | | | | | | | | |
Collapse
|
17
|
Veronese F, Anton P, Fletcher CV, DeGruttola V, McGowan I, Becker S, Zwerski S, Burns D. Implications of HIV PrEP trials results. AIDS Res Hum Retroviruses 2011; 27:81-90. [PMID: 20969483 DOI: 10.1089/aid.2010.0226] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Abstract Six randomized clinical trials have been implemented to examine the efficacy of tenofovir disoproxil fumarate (TDF) and/or TDF/emtricitabine (TDF/FTC) as preexposure prophylaxis for HIV-1 infection (PrEP). Although largely complementary, the six trials have many similar features. As the earliest results become available, an urgent question may arise regarding whether changes should be made in the conduct of the other trials. To consider this in advance, a Consultation on the Implications of HIV Pre-Exposure Prophylaxis (PrEP) Trials Results sponsored by the Division of AIDS (DAIDS) of the National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), and the Bill and Melinda Gates Foundation (BMGF) was held on January 29, 2010, at the Natcher Conference Center, NIH, Bethesda, MD. Participants included basic scientists, clinical researchers (including investigators performing the current PrEP trials), and representatives from the U.S. Food and Drug Administration (FDA) and the agencies sponsoring the trials: the U.S. Centers for Disease Control and Prevention (CDC), the U.S. Agency for International Development (USAID), the BMGF, and the U.S. NIH. We report here a summary of the presentations and highlights of salient discussion topics from this workshop.
Collapse
Affiliation(s)
- Fulvia Veronese
- Prevention Sciences Program (PSP), Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland
| | - Peter Anton
- Center for HIV Prevention Research, David Geffen School of Medicine, University of California, Los Angeles (UCLA), Los Angeles, California
| | | | - Victor DeGruttola
- Harvard School of Public Health, Harvard University, Boston, Massachusetts
| | - Ian McGowan
- Division of Gastroenterology, Hepatology, and Nutrition, Magee-Women's Research Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Stephen Becker
- Global Health-HIV, Bill and Melinda Gates Foundation (BMGF), Seattle, Washington
| | - Sheryl Zwerski
- Prevention Sciences Program (PSP), Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland
| | - David Burns
- Prevention Sciences Program (PSP), Division of AIDS (DAIDS), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland
| | | |
Collapse
|
18
|
Enomoto L, Anderson PL, Li S, Edelstein CL, Weinberg A. Effect of nucleoside and nucleotide analog reverse transcriptase inhibitors on cell-mediated immune functions. AIDS Res Hum Retroviruses 2011; 27:47-55. [PMID: 20929390 DOI: 10.1089/aid.2010.0067] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Nucleoside analog reverse transcriptase inhibitors (NRTIs) constitute the most commonly used drugs in antiretroviral therapy. NRTIs differ with respect to their host cell toxicity. We compared the in vitro effect of zidovudine (AZT; 2 μg/ml), lamivudine (3TC; 5 μg/ml), stavudine (d4T; 1 μg/ml), and tenofovir (TFV; 1 μg/ml) on Candida cell-mediated immunity (CMI) of peripheral blood mononuclear cells (PBMCs). The concentrations of the active derivative AZT-triphosphate were 4-fold higher in Candida-stimulated compared with unstimulated PBMCs (p = 0.01), but those of 3TC-triphosphate and TFV-diphosphate did not differ significantly. AZT treatment decreased proliferation of unstimulated and Candida-stimulated PBMCs and IFN-γ ELISPOT responses; 3TC decreased proliferation of unstimulated PBMCs only; d4T and TFV decreased proliferation of Candida-stimulated PBMCs only. AZT, but not the other NRTIs, increased unstimulated PBMC apoptosis measured by caspase 3 activity. All NRTIs increased annexin-V-measured apoptosis of Candida-stimulated PBMCs. The effect of d4T on apoptosis of Candida-stimulated PBMCs strongly correlated with its inhibitory effect on mitochondrial DNA synthesis (r² = 0.94; p = 0.007). The other NRTIs did not significantly decrease the mitochondrial:nuclear DNA ratios in Candida-stimulated or unstimulated cultures, suggesting that other mechanisms mediated their effect on apoptosis and CMI. In conclusion, AZT had the most pronounced inhibitory effect on CMI. Further studies are warranted to determine the clinical significance of this observation.
Collapse
Affiliation(s)
| | | | - Shaobing Li
- University of Colorado Denver, Aurora, Colorado
| | | | | |
Collapse
|
19
|
Bazzoli C, Jullien V, Le Tiec C, Rey E, Mentré F, Taburet AM. Intracellular Pharmacokinetics of Antiretroviral Drugs in HIV-Infected Patients, and their Correlation with Drug Action. Clin Pharmacokinet 2010; 49:17-45. [DOI: 10.2165/11318110-000000000-00000] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Abstract
PURPOSE OF REVIEW This review summarizes recent developments regarding the unique clinical pharmacologic profile of nucleoside analog reverse transcriptase inhibitors for management of HIV. RECENT FINDINGS First, intracellular data in patients suggest that nucleoside reverse transcriptase inhibitor-triphosphates are compartmentalized in different cell types. Additionally, intracellular drug-drug interactions were identified, which were undetectable in plasma. Second, extracellular data illustrate multiple bidirectional plasma drug-drug interactions between renally eliminated tenofovir and liver-metabolized drugs. Definitive mechanistic details for these interactions are lacking but they appear to involve renal and/or enteric drug transporters. Furthermore, the plasma versus female genital tract disposition of these agents was recently elucidated, which is important for currently investigated indications for pre-exposure and post-exposure prophylaxis. Finally, tenofovir/emtricitabine and abacavir (using a promising human leukocyte antigen-B*5701 genetic test for hypersensitivity)/lamivudine have emerged as common first-line nucleoside analog reverse transcriptase inhibitors because of co-formulations, once-daily dosing, and favorable tolerability and adverse effect profiles. Nevertheless, elucidating the long-term safety profile for all nucleoside analog reverse transcriptase inhibitors remains a priority. SUMMARY Knowledge of nucleoside analog reverse transcriptase inhibitor disposition intracellularly and extracellularly has expanded. This provides a basis for rational use of these agents clinically and adds new perspectives for future research.
Collapse
|
21
|
The complexities of antiretroviral drug-drug interactions: role of ABC and SLC transporters. Trends Pharmacol Sci 2009; 31:22-35. [PMID: 20004485 DOI: 10.1016/j.tips.2009.10.001] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2009] [Revised: 09/30/2009] [Accepted: 10/01/2009] [Indexed: 12/15/2022]
Abstract
Treatment of human immunodeficiency virus (HIV) infection involves a combination of several antiviral agents belonging to different pharmacological classes. This combination is referred to as highly active antiretroviral therapy (HAART). This treatment has proved to be very effective in suppressing HIV replication, but antiretroviral drugs have complex pharmacokinetic properties involving extensive drug metabolism and transport by membrane-associated drug carriers. Combination drug therapy often introduces complex drug-drug interactions that can result in toxic or sub-therapeutic drug concentrations, compromising treatment. This review focuses on the role of ATP-binding cassette (ABC) membrane-associated efflux transporters and solute carrier (SLC) uptake transporters in antiretroviral drug disposition, and identifies clinically important antiretroviral drug-drug interactions associated with changes in drug transport.
Collapse
|
22
|
Maagaard A, Kvale D. Mitochondrial toxicity in HIV-infected patients both off and on antiretroviral treatment: a continuum or distinct underlying mechanisms? J Antimicrob Chemother 2009; 64:901-9. [DOI: 10.1093/jac/dkp316] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|
23
|
Wagner TA, Tobin NH, McKernan JL, Xu M, Melvin AJ, Mohan KM, Learn GH, Mullins JI, Frenkel LM. Increased mutations in Env and Pol suggest greater HIV-1 replication in sputum-derived viruses compared with blood-derived viruses. AIDS 2009; 23:923-8. [PMID: 19349849 PMCID: PMC2677633 DOI: 10.1097/qad.0b013e328329f964] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Low-level HIV-1 replication may occur during antiretroviral therapy (ART) that suppresses plasma HIV-1 RNA to less than 50 copies/ml (suppressive ART). Antiretroviral drugs appear less effective in macrophages and monocytes compared with lymphocytes, both in vitro and as implied in vivo by greater viral evolution observed during suppressive ART. Our objective was to examine sputum, which is rich in macrophages, for evidence of increased HIV-1 replication compared with that in the blood during suppressive ART. DESIGN A cross-sectional study during suppressive ART was performed, and HIV-1 DNA sequences derived from induced sputa and peripheral blood mononuclear cells were compared. METHODS Multiple sequences encoding HIV-1 reverse transcriptase, protease, and envelope were generated using single-genome sequencing. Reverse transcriptase and protease sequences were analyzed for genotypic drug resistance. The evolutionary distances of env sequences from the inferred most recent common ancestor of infection were calculated, and CXCR4 usage was predicted. RESULTS Nine hundred seventy bidirectional sequences from 11 individuals were analyzed. HIV-1 env and pol derived from sputa had greater frequency of drug-resistance mutations (P = 0.05), evolutionary divergence (P = 0.004), and tendency for CXCR4 usage (P = 0.1) compared with viruses derived from peripheral blood mononuclear cells. CONCLUSION The greater frequency of HIV-1 drug-resistance mutations and divergence of HIV-1 env in sputa-derived viruses compared with peripheral blood mononuclear cell-derived viruses suggests greater HIV-1 replication in the respiratory tract compared with the blood. Characterization of viral evolution over time and by cell-type could identify cells that provide a sanctuary for low-level viral replication in the respiratory tract during suppressive ART.
Collapse
Affiliation(s)
- Thor A. Wagner
- University of Washington, Seattle, WA, USA
- Seattle Children’s Hospital and Research Institute, Seattle, WA, USA
| | - Nicole H. Tobin
- University of Washington, Seattle, WA, USA
- Seattle Children’s Hospital and Research Institute, Seattle, WA, USA
| | | | - Min Xu
- University of Washington, Seattle, WA, USA
- Seattle Children’s Hospital and Research Institute, Seattle, WA, USA
| | - Ann J. Melvin
- University of Washington, Seattle, WA, USA
- Seattle Children’s Hospital and Research Institute, Seattle, WA, USA
| | - Kathleen M. Mohan
- Seattle Children’s Hospital and Research Institute, Seattle, WA, USA
| | | | | | - Lisa M. Frenkel
- University of Washington, Seattle, WA, USA
- Seattle Children’s Hospital and Research Institute, Seattle, WA, USA
| |
Collapse
|
24
|
Hendrix CW, Cao YJ, Fuchs EJ. Topical microbicides to prevent HIV: clinical drug development challenges. Annu Rev Pharmacol Toxicol 2009; 49:349-75. [PMID: 19006450 DOI: 10.1146/annurev.pharmtox.48.113006.094906] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microbicides, substances applied topically to prevent sexual HIV infection, are needed to empower receptive sexual partners with effective prevention methods. Several large microbicide trials, however, failed to demonstrate efficacy, thus motivating a reevaluation of the current microbicide development paradigm, which has been largely empirically based. Microbicide use occurs in a highly complex environment involving multi-level interactions, behavioral and biochemical, among host, virus, and drug, yet many details of these interactions remain unknown. Fundamental information regarding virus and drug distribution over time in sexually receptive body compartments that is necessary to design a microbicide able to outdistance and outlast the virus is largely absent. Recent efforts have been made to establish a simple conceptual framework for obtaining the knowledge that is likely to inform a more mechanistic, model-based development paradigm. These efforts have also advanced the development of numerous methodological approaches to obtain the knowledge needed to improve microbicide development.
Collapse
Affiliation(s)
- Craig W Hendrix
- Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, USA.
| | | | | |
Collapse
|
25
|
Pharmacokinetic-pharmacodynamic relationship of NRTIs and its connection to viral escape: an example based on zidovudine. Eur J Pharm Sci 2008; 36:532-43. [PMID: 19150497 DOI: 10.1016/j.ejps.2008.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2008] [Revised: 11/26/2008] [Accepted: 12/08/2008] [Indexed: 11/20/2022]
Abstract
In HIV disease, the mechanisms of drug resistance are only poorly understood. Incomplete suppression of HIV by antiretroviral agents is suspected to be a main reason. The objective of this in silico study is to elucidate the pharmacokinetic origins of incomplete viral suppression, exemplified for zidovudine (AZT) as a representative of the key class of nucleoside reverse transcriptase inhibitors (NRTIs). AZT, like other NRTIs, exerts its main action through its intra-cellular triphoshate (AZT-TP) by competition with natural thymidine triphosphate. We developed a physiologically based pharmacokinetic (PBPK) model describing the intra-cellular pharmacokinetics of AZT anabolites and subsequently established the pharmacokinetic-pharmacodynamic relationship. The PBPK model has been validated against clinical data of different dosing schemes. We reduced the PBPK model to derive a simple three-compartment model for AZT and AZT-TP that can readily be used in population analysis of clinical trials. A novel machanistic, and for NRTIs generic effect model has been developed that incorporates the primary effect of AZT-TP and potential secondary effect of zidovudine monophosphate. The proposed models were used to analyze the efficacy and potential toxicity of different dosing schemes for AZT. Based on the mechanism of action of NRTIs, we found that drug heterogeneities due to temporal fluctuations can create a major window of unsuppressed viral replication. For AZT, this window was most pronounced for a 600 mg/once daily dosing scheme, in which insufficient viral suppression was observed for almost half the dosing period.
Collapse
|
26
|
Anderson PL, King T, Zheng JH, MaWhinney S. Cytokine and sex hormone effects on zidovudine- and lamivudine-triphosphate concentrations in vitro. J Antimicrob Chemother 2008; 62:738-45. [PMID: 18567572 PMCID: PMC2574436 DOI: 10.1093/jac/dkn247] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2008] [Revised: 05/22/2008] [Accepted: 05/27/2008] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Elevated zidovudine- and lamivudine-triphosphates have been observed in peripheral blood mononuclear cells (PBMCs) from females versus males and in patients with high inflammatory states versus lower inflammatory states. Consistent with high triphosphate exposures, these same patient groups also experience elevated rates of toxicity, including lipoatrophy. The purpose of this study was to evaluate the effects of oestradiol, progesterone and testosterone as well as tumour necrosis factor (TNF)-alpha and interferon (IFN)-alpha on zidovudine- and lamivudine-triphosphates in PBMCs and, for the cytokines, in 3T3-L1 adipocytes. METHODS Multiple replicates of adipocytes and human PBMCs were incubated with experimental versus control conditions using several cytokine and sex hormone doses. Zidovudine- and lamivudine-triphosphate concentrations were determined with validated LC-MS-MS assays. A mixed effects, cell means model that accounted for experiment number was used to evaluate the effects of experimental conditions relative to control. RESULTS In adipocytes, TNF-alpha doses below 2 ng/mL increased zidovudine-triphosphate by 18% (5-31%). Lamivudine-triphosphate was not detectable in adipocytes. In PBMCs, pooled IFN-alpha doses (0.1-10 U/mL) decreased zidovudine-triphosphate 26% (10-42%); 100 and 1000 ng/mL of progesterone decreased lamivudine-triphosphate by 22% (1-43%) and 47% (25-68%), respectively. Pooled testosterone doses (10-1000 ng/mL) decreased lamivudine-triphosphate by 24% (7-41%). No other statistically significant effects were observed. CONCLUSIONS We found evidence that sex hormones and cytokines influence zidovudine-triphosphate and lamivudine-triphosphate slightly in PBMCs and adipocytes in vitro. These findings provide insight and scientific direction to address inflammation-dependent and sex-dependent phosphorylation and responses in patients.
Collapse
Affiliation(s)
- Peter L Anderson
- Department of Pharmaceutical Sciences, University of Colorado Denver, Denver, CO 80262, USA.
| | | | | | | |
Collapse
|
27
|
Jung N, Lehmann C, Rubbert A, Knispel M, Hartmann P, van Lunzen J, Stellbrink HJ, Faetkenheuer G, Taubert D. Relevance of the organic cation transporters 1 and 2 for antiretroviral drug therapy in human immunodeficiency virus infection. Drug Metab Dispos 2008; 36:1616-23. [PMID: 18490433 DOI: 10.1124/dmd.108.020826] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carrier-mediated transport across cell membranes is an important determinant of activity, resistance, and toxicity of chemotherapeutic agents including antiretroviral (ARV) drugs (ARDs). The organic cation transporters (OCTs) 1 and 2 have been implicated in the translocation of different cationic drugs but so far were insufficiently tested for interactions with ARDs. Here, we assessed among cationic drugs commonly used in human immunodeficiency virus (HIV) therapy inhibitors and substrates of OCTs, and analyzed the tissue distribution of OCTs and their expression in lymph nodes (LNs), the primary intracellular target of HIV and ARDs. Inhibitors were identified by measuring the attenuated uptake of the radiolabeled model substrate 1-methyl-4-phenylpyridinium into OCT-transfected human embryonic kidney-293 cells in the presence of ARDs. Substrates were identified by measuring OCT-specific intracellular accumulation using liquid chromatography/tandem mass spectrometry. Inhibitory drugs were (in order of increasing potency): nelfinavir < ritonavir < saquinavir < indinavir < trimethoprim < pentamidine, with consistently lower IC(50) values determined for OCT1. Substrates with highest transport efficacy (V(max)/K(m)) were lamivudine (OCT1, 8 microl/mg protein/min; OCT2, 4.4 microl/mg protein/min) and zalcitabine (OCT1, 4.1 microl/mg protein/min; OCT2, 2.6 microl/mg protein/min). Using quantitative real-time polymerase chain reaction, a marked expression level of OCT1 was detected in human samples of liver, ovary, prostate, and testis, and of OCT2 in kidney, colon, heart, skeletal muscle, and testis. Expression of OCTs in LNs was low in HIV-negative control individuals but dramatically increased in HIV-infected persons. These data suggest that drug interactions about the OCTs may be relevant for the ARV therapy, in particular by influencing drug accession to infected tissues and hepatic or renal elimination.
Collapse
Affiliation(s)
- Norma Jung
- Department of Internal Medicine I, University of Cologne, Josef-Stelzmannstr. 6, 50924 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Dumond JB, Reddy YS, Troiani L, Rodriguez JF, Bridges AS, Fiscus SA, Yuen GJ, Cohen MS, Kashuba ADM. Differential extracellular and intracellular concentrations of zidovudine and lamivudine in semen and plasma of HIV-1-infected men. J Acquir Immune Defic Syndr 2008; 48:156-62. [PMID: 18360288 PMCID: PMC2862269 DOI: 10.1097/qai.0b013e31816de21e] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES To quantitate extracellular and intracellular zidovudine (ZDV) and lamivudine (3TC) concentrations in blood and semen of HIV-1-infected men. DESIGN : Nonblind, single-center, open-label pharmacokinetic (PK) study in 14 subjects receiving ZDV plus 3TC. METHODS Paired blood and semen samples were obtained during 1 intensive visit and 3 single time point visits over 2 weeks. Extracellular ZDV and 3TC concentrations were measured in blood plasma (BP) and seminal plasma (SP), and intracellular ZDV and 3TC triphosphate (TP) concentrations were measured in isolated mononuclear cells using validated methods. HIV-1 RNA was measured in blood and semen. PK parameters were estimated using noncompartmental analysis. RESULTS Median (interquartile range [IQR]) SP/BP area under the time-concentration curve over the 12-hour dosing interval (AUC0-12h) ratios for ZDV and 3TC were 2.28 (1.48 to 2.97) and 6.67 (4.10 to 9.14), respectively, whereas individual SP/BP concentration ratios ranged from 1.9 to 91.4. Intracellular median (IQR) SP/BP AUC0-12h ratios for ZDV-TP and 3TC-TP were 0.36 (0.30 to 0.37) and 1.0 (0.62 to 1.30), respectively, whereas individual SP/BP concentration ratios ranged from 0.11 to 2.9. HIV-1 RNA was undetectable in both compartments. CONCLUSIONS ZDV and 3TC SP exposures are 2- to 6-fold greater than BP exposures. Seminal ZDV-TP exposures are approximately 40% of those found in peripheral blood mononuclear cells (PBMCs), whereas 3TC-TP exposures are similar to PBMC exposures. PK variability makes individual SP/BP ratios a suboptimal surrogate for genital tract exposure.
Collapse
Affiliation(s)
- Julie B. Dumond
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Y. Sunila Reddy
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Luigi Troiani
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Jose F. Rodriguez
- Department of Biochemistry, School of Medicine, University of Puerto Rico, San Juan, PR
- Puerto Rico Institute of Forensic Sciences, San Juan, PR
| | | | - Susan A. Fiscus
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | | - Myron S. Cohen
- University of North Carolina at Chapel Hill, Chapel Hill, NC
| | | |
Collapse
|