1
|
Hirani Z, Schweitzer NM, Vitaku E, Dichtel WR. A Phenazine-Based Two-Dimensional Covalent Organic Framework for Photochemical CO 2 Reduction with Increased Selectivity for Two-Carbon Products. Angew Chem Int Ed Engl 2025; 64:e202502799. [PMID: 40059079 PMCID: PMC12087818 DOI: 10.1002/anie.202502799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/19/2025]
Abstract
The reduction of carbon dioxide (CO₂) into valuable products will contribute to sustainable carbon use. Here we report the photocatalytic reduction of CO₂ to carbon monoxide, formate, and oxalate ions using a redox-active phenazine-based 2D covalent organic framework (Phen-COF) and its phenazine monomer. Under similar irradiation conditions, Phen-COF produced 2.9 times more CO, 11 times more formate, and 13 times more oxalate compared to equimolar amounts of the monomeric phenazine, demonstrating that the COF architecture enhances catalytic performance (TOFCOF: 10-7 s-1 CO, 10-8 s-1 formate, and 10-11 s-1 oxalate). Structural analysis, including X-ray diffraction and N₂ porosimetry, confirmed the COF's long-range order and porosity. Mechanistic studies suggest a sequential formate-to-oxalate pathway, with CO and formate acting as intermediates. These results demonstrate the potential of the COF architecture to improve the performance of metal-free, redox-active aromatic systems such as phenazines to facilitate efficient and selective CO₂ conversion under mild conditions.
Collapse
Affiliation(s)
- Zoheb Hirani
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Neil M. Schweitzer
- Department of Chemical and Biological EngineeringNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - Edon Vitaku
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| | - William R. Dichtel
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIL60208USA
| |
Collapse
|
2
|
Perveen S, Irfan M, Jamil A, Castegnaro MV, Akhtar MN, Sheikh TA, Rehman SU, Almohammedi A, Mahmoud M, Arshad M, Khan MA. Energy band gap tuning of Co-Zn cubic ferrite by Sm3+ ion substitution (0.00≤ x≤ 0.075) to improve spectral, structural, optical and dielectric properties. CERAMICS INTERNATIONAL 2025. [DOI: 10.1016/j.ceramint.2025.02.296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
3
|
Tacconis C, Dey S, McLaughlin CD, Sougrati MT, O’Keefe CA, Mikulska I, Grey CP, Dutton SE. Role of Fe Impurity Reactions in the Electrochemical Properties of MgFeB 2O 5. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2025; 37:463-472. [PMID: 39830219 PMCID: PMC11736679 DOI: 10.1021/acs.chemmater.4c02855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
We investigate magnesium-iron pyroborate MgFeB2O5 as a potential cathode material for rechargeable magnesium-ion batteries. Synchrotron powder X-ray diffraction and Mössbauer spectroscopy confirm its successful synthesis and iron stabilization in the high-spin Fe(II) state. Initial electrochemical testing against a lithium metal anode yields a first charge capacity near the theoretical value (147.45 mAh·g-1), suggesting MgFeB2O5 as a promising cathode candidate. However, multimodal analyses, including scanning electron microscopy energy-dispersive X-ray (SEM-EDS) analysis, operando X-ray absorption near edge spectroscopy (XANES), and Mössbauer spectroscopy, reveal the absence of any Fe redox reactions. Instead, we propose that the source of the observed capacity involves the irreversible reaction of a small (4-7 wt%) Fe metal impurity. These findings highlight the need for diverse characterization techniques in evaluating the performance of new Mg cathode materials, since promising initial cycling may be caused by competing side reactions rather than Mg (de)intercalation.
Collapse
Affiliation(s)
- Camilla Tacconis
- Department
of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, U.K.
| | - Sunita Dey
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Department
of Chemistry, Advanced Centre for Energy
and Sustainability (ACES), University of Aberdeen, Aberdeen AB24 3FX, U.K.
| | - Carson D. McLaughlin
- Department
of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, U.K.
| | - Moulay Tahar Sougrati
- Universite
de Montpellier, Institut Charles Gerhardt
(UMR 5253) CC004, Place Eugene Bataillon, Montpellier, Cedex 5 FR 34095, France
| | - Christopher A. O’Keefe
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Iuliia Mikulska
- Science
Division, Diamond Light Source Ltd, Harwell Science & Innovation
Campus, Didcot, Oxfordshire OX11 0DE, U.K.
| | - Clare P. Grey
- Department
of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Siân E. Dutton
- Department
of Physics, University of Cambridge, JJ Thomson Ave, Cambridge CB3 0HE, U.K.
| |
Collapse
|
4
|
Rusta N, Mameli V, Ricci PC, Porcu S, Seeharaj P, Marciniak AA, Santos ECS, Alves OC, Mota CJA, Rombi E, Cannas C. Platelet Ceria Catalysts from Solution Combustion and Effect of Iron Doping for Synthesis of Dimethyl Carbonate from CO 2. Chempluschem 2025; 90:e202400521. [PMID: 39302819 PMCID: PMC11734582 DOI: 10.1002/cplu.202400521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/20/2024] [Accepted: 09/20/2024] [Indexed: 09/22/2024]
Abstract
Solution combustion (SC) remains among the most promising synthetic strategies for the production of crystalline nanopowders from an aqueous medium, due to its easiness, time and cost-effectiveness, scalability and eco-friendliness. In this work, this method was selected to obtain anisometric ceria-based nanoparticles applied as catalysts for the direct synthesis of dimethyl carbonate. The catalytic performances were studied for the ceria and Fe-doped ceria from SC (CeO2-SC, Ce0.9Fe0.1O2-SC) in comparison with the ceria nanorods (CeO2-HT, Ce0.9Fe0.1O2-HT) obtained by hydrothermal (HT) method, one of the most studied systems in the literature. Indeed, the ceria nanoparticles obtained by SC were found to be highly crystalline, platelet-shaped, arranged in a mosaic-like assembly and with smaller crystallite size (≈6 nm vs. ≈17 nm) and higher surface area (80 m2 g-1 vs. 26 m2 g-1) for the undoped sample with respect to the Fe-doped counterpart. Although all samples exhibit an anisometric morphology that should favor the exposition of specific crystalline planes, HT-samples showed better performances due to higher oxygen vacancies concentration and lower amount of strong basic and acid sites.
Collapse
Affiliation(s)
- Nicoletta Rusta
- Department of Chemical and Geological SciencesUniversity of CagliariCagliariItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FlorenceItaly
| | - Valentina Mameli
- Department of Chemical and Geological SciencesUniversity of CagliariCagliariItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FlorenceItaly
| | | | - Stefania Porcu
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FlorenceItaly
- Department of PhysicsUniversity of CagliariCagliariItaly
| | - Panpailin Seeharaj
- Department of ChemistryKing Mongkut's Institute of Technology LadkrabanBangkokThailand
| | | | - Evelyn C. S. Santos
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Claudio J. A. Mota
- Escola de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrasil
- Instituto de QuímicaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
- INCT Energia & AmbienteUFRJBrazil
| | - Elisabetta Rombi
- Department of Chemical and Geological SciencesUniversity of CagliariCagliariItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FlorenceItaly
| | - Carla Cannas
- Department of Chemical and Geological SciencesUniversity of CagliariCagliariItaly
- National Interuniversity Consortium of Materials Science and Technology (INSTM)FlorenceItaly
| |
Collapse
|
5
|
Hoang LP, Spasojevic I, Lee TL, Pesquera D, Rossnagel K, Zegenhagen J, Catalan G, Vartanyants IA, Scherz A, Mercurio G. Surface polarization profile of ferroelectric thin films probed by X-ray standing waves and photoelectron spectroscopy. Sci Rep 2024; 14:24250. [PMID: 39414867 PMCID: PMC11484970 DOI: 10.1038/s41598-024-72805-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 09/10/2024] [Indexed: 10/18/2024] Open
Abstract
Understanding the mechanisms underlying a stable polarization at the surface of ferroelectric thin films is of particular importance both from a fundamental point of view and to achieve control of the surface polarization itself. In this study, we demonstrate that the X-ray standing wave technique allows the surface polarization profile of a ferroelectric thin film, as opposed to the average film polarity, to be probed directly. The X-ray standing wave technique provides the average Ti and Ba atomic positions, along the out-of-plane direction, near the surface of three differently strained [Formula: see text] thin films. This technique gives direct access to the local ferroelectric polarization at and below the surface. By employing X-ray photoelectron spectroscopy, a detailed overview of the oxygen-containing species adsorbed on the surface is obtained. The different amplitude and orientation of the local ferroelectric polarizations are associated with surface charges attributed to different type, amount and spatial distribution of the oxygen-containing adsorbates.
Collapse
Affiliation(s)
- Le Phuong Hoang
- European XFEL, 22869, Schenefeld, Germany
- Max Planck Institute for the Structure and Dynamics of Matter, 22761, Hamburg, Germany
- Institute of Experimental and Applied Physics, Kiel University, 24098, Kiel, Germany
| | - Irena Spasojevic
- Department de Física, Universitat Autònoma de Barcelona, 08193, Bellaterra, Spain
| | - Tien-Lin Lee
- Diamond Light Source Ltd., Didcot, OX110DE, Oxfordshire, UK
| | - David Pesquera
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain
| | - Kai Rossnagel
- Institute of Experimental and Applied Physics, Kiel University, 24098, Kiel, Germany
- Ruprecht Haensel Laboratory, Deutsches Elektronen-Synchrotron DESY, 22607, Hamburg, Germany
| | | | - Gustau Catalan
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, 08193, Bellaterra, Barcelona, Spain
- Institucio Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Catalonia, Spain
| | | | | | | |
Collapse
|
6
|
Sarkar D, Bhattacharya A, Meyer J, Kirchberger AM, Mishra V, Nilges T, Michaelis VK. Unraveling Sodium-Ion Dynamics in Honeycomb-Layered Na 2Mg xZn 2-xTeO 6 Solid Electrolytes with Solid-State NMR. J Am Chem Soc 2023; 145:19727-19745. [PMID: 37642533 DOI: 10.1021/jacs.3c04928] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
All-solid-state sodium-ion batteries (SIBs) have the potential to offer large-scale, safe, cost-effective, and sustainable energy storage solutions by supplementing the industry-leading lithium-ion batteries. However, for the enhanced bulk properties of SIB components (e.g., solid electrolytes), a comprehensive understanding of their atomic-scale structure and the dynamic behavior of sodium (Na) ions is essential. Here, we utilize a robust multinuclear (23Na, 125Te, 25Mg, and 67Zn) magnetic resonance approach to explore a novel Mg/Zn homogeneously mixed-cation honeycomb-layered oxide Na2MgxZn2-xTeO6 solid solution series. These new intermediate compounds exhibit tailorable bulk Na-ion conductivity (σ) with the highest σ = 0.14 × 10-4 S cm-1 for Na2MgZnTeO6 at room temperature suitable for SIB solid electrolyte applications as observed by powder electrochemical impedance spectroscopy (EIS). A combination of powder X-ray diffraction (XRD), energy-dispersive X-ray (EDX) spectroscopy, and field emission scanning electron microscopy (FESEM) reveals highly crystalline phase-pure compounds in the P6322 space group. We show that the Mg/Zn disorder is random within the honeycomb layers using 125Te nuclear magnetic resonance (NMR) and resolve multiple Na sites using two-dimensional (triple-quantum magic-angle spinning (3QMAS)) 23Na NMR. The medium-range disorder in the honeycomb layer is revealed through the combination of 25Mg and 67Zn NMR, complemented by electronic structure calculations using density functional theory (DFT). Furthermore, we expose very fast local Na-ion hopping processes (hopping rate, 1/τNMR = 0.83 × 109 Hz) by using a laser to achieve variable high-temperature (∼860 K) 23Na NMR, which are sensitive to different Mg/Zn ratios. The Na2MgZnTeO6 with maximum Mg/Zn disorder displays the highest short-range Na-ion dynamics among all of the solid solution members.
Collapse
Affiliation(s)
- Diganta Sarkar
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Amit Bhattacharya
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Jan Meyer
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
| | - Anna Maria Kirchberger
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
- TUMint Energy Research GmbH, 85748 Garching b., München, Germany
| | - Vidyanshu Mishra
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Tom Nilges
- Department of Chemistry, Technical University of Munich, 85748 Garching b., München, Germany
| | - Vladimir K Michaelis
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
7
|
Luo Y, Gao X, Dong M, Zeng T, Chen Z, Yang M, Huang Z, Wang R, Pan F, Xiao Y. Exploring the structural properties of cathode and anode materials in Li-ion battery via neutron diffraction technique. CHINESE JOURNAL OF STRUCTURAL CHEMISTRY 2023. [DOI: 10.1016/j.cjsc.2023.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
8
|
Photocatalytic dye degradation efficiency and reusability of aluminium substituted nickel ferrite nanostructures for wastewater remediation. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
9
|
Ditenberg IA, Osipov DA, Smirnov IV, Grinyaev KV, Esikov MA. Effect of preliminary high-energy ball milling on the structural-phase state and microhardness of Ni3Al samples obtained by spark plasma sintering. ADV POWDER TECHNOL 2023. [DOI: 10.1016/j.apt.2022.103919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Synthesis of a novel visible-light active Gd2O3/GdVO4/V2O5 photocatalyst for rapid purification of industrial wastewater containing organic dyes and bacteria. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
11
|
Chen G, Lin G, Chen K, Wang M, Lee C. Synthesis and Characterization of New Multinary Selenides A
10
B
18
Se
37
(A=Sn/Pb; B=In/Sb/Bi). Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Guan‐Ruei Chen
- Department of Applied Chemistry College of Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Gang Lin
- Department of Applied Chemistry College of Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Kuei‐Bo Chen
- Department of Applied Chemistry College of Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Ming‐Fang Wang
- Department of Applied Chemistry College of Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
| | - Chi‐Shen Lee
- Department of Applied Chemistry College of Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
- Center for Emergent Functional Matter Science National Yang-Ming Chiao Tung University Hsinchu 300093 Taiwan
| |
Collapse
|
12
|
Synthesis of new mixed metal oxide RuNi2O4 phase decorated on reduced graphene oxide for supercapacitor applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
13
|
Ghosh M, Pradhan S, Mandal S, Roy A, Chakrabarty S, Chakrabarti G, Pradhan SK. Enhanced antibacterial activity of a novel protein-arginine deiminase type-4 (PADI4) inhibitor after conjugation with a biocompatible nanocarrier. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
14
|
Kabadou S, Horcheni J, Mselmi F, Kabadou A, Dhahri E, Bessais L. Structural, spectroscopic, luminescence and magnetic properties of a novel far-red emitting phosphor Er, Mn doped ZrTe3O8. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Improved Electrochemical Behavior and Thermal Stability of Li and Mn-Rich Cathode Materials Modified by Lithium Sulfate Surface Treatment. INORGANICS 2022. [DOI: 10.3390/inorganics10030039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
High-energy cathode materials that are Li- and Mn-rich lithiated oxides—for instance, 0.35Li2MnO3.0.65LiNi0.35Mn0.45Co0.20O2 (HE-NCM)—are promising for advanced lithium-ion batteries. However, HE-NCM cathodes suffer from severe degradation during cycling, causing gradual capacity loss, voltage fading, and low-rate capability performance. In this work, we applied an effective approach to creating a nano-sized surface layer of Li2SO4 on the above material, providing mitigation of the interfacial side reactions while retaining the structural integrity of the cathodes upon extended cycling. The Li2SO4 coating was formed on the surface of the material by mixing it with nanocrystalline Li2SO4 and annealing at 600 °C. We established enhanced electrochemical behavior with ~20% higher discharge capacity, improved charge-transfer kinetics, and higher rate capability of HE-NCM cathodes due to the presence of the Li2SO4 coating. Online electrochemical mass spectrometry studies revealed lower CO2 and H2 evolution in the treated samples, implying that the Li2SO4 layer partially suppresses the electrolyte degradation during the initial cycle. In addition, a ~28% improvement in the thermal stability of the Li2SO4-treated samples in reactions with battery solution was also shown by DSC studies. The post-cycling analysis allowed us to conclude that the Li2SO4 phase remained on the surface and retained its structure after 100 cycles.
Collapse
|
16
|
Chen GR, Wang MF, Lee CS. Synthesis and characterization of new multinary selenides Sn4In5Sb9Se25 and Sn6.13Pb1.87In5.00Sb10.12Bi2.88Se35. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2021.122855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Sanna Angotzi M, Mameli V, Khanal S, Veverka M, Vejpravova J, Cannas C. Effect of different molecular coatings on the heating properties of maghemite nanoparticles. NANOSCALE ADVANCES 2022; 4:408-420. [PMID: 35178500 PMCID: PMC8765356 DOI: 10.1039/d1na00478f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/08/2021] [Indexed: 05/04/2023]
Abstract
In this work, the effect of different molecular coatings on the alternating magnetic field-induced heating properties of 15 nm maghemite nanoparticles (NPs) in water dispersions was studied at different frequencies (159-782 kHz) and field amplitudes (100-400 G). The original hydrophobic oleate coating was replaced with dimercaptosuccinic acid (DMSA) or polyethylene glycol trimethoxysilane (PEGTMS), while cetrimonium bromide (CTAB) or stearic acid-poloxamer 188 (SA-P188) was intercalated or encapsulated, respectively, to transfer the dispersions into water. Surface modification, based on intercalation processes, induced clustering phenomena with the formation of spherical-like assemblies (CTAB and SA-P188), while ligand-exchange strategies kept the particles isolated. The clustering phenomenon has detrimental effects on the heating performances compared with isolated systems, in line with the reduction of Brown relaxation times. Furthermore, broader comprehension of the heating phenomenon in this dynamic system is obtained by following the evolution of SPA and ILP with time and temperature beyond the initial stage.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Shankar Khanal
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Miroslav Veverka
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Jana Vejpravova
- Department of Condensed Matter Physics, Charles University Ke Karlovu 5 12116 Prague 2 Czech Republic
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 Bivio per Sestu, Monserrato 09042 CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| |
Collapse
|
18
|
Beyer J, Roth N, Brummerstedt Iversen B. Effects of Voigt diffraction peak profiles on the pair distribution function. Acta Crystallogr A Found Adv 2022; 78:10-20. [PMID: 34967326 DOI: 10.1107/s2053273321011840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 11/08/2021] [Indexed: 11/10/2022] Open
Abstract
Powder diffraction and pair distribution function (PDF) analysis are well established techniques for investigation of atomic configurations in crystalline materials, and the two are related by a Fourier transformation. In diffraction experiments, structural information, such as crystallite size and microstrain, is contained within the peak profile function of the diffraction peaks. However, the effects of the PXRD (powder X-ray diffraction) peak profile function on the PDF are not fully understood. Here, all the effects from a Voigt diffraction peak profile are solved analytically, and verified experimentally through a high-quality X-ray total scattering measurement on Ni powder. The Lorentzian contribution to the microstrain broadening is found to result in Voigt-shaped PDF peaks. Furthermore, it is demonstrated that an improper description of the Voigt shape during model refinement leads to overestimation of the atomic displacement parameter.
Collapse
Affiliation(s)
- Jonas Beyer
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | - Nikolaj Roth
- Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, 8000, Denmark
| | | |
Collapse
|
19
|
Periyasamy M, Sain S, Ghosh E, Jenkinson KJ, Wheatley AEH, Mukhopadhyay S, Kar A. Visible light photocatalysts from low-grade iron ore: the environmentally benign production of magnetite/carbon (Fe 3O 4/C) nanocomposites. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:6698-6709. [PMID: 34462857 DOI: 10.1007/s11356-021-15972-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Magnetite (Fe3O4) nanoparticles coated with dextrose and gluconic acid possessing both super-paramagnetism and excellent optical properties have been productively synthesized through a straightforward, efficient and cost-efficient hydrothermal reduction route using Fe3+ as sole metal precursor acquired from accumulated iron ore tailings-a mining waste that usually represents a major environmental threat. Fe3O4/C nanocomposites were fully elucidated by FEGSEM and TEM, revealing a combination of platelets (<1 μm) capped by particles (<10 nm) and magnetite which was verified by XPS, which demonstrated also oxygen deficiency. A dextrose/gluconic acid coating was elucidated by Fourier transform-infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The Fe3O4/C nanocomposites were found to be superparamagnetic at room temperature. Meanwhile, their optical properties were investigated by UV-visible diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence (PL) spectroscopy; an Eg of 1.86 eV was determined, and emissions at 612 and 650 nm (ex. 250 nm) were consistent with the XPS identification of oxygen vacancies. The efficacy of the as-synthesized magnetically recoverable magnetite/carbon (Fe3O4/C) nanocomposites has been exhibited in the photocatalytic degradation of the toxic textile (industrial) dye bodactive red BNC-BS.
Collapse
Affiliation(s)
- Muthaimanoj Periyasamy
- Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, 711 103, India
| | - Sumanta Sain
- School of Materials Sciences, Indian Association for the Cultivation of Science, Kolkata, Jadavpur, 700 032, India
| | - Eliza Ghosh
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, 711 103, India
| | - Kellie J Jenkinson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Andrew E H Wheatley
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sudipta Mukhopadhyay
- Department of Mining Engineering, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, 711 103, India.
| | - Arik Kar
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Howrah, Shibpur, 711 103, India.
| |
Collapse
|
20
|
Jo D, Hong SB. Fluoride-free synthesis of high-silica, medium-pore zeolites PST-22 and PST-30. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01213d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-silica, medium-pore zeolites PST-22 and PST-30, which were recently discovered via the excess fluoride approach, have been synthesized using two pyrazolium-based dications as organic structure-directing agents, respectively, in hydroxide media.
Collapse
Affiliation(s)
- Donghui Jo
- Petrochemical Catalyst Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea
| | - Suk Bong Hong
- Center for Ordered Nanoporous Materials Synthesis, Division of Environmental Science and Engineering, POSTECH, Pohang 37673, Korea
| |
Collapse
|
21
|
Devi A, Neogy S, Sharma S, Menon R, Tewari R. Characterization of argon ion irradiation induced changes in microstructure and mechanical property of binary Zr−2.9 wt% Sn alloy. Radiat Phys Chem Oxf Engl 1993 2022. [DOI: 10.1016/j.radphyschem.2021.109802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
22
|
Synthesis and characterization of a novel nanocarrier for biocompatible targeting of an antibacterial therapeutic agent with enhanced activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Sanna Angotzi M, Mameli V, Cara C, Borchert KBL, Steinbach C, Boldt R, Schwarz D, Cannas C. Meso- and macroporous silica-based arsenic adsorbents: effect of pore size, nature of the active phase, and silicon release. NANOSCALE ADVANCES 2021; 3:6100-6113. [PMID: 36133949 PMCID: PMC9417704 DOI: 10.1039/d1na00487e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/22/2021] [Indexed: 05/21/2023]
Abstract
Arsenic pollution in ground and drinking water is a major problem worldwide due to the natural abundance of arsenic by dissolution from ground sediment or mining activities from anthropogenic activities. To overcome this issue, iron oxides as low-cost and non-toxic materials, have been widely studied as efficient adsorbents for arsenic removal, including when dispersed within porous silica supports. In this study, two head-to-head comparisons were developed to highlight the As(v)-adsorptive ability of meso- and macrostructured silica-based adsorbents. First, the role of the textural properties of a meso-(SBA15) and macrostructured (MOSF) silica support in affecting the structural-morphological features and the adsorption capacity of the active phase (Fe2O3) have been studied. Secondly, a comparison of the arsenic removal ability of inorganic (Fe2O3) and organic (amino groups) active phases was carried out on SBA15. Finally, since silica supports are commonly proposed for both environmental and biomedical applications as active phase carriers, we have investigated secondary silicon and iron pollution. The batch tests at different pH revealed better performance from both Fe2O3-composites at pH 3. The values of q m of 7.9 mg g-1 (53 mg gact -1) and 5.5 mg g-1 (37 mg gact -1) were obtained for SBA15 and MOSF, respectively (gact stands for mass of the active phase). The results suggest that mesostructured materials are more suitable for dispersing active phases as adsorbents for water treatment, due to the obtainment of very small Fe2O3 NPs (about 5 nm). Besides studying the influence of the pore size of SBA15 and MOSF on the adsorption process, the impact of the functionalization was analyzed on SBA15 as the most promising sample for As(v)-removal. The amino-functionalized SBA15 adsorbent (3-aminopropyltriethoxysilane, APTES) exhibited a q m of 12.4 mg g-1 and faster kinetics. Furthermore, issues associated with the release of iron and silicon during the sorption process, causing secondary pollution, were evaluated and critically discussed.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | | | - Christine Steinbach
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Regine Boldt
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Dana Schwarz
- Leibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato CA Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Cagliari Unit Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| |
Collapse
|
24
|
Microstructural and Magnetic Behavior of Nanocrystalline Fe-12Ni-16B-2Si Alloy Synthesis and Characterization. METALS 2021. [DOI: 10.3390/met11111679] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The nanocrystalline Fe70Ni12B16Si2 (at.%) alloy was prepared by mechanical alloying (MA) of elemental powders in a high-energy planetary ball mill. Phase evolution, microstructure, thermal behavior and magnetic properties were investigated. It was found that a body-centered cubic structured solid solution started to form after 25 h milling and a faced-centered cubic structure solid solution started to form after 50 h of milling; its amount increased gradually with increasing milling time. The BCC and the FCC phases coexisted after 150 h of milling, with a refined microstructure of 13 nm and a 10 nm crystallite size. The as-milled powder was annealed at 450 °C and 650 °C and then investigated by vibrating sample magnetometry (VSM). It was shown that the semi-hard magnetic properties are affected by the phase transformation on annealing. The saturation magnetization decreases after annealing at 450 °C, whereas annealing at 650 °C improves the magnetic properties of 150 h milled powders through the reduction of coercivity from 109 Oe to 70 Oe and the increase in saturation magnetization.
Collapse
|
25
|
Influence of ball milling duration on the morphology, features of the structural-phase state and microhardness of 3Ni-Al powder mixture. ADV POWDER TECHNOL 2021. [DOI: 10.1016/j.apt.2021.07.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Xu H, Mahanthappa MK. Ionic Conductivities of Broad Dispersity Lithium Salt-Doped Polystyrene/Poly(ethylene oxide) Triblock Polymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hongyun Xu
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering & Materials Science, University of Minnesota, 421 Washington Avenue Southeast, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
27
|
Malkin AI, Chernyshev VV, Ryazantseva AA, Vasiliev AL, Nickolsky MS, Shiryaev AA. Formation and characterization of an Al-rich metastable phase in the Al–B phase diagram. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721005756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Vacuum heat treatment of mechanically alloyed powders of boron and aluminium leads to the formation of a metastable Al-rich phase, which can be quenched. Its structure, composition and thermal stability are established. With the chemical formula Al1.28B the rhombohedral phase is unusually rich in Al. The parameters of the unit cell determined from X-ray powder diffraction are a = 18.3464 (19), c = 8.9241 (9) Å, V = 2601.3 (6) Å3, space group R
3. It is stable on heating to 630°C. It is suggested that this phase is an important intermediate step in the formation of AlB2 and, eventually, of other borides; its nucleation and thermal stability are explained by high elastic energy hindering the formation of equilibrium phases at low temperatures.
Collapse
|
28
|
Effect of Milling Parameters on the Development of a Nanostructured FCC–TiNb15Mn Alloy via High-Energy Ball Milling. METALS 2021. [DOI: 10.3390/met11081225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this work, a blend of Ti, Nb, and Mn powders, with a nominal composition of 15 wt.% of Mn, and balanced Ti and Nb wt.%, was selected to be mechanically alloyed by the following two alternative high-energy milling devices: a vibratory 8000D mixer/mill® and a PM400 Retsch® planetary ball mill. Two ball-to-powder ratio (BPR) conditions (10:1 and 20:1) were applied, to study the evolution of the synthesized phases under each of the two mechanical alloying conditions. The main findings observed include the following: (1) the sequence conversion evolved from raw elements to a transitory bcc-TiNbMn alloy, and subsequently to an fcc-TiNb15Mn alloy, independent of the milling conditions; (2) the total full conversion to the fcc-TiNb15Mn alloy was only reached by the planetary mill at a minimum of 12 h of milling time, for either of the BPR employed; (3) the planetary mill produced a non-negligible Fe contamination from the milling media, when the highest BPR and milling time were applied; and (4) the final fcc-TiNb15Mn alloy synthesized presents a nanocrystalline nature and a partial degree of amorphization.
Collapse
|
29
|
Kanomi S, Marubayashi H, Miyata T, Tsuda K, Jinnai H. Nanodiffraction Imaging of Polymer Crystals. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00683] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shusuke Kanomi
- Department of Applied Chemistry, School of Engineering, Tohoku University, 6-6 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Hironori Marubayashi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Tomohiro Miyata
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| | - Kenji Tsuda
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, 6-3 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Hiroshi Jinnai
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai, Miyagi 980-8577, Japan
| |
Collapse
|
30
|
Peterson NE, Einhorn JR, Fancher CM, Bunn JR, Payzant EA, Agnew SR. Quantitative texture analysis using the NOMAD time-of-flight neutron diffractometer. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721003022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Strategies for efficient and reliable texture measurements have been explored using the Nanoscale Ordered Materials Diffractometer (NOMAD) at the Spallation Neutron Source located at Oak Ridge National Laboratory (ORNL). To test these strategies, the texture of an Al alloy was also investigated using another neutron diffraction instrument, a constant-wavelength neutron diffractometer (NRSF2) located at the High Flux Isotope Reactor, also at ORNL. Reasonable agreement was found across the two experimental methods, but differences in overall texture strength and the symmetry of some components were noted, depending on the data reduction and analysis method selected. On the basis of these results, potential improvements are identified which would enhance the texture measurement capability on NOMAD.
Collapse
|
31
|
Boron from net charge acceptor to donor and its effect on hydrogen uptake by novel Mg-B-electrochemically synthesized reduced graphene oxide. Sci Rep 2021; 11:10995. [PMID: 34040113 PMCID: PMC8154900 DOI: 10.1038/s41598-021-90531-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 05/11/2021] [Indexed: 12/02/2022] Open
Abstract
Hydrogen uptake (H-uptake) is studied in ball milled Mg-B-electrochemically synthesized reduced graphene oxide (erGO) nanocomposites at PH2 ≈ 15 bar, ~ 320 °C. B/C (weight ratio): 0, ~ 0.09, ~ 0.36, ~ 0.90 are synthesized maintaining erGO≈10wt %. B occupies octahedral interstices within Mg unit cell—revealed by electron density maps. Persistent charge donations from Mg and B to C appear as Mg-C (~ 283.2 eV), B-C (~ 283.3–283.9 eV) interactions in C-1s core X-ray photoelectron spectroscopy (XPS) at all B/C. At B/C > 0.09, charge reception by B from Mg yields Mg-B interaction. This net charge acceptor role of B renders it electron-rich and does not alter Mg unit cell size significantly. Despite charge donation to both C and B, the Mg charge is < + 2, resulting in long incubation times (> 5 h) at B/C > 0.09. At B/C≈0.09 the minimal Mg-B interaction renders B a charge donor, resulting in Mg-B repulsion and Mg unit cell expansion. Mg-C peak shift to lower binding energies (C-1s XPS), decreases incubation time to ~ 2.25 h and enhances H-uptake kinetics. Various atomic interactions influence the reduction of incubation time in H-uptake and increase its kinetics in the order: (Mg → C; B → C)B/C≈0.09, B: donor > (Mg → C)B/C=0 > (ternary Mg → B → C)B/C>0.09, B: acceptor.
Collapse
|
32
|
Veselovsky VV, Lozanova AV, Isaeva VI, Chernyshev VV. Synthesis and the crystal structure of a new chiral metal-organic coordination polymer based on l-proline-substituted 2-aminobenzene-1,4-dicarboxylic acid derivative. Russ Chem Bull 2021. [DOI: 10.1007/s11172-021-3161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Farag A, Roushdy N, Halim SA. Towards significant enhancement of structural and optoelectronic properties of porphyrin palladium(II) complex: A theoretical and experimental analysis. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129933] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
34
|
Ghosh M, Mandal S, Roy A, Paladhi A, Mondal P, Hira SK, Mukhopadhyay SK, Pradhan SK. Synthesis and characterization of a novel drug conjugated copper-silver- titanium oxide nanocomposite with enhanced antibacterial activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102384] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
35
|
Sanna Angotzi M, Mameli V, Cara C, Peddis D, Xin HL, Sangregorio C, Mercuri ML, Cannas C. On the synthesis of bi-magnetic manganese ferrite-based core-shell nanoparticles. NANOSCALE ADVANCES 2021; 3:1612-1623. [PMID: 36132565 PMCID: PMC9418864 DOI: 10.1039/d0na00967a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/17/2021] [Indexed: 05/21/2023]
Abstract
Multifunctional nano-heterostructures (NHSs) with controlled morphology are cardinal in many applications, but the understanding of the nanoscale colloidal chemistry is yet to be fulfilled. The stability of the involved crystalline phases in different solvents at mid- and high-temperatures and reaction kinetics considerably affect the nucleation and growth of the materials and their final architecture. The formation mechanism of manganese ferrite-based core-shell NHSs is herein investigated. The effects of the core size (8, 10, and 11 nm), the shell nature (cobalt ferrite and spinel iron oxide) and the polarity of the solvent (toluene and octanol) on the dissolution phenomena of manganese ferrite are also studied. Noteworthily, the combined use of bulk (powder X-ray diffraction, 57Fe Mössbauer spectroscopy, and DC magnetometry) and nanoscale techniques (HRTEM and STEM-EDX) provides new insights into the manganese ferrite dissolution phenomena, the colloidal stability in an organic environment, and the critical size below which dissolution is complete. Moreover, the dissolved manganese and iron ions react further, leading to an inverted core-shell in the mother liquor solution, paving the way to novel synthetic pathways in nanocrystal design. The MnFe2O4@CoFe2O4 core-shell heterostructures were also employed as heat mediators, exploiting the magnetic coupling between a hard (CoFe2O4) and a soft phase (MnFe2O4).
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| | - Davide Peddis
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
- Dipartimento di Chimica e Chimica Industriale, Università di Genova Via Dodecaneso, 31 16131 Genova Italy
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche Via Salaria Km 29.300 00015 Monterotondo Scalo (RM) Italy
| | - Huolin L Xin
- Department of Physics and Astronomy, University of California Irvine CA 92617 USA
| | - Claudio Sangregorio
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
- Istituto di Chimica dei Composti OrganoMetallici-Consiglio Nazionale delle Ricerche (ICCOM-CNR) Via Madonna del Piano 10 50019 Sesto Fiorentino (FI) Italy
- Department of Chemistry "U. Schiff", University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino (FI) Italy
| | - Maria Laura Mercuri
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari S.S. 554 bivio per Sestu 09042 Monserrato (CA) Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) Via Giuseppe Giusti 9 50121 Firenze (FI) Italy
| |
Collapse
|
36
|
Bhakar A, Gupta P, Rao PN, Swami MK, Tiwari P, Ganguli T, Rai SK. Line profile analysis of synchrotron X-ray diffraction data of iron powder with bimodal microstructural profile parameters. J Appl Crystallogr 2021. [DOI: 10.1107/s1600576721000601] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Room-temperature synchrotron X-ray diffraction and subsequent detailed line profile analysis of Fe powder were performed for microstructural characterization. The peak shapes of the diffraction pattern of Fe were found to be super-Lorentzian in nature and the peak widths were anisotropically broadened. These peak profile features of the diffraction pattern are related to the microstructural parameters of the material. In order to elucidate these features of the diffraction pattern, detailed line (peak) profile analyses were performed using the Rietveld method, modified Williamson–Hall plots and whole powder pattern modelling (WPPM), and related microstructural parameters were determined. Profile fitting using the Rietveld and WPPM methods with a single microstructural (unimodal) model shows systematic deviation from the experimentally observed diffraction pattern. On the basis of Rietveld analysis and microstructural modelling it is revealed that the microstructure of Fe consists of two components (bimodal profile). The microstructural parameters of crystallite/domain size distribution, dislocation density, nature of dislocations and phase fraction were evaluated for both components. The results obtained using different methods are compared, and it is shown that diffraction peak profile analysis is capable of modelling such inhomogeneous bimodal microstructures.
Collapse
|
37
|
Dörner S, Schwob L, Atak K, Schubert K, Boll R, Schlathölter T, Timm M, Bülow C, Zamudio-Bayer V, von Issendorff B, Lau JT, Techert S, Bari S. Probing Structural Information of Gas-Phase Peptides by Near-Edge X-ray Absorption Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2021; 32:670-684. [PMID: 33573373 DOI: 10.1021/jasms.0c00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Near-edge X-ray absorption mass spectrometry (NEXAMS) is an action-spectroscopy technique of growing interest for investigations into the spatial and electronic structure of biomolecules. It has been used successfully to give insights into different aspects of the photodissociation of peptides and to probe the conformation of proteins. It is a current question whether the fragmentation pathways are sensitive toward effects of conformational isomerism, tautomerism, and intramolecular interactions in gas-phase peptides. To address this issue, we studied the cationic fragments of cryogenically cooled gas-phase leucine enkephalin ([LeuEnk+H]+) and methionine enkephalin ([MetEnk+H]+) produced upon soft X-ray photon absorption at the carbon, nitrogen, and oxygen K-edges. The interpretation of the experimental ion yield spectra was supported by density-functional theory and restricted-open-shell configuration interaction with singles (DFT/ROCIS) calculations. The analysis revealed several effects that could not be rationalized based on the peptide's amino acid sequences alone. Clear differences between the partial ion yields measured for both peptides upon C 1s → π*(C═C) excitations in the aromatic amino acid side chains give evidence for a sulfur-aromatic interaction between the methionine and phenylalanine side chain of [MetEnk+H]+. Furthermore, a peak associated with N 1s → π*(C═N) transitions, linked to a tautomeric keto-to-enol conversion of peptide bonds, was only present in the photon energy resolved ion yield spectra of [MetEnk+H]+.
Collapse
Affiliation(s)
- Simon Dörner
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Lucas Schwob
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kaan Atak
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Kaja Schubert
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Rebecca Boll
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- European XFEL, Holzkoppel 4, 22869 Schenefeld, Germany
| | - Thomas Schlathölter
- Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Martin Timm
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Christine Bülow
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Vicente Zamudio-Bayer
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
| | - Bernd von Issendorff
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - J Tobias Lau
- Abteilung Hochempfindliche Röntgenspektroskopie, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Strasse 15, 12489 Berlin, Germany
- Physikalisches Institut, Albert-Ludwigs-Universität Freiburg, Hermann-Herder-Strasse 3, 79104 Freiburg, Germany
| | - Simone Techert
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Institut für Röntgenphysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Sadia Bari
- Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| |
Collapse
|
38
|
Ghosh M, Mandal S, Dutta S, Paladhi A, Ray S, Hira SK, Pradhan SK. Synthesis of drug conjugated magnetic nanocomposite with enhanced hypoglycemic effects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111697. [PMID: 33545856 DOI: 10.1016/j.msec.2020.111697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 09/25/2020] [Accepted: 10/30/2020] [Indexed: 10/23/2022]
Abstract
In the present study, a magnetic nanocomposite (magnetite Fe3O4 and hematite Fe2O3) has been successfully synthesized by the sol-gel method and coated with polyvinyl alcohol (PVA) followed by conjugation of anti-diabetic drug metformin. Detailed structural and microstructural characterization of the nanocomposite (NP) and drug conjugated nanocomposite (NP-DC) are analyzed by the Rietveld refinement of respective XRD patterns, FTIR analysis, UV-Vis spectroscopy, SEM and TEM results. SEM and TEM image analyses reveal the spherical morphology and average size of NP, PVA coated nanoparticles (NP-PVA) and NP-DC samples, indicating a suitable size to be a nanocarrier. The biocompatibility of NP and NP-DC was carried out in NIH/3T3 and J774A. 1 cells. The enhanced activity of the drug, when conjugated with nanocomposite, is confirmed after the treatment of both the pure drug and NP-DC sample on the 18 h fasted normoglycemic and hyperglycemic mice. The blood glucose level of the mice is effectively decreased with the same concentration of the pure drug and NP-DC sample. It proves the increased activity of the NP-DC sample, as only 5 wt% drug is present that shows the same efficiency as the pure drug. This study suggests excellent biocompatibility and cytocompatibility of NP and NP-DC besides the critical property as a hypoglycemic agent. It is the first time approach of conjugating metformin with a magnetic nanocomposite for a significant increment of its hypoglycemic activity, which is very important to reduce the side effect of metformin for its prolonged use.
Collapse
Affiliation(s)
- Moupiya Ghosh
- Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Samir Mandal
- Department of Chemistry, Kazi Nazrul University, Kalla, Asansol 713340, India
| | - Sumana Dutta
- Department of Zoology, Durgapur Govt. College, Durgapur, Paschim Burdwan 713104, India
| | - Ankush Paladhi
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sanjib Ray
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - Sumit Kumar Hira
- Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713104, India
| | - S K Pradhan
- Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, India.
| |
Collapse
|
39
|
Barrett C, Stein Z, Hernandez J, Naraparaju R, Schulz U, Tetard L, Raghavan S. Detrimental effects of sand ingression in jet engine ceramic coatings captured with Raman-based 3D rendering. Ann Ital Chir 2021. [DOI: 10.1016/j.jeurceramsoc.2020.09.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
40
|
Enakieva YY, Zhigileva EA, Fitch AN, Chernyshev VV, Stenina IA, Yaroslavtsev AB, Sinelshchikova AA, Kovalenko KA, Gorbunova YG, Tsivadze AY. Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Dalton Trans 2021; 50:6549-6560. [PMID: 33890610 DOI: 10.1039/d1dt00612f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The rational design of metal-organic frameworks (MOFs) is highly important for the development of new proton conductors. Porphyrinylphosphonate-based MOFs, providing the directed tuning of physical and chemical properties of materials through the modification of a macrocycle, are potentially high-conducting systems. In this work the synthesis and characterization of novel anionic Zn-containing MOF based on palladium(ii) meso-tetrakis(3-(phosphonatophenyl))porphyrinate, IPCE-2Pd, are reported. Moreover, the proton-conductive properties and structures of two anionic Zn-containing MOFs based on previously described nickel(ii) and novel palladium(ii) porphyrinylphosphonates, IPCE-2M (M = Ni(ii) or Pd(ii)), are compared in details. The high proton conductivity of 1.0 × 10-2 S cm-1 at 75 °C and 95% relative humidity (RH) is revealed for IPCE-2Ni, while IPCE-2Pd exhibits higher hydrolytic and thermal stability of the material (up to 420 °C) simultaneously maintaining a comparable value of conductivity (8.11 × 10-3 S cm-1 at 95 °C and 95% RH). The nature of the porphyrin metal center is responsible for the features of crystal structure of materials, obtained under identical reaction conditions. The structures of IPCE-2Pd and its dehydrated derivative IPCE-2Pd-HT are determined from the synchrotron powder diffraction data. The presence of phosphonic groups in compared materials IPCE-2M affords a high concentration of proton carriers that together with the sorption of water molecules leads to a high proton conductivity.
Collapse
Affiliation(s)
- Yulia Yu Enakieva
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation.
| | - Ekaterina A Zhigileva
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation
| | - Andrew N Fitch
- European Synchrotron Radiation Facility, BP 220, 38043 Grenoble CEDEX 9, France
| | - Vladimir V Chernyshev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation. and Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory, 1-3, Moscow, 119991, Russian Federation
| | - Irina A Stenina
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| | - Andrey B Yaroslavtsev
- Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| | - Anna A Sinelshchikova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation.
| | - Konstantin A Kovalenko
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch, Russian Academy of Sciences, 3, Acad. Lavrentiev Ave., Novosibirsk, 630090, Russian Federation
| | - Yulia G Gorbunova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation. and Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| | - Aslan Yu Tsivadze
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Leninsky prosp. 31/4, Moscow, 119071, Russian Federation. and Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninsky prosp. 31, Moscow, 119991, Russian Federation
| |
Collapse
|
41
|
Farag A, Halim SA, Roushdy N, Badran AS, Ibrahim MA. Facile synthesis and photodetection characteristics of novel nanostructured triazinyliminomethylpyrano[3,2-c]quinoline-based hybrid heterojunction. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Sanna Angotzi M, Mameli V, Cara C, Grillo V, Enzo S, Musinu A, Cannas C. Defect-assisted synthesis of magneto-plasmonic silver-spinel ferrite heterostructures in a flower-like architecture. Sci Rep 2020; 10:17015. [PMID: 33046781 PMCID: PMC7550332 DOI: 10.1038/s41598-020-73502-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/18/2020] [Indexed: 11/25/2022] Open
Abstract
Artificial nano-heterostructures (NHs) with controlled morphology, obtained by combining two or more components in several possible architectures, make them suitable for a wide range of applications. Here, we propose an oleate-based solvothermal approach to design silver-spinel ferrite flower-like NHs. Small oleate-coated silver nanoparticles were used as seeds for the growth of magnetic spinel ferrite (cobalt ferrite and spinel iron oxide) nanodomains on their surface. With the aim of producing homogeneous flower-like heterostructures, a careful study of the effect of the concentration of precursors, the reaction temperature, the presence of water, and the chemical nature of the spinel ferrite was carried out. The magnetic and optical properties of the NHs were also investigated. A heterogeneous growth of the spinel ferrite phase on the silver nanoparticles, through a possible defect-assisted mechanism, was suggested in the light of the high concentration of stacking faults (intrinsic and twins) in the silver seeds, revealed by Rietveld refinement of powder X-ray diffraction patterns and High-Resolution electron microscopy.
Collapse
Affiliation(s)
- Marco Sanna Angotzi
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy
- Consorzio Interuniversitario Nazionale Per La Scienza e Tecnologia Dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121, Florence, Italy
| | - Valentina Mameli
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy
- Consorzio Interuniversitario Nazionale Per La Scienza e Tecnologia Dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121, Florence, Italy
| | - Claudio Cara
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy
- Consorzio Interuniversitario Nazionale Per La Scienza e Tecnologia Dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121, Florence, Italy
| | - Vincenzo Grillo
- Istituto Nanoscienze Consiglio Nazionale delle Ricerche (CNR-NANO), Via G. Campi 213/a, 41125, Modena, Italy
| | - Stefano Enzo
- Department of Chemistry and Pharmacy, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Anna Musinu
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy
- Consorzio Interuniversitario Nazionale Per La Scienza e Tecnologia Dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121, Florence, Italy
| | - Carla Cannas
- Department of Chemical and Geological Sciences, University of Cagliari, S.S. 554 Bivio per Sestu, 09042, Monserrato, Italy.
- Consorzio Interuniversitario Nazionale Per La Scienza e Tecnologia Dei Materiali (INSTM), Via Giuseppe Giusti 9, 50121, Florence, Italy.
| |
Collapse
|
43
|
Niño Galeano MA, Mangalaraja R, Udayabhaskar R, Selvaraj N, Usuba J, Ávila RE, Gracia MA. Single-line diffraction and microstructural analysis of NiOxGDC(1-x) nanocomposites. J SOLID STATE CHEM 2020. [DOI: 10.1016/j.jssc.2020.121400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Enhanced photocatalytic and antibacterial activities of mechanosynthesized TiO2–Ag nanocomposite in wastewater treatment. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128076] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Roles of Graphene Additives in Optimizing the Microstructure and Properties of Ni–Cr–Graphene Coatings. COATINGS 2020. [DOI: 10.3390/coatings10020104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The electrodeposition technique was used to fabricate graphene and Cr particle-reinforced Ni–Cr–graphene coatings. The Rietveld refinement was utilized to analyze the microstructure of Ni deposits in the coatings. The properties including micro-hardness and corrosion behaviors of the coatings were also tested. Results showed that the addition of graphene particles contributed to the dendrite like structure on the surface of the Ni–Cr–graphene coating. The crystallite size and [200] texture of the Ni deposits in the Ni–Cr–graphene coatings were significantly decreased by the graphene particles. The crystallite size of 149.8 nm in the Ni-25–Cr-0–graphene coating was reduced to 35 nm in the Ni-25–Cr-8–graphene coating due to the addition of 8 g/L graphene to the electrolyte. The microstructure evolution of the Ni–Cr–graphene coatings brought about an enhancement in micro-hardness and corrosion resistance of the coatings. The micro-hardness of the coatings was improved from 260.1 HV0.2 of the pure Ni coating to 285.9 HV0.2 of the Ni-25–Cr-0–graphene coating and continually to 461.8 HV0.2 of the Ni-25–Cr-8–graphene coating. In corrosion solution (3.5 wt.% NaCl), the corrosion current (6.22 μA/cm2) of the Ni-25–Cr-0–graphene coating could be decreased by about an order of magnitude through the addition of graphene particles, which was 0.33 μA/cm2 for the Ni-25–Cr-8–graphene coating.
Collapse
|
46
|
Ghosh M, Mandal S, Roy A, Chakrabarty S, Chakrabarti G, Pradhan SK. Enhanced antifungal activity of fluconazole conjugated with Cu-Ag-ZnO nanocomposite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110160. [DOI: 10.1016/j.msec.2019.110160] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/21/2019] [Accepted: 09/03/2019] [Indexed: 11/25/2022]
|
47
|
Kundu S, Sain S, Choudhury P, Sarkar S, Das PK, Pradhan SK. Microstructure characterization of biocompatible heterojunction hydrogen titanate-Ag 2O nanocomposites for superior visible light photocatalysis and antibacterial activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 99:374-386. [PMID: 30889712 DOI: 10.1016/j.msec.2019.01.124] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 12/22/2018] [Accepted: 01/28/2019] [Indexed: 10/27/2022]
Abstract
Hydrogen trititanate (H2Ti3O7·2H2O) and hydrogen trititanate/Ag2O hybrid nanocomposites (NCs) with novel structure have been synthesized by a simple solvothermal route followed by Na+/H+ ion-exchange. Growths of hydrogen trititanate with nanofiber (HTNF) and nanotube (HTNT) morphologies and hydrogen trititanate-Ag2O (HTFAG and HTTAG) nanocomposites have been tailored by controlling the solvent media. Detailed microstructure characterization of all these samples have been carried out by Rietveld refinement of XRD data and analyzing FESEM/HRTEM micrographs and FTIR spectra. Band gap energies of all these semiconducting samples are obtained from UV-Vis absorption spectra. Both HTFAG and HTTAG NCs exhibit enhanced photocatalytic degradation of organic pollutant (Congo red dye) under visible light, in comparison to HTNF and HTNT respectively due to the formation of a heterojunction between H2Ti3O7·2H2O and Ag2O, which is supported by photoluminescence spectroscopy. HTFAG and HTTAG NCs also show superior antibacterial activity against both gram-negative (Escherichia coli) and gram-positive (Bacillus subtilis) bacteria compared to their pure counterparts. MTT assay reflects a sufficiently high percentage of cell viability and confirms the significant cytocompatibility of all the samples.
Collapse
Affiliation(s)
- Samapti Kundu
- Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India
| | - Sumanta Sain
- Department of Materials Science, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Pritam Choudhury
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Saheli Sarkar
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Prasanta Kumar Das
- Department of Biological Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, West Bengal, India
| | - Swapan Kumar Pradhan
- Materials Science Division, Department of Physics, The University of Burdwan, Golapbag, Burdwan 713104, West Bengal, India.
| |
Collapse
|
48
|
Hill R. Applications of Rietveld Analysis to Materials Characterization in Solid-State Chemistry, Physics and Mineralogy. ACTA ACUST UNITED AC 2019. [DOI: 10.1154/s0376030800008636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The utilization and optimization of the properties of materials follows most effectively from a detailed knowledge and understanding of the positions and energetics of their constituent atoms, generally obtained from scattering/diffraction experiments involving electrons, neutrons or electromagnetic radiation. For the most part, these experiments are undertaken on individual crystals of the material, thereby preserving the resolution (and information content) of the three-dimensional reciprocal lattice. However, many of the substances of greatest academic and technical importance either do not crystallize with dimensions large enough for single-crystal studies, or display the properties of maximal interest only when present in finely-divided (powdered) form. In a diffraction experiment, the reciprocal lattice is then collapsed on to the single dimension of the 2θ scale.
Collapse
|
49
|
Das D, Mitra A, Chatterjee R, Sain S, Chattopadhyay KK. A morphology-tailored triazine-based crystalline organic polymer for efficient mercury sensing. NEW J CHEM 2019. [DOI: 10.1039/c8nj06119j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A melamine-based crystalline organic polymer as a highly efficient ultra-trace Hg2+ ion sensor with a detection limit of 0.03 ppb.
Collapse
Affiliation(s)
- Dimitra Das
- School of Materials Science and Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Anuradha Mitra
- Department of Physics
- Jadavpur University
- Kolkata 700032
- India
| | - Rituparna Chatterjee
- School of Materials Science and Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
| | - Sumanta Sain
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Kalyan Kumar Chattopadhyay
- School of Materials Science and Nanotechnology
- Jadavpur University
- Kolkata 700032
- India
- Department of Physics
| |
Collapse
|
50
|
Mandal RK, Kundu S, Sain S, Pradhan SK. Enhanced photocatalytic performance of V2O5–TiO2 nanocomposites synthesized by mechanical alloying with morphological hierarchy. NEW J CHEM 2019. [DOI: 10.1039/c8nj05576a] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photocatalytic mechanism of V2O5–TiO2 nanocomposites with a leaf like morphology synthesized for the first time by mechanical alloying.
Collapse
Affiliation(s)
| | - Samapti Kundu
- Materials Science Division
- Department of Physics
- The University of Burdwan
- Burdwan 713104
- India
| | - Sumanta Sain
- Department of Materials Science
- Indian Association for the Cultivation of Science
- Kolkata 700032
- India
| | - Swapan Kumar Pradhan
- Materials Science Division
- Department of Physics
- The University of Burdwan
- Burdwan 713104
- India
| |
Collapse
|