1
|
Barua D, Płecha M, Muszewska A. Non-dikarya fungi share the TORC1 pathway with animals, not with Saccharomyces cerevisiae. Sci Rep 2025; 15:5926. [PMID: 39966606 PMCID: PMC11836306 DOI: 10.1038/s41598-025-89635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
Target of rapamycin (TOR), discovered in Saccharomyces cerevisiae, is a highly conserved serine/threonine kinase acting as a regulatory hub between the cell and its environment. Like mammals, in fungi, the TOR complex 1 (TORC1) pathway is essential for coordinating cell growth in response to nutrient availability. The activation of TORC1 is similar in yeast and mammals, while its inhibition is more complex in mammals. This divergence of TORC1 regulation opens the question of how common are the yeast and mammalian variants in the fungal kingdom. In this work, we trace the evolutionary history of TORC1 components throughout the fungal kingdom. Our findings show that these fungi contain the mammalian-specific KICSTOR complex for TORC1 inhibition. They also possess orthologs of serine, arginine and methionine sensors of TORC1 pathway that orchestrate the response to nutrient starvation in mammals. The Rheb-TSC mediated activation of mammalian TORC1 that was lost in Saccharomycotina was also conserved in non-Dikarya. These findings indicate that the TORC1 pathway in non-Dikarya fungi resembles mammalian TORC1. Saccharomycotina lost many of the inhibitory components and evolved alternate regulatory mechanisms. Furthermore, our work highlights the limitations of using S. cerevisiae as a fungal model while putting forward other fungi as possible research models.
Collapse
Affiliation(s)
- Drishtee Barua
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Magdalena Płecha
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland
| | - Anna Muszewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawińskiego 5A, Warsaw, 02-106, Poland.
| |
Collapse
|
2
|
Bottillo I, Laino L, Azzarà A, Lintas C, Cassano I, Di Lazzaro V, Ursini F, Motolese F, Bargiacchi S, Formicola D, Grammatico P, Gurrieri F. A pathogenic variant in the FLCN gene presenting with pure dementia: is autophagy at the intersection between neurodegeneration and cancer? Front Neurosci 2024; 17:1304080. [PMID: 38249578 PMCID: PMC10796570 DOI: 10.3389/fnins.2023.1304080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/08/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Folliculin, encoded by FLCN gene, plays a role in the mTORC1 autophagy cascade and its alterations are responsible for the Birt-Hogg-Dubé (BHD) syndrome, characterized by follicle hamartomas, kidney tumors and pneumothorax. Patient and results We report a 74-years-old woman diagnosed with dementia and carrying a FLCN alteration in absence of any sign of BHD. She also carried an alteration of MAT1A gene, which is also implicated in the regulation of mTORC1. Discussion The MAT1A variant could have prevented the development of a FLCN-related oncological phenotype. Conversely, our patient presented with dementia that, to date, has yet to be documented in BHD. Folliculin belongs to the DENN family proteins, which includes C9orf72 whose alteration has been associated to neurodegeneration. The folliculin perturbation could affect the C9orf72 activity and our patient could represent the first human model of a relationship between FLCN and C9orf72 across the path of autophagy.
Collapse
Affiliation(s)
- Irene Bottillo
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Luigi Laino
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Alessia Azzarà
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carla Lintas
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Ilaria Cassano
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Vincenzo Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesca Ursini
- Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Francesco Motolese
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology and Psychiatry, Università Campus Bio-Medico di Roma, Rome, Italy
- Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Simone Bargiacchi
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Daniela Formicola
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Paola Grammatico
- Division of Medical Genetics, Department of Experimental Medicine, San Camillo-Forlanini Hospital, Sapienza University, Rome, Italy
| | - Fiorella Gurrieri
- Research Unit of Medical Genetics, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Operative Research Unit of Medical Genetics, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| |
Collapse
|
3
|
van de Beek I, Glykofridis IE, Tanck MWT, Luijten MNH, Starink TM, Balk JA, Johannesma PC, Hennekam E, van den Hoff MJB, Gunst QD, Gille JJP, Polstra AM, Postmus PE, van Steensel MAM, Postma AV, Wolthuis RMF, Menko FH, Houweling AC, Waisfisz Q. Familial multiple discoid fibromas is linked to a locus on chromosome 5 including the FNIP1 gene. J Hum Genet 2023; 68:273-279. [PMID: 36599954 DOI: 10.1038/s10038-022-01113-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 01/06/2023]
Abstract
Previously, we reported a series of families presenting with trichodiscomas, inherited in an autosomal dominant pattern. The phenotype was named familial multiple discoid fibromas (FMDF). The genetic cause of FMDF remained unknown so far. Trichodiscomas are skin lesions previously reported to be part of the same spectrum as the fibrofolliculoma observed in Birt-Hogg-Dubé syndrome (BHD), an inherited disease caused by pathogenic variants in the FLCN gene. Given the clinical and histological differences with BHD and the exclusion of linkage with the FLCN locus, the phenotype was concluded to be distinct from BHD. We performed extensive clinical evaluations and genetic testing in ten families with FMDF. We identified a FNIP1 frameshift variant in nine families and genealogical studies showed common ancestry for eight families. Using whole exome sequencing, we identified six additional rare variants in the haplotype surrounding FNIP1, including a missense variant in the PDGFRB gene that was found to be present in all tested patients with FMDF. Genome-wide linkage analysis showed that the locus on chromosome 5 including FNIP1 was the only region reaching the maximal possible LOD score. We concluded that FMDF is linked to a haplotype on chromosome 5. Additional evaluations in families with FMDF are required to unravel the exact genetic cause underlying the phenotype. When evaluating patients with multiple trichodisomas without a pathogenic variant in the FLCN gene, further genetic testing is warranted and can include analysis of the haplotype on chromosome 5.
Collapse
Affiliation(s)
- Irma van de Beek
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - Iris E Glykofridis
- Department of Human Genetics, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Epidemiology and Data Science, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monique N H Luijten
- Department of Dermatology and GROW School for Oncology and Developmental Biology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Theo M Starink
- Department of Dermatology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | - Jesper A Balk
- Department of Human Genetics, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Paul C Johannesma
- Department of Surgery, Gelderse Vallei Ziekenhuis, Ede, The Netherlands
| | - Eric Hennekam
- Division of Biomedical Genetics, Department of Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Maurice J B van den Hoff
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Quinn D Gunst
- Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johan J P Gille
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Abeltje M Polstra
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Pieter E Postmus
- Department of Pulmonology, Leiden University Medical Center, Leiden, The Netherlands
| | - Maurice A M van Steensel
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore.,Singapore Skin Research Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Alex V Postma
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medical Biology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Rob M F Wolthuis
- Department of Human Genetics, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fred H Menko
- Family Cancer Clinic, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Arjan C Houweling
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Quinten Waisfisz
- Department of Human Genetics, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Calvo IA, Sharma S, Paulo JA, Gulka AO, Boeszoermenyi A, Zhang J, Lombana JM, Palmieri CM, Laviolette LA, Arthanari H, Iliopoulos O, Gygi SP, Motamedi M. The fission yeast FLCN/FNIP complex augments TORC1 repression or activation in response to amino acid (AA) availability. iScience 2021; 24:103338. [PMID: 34805795 PMCID: PMC8590082 DOI: 10.1016/j.isci.2021.103338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/10/2021] [Accepted: 10/21/2021] [Indexed: 11/13/2022] Open
Abstract
The target of Rapamycin complex1 (TORC1) senses and integrates several environmental signals, including amino acid (AA) availability, to regulate cell growth. Folliculin (FLCN) is a tumor suppressor (TS) protein in renal cell carcinoma, which paradoxically activates TORC1 in response to AA supplementation. Few tractable systems for modeling FLCN as a TS are available. Here, we characterize the FLCN-containing complex in Schizosaccharomyces pombe (called BFC) and show that BFC augments TORC1 repression and activation in response to AA starvation and supplementation, respectively. BFC co-immunoprecipitates V-ATPase, a TORC1 modulator, and regulates its activity in an AA-dependent manner. BFC genetic and proteomic networks identify the conserved peptide transmembrane transporter Ptr2 and the phosphoribosylformylglycinamidine synthase Ade3 as new AA-dependent regulators of TORC1. Overall, these data ascribe an additional repressive function to Folliculin in TORC1 regulation and reveal S. pombe as an excellent system for modeling the AA-dependent, FLCN-mediated repression of TORC1 in eukaryotes.
Collapse
Affiliation(s)
- Isabel A. Calvo
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Shalini Sharma
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Alexander O.D. Gulka
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Andras Boeszoermenyi
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jingyu Zhang
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Jose M. Lombana
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Christina M. Palmieri
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Laura A. Laviolette
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| | - Haribabu Arthanari
- Department of Biochemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
- Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Othon Iliopoulos
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
- Division of Hematology-Oncology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Steven P. Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Mo Motamedi
- Massachusetts General Hospital Center for Cancer Research and Department of Medicine Harvard Medical School, Charlestown, MA 02129, USA
| |
Collapse
|
5
|
Ramirez Reyes JMJ, Cuesta R, Pause A. Folliculin: A Regulator of Transcription Through AMPK and mTOR Signaling Pathways. Front Cell Dev Biol 2021; 9:667311. [PMID: 33981707 PMCID: PMC8107286 DOI: 10.3389/fcell.2021.667311] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022] Open
Abstract
Folliculin (FLCN) is a tumor suppressor gene responsible for the inherited Birt-Hogg-Dubé (BHD) syndrome, which affects kidneys, skin and lungs. FLCN is a highly conserved protein that forms a complex with folliculin interacting proteins 1 and 2 (FNIP1/2). Although its sequence does not show homology to known functional domains, structural studies have determined a role of FLCN as a GTPase activating protein (GAP) for small GTPases such as Rag GTPases. FLCN GAP activity on the Rags is required for the recruitment of mTORC1 and the transcriptional factors TFEB and TFE3 on the lysosome, where mTORC1 phosphorylates and inactivates these factors. TFEB/TFE3 are master regulators of lysosomal biogenesis and function, and autophagy. By this mechanism, FLCN/FNIP complex participates in the control of metabolic processes. AMPK, a key regulator of catabolism, interacts with FLCN/FNIP complex. FLCN loss results in constitutive activation of AMPK, which suggests an additional mechanism by which FLCN/FNIP may control metabolism. AMPK regulates the expression and activity of the transcriptional cofactors PGC1α/β, implicated in the control of mitochondrial biogenesis and oxidative metabolism. In this review, we summarize our current knowledge of the interplay between mTORC1, FLCN/FNIP, and AMPK and their implications in the control of cellular homeostasis through the transcriptional activity of TFEB/TFE3 and PGC1α/β. Other pathways and cellular processes regulated by FLCN will be briefly discussed.
Collapse
Affiliation(s)
- Josué M. J. Ramirez Reyes
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Rafael Cuesta
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| | - Arnim Pause
- Goodman Cancer Research Center, McGill University, Montréal, QC, Canada
- Department of Biochemistry, McGill University, Montréal, QC, Canada
| |
Collapse
|
6
|
Wang X, Wu H, Zhao L, Liu Z, Qi M, Jin Y, Liu W. FLCN regulates transferrin receptor 1 transport and iron homeostasis. J Biol Chem 2021; 296:100426. [PMID: 33609526 PMCID: PMC7995610 DOI: 10.1016/j.jbc.2021.100426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/12/2021] [Indexed: 11/30/2022] Open
Abstract
Birt–Hogg–Dubé (BHD) syndrome is a multiorgan disorder caused by inactivation of the folliculin (FLCN) protein. Previously, we identified FLCN as a binding protein of Rab11A, a key regulator of the endocytic recycling pathway. This finding implies that the abnormal localization of specific proteins whose transport requires the FLCN-Rab11A complex may contribute to BHD. Here, we used human kidney-derived HEK293 cells as a model, and we report that FLCN promotes the binding of Rab11A with transferrin receptor 1 (TfR1), which is required for iron uptake through continuous trafficking between the cell surface and the cytoplasm. Loss of FLCN attenuated the Rab11A–TfR1 interaction, resulting in delayed recycling transport of TfR1. This delay caused an iron deficiency condition that induced hypoxia-inducible factor (HIF) activity, which was reversed by iron supplementation. In a Drosophila model of BHD syndrome, we further demonstrated that the phenotype of BHD mutant larvae was substantially rescued by an iron-rich diet. These findings reveal a conserved function of FLCN in iron metabolism and may help to elucidate the mechanisms driving BHD syndrome.
Collapse
Affiliation(s)
- Xiaojuan Wang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Hanjie Wu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Lingling Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Zeyao Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Maozhen Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China
| | - Yaping Jin
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China.
| | - Wei Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shanxi, China.
| |
Collapse
|
7
|
Glykofridis IE, Knol JC, Balk JA, Westland D, Pham TV, Piersma SR, Lougheed SM, Derakhshan S, Veen P, Rooimans MA, van Mil SE, Böttger F, Poddighe PJ, van de Beek I, Drost J, Zwartkruis FJ, de Menezes RX, Meijers-Heijboer HE, Houweling AC, Jimenez CR, Wolthuis RM. Loss of FLCN-FNIP1/2 induces a non-canonical interferon response in human renal tubular epithelial cells. eLife 2021; 10:61630. [PMID: 33459596 PMCID: PMC7899648 DOI: 10.7554/elife.61630] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 01/16/2021] [Indexed: 12/14/2022] Open
Abstract
Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt–Hogg–Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.
Collapse
Affiliation(s)
- Iris E Glykofridis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jaco C Knol
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Jesper A Balk
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Denise Westland
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg, Utrecht, Netherlands
| | - Thang V Pham
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sander R Piersma
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sinéad M Lougheed
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Sepide Derakhshan
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan, Utrecht, Netherlands
| | - Puck Veen
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Martin A Rooimans
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Saskia E van Mil
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Franziska Böttger
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Pino J Poddighe
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Irma van de Beek
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Jarno Drost
- Princess Máxima Center for Pediatric Oncology, Oncode Institute, Heidelberglaan, Utrecht, Netherlands
| | - Fried Jt Zwartkruis
- University Medical Center Utrecht, Center for Molecular Medicine, Molecular Cancer Research, Universiteitsweg, Utrecht, Netherlands
| | | | - Hanne Ej Meijers-Heijboer
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Arjan C Houweling
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Amsterdam, Netherlands
| | - Connie R Jimenez
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, Amsterdam, Netherlands
| | - Rob Mf Wolthuis
- Amsterdam UMC, location VUmc, Vrije Universiteit Amsterdam, Clinical Genetics, Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
8
|
Abstract
Mutations in protein-coding regions can lead to large biological changes and are associated with genetic conditions, including cancers and Mendelian diseases, as well as drug resistance. Although whole genome and exome sequencing help to elucidate potential genotype-phenotype correlations, there is a large gap between the identification of new variants and deciphering their molecular consequences. A comprehensive understanding of these mechanistic consequences is crucial to better understand and treat diseases in a more personalized and effective way. This is particularly relevant considering estimates that over 80% of mutations associated with a disease are incorrectly assumed to be causative. A thorough analysis of potential effects of mutations is required to correctly identify the molecular mechanisms of disease and enable the distinction between disease-causing and non-disease-causing variation within a gene. Here we present an overview of our integrative mutation analysis platform, which focuses on refining the current genotype-phenotype correlation methods by using the wealth of protein structural information.
Collapse
|
9
|
Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a. Proc Natl Acad Sci U S A 2020; 117:9876-9883. [PMID: 32303654 DOI: 10.1073/pnas.2002110117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A massive intronic hexanucleotide repeat (GGGGCC) expansion in C9ORF72 is a genetic origin of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, C9ORF72, together with SMCR8 and WDR41, has been shown to regulate autophagy and function as Rab GEF. However, the precise function of C9ORF72 remains unclear. Here, we report the cryogenic electron microscopy (cryo-EM) structure of the human C9ORF72-SMCR8-WDR41 complex at a resolution of 3.2 Å. The structure reveals the dimeric assembly of a heterotrimer of C9ORF72-SMCR8-WDR41. Notably, the C-terminal tail of C9ORF72 and the DENN domain of SMCR8 play critical roles in the dimerization of the two protomers of the C9ORF72-SMCR8-WDR41 complex. In the protomer, C9ORF72 and WDR41 are joined by SMCR8 without direct interaction. WDR41 binds to the DENN domain of SMCR8 by the C-terminal helix. Interestingly, the prominent structural feature of C9ORF72-SMCR8 resembles that of the FLNC-FNIP2 complex, the GTPase activating protein (GAP) of RagC/D. Structural comparison and sequence alignment revealed that Arg147 of SMCR8 is conserved and corresponds to the arginine finger of FLCN, and biochemical analysis indicated that the Arg147 of SMCR8 is critical to the stimulatory effect of the C9ORF72-SMCR8 complex on Rab8a and Rab11a. Our study not only illustrates the basis of C9ORF72-SMCR8-WDR41 complex assembly but also reveals the GAP activity of the C9ORF72-SMCR8 complex.
Collapse
|
10
|
LaPointe P, Mercier R, Wolmarans A. Aha-type co-chaperones: the alpha or the omega of the Hsp90 ATPase cycle? Biol Chem 2020; 401:423-434. [DOI: 10.1515/hsz-2019-0341] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 11/27/2019] [Indexed: 11/15/2022]
Abstract
AbstractHeat shock protein 90 (Hsp90) is a dimeric molecular chaperone that plays an essential role in cellular homeostasis. It functions in the context of a structurally dynamic ATP-dependent cycle to promote conformational changes in its clientele to aid stability, maturation, and activation. The client activation cycle is tightly regulated by a cohort of co-chaperone proteins that display specific binding preferences for certain conformations of Hsp90, guiding Hsp90 through its functional ATPase cycle. Aha-type co-chaperones are well-known to robustly stimulate the ATPase activity of Hsp90 but other roles in regulating the functional cycle are being revealed. In this review, we summarize the work done on the Aha-type co-chaperones since the 1990s and highlight recent discoveries with respect to the complexity of Hsp90 cycle regulation.
Collapse
Affiliation(s)
- Paul LaPointe
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Rebecca Mercier
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton T6G 2H7, Alberta, Canada
| | - Annemarie Wolmarans
- Department of Biology, The King’s University, Edmonton T6B 2H3, Alberta, Canada
| |
Collapse
|
11
|
de Martín Garrido N, Aylett CHS. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. Front Cell Dev Biol 2020; 8:108. [PMID: 32195250 PMCID: PMC7063858 DOI: 10.3389/fcell.2020.00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
FLCN was identified as the gene responsible for Birt-Hogg-Dubé (BHD) syndrome, a hereditary syndrome associated with the appearance of familiar renal oncocytomas. Most mutations affecting FLCN result in the truncation of the protein, and therefore loss of its associated functions, as typical for a tumor suppressor. FLCN encodes the protein folliculin (FLCN), which is involved in numerous biological processes; mutations affecting this protein thus lead to different phenotypes depending on the cellular context. FLCN forms complexes with two large interacting proteins, FNIP1 and FNIP2. Structural studies have shown that both FLCN and FNIPs contain longin and differentially expressed in normal versus neoplastic cells (DENN) domains, typically involved in the regulation of small GTPases. Accordingly, functional studies show that FLCN regulates both the Rag and the Rab GTPases depending on nutrient availability, which are respectively involved in the mTORC1 pathway and lysosomal positioning. Although recent structural studies shed light on the precise mechanism by which FLCN regulates the Rag GTPases, which in turn regulate mTORC1, how FLCN regulates membrane trafficking through the Rab GTPases or the significance of the intriguing FLCN-FNIP-AMPK complex formation are questions that still remain unanswered. We discuss the recent progress in our understanding of FLCN regulation of both growth signaling and lysosomal positioning, as well as future approaches to establish detailed mechanisms to explain the disparate phenotypes caused by the loss of FLCN function and the development of BHD-associated and other tumors.
Collapse
Affiliation(s)
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
12
|
Shen K, Rogala KB, Chou HT, Huang RK, Yu Z, Sabatini DM. Cryo-EM Structure of the Human FLCN-FNIP2-Rag-Ragulator Complex. Cell 2019; 179:1319-1329.e8. [PMID: 31704029 PMCID: PMC7008705 DOI: 10.1016/j.cell.2019.10.036] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 10/08/2019] [Accepted: 10/28/2019] [Indexed: 12/22/2022]
Abstract
mTORC1 controls anabolic and catabolic processes in response to nutrients through the Rag GTPase heterodimer, which is regulated by multiple upstream protein complexes. One such regulator, FLCN-FNIP2, is a GTPase activating protein (GAP) for RagC/D, but despite its important role, how it activates the Rag GTPase heterodimer remains unknown. We used cryo-EM to determine the structure of FLCN-FNIP2 in a complex with the Rag GTPases and Ragulator. FLCN-FNIP2 adopts an extended conformation with two pairs of heterodimerized domains. The Longin domains heterodimerize and contact both nucleotide binding domains of the Rag heterodimer, while the DENN domains interact at the distal end of the structure. Biochemical analyses reveal a conserved arginine on FLCN as the catalytic arginine finger and lead us to interpret our structure as an on-pathway intermediate. These data reveal features of a GAP-GTPase interaction and the structure of a critical component of the nutrient-sensing mTORC1 pathway.
Collapse
Affiliation(s)
- Kuang Shen
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA; Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, 01605, USA
| | - Kacper B Rogala
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Hui-Ting Chou
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Rick K Huang
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | - Zhiheng Yu
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - David M Sabatini
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, 77 Massachusetts Avenue, Cambridge, MA 02139, USA; Broad Institute of Harvard and Massachusetts Institute of Technology, 7 Cambridge Center, Cambridge, MA 02142, USA.
| |
Collapse
|
13
|
Lawrence RE, Fromm SA, Fu Y, Yokom AL, Kim DJ, Thelen AM, Young LN, Lim CY, Samelson AJ, Hurley JH, Zoncu R. Structural mechanism of a Rag GTPase activation checkpoint by the lysosomal folliculin complex. Science 2019; 366:971-977. [PMID: 31672913 DOI: 10.1126/science.aax0364] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
The tumor suppressor folliculin (FLCN) enables nutrient-dependent activation of the mechanistic target of rapamycin complex 1 (mTORC1) protein kinase via its guanosine triphosphatase (GTPase) activating protein (GAP) activity toward the GTPase RagC. Concomitant with mTORC1 inactivation by starvation, FLCN relocalizes from the cytosol to lysosomes. To determine the lysosomal function of FLCN, we reconstituted the human lysosomal FLCN complex (LFC) containing FLCN, its partner FLCN-interacting protein 2 (FNIP2), and the RagAGDP:RagCGTP GTPases as they exist in the starved state with their lysosomal anchor Ragulator complex and determined its cryo-electron microscopy structure to 3.6 angstroms. The RagC-GAP activity of FLCN was inhibited within the LFC, owing to displacement of a catalytically required arginine in FLCN from the RagC nucleotide. Disassembly of the LFC and release of the RagC-GAP activity of FLCN enabled mTORC1-dependent regulation of the master regulator of lysosomal biogenesis, transcription factor E3, implicating the LFC as a checkpoint in mTORC1 signaling.
Collapse
Affiliation(s)
- Rosalie E Lawrence
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Simon A Fromm
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Yangxue Fu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Adam L Yokom
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Do Jin Kim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Ashley M Thelen
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Lindsey N Young
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Chun-Yan Lim
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA.,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA
| | - Avi J Samelson
- The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.,Institute for Neurodegenerative Diseases, University of California at San Francisco, San Francisco, CA 94158, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA. .,The Paul F. Glenn Center for Aging Research at the University of California, Berkeley, Berkeley, CA 94720, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
Kaminskas LM, Williams CC, Leong NJ, Chan LJ, Butcher NJ, Feeney OM, Porter CJH, Tyssen D, Tachedjian G, Ascher DB. A 30 kDa polyethylene glycol-enfuvirtide complex enhances the exposure of enfuvirtide in lymphatic viral reservoirs in rats. Eur J Pharm Biopharm 2019; 137:218-226. [PMID: 30851352 DOI: 10.1016/j.ejpb.2019.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 03/03/2019] [Accepted: 03/05/2019] [Indexed: 11/25/2022]
Abstract
HIV therapy with anti-retroviral drugs is limited by the poor exposure of viral reservoirs, such as lymphoid tissue, to these small molecule drugs. We therefore investigated the effect of PEGylation on the anti-retroviral activity and subcutaneous lymphatic pharmacokinetics of the peptide-based fusion inhibitor enfuvirtide in thoracic lymph duct cannulated rats. Both the peptide and the PEG were quantified in plasma and lymph via ELISA. Conjugation to a single 5 kDa linear PEG decreased anti-HIV activity three-fold compared to enfuvirtide. Whilst plasma and lymphatic exposure to peptide mass was moderately increased, the loss of anti-viral activity led to an overall decrease in exposure to enfuvirtide activity. A 20 kDa 4-arm branched PEG conjugated with an average of two enfuvirtide peptides decreased peptide activity by six-fold. Plasma and lymph exposure to enfuvirtide, however, increased significantly such that anti-viral activity was increased two- and six-fold respectively. The results suggest that a multi-enfuvirtide-PEG complex may optimally enhance the anti-retroviral activity of the peptide in plasma and lymph.
Collapse
Affiliation(s)
- Lisa M Kaminskas
- School of Biomedical Sciences, University of Queensland, Brisbane, St Lucia, QLD 4072, Australia.
| | - Charlotte C Williams
- CSIRO Materials Science and Engineering, 343 Royal Parade, Parkville, Victoria 3052, Australia
| | - Nathania J Leong
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Linda J Chan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Neville J Butcher
- School of Biomedical Sciences, University of Queensland, Brisbane, St Lucia, QLD 4072, Australia
| | - Orlagh M Feeney
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Christopher J H Porter
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - David Tyssen
- Burnet Institute, 89 Commercial Rd, Melbourne, Victoria 3004, Australia; Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - Gilda Tachedjian
- Burnet Institute, 89 Commercial Rd, Melbourne, Victoria 3004, Australia; Department of Microbiology, Monash University, Clayton, Victoria 3168, Australia; Department of Microbiology and Immunology, University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia; School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, Victoria 3000, Australia
| | - David B Ascher
- Department of Biochemistry and Molecular Biology, Bio21 Institute, University of Melbourne, 30 Flemington Road, Parkville 3052, Australia
| |
Collapse
|
15
|
Homogentisate 1,2-dioxygenase (HGD) gene variants, their analysis and genotype-phenotype correlations in the largest cohort of patients with AKU. Eur J Hum Genet 2019; 27:888-902. [PMID: 30737480 DOI: 10.1038/s41431-019-0354-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/12/2019] [Accepted: 01/24/2019] [Indexed: 11/08/2022] Open
Abstract
Alkaptonuria (AKU) is a rare metabolic disorder caused by a deficient enzyme in the tyrosine degradation pathway, homogentisate 1,2-dioxygenase (HGD). In 172 AKU patients from 39 countries, we identified 28 novel variants of the HGD gene, which include three larger genomic deletions within this gene discovered via self-designed multiplex ligation-dependent probe amplification (MLPA) probes. In addition, using a reporter minigene assay, we provide evidence that three of eight tested variants potentially affecting splicing cause exon skipping or cryptic splice-site activation. Extensive bioinformatics analysis of novel missense variants, and of the entire HGD monomer, confirmed mCSM as an effective computational tool for evaluating possible enzyme inactivation mechanisms. For the first time for AKU, a genotype-phenotype correlation study was performed for the three most frequent HGD variants identified in the Suitability Of Nitisinone in Alkaptonuria 2 (SONIA2) study. We found a small but statistically significant difference in urinary homogentisic acid (HGA) excretion, corrected for dietary protein intake, between variants leading to 1% or >30% residual HGD activity. There was, interestingly, no difference in serum levels or absolute urinary excretion of HGA, or clinical symptoms, indicating that protein intake is more important than differences in HGD variants for the amounts of HGA that accumulate in the body of AKU patients.
Collapse
|
16
|
Ok CK, Chang JH. Crystal Structure of the Type VI Secretion System Accessory Protein TagF from Pseudomonas Aeruginosa. Protein Pept Lett 2019; 26:204-214. [PMID: 30659530 DOI: 10.2174/0929866526666190119121859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Type VI Secretion System (T6SS) has been found in approximately onequarter of the gram-negative bacterial species, and its structural characteristics appear to slightly differ from species to species. The genes encoding T6SS are designated as type six secretion A-M (tssA-M). The expression of the tss gene cluster is regulated by various accessory genes, designated as type VI-associated genes A-P (tagA-P). Tag family proteins have been commonly found in bacteria expressing T6SS but not in all bacterial species. For instance, the tag gene cluster is well-conserved in Pseudomonas aeruginosa (Pa). The PaTagF protein has large homology with ImpM in Rhizobium leguminosarum and SciT in Salmonella enterica. The overexpression of PaTagF represses T6SS complex accumulation and suppresses T6SS antibacterial activity. Thus, the functions of TagF are mediated through direct interactions with the forkhead-associated protein Fha, as evident from the results of the yeast-two hybrid assays. Fha is involved in recruiting a membrane-associated complex either in threonine phosphorylation pathway-dependent or - independent manner. However, functional reports of the tag gene cluster are still limited. OBJECTIVE In this article, our motivation is to understand the molecular mechanism underlying the regulation of expression of the type VI secretion system complex. METHODS In this article, we start with obtaining the gene encoding PaTagF protein by polymerase chain reaction (PCR). Subsequently, the cloned gene is applied to overexpress of PaTagF protein in Escherichia coli, then purify the recombinant PaTagF protein. Thereafter, the protein is crystallized in a condition of 2.5 M NaCl, 0.1 M imidazole (pH 8.0), 3.2 M NaCl, 0.1 M BIS-TRIS propane (pH 7.0) and diffraction datasets of the PaTagF crystals are collected at the Pohang Accelerator Laboratory (PAL). The molecular structure of PaTagF protein is determined by molecular replacement using the uncharacterized protein PA0076 (PDB code:2QNU) as an initial search model by PHENIX crystallographic software package. Model building of PaTagF structure is performed using Coot program. Finally, the structural model is validated using phenix.refine program. RESULTS PaTagF exists as a tetramer in the asymmetric unit, and the overall fold of each monomer is composed of continuous beta-sheets wrapped by alpha-helices. Each monomer has variable conformations and lengths of both the N- and C-termini. Twelve residues, including the His6 tag from the N-terminus of a symmetry-related molecule, have been found in two of the tetrameric PaTagF structures. A structural homology search revealed that PaTagF was similar to the α-β-α sandwichlike structure of the longin domain on the differentially expressed in normal and neoplastic (DENN) superfamily, which is commonly found in proteins related to trafficking. CONCLUSION The tetrameric structure of PaTagF comprises varied N- and C-terminal regions in each subunit and may be stabilized by a symmetry-related molecule. This feature was also shown in the TssL structure from V. cholerae. Furthermore, our study showed that the overall fold of PaTagF is homologous to the longin domain of the DENN family. Therefore, further studies are warranted to elucidate the structure-based evolutionary relationship between protein transport systems from the bacteria and eukaryotic cells.
Collapse
Affiliation(s)
- Chang-Kyu Ok
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu 41566, South Korea
| |
Collapse
|
17
|
Iyer S, Subramanian V, Acharya KR. C9orf72, a protein associated with amyotrophic lateral sclerosis (ALS) is a guanine nucleotide exchange factor. PeerJ 2018; 6:e5815. [PMID: 30356970 PMCID: PMC6195791 DOI: 10.7717/peerj.5815] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/22/2018] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), two late onset neurodegenerative diseases, have been shown to share overlapping cellular pathologies and genetic origins. Studies suggest that a hexanucleotide repeat expansion in the first intron of the C9orf72 gene is the most common cause of familial FTD and ALS pathology. The C9orf72 protein is predicted to be a differentially expressed in normal and neoplastic cells domain protein implying that C9orf72 functions as a guanine nucleotide exchange factor (GEF) to regulate specific Rab GTPases. Reported studies thus far point to a putative role for C9orf72 in lysosome biogenesis, vesicular trafficking, autophagy and mechanistic target of rapamycin complex1 (mTORC1) signaling. Here we report the expression, purification and biochemical characterization of C9orf72 protein. We conclusively show that C9orf72 is a GEF. The distinctive presence of both Rab- and Rho-GTPase GEF activities suggests that C9orf72 may function as a dual exchange factor coupling physiological functions such as cytoskeleton modulation and autophagy with endocytosis.
Collapse
Affiliation(s)
- Shalini Iyer
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| |
Collapse
|
18
|
Abstract
Background The protein kinase Target Of Rapamycin (TOR) is a nexus for the regulation of eukaryotic cell growth. TOR assembles into one of two distinct signalling complexes, TOR complex 1 (TORC1) and TORC2 (mTORC1/2 in mammals), with a set of largely non-overlapping protein partners. (m)TORC1 activation occurs in response to a series of stimuli relevant to cell growth, including nutrient availability, growth factor signals and stress, and regulates much of the cell's biosynthetic activity, from proteins to lipids, and recycling through autophagy. mTORC1 regulation is of great therapeutic significance, since in humans many of these signalling complexes, alongside subunits of mTORC1 itself, are implicated in a wide variety of pathophysiologies, including multiple types of cancer, neurological disorders, neurodegenerative diseases and metabolic disorders including diabetes. Methodology Recent years have seen numerous structures determined of (m)TOR, which have provided mechanistic insight into (m)TORC1 activation in particular, however the integration of cellular signals occurs upstream of the kinase and remains incompletely understood. Here we have collected and analysed in detail as many as possible of the molecular and structural studies which have shed light on (m)TORC1 repression, activation and signal integration. Conclusions A molecular understanding of this signal integration pathway is required to understand how (m)TORC1 activation is reconciled with the many diverse and contradictory stimuli affecting cell growth. We discuss the current level of molecular understanding of the upstream components of the (m)TORC1 signalling pathway, recent progress on this key biochemical frontier, and the future studies necessary to establish a mechanistic understanding of this master-switch for eukaryotic cell growth.
Collapse
Affiliation(s)
- Kailash Ramlaul
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| | - Christopher H S Aylett
- Section of Structural Biology, Department of Medicine, Imperial College London, SW7 2AZ, UK
| |
Collapse
|
19
|
Meng J, Ferguson SM. GATOR1-dependent recruitment of FLCN-FNIP to lysosomes coordinates Rag GTPase heterodimer nucleotide status in response to amino acids. J Cell Biol 2018; 217:2765-2776. [PMID: 29848618 PMCID: PMC6080935 DOI: 10.1083/jcb.201712177] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 04/29/2018] [Accepted: 05/08/2018] [Indexed: 01/08/2023] Open
Abstract
A large number of lysosome-localized proteins control mTORC1 signaling. Rag guanosine triphosphatase (GTPase) heterodimers play a central role in this pathway by recruiting mTORC1 to lysosomes. Meng and Ferguson reveal how folliculin, a tumor suppressor, coordinates nucleotide states within Rag GTPase heterodimers. Folliculin (FLCN) is a tumor suppressor that coordinates cellular responses to changes in amino acid availability via regulation of the Rag guanosine triphosphatases. FLCN is recruited to lysosomes during amino acid starvation, where it interacts with RagA/B as a heterodimeric complex with FLCN-interacting proteins (FNIPs). The FLCN–FNIP heterodimer also has GTPase-activating protein (GAP) activity toward RagC/D. These properties raised two important questions. First, how is amino acid availability sensed to regulate lysosomal abundance of FLCN? Second, what is the relationship between FLCN lysosome localization, RagA/B interactions, and RagC/D GAP activity? In this study, we show that RagA/B nucleotide status determines the FLCN–FNIP1 recruitment to lysosomes. Starvation-induced FLCN–FNIP lysosome localization requires GAP activity toward Rags 1 (GATOR1), the GAP that converts RagA/B to the guanosine diphosphate (GDP)-bound state. This places FLCN–FNIP recruitment to lysosomes under the control of amino acid sensors that act upstream of GATOR1. By binding to RagA/BGDP and acting on RagC/D, FLCN–FNIP can coordinate nucleotide status between Rag heterodimer subunits in response to changes in amino acid availability.
Collapse
Affiliation(s)
- Jin Meng
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT .,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
20
|
Schmidt LS, Linehan WM. FLCN: The causative gene for Birt-Hogg-Dubé syndrome. Gene 2018; 640:28-42. [PMID: 28970150 PMCID: PMC5682220 DOI: 10.1016/j.gene.2017.09.044] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/11/2017] [Accepted: 09/21/2017] [Indexed: 01/30/2023]
Abstract
Germline mutations in the novel tumor suppressor gene FLCN are responsible for the autosomal dominant inherited disorder Birt-Hogg-Dubé (BHD) syndrome that predisposes to fibrofolliculomas, lung cysts and spontaneous pneumothorax, and an increased risk for developing kidney tumors. Although the encoded protein, folliculin (FLCN), has no sequence homology to known functional domains, x-ray crystallographic studies have shown that the C-terminus of FLCN has structural similarity to DENN (differentially expressed in normal cells and neoplasia) domain proteins that act as guanine nucleotide exchange factors (GEFs) for small Rab GTPases. FLCN forms a complex with folliculin interacting proteins 1 and 2 (FNIP1, FNIP2) and with 5' AMP-activated protein kinase (AMPK). This review summarizes FLCN functional studies which support a role for FLCN in diverse metabolic pathways and cellular processes that include modulation of the mTOR pathway, regulation of PGC1α and mitochondrial biogenesis, cell-cell adhesion and RhoA signaling, control of TFE3/TFEB transcriptional activity, amino acid-dependent activation of mTORC1 on lysosomes through Rag GTPases, and regulation of autophagy. Ongoing research efforts are focused on clarifying the primary FLCN-associated pathway(s) that drives the development of fibrofolliculomas, lung cysts and kidney tumors in BHD patients carrying germline FLCN mutations.
Collapse
Affiliation(s)
- Laura S Schmidt
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States; Basic Science Program, Leidos Biomedical Research, Inc., Frederick Laboratory for Cancer Research, Frederick, MD 21702, United States.
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States.
| |
Collapse
|
21
|
Huang CW, Walker ME, Fedrizzi B, Gardner RC, Jiranek V. Yeast genes involved in regulating cysteine uptake affect production of hydrogen sulfide from cysteine during fermentation. FEMS Yeast Res 2017; 17:3934655. [PMID: 28810701 DOI: 10.1093/femsyr/fox046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/04/2017] [Indexed: 11/13/2022] Open
Abstract
An early burst of hydrogen sulfide (H2S) produced by Saccharomyces cerevisiae during fermentation could increase varietal thiols and therefore enhance desirable tropical aromas in varieties such as Sauvignon Blanc. Here we attempted to identify genes affecting H2S formation from cysteine by screening yeast deletion libraries via a colony colour assay on media resembling grape juice. Both Δlst4 and Δlst7 formed lighter coloured colonies and produced significantly less H2S than the wild type on high concentrations of cysteine, likely because they are unable to take up cysteine efficiently. We then examined the nine known cysteine permeases and found that deletion of AGP1, GNP1 and MUP1 led to reduced production of H2S from cysteine. We further showed that deleting genes involved in the SPS-sensing pathway such as STP1 and DAL81 also reduced H2S from cysteine. Together, this study indirectly confirms that Agp1p, Gnp1p and Mup1p are the major cysteine permeases and that they are regulated by the SPS-sensing and target of rapamycin pathways under the grape juice-like, cysteine-supplemented, fermentation conditions. The findings highlight that cysteine transportation could be a limiting factor for yeast to generate H2S from cysteine, and therefore selecting wine yeasts without defects in cysteine uptake could maximise thiol production potential.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Michelle E Walker
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| | - Bruno Fedrizzi
- Wine Science Programme, School of Chemical Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Richard C Gardner
- Wine Science Programme, School of Biological Sciences, University of Auckland, Auckland 1142, New Zealand
| | - Vladimir Jiranek
- Department of Wine and Food Science, University of Adelaide, Adelaide, SA 5064, Australia
| |
Collapse
|
22
|
Péli-Gulli MP, Raucci S, Hu Z, Dengjel J, De Virgilio C. Feedback Inhibition of the Rag GTPase GAP Complex Lst4-Lst7 Safeguards TORC1 from Hyperactivation by Amino Acid Signals. Cell Rep 2017; 20:281-288. [DOI: 10.1016/j.celrep.2017.06.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/02/2017] [Accepted: 06/21/2017] [Indexed: 10/25/2022] Open
|
23
|
Amick J, Ferguson SM. C9orf72: At the intersection of lysosome cell biology and neurodegenerative disease. Traffic 2017; 18:267-276. [PMID: 28266105 DOI: 10.1111/tra.12477] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/02/2017] [Accepted: 03/02/2017] [Indexed: 12/13/2022]
Abstract
The discovery that expansion of a hexanucleotide repeat within a noncoding region of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia raised questions about C9orf72 protein function and potential disease relevance. The major predicted structural feature of the C9orf72 protein is a DENN (differentially expressed in normal and neoplastic cells) domain. As DENN domains are best characterized for regulation of specific Rab GTPases, it has been proposed that C9orf72 may also act through regulation of a GTPase target. Recent genetic and cell biological studies furthermore indicate that the C9orf72 protein functions at lysosomes as part of a larger complex that also contains the Smith-Magenis chromosome region 8 (SMCR8) and WD repeat-containing protein 41 (WDR41) proteins. An important role for C9orf72 at lysosomes is supported by defects in lysosome morphology and mTOR complex 1 (mTORC1) signaling arising from C9orf72 KO in diverse model systems. Collectively, these new findings define a C9orf72-containing protein complex and a lysosomal site of action as central to C9orf72 function and provide a foundation for the elucidation of direct physiological targets for C9orf72. Further elucidation of mechanisms whereby C9orf72 regulates lysosome function will help to determine how the reductions in C9orf72 expression levels that accompany hexanucleotide repeat expansions contribute to disease pathology.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| | - Shawn M Ferguson
- Department of Cell Biology, Yale University School of Medicine, New Haven, Connecticut.,Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
24
|
Amick J, Roczniak-Ferguson A, Ferguson SM. C9orf72 binds SMCR8, localizes to lysosomes, and regulates mTORC1 signaling. Mol Biol Cell 2016; 27:3040-3051. [PMID: 27559131 PMCID: PMC5063613 DOI: 10.1091/mbc.e16-01-0003] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 08/19/2016] [Indexed: 12/18/2022] Open
Abstract
C9orf72 interacts strongly with SMCR8 and depends on this interaction for its stability. Lysosomes are major sites of C9orf72 subcellular localization, and abnormal lysosome morphology is seen in its absence. Defects are found in the regulation of the lysosome-localized mTORC1 signaling pathway in C9orf72 KO cells. Hexanucleotide expansion in an intron of the C9orf72 gene causes amyotrophic lateral sclerosis and frontotemporal dementia. However, beyond bioinformatics predictions that suggested structural similarity to folliculin, the Birt-Hogg-Dubé syndrome tumor suppressor, little is known about the normal functions of the C9orf72 protein. To address this problem, we used genome-editing strategies to investigate C9orf72 interactions, subcellular localization, and knockout (KO) phenotypes. We found that C9orf72 robustly interacts with SMCR8 (a protein of previously unknown function). We also observed that C9orf72 localizes to lysosomes and that such localization is negatively regulated by amino acid availability. Analysis of C9orf72 KO, SMCR8 KO, and double-KO cell lines revealed phenotypes that are consistent with a function for C9orf72 at lysosomes. These include abnormally swollen lysosomes in the absence of C9orf72 and impaired responses of mTORC1 signaling to changes in amino acid availability (a lysosome-dependent process) after depletion of either C9orf72 or SMCR8. Collectively these results identify strong physical and functional interactions between C9orf72 and SMCR8 and support a lysosomal site of action for this protein complex.
Collapse
Affiliation(s)
- Joseph Amick
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Agnes Roczniak-Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| | - Shawn M Ferguson
- Department of Cell Biology and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
25
|
Dodding MP. Folliculin - A tumor suppressor at the intersection of metabolic signaling and membrane traffic. Small GTPases 2016; 8:100-105. [PMID: 27355777 DOI: 10.1080/21541248.2016.1204808] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The Birt-Hoge-Dubé syndrome tumor suppressor Folliculin is a regulator of metabolism and has as a wide range of cellular and organismal phenotypes associated with its disruption. However, the molecular mechanisms which underlie its functions are poorly understood. Folliculin has been described to associate with lysosomes in response to nutrient depletion and form a key part of the signaling network that controls the activity of mTORC1. We recently reported that Folliculin can control the nutrient dependent cytoplasmic distribution of lysosomes by promoting the formation of a complex with the Golgi-associated small GTPase Rab34 and its effector RILP. We thus define a mechanistic connection between the lysosomal nutrient signaling network and the transport machinery that controls the distribution and dynamics of this organelle. Here we summarise the main conclusions from that study, attempt to integrate our findings with other recent studies on lysosome distribution/dynamics, and discuss the potential consequences of the dysregulation of this processes caused by Folliculin loss for Birt-Hoge-Dubé syndrome and normal cell function.
Collapse
Affiliation(s)
- Mark P Dodding
- a Randall Division of Cell and Molecular Biophysics , King's College London , London , UK
| |
Collapse
|
26
|
Starling GP, Yip YY, Sanger A, Morton PE, Eden ER, Dodding MP. Folliculin directs the formation of a Rab34-RILP complex to control the nutrient-dependent dynamic distribution of lysosomes. EMBO Rep 2016; 17:823-41. [PMID: 27113757 PMCID: PMC4893818 DOI: 10.15252/embr.201541382] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 03/14/2016] [Indexed: 11/09/2022] Open
Abstract
The spatial distribution of lysosomes is important for their function and is, in part, controlled by cellular nutrient status. Here, we show that the lysosome associated Birt-Hoge-Dubé (BHD) syndrome renal tumour suppressor folliculin (FLCN) regulates this process. FLCN promotes the peri-nuclear clustering of lysosomes following serum and amino acid withdrawal and is supported by the predominantly Golgi-associated small GTPase Rab34. Rab34-positive peri-nuclear membranes contact lysosomes and cause a reduction in lysosome motility and knockdown of FLCN inhibits Rab34-induced peri-nuclear lysosome clustering. FLCN interacts directly via its C-terminal DENN domain with the Rab34 effector RILP Using purified recombinant proteins, we show that the FLCN-DENN domain does not act as a GEF for Rab34, but rather, loads active Rab34 onto RILP We propose a model whereby starvation-induced FLCN association with lysosomes drives the formation of contact sites between lysosomes and Rab34-positive peri-nuclear membranes that restrict lysosome motility and thus promote their retention in this region of the cell.
Collapse
Affiliation(s)
- Georgina P Starling
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Yan Y Yip
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Anneri Sanger
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Penny E Morton
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| | - Emily R Eden
- Institute of Ophthalmology, University College London, London, UK
| | - Mark P Dodding
- Randall Division of Cell and Molecular Biophysics, King's College London, London, UK
| |
Collapse
|