1
|
Gutiérrez-Larruscain D, Krüger M, Abeyawardana OAJ, Belz C, Dobrev PI, Vaňková R, Eliášová K, Vondráková Z, Juříček M, Štorchová H. Contrasting gene expression patterns during floral induction in two Chenopodium ficifolium genotypes reveal putative flowering regulators. PLANT SIGNALING & BEHAVIOR 2025; 20:2486083. [PMID: 40184219 PMCID: PMC11980483 DOI: 10.1080/15592324.2025.2486083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/06/2025]
Abstract
Chenopodium ficifolium is a close diploid relative of the tetraploid crop Chenopodium quinoa. Owing to its reproducible germination and seedling development, it becomes a promising model for studying floral induction, providing a basis for the comparison with C. quinoa. Two C. ficifolium genotypes differ in photoperiodic requirement: C. ficifolium 283 accelerates flowering under long days, whereas C. ficifolium 459 flowers earlier under short days. This study conducted a comprehensive transcriptomic and hormonomic analysis of floral induction in the long-day C. ficifolium 283 and compared the findings to previous experiments with the short-day C. ficifolium. Phytohormone concentrations and gene expression profiles during floral induction were largely similar between the two genotypes. However, a subset of genes exhibited contrasting expression patterns, aligning with the genotypes' differing photoperiodic requirements. These genes, predominantly homologs of flowering-related genes in Arabidopsis thaliana, were activated under long days in C. ficifolium 283 and under short days in C. ficifolium 459. Notably, the contrasting expression of the FLOWERING LOCUS T-LIKE 2-1 gene, which was previously shown to induce precocious flowering in A. thaliana, confirmed its role as a floral activator, despite its low expression levels.
Collapse
Affiliation(s)
| | - Manuela Krüger
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Claudia Belz
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Petre I. Dobrev
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Radomíra Vaňková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Kateřina Eliášová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Vondráková
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Juříček
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| | - Helena Štorchová
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Walker JR, Bente DA, Burch MT, Cerqueira FM, Ren P, Labonté JM. Molecular assessment of oyster microbiomes and viromes reveals their potential as pathogen and ecological sentinels. One Health 2025; 20:100973. [PMID: 39898315 PMCID: PMC11786891 DOI: 10.1016/j.onehlt.2025.100973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/04/2025] Open
Abstract
Oyster aquaculture world-wide is a booming industry that can provide many benefits to coastal habitats, including economic, ecosystem-level, and cultural benefits. Oysters present several risks for human consumption, including transmission of parasites, and bacterial and viral pathogens. Oyster microbiomes are well-defined, but their connection to the incidence of pathogens, humans or others, is unclear. Furthermore, viruses associated with oysters are largely unknown, and their connection to humans, animals, and ecosystem health has not been explored. Here, we employed a One Health framework and modern molecular techniques, including 16S rRNA amplicon and metagenomic sequencing, to identify links between changes in the microbial and viral communities associated with oysters and the incidence of pathogens detected in oyster tissues and their surrounding environments. In addition, we adapted the BioFire® FilmArray®, commonly used in hospitals, to determine the presence of human pathogens within the sampled oysters. We detected known human pathogens in 50 % of the oysters tested. Within the genomic datasets, we noted that pathogens of humans, animals, and plants in oysters were shared with the nearby water and sediments, suggesting a sink-source dynamic between the oysters and their surroundings. 16S rRNA gene analysis revealed that while oysters share common microbial constituents with their surrounding environments, they enrich for certain bacteria such as Mycoplasmatales, Fusobacteriales, and Spirochaetales. On the contrary, we found that oyster viromes harbored the same viruses in near equal relative abundances as their surrounding environments. Our results show how oysters could be used not only to determine the risk of human pathogens within coastal estuaries but also how oyster viruses could be used as ecosystem-level sentinels.
Collapse
Affiliation(s)
- Jordan R. Walker
- Department of Marine Biology, Texas A&M University at Galveston, Galveston 77554, TX, United States
| | - Dennis A. Bente
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Megan T. Burch
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Filipe M. Cerqueira
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Ping Ren
- Department of Pathology, University of Texas Medical Branch, Galveston 77555, TX, United States
| | - Jessica M. Labonté
- Department of Marine Biology, Texas A&M University at Galveston, Galveston 77554, TX, United States
| |
Collapse
|
3
|
Dutra TP, Robitaille N, Altabtbaei K, Dabdoub SM, Kumar PS. Community dynamics during de novo colonization of the nascent peri-implant sulcus. Int J Oral Sci 2025; 17:37. [PMID: 40301331 PMCID: PMC12041454 DOI: 10.1038/s41368-025-00367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 05/01/2025] Open
Abstract
Dental implants have restored masticatory function to over 100 000 000 individuals, yet almost 1 000 000 implants fail each year due to peri-implantitis, a disease triggered by peri-implant microbial dysbiosis. Our ability to prevent and treat peri-implantitis is hampered by a paucity of knowledge of how these biomes are acquired and the factors that engender normobiosis. Therefore, we combined a 3-month interventional study of 15 systemically and periodontally healthy adults with whole genome sequencing, fine-scale enumeration and graph theoretics to interrogate colonization dynamics in the pristine peri-implant sulcus. We discovered that colonization trajectories of implants differ substantially from adjoining teeth in acquisition of new members and development of functional synergies. Source-tracking algorithms revealed that this niche is initially seeded by bacteria trapped within the coverscrew chamber during implant placement. These pioneer species stably colonize the microbiome and exert a sustained influence on the ecosystem by serving as anchors of influential hubs and by providing functions that enable cell replication and biofilm maturation. Unlike the periodontal microbiome, recruitment of new members to the peri-implant community occurs on nepotistic principles. Maturation is accompanied by a progressive increase in anaerobiosis, however, the predominant functionalities are oxygen-dependent over the 12-weeks. The peri-implant community is easily perturbed following crown placement, but demonstrates remarkable resilience; returning to pre-perturbation states within three weeks. This study highlights important differences in the development of the periodontal and peri-implant ecosystems, and signposts the importance of placing implants in periodontally healthy individuals or following the successful resolution of periodontal disease.
Collapse
Affiliation(s)
- Tamires Pereira Dutra
- Department of Periodontics and Oral Medicine, University of Michigan - School of Dentistry. 1011 N. University Ave, Ann Arbor, MI, USA
| | - Nicolas Robitaille
- Division of Periodontology, College of Dentistry, The Ohio State University, Columbus, OH, USA
| | - Khaled Altabtbaei
- Faculty of Medicine and Dentistry, School of Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Shareef M Dabdoub
- Department of Periodontics, The University of Iowa College of Dentistry, Iowa City, IA, USA.
- Division of Biostatistics and Computational Biology, The University of Iowa College of Dentistry, Iowa City, IA, USA.
| | - Purnima S Kumar
- Department of Periodontics and Oral Medicine, University of Michigan - School of Dentistry. 1011 N. University Ave, Ann Arbor, MI, USA.
| |
Collapse
|
4
|
Dias D, Nascimento B, Cruz A, Silva S, Reis L, Silva F, Silva L, Silva S, Vieira D, Brandão R, Junior J, Santos A, Reis H, Neto J. Coding-complete genome sequence of a divergent member of the genus Gordisvirus detected in Sabethes ( Peytonulus) undosus Coquillet mosquitoes (Diptera: Culicidae) from Brazil. Microbiol Resour Announc 2025:e0127524. [PMID: 40293263 DOI: 10.1128/mra.01275-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/14/2025] [Indexed: 04/30/2025] Open
Abstract
We report the complete genome sequence of a divergent member of the genus Gordisvirus (family Xinmoviridae, order Mononegavirales), obtained through metagenomic sequencing of Sabethes (Peytonulus) undosus Coquillett mosquitoes in the Brazilian Amazon. Phylogenetic analyses confirmed its classification. The genome comprises 12,150 nucleotides and encodes five open-reading frames.
Collapse
Affiliation(s)
- Daniel Dias
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Bruna Nascimento
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Ana Cruz
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Sandro Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Lúcia Reis
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Fábio Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Lucas Silva
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Sâmia Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Durval Vieira
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Roberto Brandão
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - José Junior
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Alessandra Santos
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Hanna Reis
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| | - Joaquim Neto
- Graduate Program in Parasitary Biology in the Amazon Region, Center of Biological and Health Sciences, State University of Pará, Belém, Brazil
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Ministry of Health, Ananindeua, Brazil
| |
Collapse
|
5
|
Beverly MLS, Chaudhary PP, Dabdoub SM, Kim S, Chatzakis E, Williamson K, Ganesan SM, Yadav M, Ratley G, D'Souza BN, Myles IA, Kumar PS. Toxic cultures: e-cigarettes and the oral microbial exposome. NPJ Biofilms Microbiomes 2025; 11:66. [PMID: 40280980 PMCID: PMC12032151 DOI: 10.1038/s41522-025-00709-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/20/2025] [Indexed: 04/29/2025] Open
Abstract
We tested the hypothesis that e-cigarette aerosol is metabolized by the indigenous oral microbiome, leading to structural and functional alterations. We combined untargeted metabolomics of in vitro commensal-rich and pathogen-rich biofilms with metatranscriptomics and fluorescent microscopy and verified the results in human samples. Spectral deconvolution of 4215 peaks identified 969 exposomal and endogenous metabolites that mapped to 23 metabolic pathways. The metabolites clustered by both aerosol characteristics and biofilm composition; and several were verified in human saliva of vapers. E-cigarette exposure upregulated xenobiotic degradation, capsule, peptidoglycan biosynthesis, organic carbon-compound metabolism, antimicrobial resistance, and secretion systems. E-cigarette exposure also altered biofilm architecture characterized by low surface-area to biovolume ratio, high biomass, and diffusion distance. In conclusion, our data suggest that bacterial metabolism of e-cigarette aerosol triggers a quorum-sensing-regulated stress response which mediates the formation of dense, exopolysaccharide-rich biofilms in health-compatible communities and antibiotic resistance and virulence amplification in disease-associated communities.
Collapse
Affiliation(s)
- Michelle Lee-Scott Beverly
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Prem Prashant Chaudhary
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases Laboratory of Clinical Immunology and Microbiology, IH, Bethesda, MD, USA
| | - Shareef Majid Dabdoub
- Department of Periodontics, School of Dentistry, University of Iowa, Iowa City, IA, USA
| | | | | | - Kathryn Williamson
- Department of Food Sciences, The Ohio State University, Columbus, OH, USA
| | | | - Manoj Yadav
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases Laboratory of Clinical Immunology and Microbiology, IH, Bethesda, MD, USA
| | - Grace Ratley
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases Laboratory of Clinical Immunology and Microbiology, IH, Bethesda, MD, USA
| | - Brandon N D'Souza
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases Laboratory of Clinical Immunology and Microbiology, IH, Bethesda, MD, USA
| | - Ian A Myles
- Epithelial Therapeutics Unit, National Institute of Allergy and Infectious Diseases Laboratory of Clinical Immunology and Microbiology, IH, Bethesda, MD, USA
| | - Purnima S Kumar
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
DeMontigny W, Bachvaroff T. The nuclear and mitochondrial genomes of amoebophrya sp. ex Karlodinium veneficum. G3 (BETHESDA, MD.) 2025; 15:jkaf030. [PMID: 39950409 PMCID: PMC12005148 DOI: 10.1093/g3journal/jkaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/29/2025] [Indexed: 04/18/2025]
Abstract
Dinoflagellates are a diverse group of microplankton that include free-living, symbiotic, and parasitic species. Amoebophrya, a basal lineage of parasitic dinoflagellates, infects a variety of marine microorganisms, including harmful-bloom-forming algae. Although there are currently 3 published Amoebophrya genomes, this genus has considerable genomic diversity. We add to the growing genomic data for Amoebophrya with an annotated genome assembly for Amoebophrya sp. ex Karlodinium veneficum. This species appears to translate all 3 canonical stop codons contextually. Stop codons are present in the open reading frames of about half of the predicted gene models, including genes essential for cellular function. The in-frame stop codons are likely translated by suppressor tRNAs that were identified in the assembly. We also assembled the mitochondrial genome, which has remained elusive in the previous Amoebophrya genome assemblies. The mitochondrial genome assembly consists of many fragments with high sequence identity in the genes but low sequence identity in intergenic regions. Nuclear and mitochondrially-encoded proteins indicate that Amoebophrya sp. ex K. veneficum does not have a bipartite electron transport chain, unlike previously analyzed Amoebophrya species. This study highlights the importance of analyzing multiple genomes from highly diverse genera such as Amoebophrya.
Collapse
Affiliation(s)
- Wesley DeMontigny
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, College Park, MD 20742, USA
| | - Tsvetan Bachvaroff
- Institute for Marine and Environmental Technology, University of Maryland Center for Environmental Sciences, Baltimore, MD 21202, USA
| |
Collapse
|
7
|
Hu C, Lu JN, Chen Z, Tian L, Yin Y, Jiang G, Fei YH, Tang YT, Wang S, Jin C, Qiu R, Chao Y. Viral diversity and auxiliary metabolic genes in rare earth element mine drainage in South China. WATER RESEARCH 2025; 281:123666. [PMID: 40273602 DOI: 10.1016/j.watres.2025.123666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/25/2025] [Accepted: 04/16/2025] [Indexed: 04/26/2025]
Abstract
In extreme environments, viruses play a crucial role in regulating the structure and metabolic activities of microbial communities, thereby impacting the overall biogeochemical cycles. Previous research found that rare earth element acid mine drainage (REE-AMD) harbors a wide array of microbial species. However, our understanding of the viruses that infect these microorganisms remains limited. In this study, we utilized metagenomic analysis to explore the viral diversity, interactions between viruses and their hosts, as well as the viruses encoded auxiliary metabolic genes (AMGs) within REE-AMD. The results demonstrated that viral communities showed increased diversity with REEs pollution. Furthermore, AMGs exhibited habitat and host specificity. Viruses in water samples contaminated with REEs tended to encode AMGs related to cellular metabolic processes and stress responses to protect their hosts. In contrast, viruses in sediment samples were more likely to encode AMGs associated with nutrient competition, thereby expanding the ecological niches of hosts and viruses. Viruses would carry more AMGs from the dominant prokaryotes. Additionally, under REEs stress, viruses encode a greater number of carbon- and sulfur-related AMGs, influencing the carbon and sulfur cycles of microorganisms in REE-AMD. Overall, our study provides a first systematic characterization of the viral community in REE-AMD, which is crucial for understanding the intricate interactions among viruses, their hosts, and the surrounding environment.
Collapse
Affiliation(s)
- Chang Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Jia-Nan Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ziwu Chen
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Li Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yalin Yin
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Gengbo Jiang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Ying-Heng Fei
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Ye-Tao Tang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Shizhong Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Chao Jin
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, PR China
| | - Yuanqing Chao
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Wang X, Lin Y, Li S, Wang J, Li X, Zhang D, Duan D, Shao Z. Metagenomic analysis reveals the composition and sources of antibiotic resistance genes in coastal water ecosystems of the Yellow Sea and Yangtze River Delta. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125923. [PMID: 40010597 DOI: 10.1016/j.envpol.2025.125923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/21/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The rapid development of coastal areas has raised concerns about marine environmental pollution. In this study, metagenomics was employed to investigate antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and bacterial communities in the Yellow Sea and Yangtze River Delta in China. Multidrug resistance genes were the most abundant ARGs in these regions. Transposons and insertion_element_IS91 were the dominant MGEs, closely related to the horizontal gene transfer of ARGs. Temperature, dissolved oxygen, pH, and depth were identified as important environmental factors influencing the distribution of ARGs in seawater. Oil, agriculture, animal husbandry, and wastewater treatment plants are likely the primary sources of ARGs. From the perspective of ARG control, bacterial communities contributed the most to the development of the resistome and may carry ARGs, spreading from the Yangtze River Delta to the Yellow Sea along ocean currents. A comparison with Tara Oceans datasets revealed that the dominant ARG types and bacterial genera in coastal waters were consistent with global characteristics, with variations in ARG subtypes. This study expands knowledge on the distribution patterns of ARGs at an offshore scale and provides a reference for the prevention and control of resistant gene pollution in the Yellow Sea and Yangtze River Delta.
Collapse
Affiliation(s)
- Xin Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yude Lin
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Shaoxuan Li
- Qingdao Academy of Agricultural Sciences, Qingdao, 266100, China
| | - Jiahui Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China; College of Life Sciences, Shandong Province Key Laboratory of Applied Mycology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Demeng Zhang
- Key Laboratory of Seaweed Fertilizers, Ministry of Agriculture and Rural Affairs, Qingdao Brightmoon Seaweed Group Co. Ltd., Qingdao, 266400, China
| | - Delin Duan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Zhanru Shao
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
9
|
Zhou R, Weng S, He J. Bacterial Infection Disrupts the Intestinal Bacterial Community and Facilitates the Enrichment of Pathogenic Bacteria in the Intestines of Penaeus vannamei. Microorganisms 2025; 13:864. [PMID: 40284700 PMCID: PMC12029295 DOI: 10.3390/microorganisms13040864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/29/2025] Open
Abstract
Pathogenic infections can reshape the intestinal microbiota of aquatic animals, thereby impacting their health status. In this study, we aimed to investigate whether Vibrio parahaemolyticus infection induces dysbiosis in the intestinal bacterial community of Penaeus vannamei and to assess the associated ecological risks. Our findings revealed the deterministic processes in intestinal bacterial community assembly during bacterial infections, indicating that host selection, i.e., host immune response post-infection, has a significant influence on intestinal microbes. More importantly, we found that bacterial infection reshaped the intestinal community by reducing the relative abundance of probiotic Ruegeria species (e.g., R. atlantica, R. lacuscaerulensis, R. conchae, R. profundi, R. arenilitoris, R. pomeroyi) and increasing the relative abundance of Vibrio species (V. harveyi, V. sinaloensis, V. coralliilyticus, and V. brasiliensis). Significant negative correlations were observed between the relative abundance of these Ruegeria species and the relative abundance of Vibrio species. Moreover, the control P. vannamei contained a substantially higher number of keystone species belonging to Ruegeria in the bacterial community network, whereas bacterial infection individuals had few or no keystone species belonging to Ruegeria, with keystone species belonging to Vibrio becoming more prominent. Thus, the significant increase in Vibrio species abundance in the P. vannamei intestine following bacterial infection was associated with the marked reduction in Ruegeria species. Our findings will provide valuable insights into the complex interactions among bacterial infection, intestinal microbiota, and host health, and they provide guidance for the development of probiotics in promoting the healthy culture of P. vannamei.
Collapse
Affiliation(s)
- Renjun Zhou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China
- School of Life Sciences/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai)/China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
10
|
Singh A, T V A, Singh S, Saxena AK, Nain L. Application of fungal inoculants enhances colonization of secondary bacterial degraders during in situ paddy straw degradation: a genomic insights into cross-domain synergism. Int Microbiol 2025; 28:703-720. [PMID: 39138687 DOI: 10.1007/s10123-024-00570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 08/01/2024] [Indexed: 08/15/2024]
Abstract
Rice cultivation generates huge amounts of on farm residues especially under mechanical harvesting. Paddy straw being recalcitrant hinders sowing of upcoming rabi crops like wheat and mustard. Non-environmental sustainable practice of on-farm burning of the paddy residues is being popularly followed for quick disposal of the agro-residues and land preparation. However, conservation agriculture involving in situ residue incorporation can be a sustainable option to utilize the residues for improvement of soil biological health. However, low temperature coupled with poor nitrogen status of soil reduces the decomposition rate of residues that may lead to nitrogen immobilization and hindrance in land preparation. In this direction, ecological impact of two approaches viz priming with urea and copiotrophic fungus-based bioformulation (CFB) consisting of Coprinopsis cinerea LA2 and Cyathus stercoreus ITCC3745 was studied for in situ degradation of residues. Succession of bacterial diversity was deciphered through high throughput whole metagenomic sequencing along with studies on dynamics of soil microbial enzymes. Treatments receiving CFB (T1) and urea (T2) when compared with bulk soil (absolute control) showed an increase in richness of the microbial diversity as compared to control straw retained treatment control (T3). The β diversity indices also indicated sufficient group variations among the treatments receiving CFB and urea as compared to only straw retained treatment and bulk soil. Priming of paddy straw with CFB and urea also induced significant rewiring of the bacterial co-occurrence networks. Quantification of soil ligno-cellulolytic activity as well as abundance of carbohydrate active enzymes (CAZy) genes indicated high activities of hydrolytic enzymes in CFB primed straw retention treatment as compared to urea primed straw retention treatment. The genomic insights on effectiveness of copiotrophic fungus bioformulation for in situ degradation of paddy straw will further help in developing strategies for management of crop residues in eco-friendly manner.
Collapse
Affiliation(s)
- Arjun Singh
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
- ICAR-Central Soil Salinity Research Institute, RRS Lucknow, Lucknow, UP, India
| | - Abiraami T V
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
| | - Surender Singh
- Department of Microbiology, Central University of Haryana, Mahendergarh, Haryana, India.
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Maunath Bhanjan, Kushmaur, UP, India
| | - Lata Nain
- Division of Microbiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
11
|
Pan C, Xu P, Yuan M, Wei S, Lu Y, Lu H, Zhang W. Effects of Different Feeding Patterns on the Gut Virome of 6-Month-Old Infants. J Med Virol 2025; 97:e70344. [PMID: 40202375 DOI: 10.1002/jmv.70344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
The gut microbiome is essential for infant health, and in recent years, the impact of enteroviruses on infant health and disease has received increasing attention. The transmission of breast milk phages to the infant gastrointestinal tract contributes to the shaping of the infant gut virome, while breastfeeding regulates the colonization of the infant gut virome. In this study, we collected fecal samples from healthy infants and analyzed the distribution characteristics of infant viral communities by viral metagenomic analysis, and analyzed the differences in infant viral communities under different feeding practices. Our results indicate that the infant intestinal virome consists of phages and eukaryotic viruses. Caudovirales and Microviridae dominated the phage composition, and except for Siphoviridae, which was more predominant in the intestines of formula-fed infants, there were no significant differences in the overall abundance of other Caudovirales and Microviridae in the intestines of infants with different feeding patterns. Breastfeeding can lead to a higher diversity of infant gut viruses through vertical transmission, and a highly diverse gut virome helps maintain the maturation of the gut microbiome. This study informs the shaping of gut virome in healthy infants by breastfeeding and contributes to further research on infant gut virome characteristics and formation processes.
Collapse
Affiliation(s)
- Chunduo Pan
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Pan Xu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Minli Yuan
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shanjie Wei
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Hongyan Lu
- Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wen Zhang
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
12
|
Favale N, Costa S, Summa D, Sabbioni S, Mamolini E, Tamburini E, Scapoli C. Comparison of microbiome community structure and dynamics during anaerobic digestion of different renewable solid wastes. CURRENT RESEARCH IN MICROBIAL SCIENCES 2025; 8:100383. [PMID: 40255248 PMCID: PMC12008556 DOI: 10.1016/j.crmicr.2025.100383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025] Open
Abstract
This study analysed the effect of the different lignocellulose composition of two crop substrates on the structure and dynamics of bacterial communities during anaerobic digestion (AD) processes for biogas production. To this end, cereal grains and grape pomace biomasses were analysed in parallel in an experimental AD bench-scale system to define and compare their metagenomic profiles for different experimental time intervals. The bacterial community structure and dynamics during the AD process were detected and characterised using high-resolution whole metagenomic shotgun analyses. Statistical evaluation identified 15 strains as specific to two substrates. Some strains, like Clostridium isatidis, Methanothermobacter wolfeii, and Methanobacter sp. MB1 in cereal grains, and Acetomicrobium hydrogeniformans and Acetomicrobium thermoterrenum in grape pomace, were never before detected in biogas reactors. The presence of bacteria such as Acetomicrobium sp. and Petrimonas mucosa, which degrade lipids and protein-rich substrates, along with Methanosarcina sp. and Peptococcaceae bacterium 1109, which tolerate high hydrogen pressures and ammonia concentrations, suggests a complex syntrophic community in lignin-cellulose-enriched substrates. This finding could help develop new strategies for the production of a tailor-made microbial consortium to be inoculated from the beginning of the digestion process of specific lignocellulosic biomass.
Collapse
Affiliation(s)
- Nicoletta Favale
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Stefania Costa
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Daniela Summa
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Silvia Sabbioni
- Department of Life Sciences and Biotechnology – Section of Pathology and Applied Microbiology, University of Ferrara, Italy
| | - Elisabetta Mamolini
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| | - Elena Tamburini
- Department of Environmental Sciences and Prevention, University of Ferrara, Ferrara, Italy
| | - Chiara Scapoli
- Department of Life Sciences and Biotechnology – Section of Biology and Evolution, University of Ferrara, Italy
| |
Collapse
|
13
|
Pitt N, Morrissette M, Gates MF, Bargabos R, Krumpoch M, Hawkins B, Lewis K. Bacterial membrane vesicles restore gut anaerobiosis. NPJ Biofilms Microbiomes 2025; 11:48. [PMID: 40121189 PMCID: PMC11929906 DOI: 10.1038/s41522-025-00676-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/27/2025] [Indexed: 03/25/2025] Open
Abstract
Inflammation damages the epithelial cell barrier, allowing oxygen to leak into the lumen of the gut. Respiring E. coli and other Enterobacteriaceae produce proinflammatory lipopolysaccharide, exacerbating inflammatory bowel disease. Here we show that respiring membrane vesicles (MV) from E. coli ameliorate symptoms in a mouse model of gut inflammation. Membrane vesicle treatment diminished weight loss and limited shortening of the colon. Notably, oxygenation of the colonic epithelium was significantly decreased in animals receiving wild type MVs, but not MVs from an E. coli mutant lacking cytochromes. Metatranscriptomic analysis of the microbiome shows an increase in anaerobic Lactobacillaceae and a decrease in Enterobacteriaceae, as well as a general shift towards fermentation in MV-treated mice. This is accompanied by a decrease in proinflammatory TNF-α. We report that MVs may lead to the development of a novel type of a therapeutic for dysbiosis, and for treating IBD.
Collapse
Affiliation(s)
- Norman Pitt
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Madeleine Morrissette
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Michael F Gates
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Rachel Bargabos
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Megan Krumpoch
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Bryson Hawkins
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA
| | - Kim Lewis
- Antimicrobial Discovery Center, Department of Biology, Northeastern University, Boston, MA, USA.
| |
Collapse
|
14
|
Sirasani JP, Gardner C, Jung G, Lee H, Ahn TH. Bioinformatic approaches to blood and tissue microbiome analyses: challenges and perspectives. Brief Bioinform 2025; 26:bbaf176. [PMID: 40269515 PMCID: PMC12018304 DOI: 10.1093/bib/bbaf176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/05/2025] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
Advances in next-generation sequencing have resulted in a growing understanding of the microbiome and its role in human health. Unlike traditional microbiome analysis, blood and tissue microbiome analyses focus on the detection and characterization of microbial DNA in blood and tissue, previously considered a sterile environment. In this review, we discuss the challenges and methodologies associated with analyzing these samples, particularly emphasizing blood and tissue microbiome research. Key preprocessing steps-including the removal of ribosomal RNA, host DNA, and other contaminants-are critical to reducing noise and accurately capturing microbial evidence. We also explore how taxonomic profiling tools, machine learning, and advanced normalization techniques address contamination and low microbial biomass, thereby improving reliability. While it offers the potential for identifying microbial involvement in systemic diseases previously undetectable by traditional methods, this methodology also carries risks and lacks universal acceptance due to concerns over reliability and interpretation errors. This paper critically reviews these factors, highlighting both the promise and pitfalls of using blood and tissue microbiome analyses as a tool for biomarker discovery.
Collapse
Affiliation(s)
- Jammi Prasanthi Sirasani
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, United States
| | - Cory Gardner
- Department of Computer Science, Saint Louis University, St. Louis, MO, United States
| | - Gihwan Jung
- Department of Computer Science, Saint Louis University, St. Louis, MO, United States
| | - Hyunju Lee
- AI Graduate School, Gwangju Institute of Science and Technology, Gwangju 61005, South Korea
| | - Tae-Hyuk Ahn
- Program of Bioinformatics and Computational Biology, Saint Louis University, St. Louis, MO, United States
- Department of Computer Science, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
15
|
Zeng S, Mo S, Wu X, Meng C, Peng P, Kashif M, Li J, He S, Jiang C. Microbial-mediated carbon metabolism in the subtropical marine mangroves affected by shrimp pond discharge. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106980. [PMID: 39893934 DOI: 10.1016/j.marenvres.2025.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/08/2025] [Accepted: 01/26/2025] [Indexed: 02/04/2025]
Abstract
Mangrove ecosystems exhibit high efficiency in carbon (C) sequestering within the global ecosystem. However, the rapid expansion of the shrimp farming industry poses a significant threat to these delicate ecosystems. The microbial mechanisms driving C metabolism in shrimp-affected sediments remain poorly understood. This study investigates the spatiotemporal dynamics of C metabolism-related microbial communities in shrimp pond and natural mangrove sediments in a subtropical region. Shrimp pond discharge altered soil properties, microbial diversity, and microbial stability, driven by factors such as salinity, sulfide, and total organic C (TOC). Metagenomic analyses reveals shifts in C degradation and oxidation, with a reduction in genes for cellulose and hemicellulose degradation. Microbial markers like Prolixibacteraceae and Nitrosopumilaceae reflect these changes. Co-occurrence network analysis indicates higher connectivity within shrimp pond groups, suggesting nutrient-driven changes in symbiotic relationships. PLS-PM analysis further confirms the interplay between microbial composition, nutrient levels, and C metabolism, with higher 16S rRNA operon copy numbers linked to increased C fixation. These findings demonstrate how shrimp pond discharge alters microbial networks and C metabolism, with implications for ecosystem resilience.
Collapse
Affiliation(s)
- Sen Zeng
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, Medical College, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Shuming Mo
- National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiaoling Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Can Meng
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, Medical College, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Pai Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Muhammad Kashif
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, Medical College, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China; National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jinhui Li
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, Medical College, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Sheng He
- Guangxi Birth Defects Prevention and Control Institute, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, 530033, China.
| | - Chengjian Jiang
- Guangxi Key Laboratory for Green Processing of Sugar Resources, Guangxi College Key Laboratory of Innovation Research on Medical and Engineering Integration, Liuzhou Key Laboratory of Guizhong Characteristic Medicinal Resources, Medical College, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, China; National Engineering Research Center for Non-Food Biorefinery, Guangxi Research Center for Biological Science and Technology, Guangxi Academy of Sciences, Nanning, 530007, China; State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Research Center for Microbial and Enzyme Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
16
|
Zhou Z, Liu S, Saleem M, Liu F, Hu R, Su H, Dong D, Luo Z, Wu Y, Zhang Y, He Z, Wang C. Unraveling phase-dependent variations of viral community, virus-host linkage, and functional potential during manure composting process. BIORESOURCE TECHNOLOGY 2025; 419:132081. [PMID: 39826761 DOI: 10.1016/j.biortech.2025.132081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
The temporal dynamics of bacterial and fungal communities significantly impact the manure composting process, yet viral communities are often underexplored. Bulk metagenomes, viromes, metatranscriptomes, and metabolomes were integrated to investigate dynamics of double-stranded DNA (dsDNA) virus and virus-host interactions throughout a 63-day composting process. A total of 473 viral operational taxonomic units (vOTUs), predominantly Caudoviricetes, showed distinct phase-dependent differentiation. In phase I (initial-mesophilic), viruses targeted Gammaproteobacteria and Firmicutes, utilizing restriction-modification (RM) systems. In phase II (thermophilic-maturing), viruses infected Alphaproteobacteria, Chloroflexi, and Planctomycetes, employing CRISPR-Cas systems. Lysogenic and lytic viruses exerting differential effects on bacterial pathogens across phases. Additionally, six types of auxiliary metabolic genes (AMGs) related to galactose and cysteine metabolisms were identified. The homologous lineages of AMGs with bacterial genes, along with the significant temporal correlation observed between virus-host-metabolite interactions, underscore the critical yet often overlooked role of viral communities in modulating microbial metabolisms and pathogenesis within composting ecosystems.
Collapse
Affiliation(s)
- Zhengyuan Zhou
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Songfeng Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Fei Liu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Ruiwen Hu
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Hualong Su
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Marine Sciences, Sun Yat-sen University, Zhuhai 519000, China
| | - Da Dong
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A & F University, Lin'an 311300, China
| | - Zhiwen Luo
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yongjie Wu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Guangzhou, China
| | - Yan Zhang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
17
|
Koslovsky MD. Analyzing microbiome data with taxonomic misclassification using a zero-inflated Dirichlet-multinomial model. BMC Bioinformatics 2025; 26:69. [PMID: 40016656 PMCID: PMC11869466 DOI: 10.1186/s12859-025-06078-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
The human microbiome is the collection of microorganisms living on and inside of our bodies. A major aim of microbiome research is understanding the role microbial communities play in human health with the goal of designing personalized interventions that modulate the microbiome to treat or prevent disease. Microbiome data are challenging to analyze due to their high-dimensionality, overdispersion, and zero-inflation. Analysis is further complicated by the steps taken to collect and process microbiome samples. For example, sequencing instruments have a fixed capacity for the total number of reads delivered. It is therefore essential to treat microbial samples as compositional. Another complicating factor of modeling microbiome data is that taxa counts are subject to measurement error introduced at various stages of the measurement protocol. Advances in sequencing technology and preprocessing pipelines coupled with our growing knowledge of the human microbiome have reduced, but not eliminated, measurement error. Ignoring measurement error during analysis, though common in practice, can then lead to biased inference and curb reproducibility. We propose a Dirichlet-multinomial modeling framework for microbiome data with excess zeros and potential taxonomic misclassification. We demonstrate how accommodating taxonomic misclassification improves estimation performance and investigate differences in gut microbial composition between healthy and obese children.
Collapse
|
18
|
Estrada CSD, Oliveira OAD, Varasteh T, Avelino-Alves D, Lima M, Barelli V, Campos LS, Cavalcanti G, Dias GM, Tschoeke D, Thompson C, Thompson F. Short-term negative effects of seawater acidification on the rhodolith holobionts metatranscriptome. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 965:178614. [PMID: 39879954 DOI: 10.1016/j.scitotenv.2025.178614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/15/2025] [Accepted: 01/20/2025] [Indexed: 01/31/2025]
Abstract
Rhodolith holobionts are formed by calcareous coralline algae (e.g., Corallinales) and associated microbiomes. The largest rhodolith bank in the South Atlantic is located in the Abrolhos Bank, in southwestern Brazil, covering an area of 22,000 km2. Rhodoliths serve as nurseries for marine life. However, ocean acidification threatens them with extinction. The acute effects of high pCO₂ levels on rhodolith metatranscriptomes remain unknown. This study investigates the transcriptomic profiles of rhodoliths exposed to short-term (96-h) high pCO₂ levels (up to 1638 ppm). Metatranscriptomes were generated for both dead and alive rhodoliths (15.48 million Illumina reads in total). Alive rhodoliths showed an enrichment of gene transcripts related to environmental stress responses and photosynthesis (Cyanobacteria). In contrast, the metatranscriptomes of dead rhodoliths were dominated by heterotrophic (Proteobacteria and Bacteroidetes) metabolism and virulence factors. The rhodolith holobiont metatranscriptomes respond rapidly to short-term acidification (within 1 h), suggesting that these holobionts may have some capacity to cope with acute acidification effects. However, the negative impacts of prolonged ocean acidification on rhodolith health cannot be overlooked. Rhodoliths exposed to low pH (7.5) for 96 h exhibited a completely altered transcriptomic profile compared to controls. This study highlights the plasticity of rhodolith transcriptomes in the face of ocean acidification and climate change.
Collapse
Affiliation(s)
- Carolina Salvador Duque Estrada
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Odara Araujo de Oliveira
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Tooba Varasteh
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Dhara Avelino-Alves
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Michele Lima
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil; Fundação Oswaldo Cruz (Fiocruz), RJ, Brazil
| | - Vitor Barelli
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Lucia S Campos
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Giselle Cavalcanti
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Graciela Maria Dias
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Diogo Tschoeke
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Cristiane Thompson
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil
| | - Fabiano Thompson
- Laboratório de Microbiologia, Programa de pós-graduação em Ciências Biológicas (Genética), Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
19
|
Suetsugu K, Yagi R, Okada H, Matsubayashi J. The tiny-leaved orchid Disperis neilgherrensis primarily obtains carbon from decaying litter via saprotrophic Ceratobasidium. MYCORRHIZA 2025; 35:9. [PMID: 39939455 PMCID: PMC11821799 DOI: 10.1007/s00572-025-01183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/30/2025] [Indexed: 02/14/2025]
Abstract
While most green orchids establish associations with non-ectomycorrhizal rhizoctonias belonging to Ceratobasidiaceae, Tulasnellaceae, and Serendipitaceae, fully mycoheterotrophic orchids-excluding albino mutants-primarily depend on either ectomycorrhizal fungi or saprotrophic non-rhizoctonia fungi. This suggests that non-ectomycorrhizal rhizoctonias may be unable to meet the carbon demands of adult orchids that exhibit a high degree of mycoheterotrophy. To understand the physiological ecology of Disperis neilgherrensis, an orchid species with reduced leaves growing in decaying litter from non-ectomycorrhizal trees, we employed molecular and stable isotope analyses to identify its mycorrhizal partners and ultimate nutritional sources at two populations on Ishigaki Island, Japan. Molecular barcoding techniques revealed that D. neilgherrensis forms exclusive associations with non-ectomycorrhizal Ceratobasidiaceae fungi. The Disperis specimens exhibited δ13C and δ15N isotopic values similar to those found in fully mycoheterotrophic orchids that exploit litter-decaying fungi. Furthermore, the pelotons of D. neilgherrensis showed significantly elevated δ13C values similar to saprotrophic non-rhizoctonia fungi. Our findings indicate that D. neilgherrensis primarily obtains its carbon from decaying litter through a specialized relationship with non-ECM Ceratobasidiaceae. Given that saprotrophic Ceratobasidiaceae facilitate nearly fully mycoheterotrophic growth in D. neilgherrensis, at least under warm and humid conditions, it is plausible that other (nearly) fully mycoheterotrophic tropical orchids also meet their carbon requirements through associations with saprotrophic rhizoctonias.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
- Institute for Advanced Research, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan.
| | - Ryuta Yagi
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Hidehito Okada
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-Ku, Kobe, Hyogo, 657-8501, Japan
| | - Jun Matsubayashi
- Faculty of Marine Science and Technology, Fukui Prefectural University, 1-1 Gakuen-Cho, Obama, Fukui, 917-0003, Japan
| |
Collapse
|
20
|
Zhao R, He G, Xiang L, Ji M, He R, Wei X. Metagenomic next-generation sequencing assists in the diagnosis of visceral leishmaniasis in non-endemic areas of China. Front Cell Infect Microbiol 2025; 15:1517046. [PMID: 39981377 PMCID: PMC11839618 DOI: 10.3389/fcimb.2025.1517046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
Introduction Leishmaniasis, a protozoan disease caused by infection by Leishmania, is a critical issue in Asia, South America, East Africa, and North Africa. With 12 million cases globally, leishmaniasis is one of the most serious neglected tropical diseases worldwide. Direct identification of infected tissues is currently the primary method of diagnosis; however, the low sensitivity and inconvenience of microscopic examination in detecting amastigotes, parasitic manifestations of Leishmania, leads to the possibility of misdiagnosis, delayed diagnosis, and underdiagnosis. Methods With the development of metagenomic nextgeneration sequencing (mNGS) technology for pathogen identification, it is possible to detect specific nucleic acid sequences characteristic of Leishmania parasites, which opens new avenues for the more accurate diagnosis of leishmaniasis. In this study, we report two cases of leishmaniasis from Henan Province, China, in which Leishmania parasites were identified using mNGS technology, massively expediting diagnosis and treatment. Results Our report demonstrates that the mNGS method is applicable to peripheral blood samples (PB), which are far more readily available in clinical settings, in addition to bone marrow aspirate samples (BM), which are traditionally used for diagnosis of visceral leishmaniasis. Conclusion Our report validates the efficacy of mNGS technology as a rapid and accurate method of diagnosis for leishmaniasis.
Collapse
Affiliation(s)
- Rui Zhao
- Department of Hematopathy, Henan Institute of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Guilun He
- Science and Technology Service Center, Nanjing Practice Medicine Diagnostics CO., Ltd., Nanjing, Jiangsu, China
| | - Lin Xiang
- Science and Technology Service Center, Nanjing Practice Medicine Diagnostics CO., Ltd., Nanjing, Jiangsu, China
| | - Melinda Ji
- Department of Translational Research and Cellular Therapeutics, City of Hope, Duarte, CA, United States
| | - Rongheng He
- Department of Hematopathy, Henan Institute of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| | - Xudong Wei
- Department of Hematopathy, Henan Institute of Hematology, Cancer Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
21
|
Suetsugu K, Okada H. Subterranean morphology underpins the degree of mycoheterotrophy, mycorrhizal associations, and plant vigor in a green orchid Oreorchis patens. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70045. [PMID: 39969432 PMCID: PMC11837900 DOI: 10.1111/tpj.70045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/20/2025]
Abstract
The evolution of full heterotrophy is a fascinating topic in plant evolution, with recent studies suggesting that partial mycoheterotrophy (mixotrophy) serves as a transitional stage toward full mycoheterotrophy in orchids. However, the adaptive significance of fungal-derived carbon in mixotrophic plants remains largely unexplored. In this study, we investigated the photosynthetic orchid Oreorchis patens, a species related to the leafless genus Corallorhiza within the subtribe Calypsoinae. Using high-throughput DNA sequencing, 13C and 15N isotopic analyses, and phenotypic evaluations, we explored the role of coralloid rhizomes - a feature common in fully mycoheterotrophic orchids - in fungal partnerships, the degree of mycoheterotrophy, and plant vigor. Our findings reveal that O. patens plants with coralloid rhizomes predominantly associate with saprotrophic Psathyrellaceae fungi, whereas those without coralloid rhizomes also partner with rhizoctonias and other potentially orchid mycorrhizal fungi. Notably, plants with coralloid rhizomes exhibited enriched 13C signatures, indicating a greater reliance on fungal-derived carbon. These plants also demonstrated more vigorous flowering scapes and produced a higher number of flowers, suggesting that mycoheterotrophy significantly enhances plant vigor. This study provides rare insights into the adaptive significance of mycoheterotrophy. Recent research suggests that some partially mycoheterotrophic orchids can adjust their heterotrophic status to optimize carbon resource use under specific conditions, such as low-light environments. However, an increased proportion of fungal-derived carbon may sometimes merely reflect reduced photosynthesis in such conditions, thereby amplifying the apparent contribution of fungal-derived carbon. Our findings offer more direct evidence that carbon acquisition via mycoheterotrophy is beneficial for partially mycoheterotrophic orchids.
Collapse
Affiliation(s)
- Kenji Suetsugu
- Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan
- Institute for Advanced ResearchKobe UniversityKobeJapan
| | - Hidehito Okada
- Department of Biology, Graduate School of ScienceKobe UniversityKobeJapan
| |
Collapse
|
22
|
Babalola OO, Enagbonma BJ. Dataset of shotgun metagenomic evaluation of Sorghum bicolor rhizosphere microbiome in soils preceded by Glycine max. Data Brief 2025; 58:111270. [PMID: 39906131 PMCID: PMC11791250 DOI: 10.1016/j.dib.2025.111270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/20/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
The dataset presents the microbial diversity, community structure, and functional potential of the rhizosphere microbiome associated with Sorghum bicolor in response to crop rotation involving a Glycine max precursor. Soil samples were collected from the rhizospheres of two Sorghum bicolor cultivars, Avenger and NS55, cultivated in soils previously used for Glycine max and cultivated in soils that have not previously been used for Glycine max cultivation, as follows: i) Sorghum bicolor Avenger (SA1, SA2, and SA3) cultivated in soils previously used for Glycine max, ii) Sorghum bicolor NS55 (SN1, SN2, and SN3) grown in soils that had been cultivated with Glycine max, iii) Sorghum bicolor Avenger (RA1, RA2, and RA3) cultivated in soils not previously used for Glycine max, iv) Sorghum bicolor NS55 (RN1, RN2, and RN3) grown in soils not previously cultivated with Glycine max. Thereafter, the shotgun sequencing was done to assess the microbial composition and functional genes from the extracted DNA. The effective metagenome after QC of the twelve samples include SA1 (99.72%), SA2 (99.50%), SA3 (99.68%), SN1 (99.75%), SN2 (99.76%), SN3 (99.70%), RA1 (99.72%), RA2 (99.77%), RN3 (99.72%), RN1 (99.67%), RN2 (99.68%), and RN3 (99.54%). Information from the metagenome sequences is accessible under the bioproject numbers PRJNA1166458 (SA1, SA2, and SA3), PRJNA1166463 (SN1, SN2, and SN3), PRJNA1166623 (RA1, RA2, and RA3), PRJNA1166627 (RN1, RN2 and RN3). Actinomycetota and Function unknown dominated the microbiomes across all cropping systems. The insights gained from this dataset hold promise for advancing sustainable agricultural practices, particularly through optimizing crop rotations, developing microbial bioinoculants, and enhancing soil health. Furthermore, the functional data and the function unknown from this dataset could enrich our understanding of microbial roles in nutrient cycling, plant growth promotion, and stress mitigation, which are critical for addressing challenges in food security and environmental sustainability.
Collapse
Affiliation(s)
- Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa
| | - Ben Jesuorsemwen Enagbonma
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Mail Bag X2046, Mmabatho 2735, South Africa
| |
Collapse
|
23
|
Jeon Y, Struewing I, Clauson K, Reetz N, Fairchild N, Goeres-Priest L, Dreher TW, Labiosa R, Carpenter KD, Rosen BH, Villegas EN, Lu J. Dominant Dolichospermum and microcystin production in Detroit Lake (Oregon, USA). HARMFUL ALGAE 2025; 142:102802. [PMID: 39947845 PMCID: PMC11864590 DOI: 10.1016/j.hal.2025.102802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 02/28/2025]
Abstract
The excessive growth of harmful cyanobacteria, including Dolichospermum (formerly known as Anabaena), in freshwater bodies has become a pressing global concern. However, detailed information about the role of Dolichospermum in shaping bloom dynamics and producing cyanotoxins is limited. In this study, a bloom event dominated by Dolichospermum spp. at Detroit Lake (Oregon, USA) was examined from 2019 to 2021. In 2019, early summer cyanobacterial community succession reached up to 8.7 % of total phytoplankton abundance. Dolichospermum was the major microcystin (MC)-producing genus, with peak MC levels of 7.34 μg L-1. The presence of MCs was strongly correlated with the abundance of Dolichospermum (r = 0.84, p < 0.05) and MC synthetase gene, mcyE-Ana (r = 0.63, p < 0.05). Metabolic analyses further showed that the presence of nif/pst genes linked to nitrogen and phosphorus metabolism was dominated by Dolichospermum from the bloom onset until September. In addition, the abundance of Dolichospermum was significantly correlated with the abundance of nitrogen-fixing nif-Ana gene (r = 0.62, p < 0.05). As the lake experienced a longer N and P scarcity period (May to September), the N2-fixing Dolichospermum was able to dominate over other non-fixing cyanobacteria present, including Microcystis and Planktothrix. Overall, our results facilitate a better understanding of the organism and will help working toward managing/predicting future blooms.
Collapse
Affiliation(s)
- Youchul Jeon
- U.S. Environmental Protection Agency, Office of Research and Development, Gulf Breeze, FL, USA
| | - Ian Struewing
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Kale Clauson
- Oregon Department of Environmental Quality, Hillsboro, OR, USA
| | - Nathan Reetz
- Oregon Department of Environmental Quality, Hillsboro, OR, USA
| | - Ned Fairchild
- Oregon Department of Environmental Quality, Hillsboro, OR, USA
| | | | - Theo W Dreher
- Department of Microbiology, Oregon State University, Corvallis, OR, USA
| | - Rochelle Labiosa
- U.S. Environmental Protection Agency, Region 10, Seattle, WA, USA
| | - Kurt D Carpenter
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA
| | - Barry H Rosen
- U.S. Geological Survey, Oregon Water Science Center, Portland, OR, USA; Department of Ecology and Environmental Studies, Florida Gulf Coast University, Ft. Myers, FL, USA
| | - Eric N Villegas
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Jingrang Lu
- U.S. Environmental Protection Agency, Office of Research and Development, Gulf Breeze, FL, USA.
| |
Collapse
|
24
|
Nammoku Y, Nikkeshi A, Terai Y, Ushimaru A, Kinoshita M. Morphological and DNA analysis of pollen grains on butterfly individuals reveal their flower visitation history. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2025; 112:13. [PMID: 39873746 DOI: 10.1007/s00114-025-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 12/20/2024] [Accepted: 01/06/2025] [Indexed: 01/30/2025]
Abstract
Many butterfly species are conspicuous flower visitors. However, understanding their flower visitation patterns in natural habitats remains challenging due to the difficulty of tracking individual butterflies. Therefore, we aimed at establishing a protocol to solve the problem using the Common five-ring butterfly, Ypthima argus (Nymphalidae: Satyrinae). Focusing on the pollen grains attached the butterfly's body surface, we examined validities of two pollen analyses based on pollen morphology and DNA markers (ITS1 and ITS2), in addition to the classical route census method. We captured thirty-nine butterflies from mid-April to early July and collected pollen grains from each individual. Morphological and DNA analyses of collected pollens identified eighteen and thirty-four taxa of insect pollinated plants respectively, including woody plants such as Castanopsis. The DNA analysis detected as many as thirteen plant taxa from a single butterfly, indicating its high sensitivity for detecting flower visitation. We detected more plant taxa in May when many individuals were flying. This is assumingly related to the post emergence days of the butterflies with more foraging experience. We also found that fluctuations of pollen grain numbers of Leucanthemum vulgare and Erigeron philadelphicus on individual butterflies depend on their flowering periods overlapping partly. Consequently, we conclude that pollen morphology and DNA barcoding analysis, and field observations are mutually complementary techniques, providing an integrated pollen analysis method to study the pollination ecology of butterflies.
Collapse
Affiliation(s)
- Yu Nammoku
- School of Evolutionary Studies of Biosystems, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Aoi Nikkeshi
- Division of Biodiversity, Institute for Agri-Environmental Science, Tsukuba, Japan
| | - Yohey Terai
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan
| | - Atsushi Ushimaru
- Graduate School of Human Development and Environment, Kobe University, Kobe, Japan
| | - Michiyo Kinoshita
- Research Center for Integrative Evolutionary Science, The Graduate University for Advanced Studies, SOKENDAI, Hayama, Japan.
| |
Collapse
|
25
|
Osama A, Anwar AM, Ezzeldin S, Ahmed EA, Mahgoub S, Ibrahim O, Ibrahim SA, Abdelhamid IA, Bakry U, Diab AA, A Sayed A, Magdeldin S. Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions. J Adv Res 2025:S2090-1232(25)00055-4. [PMID: 39870302 DOI: 10.1016/j.jare.2025.01.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/23/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
INTRODUCTION Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear. OBJECTIVES This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome. METHODS The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed. Microbial diversity was assessed using 16S rRNA V3 and V4 sequencing. A novel metaproteomics pipeline identified bacterial proteins, while untargeted metabolomics explored altered metabolic pathways. Finally, multi-omics integration was employed to connect macromolecular changes to neurodevelopmental deficits. RESULTS Children with ASD exhibited significant alterations in gut microbiota, including lower diversity and richness compared to controls. Tyzzerella was uniquely associated with the ASD group. Microbial network analysis revealed rewiring and reduced stability in ASD. Major metaproteins identified were produced by Bifidobacterium and Klebsiella (e.g., xylose isomerase and NADH peroxidase). Metabolomics profiling identified neurotransmitters (e.g., glutamate, DOPAC), lipids, and amino acids capable of crossing the blood-brain barrier, potentially contributing to neurodevelopmental and immune dysregulation. Host proteome analysis revealed altered proteins, including kallikrein (KLK1) and transthyretin (TTR), involved in neuroinflammation and immune regulation. Finally, multi-omics integration supported single-omics findings and reinforced the hypothesis that gut microbiota and their macromolecular products may contribute to ASD-associated symptoms. CONCLUSIONS The integration of multi-omics data provided critical evidence that alteration in gut microbiota and associated macromolecule production may play a role in ASD-related symptoms and co-morbidities. Key bacterial metaproteins and metabolites were identified as potential contributors to neurological and immune dysregulation in ASD, underscoring possible novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Aya Osama
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Ali Mostafa Anwar
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Shahd Ezzeldin
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Eman Ali Ahmed
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt
| | - Sebaey Mahgoub
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt
| | - Omneya Ibrahim
- Psychiatry and Neurology Department, Faculty of Medicine, Suez Canal University, Egypt
| | | | | | - Usama Bakry
- Egypt Center for Research and Regenerative Medicine (ECRRM), Egypt
| | - Aya A Diab
- Genomic Research Program, Basic Research Department, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt
| | - Ahmed A Sayed
- Genomic Research Program, Basic Research Department, Children's Cancer Hospital Egypt 57357, 11441 Cairo, Egypt; Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt.
| |
Collapse
|
26
|
Wang Y, Jiang X, Xi Y, Wei S, Ning S, Zhang W. Novel cycloviruses identified by mining human blood metagenomic data show close relationship to those from animals. Front Microbiol 2025; 15:1522416. [PMID: 39911714 PMCID: PMC11794188 DOI: 10.3389/fmicb.2024.1522416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/09/2024] [Indexed: 02/07/2025] Open
Abstract
The family Circoviridae includes the genera Circovirus and Cyclovirus. Cycloviruses have been found in serum samples from chronic HBV, HCV, or HIV-infected individuals as well as asymptomatic blood donors. However, research on cycloviruses is relatively limited. We used viral metagenomics to mine, analyze, and visualize the human blood virome, successfully identifying three new genomes, each encoding Rep and Capsid proteins. These proteins are crucial for viral replication and host-cell interaction: the Rep protein is involved in initiating viral genome replication, while the Capsid protein plays a key role in the assembly of new virions and the virus's ability to interact with host immune systems. Distance matrix and phylogenetic analyses show that these cycloviruses share high sequence similarity with viruses found in both humans and animals across different regions of Africa. This finding not only confirms the presence of previously uncharacterized cycloviruses in human blood, but also provides insight into their potential role in host transmission and their ecological significance. Further research is needed to explore the functional roles of these cycloviruses in viral pathogenesis, particularly how they may influence host immunity and contribute to chronic infections. Additionally, studies investigating the host range and mechanisms of cross-species transmission will be essential to understanding the broader implications of cycloviruses in human and animal health.
Collapse
Affiliation(s)
- Yuanqing Wang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiaojie Jiang
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, Jiangsu, China
| | - Yuan Xi
- Department of Clinical Laboratory, Wuxi Blood Center, Wuxi, Jiangsu, China
| | - Siqi Wei
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Songyi Ning
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wen Zhang
- Institute of Critical Care Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, China
- Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
27
|
Toth R, Huettel B, Eini O, Varrelmann M, Kube M. The complete genome sequence of the stolbur pathogen " Candidatus Phytoplasma solani" from Pentastiridius leporinus. Microbiol Resour Announc 2025; 14:e0064024. [PMID: 39611802 PMCID: PMC11737076 DOI: 10.1128/mra.00640-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 11/15/2024] [Indexed: 11/30/2024] Open
Abstract
The complete genome of "Candidatus Phytoplasma solani" GOE was obtained from the infected vector Pentastiridius leporinus by single-molecule real-time sequencing. This 16SrXII-P phytoplasma is associated with the economically important sugar beet disease "syndrome basses richesses." The genome sequence is an essential resource for diagnosis and understanding pathogen-host interaction.
Collapse
Affiliation(s)
- Rafael Toth
- Department of Integrative Infection Biology Crops -Livestock, University of Hohenheim, Stuttgart, Germany
| | - Bruno Huettel
- Max Planck Genome-Centre Cologne, Max Planck Institute for Plant Breeding, Köln, Germany
| | - Omid Eini
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Mark Varrelmann
- Department of Phytopathology, Institute of Sugar Beet Research, Göttingen, Germany
| | - Michael Kube
- Department of Integrative Infection Biology Crops -Livestock, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
28
|
Li H, Abdullah, Yang H, Guo H, Yuan Y, Ahmed I, Li G, Wang Y, Chang Y, Tian X. Chloroplast genome evolution of Berberis (Berberidaceae): Implications for phylogeny and metabarcoding. Gene 2025; 933:148959. [PMID: 39326472 DOI: 10.1016/j.gene.2024.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Berberidis Radix (Sankezhen), a typical multi-origin Chinese medicinal material, originates from the dried roots of plants of the Berberis genus and is used to treat various ailments. These species have similar morphologies, potentially leading to misidentifications that can impact medicine efficacy. Therefore, developing suitable molecular markers to identify medicinal species is imperative. Furthermore, discrepancies exist in the taxonomy of the Berberis genus. In the present study, we de novo assembled the chloroplast genomes of six Berberis species (Berberis woomungensis C. Y. Wu, Berberis pruinosa Franch., Berberis thunbergii DC., Berberis chinensis Poir., Berberis wilsoniae Hemsl., and Berberis sp.) that commonly constitute Berberidis Radix and compared them with previously reported genomes. Our comparative analysis revealed similarities in genome structure, relative synonymous codon usage, amino acid frequency, repeats, and substitutions. Higher synonymous substitutions, indicative of predominant purifying selection on protein-coding genes, were observed compared to non-synonymous substitutions. However, positive selection was identified in six genes across 29 Berberis species-accD, matK, ndhD, rbcL, ycf1, and ycf2-highlighting their potential roles in adaptive responses to specific environmental conditions within the genus. Inverted repeats expansion and contraction affected the rate of mutations and were associated with the phylogenetic classification of Berberis. Our phylogenetic analysis supported the division of the Berberis complex into four genera, which corroborates previous studies involving extensive sampling. We identified the ndhD-ccsA region as the most polymorphic region and applied this region to Chinese patent medicines containing Berberidis Radix through metabarcoding. The metabarcoding analysis confirmed that five Berberis species commonly constitute Berberidis Radix in Chinese patent medicines. In conclusion, this study provides insight into the molecular evolution of the chloroplast genome and the phylogeny of the Berberis genus. In addition, metabarcoding provides insight into the species composition of Berberidis Radix in Chinese patent medicines.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Abdullah
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hongxia Yang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Hua Guo
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ye Yuan
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Ibrar Ahmed
- Alpha Genomics Private Limited, Islamabad 45710, Pakistan; Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
| | - Guohui Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yu Wang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Yanxu Chang
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| | - Xiaoxuan Tian
- State Key Laboratory of Chinese Medicine Modernization, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
29
|
Gu G, Zeeshan Ul Haq M, Sun X, Zhou J, Liu Y, Yu J, Yang D, Yang H, Wu Y. Continuous cropping of Patchouli alters soil physiochemical properties and rhizosphere microecology revealed by metagenomic sequencing. Front Microbiol 2025; 15:1482904. [PMID: 39872816 PMCID: PMC11769982 DOI: 10.3389/fmicb.2024.1482904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025] Open
Abstract
Continuous cropping (CC) profoundly impacts soil ecosystems, including changes in soil factors and the structure and stability of microbial communities. These factors are interrelated and together affect soil health and plant growth. In this research, metagenomic sequencing was used to explore the effects of CC on physicochemical properties, enzyme activities, microbial community composition, and functional genes of the rhizosphere soil of patchouli. We found that this can lead to changes in various soil factors, including the continuous reduction of pH andNH 4 + -N and the unstable changes of many factors. In addition, S-PPO enzyme activity increased significantly with the cropping years, but S-NAG increased in the first 2 years and decreased in the third cropping year. Metagenomic sequencing results showed that CC significantly changed the diversity and composition of rhizosphere microbial communities. The relative abundance of Pseudomonas and Bacteroides decreased substantially from the phylum level. At the genus level, the number of microbial genera specific to the zero-year cropping (CK) and first (T1), second (T2), and third (T3) years decreased significantly, to 1798, 172, 42, and 44, respectively. The abundance of many functional genes changed, among which COG0823, a gene with the cellular process and signaling functions, significantly increased after CC. In addition,NH 4 + -N, S-CAT, S-LAP, and SOC were the main environmental factors affecting rhizosphere-dominant microbial communities at the phylum level, while pH, SOC, and AK were the key environmental factors affecting rhizosphere functional genes of Pogostemon cablin. In summary, this study showed the dynamic changes of soil factors and rhizosphere microorganisms during CC, providing a theoretical basis for understanding the formation mechanism and prevention of CC obstacles and contributing to the formulation of scientific soil management and fertilization strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Yougen Wu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China
| |
Collapse
|
30
|
Ding J, Liu F, Zeng J, Gu H, Huang J, Wu B, Shu L, Yan Q, He Z, Wang C. Depth heterogeneity of lignin-degrading microbiome and organic carbon processing in mangrove sediments. NPJ Biofilms Microbiomes 2025; 11:5. [PMID: 39762227 PMCID: PMC11704145 DOI: 10.1038/s41522-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
Mangrove ecosystems are globally recognized for their blue carbon (C) sequestration capacity. Lignocellulosic detritus constitutes the primary C input to mangrove sediments, but the microbial processes involved in its bioprocessing remain unclear. Using lignocellulosic analysis and metagenomic sequencing across five 100-cm sediment cores, we found a high proportion of lignin (95.0-97.7%) within sediments' lignocellulosic detritus, with a small fraction of lignin-degrading genes (1.24-1.98%) of lignin-degrading genes within the carbohydrate-active enzyme coding genes. Depth stratification was observed in genes and microbial communities involved in lignin depolymerization and mineralization of lignin monomer derivatives. Further microbe-centered analyses of biomass production rates and adaptive metabolism revealed diminished microbial C use efficiency potential and augmented "enzyme latch" with increasing sediment depths. These findings enhance our understanding of sedimentary organic C cycling and storage in coastal blue C ecosystems.
Collapse
Affiliation(s)
- Jijuan Ding
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Fei Liu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jiaxiong Zeng
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Hang Gu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Jing Huang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Bo Wu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Zhili He
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Marine Synthetic Ecology Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), State Key Laboratory for Biocontrol, Sun Yat-sen University, 510006, Guangzhou, China.
| |
Collapse
|
31
|
Llanos-Lizcano A, Hämmerle M, Sperduti A, Sawyer S, Zagorc B, Özdoğan KT, Guellil M, Cheronet O, Kuhlwilm M, Pinhasi R, Gelabert P. Intra-individual variability in ancient plasmodium DNA recovery highlights need for enhanced sampling. Sci Rep 2025; 15:757. [PMID: 39755798 PMCID: PMC11700196 DOI: 10.1038/s41598-024-85038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/30/2024] [Indexed: 01/06/2025] Open
Abstract
Malaria has been a leading cause of death in human populations for centuries and remains a major public health challenge in African countries, especially affecting children. Among the five Plasmodium species infecting humans, Plasmodium falciparum is the most lethal. Ancient DNA research has provided key insights into the origins, evolution, and virulence of pathogens that affect humans. However, extensive screening of ancient skeletal remains for Plasmodium DNA has shown that such genomic material is rare, with no studies so far addressing potential intra-individual variability. Consequently, the pool of ancient mitochondrial DNA (mtDNA) or genomic sequences for P. falciparum is extremely limited, with fewer than 20 ancient sequences available for genetic analysis, and no complete P. falciparum mtDNA from Classical antiquity published to date. To investigate intra-individual diversity and genetic origins of P. falciparum from the Roman period, we generated 39 sequencing libraries from multiple teeth and two from the femur of a Roman malaria-infected individual. The results revealed considerable variability in P. falciparum recovery across different dental samples within the individual, while the femur samples showed no preservation of Plasmodium DNA. The reconstructed 43-fold P. falciparum mtDNA genome supports the hypothesis of an Indian origin for European P. falciparum and suggests mtDNA continuity in Europe over the past 2000 years.
Collapse
Affiliation(s)
- Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Michelle Hämmerle
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Alessandra Sperduti
- Museo delle Civiltà, Roma, Italy
- Dipartimento di Archeologia, Asia, Africa e Mediterraneo, Università L'Orientale, Napoli, Italy
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Meriam Guellil
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Martin Kuhlwilm
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
32
|
Gelabert P, Oberreiter V, Straus LG, Morales MRG, Sawyer S, Marín-Arroyo AB, Geiling JM, Exler F, Brueck F, Franz S, Cano FT, Szedlacsek S, Zelger E, Hämmerle M, Zagorc B, Llanos-Lizcano A, Cheronet O, Tejero JM, Rattei T, Kraemer SM, Pinhasi R. A sedimentary ancient DNA perspective on human and carnivore persistence through the Late Pleistocene in El Mirón Cave, Spain. Nat Commun 2025; 16:107. [PMID: 39747910 PMCID: PMC11696082 DOI: 10.1038/s41467-024-55740-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 12/19/2024] [Indexed: 01/04/2025] Open
Abstract
Caves are primary sites for studying human and animal subsistence patterns and genetic ancestry throughout the Palaeolithic. Iberia served as a critical human and animal refugium in Europe during the Last Glacial Maximum (LGM), 26.5 to 19 thousand years before the present (cal kya). Therefore, it is a key location for understanding human and animal population dynamics during this event. We recover and analyse sedimentary ancient DNA (sedaDNA) data from the lower archaeological stratigraphic sequence of El Mirón Cave (Cantabria, Spain), encompassing the (1) Late Mousterian period, associated with Neanderthals, and (2) the Gravettian (c. 31.5 cal kya), Solutrean (c. 24.5-22 cal kya), and Initial Magdalenian (d. 21-20.5 cal kya) periods, associated with anatomically modern humans. We identify 28 animal taxa including humans. Fifteen of these taxa had not been identified from the archaeozoological (i.e., faunal) record, including the presence of hyenas in the Magdalenian. Additionally, we provide phylogenetic analyses on 70 sedaDNA mtDNA genomes of fauna including the densest Iberian Pleistocene sampling of C. lupus. Finally, we recover three human mtDNA sequences from the Solutrean levels. These sequences, along with published data, suggest mtDNA haplogroup continuity in Iberia throughout the Solutrean/Last Glacial Maximum period.
Collapse
Affiliation(s)
- Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, NM, USA
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Manuel Ramón González Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria (Universidad de Cantabria, Gobierno de Cantabria, Santander), Santander, Spain
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ana B Marín-Arroyo
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Jeanne Marie Geiling
- Grupo I+D+i EvoAdapta, Departamento de Ciencias Históricas, Universidad de Cantabria, Santander, Spain
| | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Florian Brueck
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | | | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Michelle Hämmerle
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Alejandro Llanos-Lizcano
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Facultad de Química y Farmacia, Universidad del Atlántico, Barranquilla, Colombia
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - José-Miguel Tejero
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Seminari d'Estudis i Recerques Prehistòriques (SERP), University of Barcelona, Barcelona, Spain.
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Erkorkmaz BA, Zeevi D, Rudich Y. Dust storm-driven dispersal of potential pathogens and antibiotic resistance genes in the Eastern Mediterranean. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178021. [PMID: 39674156 DOI: 10.1016/j.scitotenv.2024.178021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/15/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
The atmosphere hosts a microbiome that connects distant ecosystems yet remains relatively unexplored. In this study, we tested the hypothesis that dust storms enhance the spread of pathogenic microorganisms and whether these microorganisms carry antibiotic resistance and virulence-related genes in the Eastern Mediterranean. We collected air samples during a seasonal transition period, capturing data from 13 dusty days originating from Middle Eastern sources, including the Saharan Desert, Iraq, Iran, and Saudi Arabia, and 32 clear days, with temperatures ranging from 16.5 to 27.1 °C. Using metagenomic analysis, we identified several facultative pathogens like Klebsiella pneumoniae, Stenotrophomonas maltophilia, and Aspergillus fumigatus, which are linked to human respiratory diseases, and others like Zymoseptoria tritici, Fusarium poae, and Puccinia striiformis, which are harmful to wheat. The abundance of these pathogens increased during dust storms and with rising temperatures. Although we did not find strong evidence that these species harbored antibiotic resistance or virulence-related genes, which could be linked to their pathogenic potential, dust storms transported up to 125 times more total antibiotic resistance genes, as measured by RPKM abundance, compared to clear conditions. These levels during dust storms far exceeded those found in other ecosystems. While further research is needed to determine whether dust storms and temperature variations pose an immediate threat to public health and the environment, our findings underscore the importance of continuous monitoring of atmospheric microbiomes. This surveillance is crucial for assessing potential risks to human health and ecosystem stability, particularly in the face of accelerating global climate change.
Collapse
Affiliation(s)
- Burak Adnan Erkorkmaz
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - David Zeevi
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Yinon Rudich
- Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel.
| |
Collapse
|
34
|
Zhao W, Shi L, Han Y, Wang X, Wang J, Xu S, Zhang X, Huang Z. Development of a microbiome for phenolic metabolism based on a domestication approach from lab to industrial application. Commun Biol 2024; 7:1716. [PMID: 39741173 DOI: 10.1038/s42003-024-07353-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
Despite a lot of efforts devoted to construct efficient microbiomes, there are still major obstacles to moving from the lab to industrial applications due to the inapplicability of existing technologies or limited understanding of microbiome variation regularity. Here we show a domestication strategy to cultivate an effciient and resilient functional microbiome for addressing phenolic wastewater challenges, which involves directional domestication in shaker, laboratory water test in small-scale, gas test in pilot scale, water test in pilot scale, and engineering application in industrial scale. The domestication process includes the transition from water to gas, which provided complex transient environment for screening of a more adaptable and robust microbiome, thereby mitigating the performance disparities encountered when transitioning from laboratory experimentation to industrial engineering applications. Within the domestication and application processes for treating phenolic resin wastewater, a powerful functional microbiome was built by self-assembly. This leads to an augmented biodiversity and the development of more intricate phenol and formaldehyde metabolic pathways. The incorporation of increased stochastic processes and random network characteristics further suggested the stability of the microbial community during the application phase. This study elucidates the self-assembly process of microbial communities during the artificial construction process, showcasing their adaptive evolution under different adverse conditions. It serves as a noteworthy case study for the artificial construction of a microbiome for the engineering application of treating industrial wastewater.
Collapse
Affiliation(s)
- Wei Zhao
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Liuyang Shi
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Yifan Han
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xingbiao Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Jingjing Wang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Song Xu
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Xiaoxia Zhang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
| | - Zhiyong Huang
- Tianjin Key Laboratory of Industrial Biological Systems and Process Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
| |
Collapse
|
35
|
Dai Z, Xie B, Xie C, Xiang J, Wang X, Li J, Zheng R, Wang Y. Comparative Metagenomic Analysis of the Gut Microbiota of Captive Pangolins: A Case Study of Two Species. Animals (Basel) 2024; 15:57. [PMID: 39795000 PMCID: PMC11718824 DOI: 10.3390/ani15010057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Pangolins, one of the most trafficked mammals, face significant health challenges in captivity, including digestive disorders and immune dysfunctions. These issues are closely linked to alterations in their gut microbiota, which play vital roles in the host metabolism, immunity, and overall health. This study investigated the differences in the gut microbiota composition and function between two pangolin species, Chinese pangolins (Manis pentadactyla) and Malayan pangolins (Manis javanica), under identical captive conditions to better understand their ecological adaptability and health implications. Using metagenomic sequencing, fecal samples from eight adult captive pangolins were analyzed, including four male Malayan pangolins and three male and one female Chinese pangolins. Comparative analyses of the alpha and beta diversities, microbial community structure, and functional profiles were performed. Both species harbored gut microbiota dominated by Firmicutes, Bacteroidetes, and Proteobacteria. However, the Chinese pangolins exhibited higher microbial diversity (Shannon index, p = 0.042; Simpson index, p = 0.037) and lower relative abundance of Proteobacteria compared with the Malayan pangolins. A functional analysis revealed significant differences in the metabolic pathways, where the Chinese pangolins demonstrated a higher potential for fiber degradation, whereas the Malayan pangolins exhibited elevated levels of antibiotic resistance genes and pathogenic taxa, such as Escherichia coli. These findings suggest that captivity duration and environmental stress likely contribute to the observed differences, with the Malayan pangolins experiencing greater dysbiosis due to longer captivity periods. This study provides valuable insights into the role of gut microbiota in pangolin health and offers a foundation for improving conservation strategies and captive care protocols.
Collapse
Affiliation(s)
- Zhengyu Dai
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Bowen Xie
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Chungang Xie
- Wildlife Protection and Management Station, Jinhua Municipal Bureau of Planning and Natural Resources, Jinhua 321052, China
| | - Jinsuo Xiang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Xinmei Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
- College of Ecology and Agriculture, Sichuan Minzu College, Chengdu 626001, China
| | - Jing Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
| | - Rongquan Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| | - Yanni Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China; (Z.D.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
36
|
Meyer-Rust KA, Strickland A, Lee BY, Sevigny JL, Bradt G, Brown BL. Diet of the blue crab (Callinectes sapidus) during range expansion in Great Bay Estuary, New Hampshire. BMC Genomics 2024; 25:1238. [PMID: 39716085 DOI: 10.1186/s12864-024-10907-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 10/15/2024] [Indexed: 12/25/2024] Open
Abstract
Great Bay Estuary (GBE), within the rapidly warming Gulf of Maine, has experienced significant ecological shifts this century due to naturalization of invasive species. The range expansion of the American blue crab (Callinectes sapidus) currently underway from the mid-Atlantic northward brings the possibility of similar ecological shifts. This study accounts recent trapping and diet analysis of C. sapidus in GBE. Diet is an important component of understanding how the blue crab range expansion may affect GBE ecosystem functions. Across all sites and trap types, 27 blue crabs were captured. Metagenomic analysis of shotgun sequencing techniques were used on the gut contents of blue crabs captured. Most specimens had > 50% Eukaryote sequences. Overall results of this gut content study confirm a mixed diet indicative of an opportunistic feeder. Using metagenomics to analyze the diet of blue crabs as they establish viable populations in GBE will be a useful tool for predicting how these range expanding organisms are interacting within this important estuarine ecosystem, which will promote sustainable development by informing end users who may be affected by these crabs to help them meet their needs in the present and future. This project falls within Global Goal SDG14: Life Below Water.
Collapse
Affiliation(s)
- Kelsey A Meyer-Rust
- Department of Biological Sciences, Ecological Genetics Laboratory, University of New Hampshire, 38 Academic Way, Durham, NH, 03824, USA
| | - Alyssa Strickland
- Department of Biological Sciences, Ecological Genetics Laboratory, University of New Hampshire, 38 Academic Way, Durham, NH, 03824, USA
| | - Bo-Young Lee
- Department of Biological Sciences, Ecological Genetics Laboratory, University of New Hampshire, 38 Academic Way, Durham, NH, 03824, USA
| | - Joseph L Sevigny
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Hubbard Center for Genomic Studies, 35 Colovos Road, Durham, NH, 03824, USA
| | - Gabriela Bradt
- New Hampshire Sea Grant, 15 Strafford Ave, Durham, NH, 03824, USA
| | - Bonnie L Brown
- Department of Biological Sciences, Ecological Genetics Laboratory, University of New Hampshire, 38 Academic Way, Durham, NH, 03824, USA.
| |
Collapse
|
37
|
Su L, Guo J, Shi W, Tong W, Li X, Yang B, Xiang Z, Qin C. Metagenomic analysis reveals the community composition of the microbiome in different segments of the digestive tract in donkeys and cows: implications for microbiome research. BMC Microbiol 2024; 24:530. [PMID: 39695983 DOI: 10.1186/s12866-024-03696-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
INTRODUCTION The intestinal microbiota plays a crucial role in health and disease. This study aimed to assess the composition and functional diversity of the intestinal microbiota in donkeys and cows by examining samples collected from different segments of the digestive tract using two distinct techniques: direct swab sampling and faecal sampling. RESULTS In this study, we investigated and compared the effects of multiple factors on the composition and function of the intestinal microbial community. Approximately 300 GB of metagenomic sequencing data from 91 samples obtained from various segments of the digestive tract were used, including swabs and faecal samples from monogastric animals (donkeys) and polygastric animals (cows). We assembled 4,004,115 contigs for cows and 2,938,653 contigs for donkeys, with a total of 9,060,744 genes. Our analysis revealed that, compared with faecal samples, swab samples presented a greater abundance of Bacteroidetes, whereas faecal samples presented a greater abundance of Firmicutes. Additionally, we observed significant variations in microbial composition among different digestive tract segments in both animals. Our study identified key bacterial species and pathways via different methods and provided evidence that multiple factors can influence the microbial composition. These findings provide new insights for the accurate characterization of the composition and function of the gut microbiota in microbiome research. CONCLUSIONS The results obtained by both sampling methods in the present study revealed that the composition and function of the intestinal microbiota in donkeys and cows exhibit species-specific and region-specific differences. These findings highlight the importance of using standardized sampling protocols to ensure accurate and consistent characterization of the intestinal microbiota in various animal species. The implications and underlying mechanisms of these associations provide multiple perspectives for future microbiome research.
Collapse
Affiliation(s)
- Lei Su
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Jindan Guo
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Weixiong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Wei Tong
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Xue Li
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Bochao Yang
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| | - Zhiguang Xiang
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China.
| | - Chuan Qin
- NHC Key Laboratory of Human Disease Comparative Medicine, National Human Diseases Animal Model Resource Center, International Center for Technology and Innovation of Animal Model, Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences (CAMS) & Comparative Medicine Center, Peking Union Medical College (PUMC), Beijing, 100021, China
| |
Collapse
|
38
|
Li T, Wang S, Zhao L, Yuan X, Gao Y, Fu D, Liu C, Duan C. Improvement of soil nutrient cycling by dominant plants in natural restoration of heavy metal polluted areas. ENVIRONMENTAL RESEARCH 2024; 263:120030. [PMID: 39299450 DOI: 10.1016/j.envres.2024.120030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Referring to the natural succession to restore polluted land is one of the most vital assignments to solving the environmental problems. However, there is little understanding of the natural restoration of nutrient biogeochemical cycles in abandoned land with severe metal pollution. To clarify the nutrient cycling process and the influence of organisms on it, we investigated the magnitude of rhizosphere effects on soil nitrogen (N), phosphorus (P) and sulphur (S) cycles in natural restoration of an abandoned metal mine, as well as the roles of plants and microorganisms in the nutrient cycles. Our data revealed that the rhizosphere had higher levels of ammoniation than non-rhizosphere soil at both stages of restoration. In the early stage, the rhizosphere had greater levels of inorganic phosphorus and organophosphorus solubilisation, as well as sulphite oxidation, compared to non-rhizosphere soil. The bacterial composition influenced the N and S cycles, while the fungal composition had the greatest effect on the P cycles. Furthermore, rhizosphere nutrition cycles and microbial communities altered according plant strategy. Overall, the plants that colonize the early stages of natural recovery demonstrate enhanced restoration of nutrient efficiency. These results contribute to further knowledge of nutrient recovery in mining areas, as well as suggestions for selecting remedial microorganisms and plants in metal-polluted environments.
Collapse
Affiliation(s)
- Ting Li
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Sichen Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Luoqi Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Xinqi Yuan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Yuhan Gao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Denggao Fu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Chang'e Liu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments & School of Ecology and Environmental Sciences, Yunnan University, Kunming, Yunnan, 650500, China; Central Yunnan Field Scientific Station for Restoration of Ecological Function & Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan Think Tank for Ecological Civilization Construction, Yunnan University, Kunming, 650091, China.
| |
Collapse
|
39
|
Li Z, Lin L, Xie X, Ming L, Li S, Liu L, Yuan K, Lin L, Hu L, Luan T, Chen B. Metagenomic analysis manifesting intrinsic relatedness between antibiotic resistance genes and sulfate- and iron-reducing microbes in sediment cores of the Pearl River Estuary. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125176. [PMID: 39442608 DOI: 10.1016/j.envpol.2024.125176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Antibiotic resistance is an increasingly concerned hotspot of human health. Microbial determinants that may affect the profiles of antibiotic resistance genes (ARGs) in the environments need be explored. Here, sediment cores in the Pearl River Estuary (PRE) were analyzed using metagenomic approaches. ARGs were vertically stratified in the PRE sediment cores in terms of both diversity and absolute levels. Multidrug resistance genes could account for approximately 65.0% of the total ARGs, followed by sulfonamides (19.1%), aminoglycosides (5.9%), beta-lactams (4.5%), etc. ARGs related to aminoglycosides, lincosamides, macrolides, sulfonamides and tetracyclines were preferentially enriched in the surface layers of sediment cores. Sulfate-reducing microbes (SRMs) (e.g., Desulfocapsa and Desulfobulbus) and iron-reducing microbes (IRMs) (e.g., Pseudomonas and Sulfurospirillum) were consistently popular and dominant in the PRE sediment cores. The total levels of both SRMs and IRMs were significantly correlated with those of ARGs in the PRE sediment cores (p < 0.01). Network analysis showed that SRM and IRM genera (i.e., Pseudomonas, Shewanella, and Desulfovibrio) had the high co-occurrence with multiple ARG subtypes in the PRE sediment cores such as rsmA, mexK, and mexF. This study highlighted that anaerobic microbes could play significant roles in shaping vertical ARG distribution in the sediments of aquatic environments.
Collapse
Affiliation(s)
- Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Lan Lin
- Zhujiang Hospital of Southern Medical University, Guangzhou, 510280, China
| | - Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Lili Ming
- Technical Center of Gongbei Customs District, Zhuhai, 519000, China
| | - Songzhang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Lan Liu
- Department of Foodborne Disease and Food Safety Risk Surveillance, Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China
| | - Li Lin
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Tiangang Luan
- Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou, 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai, 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang, 515200, China; Pearl River Estuary Marine Ecosystem Research Station, Ministry of Education, Zhuhai, 519082, China.
| |
Collapse
|
40
|
Huang Z, Wang L, Tong J, Zhao Y, Ling H, Zhou Y, Tan Y, Xiong X, Qiu Y, Bi Y, Pan Z, Yang R. Alterations in Gut Microbiota Correlate With Hematological Injuries Induced by Radiation in Beagles. Int J Microbiol 2024; 2024:3096783. [PMID: 39659556 PMCID: PMC11631345 DOI: 10.1155/ijm/3096783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 09/04/2024] [Accepted: 11/07/2024] [Indexed: 12/12/2024] Open
Abstract
Dynamics of gut microbiota and their associations with the corresponding hematological injuries postradiation remain to be elucidated. Using single whole-body exposure to 60Co-γ ray radiation at the sublethal dose of 2.5 Gy, we developed a beagle model of acute radiation syndrome (ARS) and then monitored the longitudinal changes of gut microbiome and hematology for 45 days. We found that the absolute counts of circulating lymphocytes, neutrophils, and platelets were sharply declined postradiation, accompanied by a largely shifted composition of gut microbiome that manifested as a significantly increased ratio of Firmicutes to Bacteroidetes. In irradiated beagles, alterations in hematological parameters reached a nadir on day 14, sustaining for 1 week, which were gradually returned to the normal levels thereafter. However, no structural recovery of gut microbiota was observed throughout the study. Fecal metagenomics revealed that irradiation increased the relative abundances of genus Streptococcus, species Lactobacillus animalis and Lactobacillus murinus, but decreased those of genera Prevotella and Bacteroides. Metagenomic functions prediction demonstrated that 26 altered KEGG pathways were significantly enriched on Day 14 and 35 postradiation. Furthermore, a total of 43 bacterial species were found to correlate well with hematological parameters by Spearman's analysis. Our results provide an insight into the longitudinal changes in intestinal microbiota at different clinical stages during ARS in canine. Several key microbes those tightly associated with the hematological alterations may serve as biomarkers to discriminate the different phases of host with ARS.
Collapse
Affiliation(s)
- Zongyu Huang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, Jiangsu, China
| | - Likun Wang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Jianghui Tong
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Yong Zhao
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Hui Ling
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230000, Anhui, China
| | - Yazhou Zhou
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 210009, Jiangsu, China
| | - Yefeng Qiu
- Laboratory Animal Center, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Yujing Bi
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| | - Zhiyuan Pan
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
- Department of Research and Development, Grand Life Sciences Group Ltd., China Grand Enterprises Inc., Chaoyang, Beijing 100101, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Fengtai, Beijing 100071, China
| |
Collapse
|
41
|
Espinosa Prieto A, Hardion L, Debortoli N, Bournonville T, Mathot T, Marescaux J, Chanez E, Staentzel C, Beisel JN. A comparative analysis of eDNA metabarcoding and field surveys: Exploring freshwater plant communities in rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176200. [PMID: 39284450 DOI: 10.1016/j.scitotenv.2024.176200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/26/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
While environmental DNA (eDNA) metabarcoding holds promise as a holistic approach to assess vegetation changes and community composition across diverse spatial and temporal scales, systematic investigations of its efficacy compared to conventional field surveys remain scarce in the literature. The present study explores the differences in plant diversity recovered from field surveys and captured with a multi-marker eDNA metabarcoding approach (two nrDNA ITS1 and ITS2, and two cpDNA rbcL and trnL) from river water samples. The eDNA metabarcoding approach retrieved 46 aquatic plants (hydrophytes and helophytes) and 245 terrestrial plants, compared to 24 and 127 species identified from field surveys. On average, eDNA samples collected immediately downstream of the survey sites recovered 43 % and 39 % of the aquatic and terrestrial species observed, respectively. Discrepancies were explained by differences in taxonomic resolution, the stochasticity of the retrieval of rare and elusive species, and the presence of reference sequences. We found a significant positive correlation between spatial and community distances at scales ranging from 2 to 9 km and identified turnover as the driving force of these differences. Metabarcoding demonstrated sensitivity to community changes and both approaches converge on a similar community structure. Interestingly, eDNA samples collected immediately upstream of the survey sites exhibited significant species overlap with the downstream samples (c. 100 m apart). Overall, our results demonstrate that within-site species mismatches between the methods are nonnegligible, and they question the use of eDNA for generating complete species lists at scales comparable to our field surveys (< 100-m transects). However, with adequate sampling and a multi-marker metabarcoding approach, eDNA has the potential to approximate catchment gamma diversity with less sampling effort than conventional surveys.
Collapse
Affiliation(s)
- Armando Espinosa Prieto
- University of Strasbourg, Laboratoire Image Ville Environnement, UMR 7362 CNRS, Strasbourg, France.
| | - Laurent Hardion
- University of Strasbourg, Laboratoire Image Ville Environnement, UMR 7362 CNRS, Strasbourg, France.
| | | | | | | | | | - Etienne Chanez
- University of Strasbourg, Laboratoire Image Ville Environnement, UMR 7362 CNRS, Strasbourg, France.
| | - Cybill Staentzel
- University of Strasbourg, Laboratoire Image Ville Environnement, UMR 7362 CNRS, Strasbourg, France; École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES), Strasbourg, France.
| | - Jean-Nicolas Beisel
- University of Strasbourg, Laboratoire Image Ville Environnement, UMR 7362 CNRS, Strasbourg, France; École Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES), Strasbourg, France.
| |
Collapse
|
42
|
Hatano Y, Matsuoka S, Doi H, Tateno R, Hasegawa M, Osono T. Evaluation of the persistence of Epichloë endophyte and its possible effect on fungal assemblages in dead leaf sheaths. Fungal Biol 2024; 128:2325-2332. [PMID: 39643400 DOI: 10.1016/j.funbio.2024.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/31/2024] [Accepted: 11/13/2024] [Indexed: 12/09/2024]
Abstract
The systemic fungal endophytes of the genus Epichloë inhabit the aerial part of host grasses. Recent studies have reported that Epichloë affects the non-systemic endophytic assemblages in live leaves, but few studies that have demonstrated the occurrence of Epichloë and its effect on fungal assemblages in dead leaves. We proposed a hypothesis that Epichloë decreases from live to dead leaves but affects the non-systemic endophytic assemblages also in dead leaves. To test this hypothesis, we sampled leaf sheaths from four leaf types (live, senescent, attached dead and fallen dead) of two native grass species Elymus racemifer and Elymus tsukushiensis var. transiens in Japan and assessed for fungi by DNA metabarcoding. The occurrence of Epichloë OTU was significantly greater in E. tsukushiensis var. transiens than in E. racemifer and varied significantly between the four-leaf types, with decreased and no detections in attached dead and fallen dead leaves, respectively. The composition of non-systemic endophytic assemblages was also significantly affected by the presence/absence of Epichloë OTU, leaf type, host grass species and their interactions. These results supported our hypothesis and suggested that Epichloë can indirectly lead to the changes in belowground processes such as litter decomposition by affecting saprotrophic fungi in dead leaves.
Collapse
Affiliation(s)
- Yuki Hatano
- Graduate School of Science and Engineering, Doshisha University, Kyoto, 610-0394, Japan.
| | - Shunsuke Matsuoka
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| | - Hideyuki Doi
- Graduate School of Informatics, Kyoto University, Kyoto, 606-8501, Japan
| | - Ryunosuke Tateno
- Field Science Education and Research Center, Kyoto University, Kyoto, 606-8502, Japan
| | - Motohiro Hasegawa
- Faculty of Science and Engineering, Doshisha University, Kyoto, 610-0394, Japan
| | - Takashi Osono
- Faculty of Science and Engineering, Doshisha University, Kyoto, 610-0394, Japan
| |
Collapse
|
43
|
Hernández LHA, da Paz TYB, da Silva SP, de Barros BDCV, Coelho TFSB, Cruz ACR. First description of a mobatvirus (Hantaviridae) in the Amazon region. Virus Res 2024; 350:199494. [PMID: 39521252 PMCID: PMC11605466 DOI: 10.1016/j.virusres.2024.199494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/05/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
From 1988-2023, Pará accounted for the highest proportion of deforestation among all states in the Brazilian Amazon. Specifically, 57.20 % of the territory in the Santa Bárbara municipality was deforested as of 2023. Since 2017, the Hantaviridae family has included viruses identified in nonrodent vertebrates, such as mobatviruses (from moles and bats). In the current metagenomic analysis of a pool of multiple organs of a Carollia brevicauda bat, we obtained sequences for three segments of the previously described Buritiense virus (BURV); to date, only the L segment had been sequenced for this mobatvirus. This study provides the first description of BURV in the Amazon region and provides information on the S and M segments of the virus. These findings corroborate the presence of BURV in Brazil in an area far from the site of the first detection and in another bat species.
Collapse
Affiliation(s)
- Leonardo Henrique Almeida Hernández
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil; Virology Graduate Program, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil.
| | - Thito Yan Bezerra da Paz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil
| | - Sandro Patroca da Silva
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil
| | | | - Taciana Fernandes Sousa Barbosa Coelho
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil
| | - Ana Cecília Ribeiro Cruz
- Department of Arbovirology and Hemorrhagic Fevers, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil; Virology Graduate Program, Evandro Chagas Institute, Health and Environment Surveillance Secretariat, Ministry of Health, Ananindeua, PA, Brazil
| |
Collapse
|
44
|
He T, Xie J, Jin L, Zhao J, Zhang X, Liu H, Li XD. Seasonal dynamics of the phage-bacterium linkage and associated antibiotic resistome in airborne PM 2.5 of urban areas. ENVIRONMENT INTERNATIONAL 2024; 194:109155. [PMID: 39647412 DOI: 10.1016/j.envint.2024.109155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 11/11/2024] [Accepted: 11/14/2024] [Indexed: 12/10/2024]
Abstract
Inhalable microorganisms in airborne fine particulate matter (PM2.5), including bacteria and phages, are major carriers of antibiotic resistance genes (ARGs) with strong ecological linkages and potential health implications for urban populations. A full-spectrum study on ARG carriers and phage-bacterium linkages will shed light on the environmental processes of antibiotic resistance from airborne dissemination to the human lung microbiome. Our metagenomic study reveals the seasonal dynamics of phage communities in PM2.5, their impacts on clinically important ARGs, and potential implications for the human respiratory microbiome in selected cities of China. Gene-sharing network comparisons show that air harbours a distinct phage community connected to human- and water-associated viromes, with 57 % of the predicted hosts being potential bacterial pathogens. The ARGs of common antibiotics, e.g., peptide and tetracycline, dominate both the antibiotic resistome associated with bacteria and phages in PM2.5. Over 60 % of the predicted hosts of vARG-carrying phages are potential bacterial pathogens, and about 67 % of these hosts have not been discovered as direct carriers of the same ARGs. The profiles of ARG-carrying phages are distinct among urban sites, but show a significant enrichment in abundance, diversity, temperate lifestyle, and matches of CRISPR (short for 'clustered regularly interspaced short palindromic repeats') to identified bacterial genomes in winter and spring. Moreover, phages putatively carry 52 % of the total mobile genetic element (MGE)-ARG pairs with a unique 'flu season' pattern in urban areas. This study highlights the role that phages play in the airborne dissemination of ARGs and their delivery of ARGs to specific opportunistic pathogens in human lungs, independent of other pathways of horizontal gene transfer. Natural and anthropogenic stressors, particularly wind speed, UV index, and level of ozone, potentially explained over 80 % of the seasonal dynamics of phage-bacterial pathogen linkages on antibiotic resistance. Therefore, understanding the phage-host linkages in airborne PM2.5, the full-spectrum of antibiotic resistomes, and the potential human pathogens involved, will be of benefit to protect human health in urban areas.
Collapse
Affiliation(s)
- Tangtian He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Jiawen Xie
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| | - Jue Zhao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiaohua Zhang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Hang Liu
- The University Research Facility in Chemical and Environmental Analysis, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| | - Xiang Dong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
45
|
Hou D, Yin B, Wang S, Li H, Weng S, Jiang X, Li H, Li C, He J, Huang Z. Intestine bacterial community affects the growth of the Pacific white shrimp (Litopenaeus vannamei). Appl Microbiol Biotechnol 2024; 108:59. [PMID: 38180551 DOI: 10.1007/s00253-023-12897-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 10/07/2023] [Accepted: 10/18/2023] [Indexed: 01/06/2024]
Abstract
Increasing evidence suggests that intestine microorganisms are closely related to shrimp growth, but there is no existing experiment to prove this hypothesis. Here, we compared the intestine bacterial community of fast- and slow-growing shrimp at the same developmental stage with a marked difference in body size. Our results showed that the intestine bacterial communities of slow-growing shrimp exhibited less diversity but were more heterogeneous than those of fast-growing shrimp. Uncultured_bacterium_g_Candidatus Bacilloplasma, Tamlana agarivorans, Donghicola tyrosinivorans, and uncultured_bacterium_f_Flavobacteriaceae were overrepresented in the intestines of fast-growing shrimp, while Shimia marina, Vibrio sp., and Vibrio campbellii showed the opposite trends. We further found that the bacterial community composition was significantly correlated with shrimp length, and some bacterial species abundances were found to be significantly correlated with shrimp weight and length, including T. agarivorans and V. campbellii, which were chosen as indicators for a reverse gavage experiment. Finally, T. agarivorans was found to significantly promote shrimp growth after the experiment. Collectively, these results suggest that intestine bacterial community could be important factors in determining the growth of shrimp, indicating that specific bacteria could be tested in further studies against shrimp growth retardation. KEY POINTS: • A close relationship between intestine bacterial community and shrimp growth was proven by controllable experiments. • The bacterial signatures of the intestine were markedly different between slow- and fast-growing shrimp, and the relative abundances of some intestine bacterial species were correlated significantly with shrimp body size. • Reverse gavage by Tamlana agarivorans significantly promoted shrimp growth.
Collapse
Affiliation(s)
- Dongwei Hou
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Bin Yin
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Sheng Wang
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Haoyang Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Shaoping Weng
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
| | - Xiewu Jiang
- Guangdong Hisenor Group Co., Ltd, Guangzhou, People's Republic of China
| | - Hui Li
- Guangdong Hisenor Group Co., Ltd, Guangzhou, People's Republic of China
| | - Chaozheng Li
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China
| | - Jianguo He
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China.
| | - Zhijian Huang
- State Key Laboratory of Biocontrol/School of Marine Sciences, Sun Yat-sen University, Guangzhou, People's Republic of China.
- China-ASEAN Belt and Road Joint Laboratory on Mariculture Technology/Southern Marine Sciences and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
- Maoming Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Maoming, People's Republic of China.
| |
Collapse
|
46
|
Ravishankar S, Perez V, Davidson R, Roca-Rada X, Lan D, Souilmi Y, Llamas B. Filtering out the noise: metagenomic classifiers optimize ancient DNA mapping. Brief Bioinform 2024; 26:bbae646. [PMID: 39674265 DOI: 10.1093/bib/bbae646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/03/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024] Open
Abstract
Contamination with exogenous DNA presents a significant challenge in ancient DNA (aDNA) studies of single organisms. Failure to address contamination from microbes, reagents, and present-day sources can impact the interpretation of results. Although field and laboratory protocols exist to limit contamination, there is still a need to accurately distinguish between endogenous and exogenous data computationally. Here, we propose a workflow to reduce exogenous contamination based on a metagenomic classifier. Unlike previous methods that relied exclusively on DNA sequencing reads mapping specificity to a single reference genome to remove contaminating reads, our approach uses Kraken2-based filtering before mapping to the reference genome. Using both simulated and empirical shotgun aDNA data, we show that this workflow presents a simple and efficient method that can be used in a wide range of computational environments-including personal machines. We propose strategies to build specific databases used to profile sequencing data that take into consideration available computational resources and prior knowledge about the target taxa and likely contaminants. Our workflow significantly reduces the overall computational resources required during the mapping process and reduces the total runtime by up to ~94%. The most significant impacts are observed in low endogenous samples. Importantly, contaminants that would map to the reference are filtered out using our strategy, reducing false positive alignments. We also show that our method results in a negligible loss of endogenous data with no measurable impact on downstream population genetics analyses.
Collapse
Affiliation(s)
- Shyamsundar Ravishankar
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Vilma Perez
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
| | - Roberta Davidson
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Xavier Roca-Rada
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Faculty of Arts and Humanities, University of Coimbra, Coimbra, Portugal
| | - Divon Lan
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Genozip Limited, Hong Kong
| | - Yassine Souilmi
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| | - Bastien Llamas
- Australian Centre for Ancient DNA (ACAD) and The Environment Institute, The School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
- Centre of Excellence for Australian Biodiversity and Heritage, University of Adelaide, Adelaide, SA, Australia
- National Centre for Indigenous Genomics, Australian National University, Canberra, ACT, Australia
- Indigenous Genomics, Telethon Kids Institute, Adelaide, SA, Australia
| |
Collapse
|
47
|
Barber DG, Child HT, Joslin GR, Wierzbicki L, Tennant RK. Statistical design approach enables optimised mechanical lysis for enhanced long-read soil metagenomics. Sci Rep 2024; 14:28934. [PMID: 39578630 PMCID: PMC11584900 DOI: 10.1038/s41598-024-80584-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024] Open
Abstract
Metagenomic analysis has enabled insights into soil community structure and dynamics. Long-read sequencing for metagenomics can enhance microbial ecology by improving taxonomic classification, genome assembly, and functional annotation. However, protocols for purifying high-molecular weight DNA from soil are not yet optimised. We used a statistical design of experiments approach to enhance mechanical lysis of soil samples, increasing the length of purified DNA fragments. Low energy input into mechanical lysis improved DNA integrity, resulting in longer sequenced reads. Our optimized settings of 4 m s-1 for 10 s increased fragment length by 70% compared to the manufacturer's recommendations. Longer reads from low intensity lysis produced longer contiguous sequences after assembly, potentially improving a range of down-stream analyses. Importantly, there was minimal bias exhibited in the microbial community composition due to lysis efficiency variations. We therefore propose a framework for improving the fragment lengths of DNA purified from diverse soil types, improving soil science research with long-read sequencing.
Collapse
Affiliation(s)
- Daniel G Barber
- Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Harry T Child
- Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Gabrielle R Joslin
- Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Lucy Wierzbicki
- Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK
| | - Richard K Tennant
- Faculty of Environment, Science and Economy, Amory Building, Rennes Drive, Exeter, Devon, EX4 4RJ, UK.
| |
Collapse
|
48
|
Sharma N, Das BK, Bhattacharjya BK, Chaudhari A, Behera BK, Kumar AP, Chakraborty HJ. Metagenomic insights into microbial community, functional annotation, and antibiotic resistance genes in Himalayan Brahmaputra River sediment, India. Front Microbiol 2024; 15:1426463. [PMID: 39633804 PMCID: PMC11614985 DOI: 10.3389/fmicb.2024.1426463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction The Brahmaputra, a major transboundary river of the Himalayas flowing predominantly through Northeast India, particularly Assam, is increasingly endangered by contamination due to rapid urbanization and anthropogenic pressures. These environmental changes pose significant risks at the microbial level, affecting nutrient cycling and productivity, and thereby impacting river ecosystem health. The next-generation sequencing technology using a metagenomics approach has revolutionized our understanding of the microbiome and its critical role in various aquatic environments. Methods The present study aimed to investigate the structure of the bacterial community and its functional potentials within the sediments of the Brahmaputra River, India, using high-throughput shotgun metagenomics. Additionally, this study sought to explore the presence of antimicrobial resistance genes in the river's sediment. Results and discussion Shotgun metagenomics revealed a diverse bacterial community comprising 31 phyla, 52 classes, 291 families, 1,016 genera, and 3,630 species. Dominant phyla included Pseudomonadota (62.47-83.48%), Actinobacteria (11.10-24.89%), Bacteroidetes (0.97-3.82%), Firmicutes (0.54-3.94%), Cyanobacteria (0.14-1.70%), and Planctomycetes (0.30-0.78%). Functional profiling highlighted significant involvement in energy metabolism, amino acid and central carbon metabolism, stress response, and degradation pathways, emphasizing the microbial community's role in ecosystem functioning and resilience. Notably, 50 types of antibiotic resistance genes (ARGs) were detected, with resistance profiles spanning multidrug, aminoglycoside, β-lactam, fluoroquinolone, rifampicin, sulfonamide, and tetracycline classes. Network analysis underscored the intricate relationships among ARG subtypes, suggesting potential mechanisms of resistance propagation. Furthermore, plasmid-related genes and 185 virulence factor genes (VFGs) were identified, indicating additional layers of microbial adaptation and potential pathogenicity within the river sediments. This comprehensive microbial and functional profiling of the Brahmaputra's sediment metagenome provides crucial insights into microbial diversity, resistance potential, and ecological functions, offering a foundation for informed management and mitigation strategies to preserve river health and mitigate pollution impacts.
Collapse
Affiliation(s)
- Niti Sharma
- ICAR-Central Inland Fisheries Research Institute, Regional Centre, Guwahati, Assam, India
| | | | | | - Aparna Chaudhari
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | | - Annam Pavan Kumar
- ICAR-Central Institute of Fisheries Education, Mumbai, Maharashtra, India
| | | |
Collapse
|
49
|
Singh CK, Sodhi KK. Targeting bioinformatics tools to study the dissemination and spread of antibiotic resistant genes in the environment and clinical settings. Crit Rev Microbiol 2024:1-19. [PMID: 39552541 DOI: 10.1080/1040841x.2024.2429603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 09/01/2024] [Accepted: 11/10/2024] [Indexed: 11/19/2024]
Abstract
Antibiotic resistance has expanded as a result of the careless use of antibiotics in the medical field, the food industry, agriculture, and other industries. By means of genetic recombination between commensal and pathogenic bacteria, the microbes obtain antibiotic resistance genes (ARGs). In bacteria, horizontal gene transfer (HGT) is the main mechanism for acquiring ARGs. With the development of high-throughput sequencing, ARG sequence analysis is now feasible and widely available. Preventing the spread of AMR in the environment requires the implementation of ARGs mapping. The metagenomic technique, in particular, has helped in identifying antibiotic resistance within microbial communities. Due to the exponential growth of experimental and clinical data, significant investments in computer capacity, and advancements in algorithmic techniques, the application of machine learning (ML) algorithms to the problem of AMR has attracted increasing attention over the past five years. The review article sheds a light on the application of bioinformatics for the antibiotic resistance monitoring. The most advanced tool currently being employed to catalog the resistome of various habitats are metagenomics and metatranscriptomics. The future lies in the hands of artificial intelligence (AI) and machine learning (ML) methods, to predict and optimize the interaction of antibiotic-resistant compounds with target proteins.
Collapse
Affiliation(s)
| | - Kushneet Kaur Sodhi
- Department of Zoology, Sri Guru Tegh Bahadur Khalsa College, University of Delhi, Delhi, India
| |
Collapse
|
50
|
Bhatt B, Bhatt K, Lal S, R S, Bhatt V. Production of a novel cellulase by Bacillus amyloliquefaciens OKB3 isolated from soil: Purification and characterization. Int J Biol Macromol 2024; 282:137454. [PMID: 39522903 DOI: 10.1016/j.ijbiomac.2024.137454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/26/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Microbial cellulases have become significant biocatalysts because of their complex composition and extensive industrial applications. This study aimed to isolate an efficient cellulase-producing strain, followed by molecular identification, enzyme purification, and characterization. Among 110 isolates, Bacillus amyloliquefaciens OKB3 was selected for its significant cellulase production, with optimal activity at pH 5.0 and 34 °C. The purification using ammonium sulfate and Sephadex G-100 chromatography resulted in specific activity of 2720.76 U/mg, 2.91 fold purification, and 29.44 % yield. The purified cellulase named CelB was a dimeric macromolecule of 123 kDa consisting of 67 and 54 kDa subunits. CelB was most active at 60 °C and pH 6, and it was stable at pH 5.5 to 6.0 and 0 °C to 4 °C. CelB was unaffected by metal cofactors and inhibited in the presence of divalent cations Cu2+, Hg2+, Cd2+, and Ag2+. The CelB has higher specificity of CMC compared to other substrates. The Km, Vmax, and Kcat values were 0.037 mM, 188.67 μmole/min, and 7430 S-1 respectively. The unique attributes of CelB make it a very promising candidate for various biotechnological applications.
Collapse
Affiliation(s)
- Bhumika Bhatt
- School of Applied Science and Technology, Gujarat Technological University, Ahmedabad, Gujarat 382424, India
| | - Kandarp Bhatt
- Department of Microbiology, Bundelkhand University, Jhansi, UP 284128, India
| | - Sangeeta Lal
- Department of Microbiology, Bundelkhand University, Jhansi, UP 284128, India
| | - Srinivasan R
- Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh 284003, India
| | - Vaibhav Bhatt
- School of Applied Science and Technology, Gujarat Technological University, Ahmedabad, Gujarat 382424, India.
| |
Collapse
|