1
|
Lei MH, Hsu PW, Tsai YT, Chang CC, Tsai IJ, Hsu H, Cheng MH, Huang YL, Lin HT, Hsu YC, Lin CY. Low Levels of IgM Recognizing 4-Hydroxy-2-Nonenal-Modified Apolipoprotein A-I Peptide and Its Association with the Severity of Coronary Artery Disease in Taiwanese Patients. Curr Issues Mol Biol 2024; 46:6267-6283. [PMID: 38921045 PMCID: PMC11202877 DOI: 10.3390/cimb46060374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 06/27/2024] Open
Abstract
Autoantibodies against apolipoprotein A-I (ApoA-I) are associated with cardiovascular disease risks. We aimed to examine the 4-hydroxy-2-nonenal (HNE) modification of ApoA-I in coronary artery disease (CAD) and evaluate the potential risk of autoantibodies against their unmodified and HNE-modified peptides. We assessed plasma levels of ApoA-I, HNE-protein adducts, and autoantibodies against unmodified and HNE-peptide adducts, and significant correlations and odds ratios (ORs) were examined. Two novel CAD-specific HNE-peptide adducts, ApoA-I251-262 and ApoA-I70-83, were identified. Notably, immunoglobulin G (IgG) anti-ApoA-I251-262 HNE, IgM anti-ApoA-I70-83 HNE, IgG anti-ApoA-I251-262, IgG anti-ApoA-I70-83, and HNE-protein adducts were significantly correlated with triglycerides, creatinine, or high-density lipoprotein in CAD with various degrees of stenosis (<30% or >70%). The HNE-protein adduct (OR = 2.208-fold, p = 0.020) and IgM anti-ApoA-I251-262 HNE (2.046-fold, p = 0.035) showed an increased risk of progression from >30% stenosis in CAD. HNE-protein adducts and IgM anti-ApoA-I251-262 HNE may increase the severity of CAD at high and low levels, respectively.
Collapse
Affiliation(s)
- Meng-Huan Lei
- Cardiovascular Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Po-Wen Hsu
- Preventive Medical Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Yin-Tai Tsai
- Department of Medicine Laboratory, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
| | - Chen-Chi Chang
- Department of Laboratory Medicine, Taipei City Hospital Heping-Fuyou Branch, Taipei 10027, Taiwan;
| | - I-Jung Tsai
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (I.-J.T.); (M.-H.C.)
| | - Hung Hsu
- Medical Quality Department, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Ming-Hui Cheng
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (I.-J.T.); (M.-H.C.)
- Department of Laboratory Medicine, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan
| | - Ying-Li Huang
- Section of Laboratory, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Hung-Tse Lin
- Department of Laboratory Medicine, LinKou Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan;
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Cheng Hsu
- Cardiovascular Center, Lo-Hsu Medical Foundation Luodong Poh-Ai Hospital, Yilan 26546, Taiwan;
| | - Ching-Yu Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (I.-J.T.); (M.-H.C.)
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
2
|
BMI-Associated Anti-Apolipoprotein A-1 Positivity in Healthy Adults after mRNA-Vaccination against COVID-19. Vaccines (Basel) 2023; 11:vaccines11030670. [PMID: 36992254 DOI: 10.3390/vaccines11030670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023] Open
Abstract
Elevated anti-apolipoprotein A-1 (AAA1) antibody levels associated with cardiovascular risk have been observed in previously SARS-CoV-2-infected or COVID-19-vaccinated individuals. Since patient safety is generally a priority in vaccination, we sought to investigate AAA1 antibody levels in healthy adults after mRNA vaccination. We conducted a prospective cohort study in healthy adult volunteers recruited from military workers of the Transport Air Base in Prague who had received two doses of mRNA vaccines. Anti-apolipoprotein A-1 antibody levels were determined using ELISA from serum samples obtained at three and four time points after the first and second vaccine doses, respectively, within almost 17 weeks of follow-up. The transient AAA1 positivity rate achieved 24.1% (95% confidence interval CI: 15.4–34.7%), i.e., 20 out of 83 participants had at least one positive post-vaccination sample, with a repeat positivity confirmed in only 5 of them. This rate was associated with a BMI > 26 kg/m2, as documented by an adjusted odds ratio of 6.79 (95% CI: 1.53–30.01). In addition, the highest positivity rate of 46.7% (21.3–73.4%) was observed in obese subjects with >30 kg/m2. Since the incidence rate of AAA1 positivity remained unchanged after the first and second vaccine doses, any relationship between AAA1 positivity and mRNA vaccination was inconclusive. The present study showed a transient AAA1 positivity rate associated with overweight or obesity without a proven association with mRNA vaccination.
Collapse
|
3
|
Vuilleumier N, Antiochos P, Marques‐Vidal P, Pagano S, Virzi J, Satta N, Hartley O, Gaertner H, Brandt KJ, Burger F, Montecucco F, Waeber G, Mach F, Vollenweider P. Prognostic and therapeutic considerations of antibodies against c-ter apolipoprotein A-1 in the general population. Clin Transl Immunology 2020; 9:e1220. [PMID: 33343896 PMCID: PMC7734471 DOI: 10.1002/cti2.1220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Autoantibodies against apolipoprotein A1 (anti-apoA1 IgGs) and its C-terminal region (cter apoA1) have emerged as an independent biomarker for cardiovascular disease. Cter apoA1 mimetic peptides were shown to reverse the deleterious anti-apoA1 IgG effects in vitro. We evaluated the association of anti-cter apoA1 IgGs with overall mortality in the general population and tested the ability of a cter apoA1 mimetic peptide to reverse the anti-apoA1 IgG-induced inflammatory response and mortality in vitro and in vivo, respectively. METHODS Anti-cter apoA1 IgGs were measured in serum samples of 6386 participants of the CoLaus study of which 5220 were followed for a median duration of 5.6 years. The primary outcome was overall mortality. The peptide inhibitory concentration 50% (IC50) was determined in vitro on HEK-Blue-4 and RAW cells. ApoE-/- mice were exposed to 16 weeks of anti-apoA1IgG passive immunisation with and without peptide co-incubation. RESULTS Anti-cter apoA1 IgGs were associated with higher interleukin 6 levels and independently predicted overall mortality; an increase of one standard deviation of anti-cter apoA1 IgG level was associated with an 18% increase in mortality risk (hazard ratio: 1.18, 95% confidence interval: 1.04-1.33; P = 0.009). The cterApoA1 analogue reversed the antibody-mediated inflammatory response with an IC50 of 1 µm in vitro but did not rescue the significant anti-apoA1 IgG-induced mortality rate in vivo (69% vs. 23%, LogRank P = 0.02). CONCLUSION Anti-cter apoA1 IgG independently predicts overall mortality in the general population. Despite being effective in vitro, our cter apoA1 analogue did not reverse the anti-apoA1 IgG-induced mortality in mice. Our data suggest that these autoantibodies are not readily treatable through cognate peptide immunomodulation.
Collapse
Affiliation(s)
- Nicolas Vuilleumier
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
- Department of Medicine SpecialtiesMedical FacultyGeneva UniversityGenevaSwitzerland
| | | | - Pedro Marques‐Vidal
- Department of Internal MedicineLausanne University HospitalLausanneSwitzerland
| | - Sabrina Pagano
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
- Department of Medicine SpecialtiesMedical FacultyGeneva UniversityGenevaSwitzerland
| | - Julien Virzi
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
| | - Nathalie Satta
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
- Department of Medicine SpecialtiesMedical FacultyGeneva UniversityGenevaSwitzerland
| | - Oliver Hartley
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Hubert Gaertner
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Karim J Brandt
- Division of CardiologyFoundation for Medical ResearchesDepartment of Medical SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Fabienne Burger
- Division of CardiologyFoundation for Medical ResearchesDepartment of Medical SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Fabrizio Montecucco
- First Clinic of Internal MedicineDepartment of Internal MedicineUniversity of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San Martino Genoa–Italian Cardiovascular NetworkGenoaItaly
| | - Gerard Waeber
- Department of Internal MedicineLausanne University HospitalLausanneSwitzerland
| | - François Mach
- Division of CardiologyFoundation for Medical ResearchesDepartment of Medical SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Peter Vollenweider
- Department of Internal MedicineLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
4
|
da Silva RF, Baptista D, Roth A, Miteva K, Burger F, Vuilleumier N, Carbone F, Montecucco F, Mach F, J. Brandt K. Anti-Apolipoprotein A-1 IgG Influences Neutrophil Extracellular Trap Content at Distinct Regions of Human Carotid Plaques. Int J Mol Sci 2020; 21:7721. [PMID: 33086507 PMCID: PMC7588926 DOI: 10.3390/ijms21207721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neutrophils accumulate in atherosclerotic plaques. Neutrophil extracellular traps (NET) were recently identified in experimental atherosclerosis and in complex human lesions. However, not much is known about the NET marker citrullinated histone-3 (H3Cit) expression and functionality in human carotid plaques. Moreover, the association between the proatherosclerotic autoantibody anti-apolipoprotein A-1 (anti-ApoA-1 IgG) and NET has never been investigated. METHODS Atherosclerotic plaques have been obtained from 36 patients with severe carotid stenosis that underwent carotid endarterectomy for severe carotid stenosis. Samples were sectioned into upstream and downstream regions from the same artery segment. Plaque composition and expression of NET markers neutrophil elastase (NE) and H3Cit were quantified by immunohistochemistry. H3Cit expression and function was evaluated by immunofluorescence and confocal analysis in a subset of patients. RESULTS Pathological features of vulnerable phenotypes were exacerbated in plaques developed at downstream regions, including higher accumulation of neutrophils and enhanced expression of NE and H3Cit, as compared to plaques from upstream regions. The H3Cit signal was also more intense in downstream regions, with significant extracellular distribution in spaces outside of neutrophils. The percentage of H3Cit colocalization with CD66b (neutrophils) was markedly lower in downstream portions of carotid plaques, confirming the extrusion of NET in this region. In agreement, the maximum distance of the H3Cit signal from neutrophils, extrapolated from vortex distance calculation in all possible directions, was also higher in downstream plaques. The serum anti-ApoA-1index positively correlated with the expression of H3Cit in downstream segments of plaques. Expression of the H3Cit signal outside of neutrophils and H3Cit maximal distance from CD66b-positive cells increased in plaques from serum positive anti-ApoA-1 patients compared with serum negative patients. CONCLUSION NET elements are differentially expressed in upstream versus downstream regions of human carotid plaques and may be influenced by circulating levels of anti-ApoA-1 IgG. These findings could warrant the investigation of NET elements as potential markers of vulnerability.
Collapse
Affiliation(s)
- Rafaela F. da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Nicolas Vuilleumier
- Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medical Specialities, Division of Laboratory Medicine, Faculty of Medicine, 1211 Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| |
Collapse
|
5
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
6
|
IgG Anti-High Density Lipoprotein Antibodies Are Elevated in Abdominal Aortic Aneurysm and Associated with Lipid Profile and Clinical Features. J Clin Med 2019; 9:jcm9010067. [PMID: 31888089 PMCID: PMC7019833 DOI: 10.3390/jcm9010067] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 12/21/2019] [Accepted: 12/24/2019] [Indexed: 02/06/2023] Open
Abstract
High-density lipoproteins cholesterol (HDLc) levels are decreased in abdominal aortic aneurysm (AAA), which is hallmarked by autoimmunity and lipid aortic deposits. To investigate whether IgG anti-HDL antibodies were present in AAA and their potential association with clinical features, IgG anti-HDL and total IgG along with HDLc plasma levels were measured in 488 AAA patients and 184 controls from the Viborg Vascular (VIVA) study, and in tissue-conditioned media from AAA intraluminal thrombus and media layer samples compared to control aortas. Higher IgG anti-HDL levels were found in AAA compared to controls, even after correcting for total IgG, and after adjusting for potential confounders. IgG anti-HDL levels were correlated with aortic diameter in univariate and adjusted multivariate analyses. IgG anti-HDL antibodies were negatively associated with HDLc levels before and after correcting for potential confounders. Increased anti-HDL antibodies were identified in tissue-conditioned media from AAA samples compared to healthy aortas, with higher levels being observed in the media layer. In conclusion, increased IgG anti-HDL levels (both in plasma and in tissue) are linked to AAA, associated with aortic diameter and HDLc levels. These data suggest a potential immune response against HDL in AAA and support an emerging role of anti-HDL antibodies in AAA.
Collapse
|
7
|
Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes. J Clin Med 2019; 8:jcm8071002. [PMID: 31324073 PMCID: PMC6679072 DOI: 10.3390/jcm8071002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Autoantibodies against apolipoprotein A-I (anti-apoA-I IgGs) are prevalent in atherosclerosis-related conditions. It remains elusive whether they improve the prognostic accuracy of the Global Registry of Acute Coronary Events (GRACE) score 2.0 (GS) in acute coronary syndromes (ACS). In this prospective multicenter registry, 1713 ACS patients were included and followed for 1 year. The primary endpoint (major adverse cardiovascular events (MACE)) was defined as the composite of myocardial infarction, stroke (including transient ischemic attack), or cardiovascular (CV) death with individual events independently adjudicated. Plasma levels of anti-apoA-I IgGs upon study inclusion were assessed using ELISA. The association between anti-apoA-I IgGs and incident MACE was assessed using Cox models with splines and C-statistics. One-year MACE incidence was 8.4% (144/1713). Anti-apoA-I IgG levels were associated with MACE with a non-linear relationship (p = 0.01), which remained unchanged after adjusting for the GS (p = 0.04). The hazard increased progressively across the two first anti-apoA-I IgG quartiles before decreasing thereafter. Anti-apoA-I IgGs marginally improved the prognostic accuracy of the GS (c-statistics increased from 0.68 to 0.70). In this multicenter study, anti-apoA-I IgGs were predictive of incident MACE in ACS independently of the GS but in a nonlinear manner. The practical implications of these findings remain to be defined.
Collapse
|
8
|
Bridge SH, Pagano S, Jones M, Foster GR, Neely D, Vuilleumier N, Bassendine MF. Autoantibody to apolipoprotein A-1 in hepatitis C virus infection: a role in atherosclerosis? Hepatol Int 2018; 12:17-25. [PMID: 29423541 PMCID: PMC5814532 DOI: 10.1007/s12072-018-9842-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/08/2018] [Indexed: 12/22/2022]
Abstract
Background/purpose One to three per cent of the world’s population has hepatitis C virus (HCV) infection, which is not only a major cause of liver disease and cancer but also associated with an increased risk of atherosclerosis, despite an ostensibly favourable lipid profile. Autoantibodies are frequent in HCV infection and emerging evidence shows that autoantibodies could be valuable for cardiovascular disease (CVD) risk stratification. This study investigated a novel independent biomarker of CVD, autoantibodies to apolipoprotein A-1 (anti-apoA-1 IgG) and lipids in patients with chronic HCV before, during and after direct-acting anti-viral (DAA) therapy. Methods Eighty-nine blinded serum samples from 27 patients with advanced chronic HCV were assayed for lipids and anti-apoA-1 IgG by ELISA. Results Pre-treatment HCV viral load correlated with high-density lipoprotein cholesterol (HDL-C, r = 0.417; p = 0.042) and negatively with apolipoprotein (apo)B (r = − 0.497; p = 0.013) and markers of CVD risk, the apoB/apoA-1 ratio (r = − 0.490; p = 0.015) and triglyceride level (TG)/HDL-C ratio (r = − 0.450; p = 0.031). Fourteen (52%) of 27 patients had detectable anti-apoA-1 IgG autoantibodies pre-treatment; only two became undetectable with virological cure. Autoantibody-positive sera had lower apoA-1 (p = 0.012), HDL-C (p = 0.009) and total cholesterol (p = 0.006) levels. Conclusions This is the first report of the presence of an emerging biomarker for atherosclerosis, anti-apoA-1 IgG, in some patients with HCV infection. It may be induced by apoA-1 on the surface of HCV lipoviral particles. The autoantibodies inversely correlate with apoA-1 and HDL levels and may render HDL dysfunctional. Whether these hypothesis-generating findings have clinical implications in HCV patients requires further study.
Collapse
Affiliation(s)
- Simon H Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, UK.,Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Meleri Jones
- The Liver Unit, Blizard Institute, Queen Mary University of London, London, UK
| | - Graham R Foster
- The Liver Unit, Blizard Institute, Queen Mary University of London, London, UK
| | - Dermot Neely
- Department of Clinical Biochemistry, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Margaret F Bassendine
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK. .,Department of Hepatology and Gastroenterology, Imperial College London, 10th Floor QEQM Wing, St. Mary's Hospital Campus, South Wharf Street, London, W2 1NY, UK.
| |
Collapse
|
9
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
10
|
A role for autoantibodies in atherogenesis. Cardiovasc Res 2017; 113:1102-1112. [DOI: 10.1093/cvr/cvx112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Accepted: 06/01/2017] [Indexed: 12/27/2022] Open
|
11
|
Antiochos P, Marques-Vidal P, Virzi J, Pagano S, Satta N, Bastardot F, Hartley O, Montecucco F, Mach F, Waeber G, Vollenweider P, Vuilleumier N. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Results from the CoLaus study. Thromb Haemost 2016; 116:764-771. [PMID: 27384400 DOI: 10.1160/th16-03-0248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
We aimed to determine the association between autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) and prevalent cardiovascular (CV) disease (CVD) as well as markers of CV risk in the general population. Cross-sectional data were obtained from 6649 subjects (age 52.6 ± 10.7 years, 47.4 % male) of the population-based CoLaus study. CVD was defined as myocardial infarction, angina pectoris, percutaneous revascularisation or bypass grafting for ischaemic heart disease stroke or transient ischaemic attack, and was assessed according to standardised medical records. Anti-apoA-1 IgG and biological markers were measured by ELISA and conventional automated techniques, respectively. Prevalence of high anti-apoA-1 IgG levels in the general population was 19.9 %. Presence of anti-apoA-1 IgG was significantly associated with CVD [odds ratio 1.34, 95 % confidence interval (1.05-1.70), p=0.018], independently of established CV risk factors (CVRFs) including age, sex, hypertension, smoking, diabetes, low and high-density lipoprotein cholesterol levels. The n=455 (6.8 %) study participants with a history of CVD (secondary prevention subgroup) presented higher median anti-ApoA-1 IgG values compared with subjects without CVD (p=0.029). Among patients in the secondary prevention subgroup, those with positive anti-apoA-1 IgG levels had lower HDL (p=0.002) and magnesium (p=0.001) levels, but increased uric acid and high-sensitivity C-reactive protein levels (p=0.022, and p<0.001, respectively) compared to patients with negative anti-apoA-1 IgG levels. In conclusion, anti-apoA-1 IgG levels are independently associated with CVD in the general population and also related to CV biomarkers in secondary prevention. These findings indicate that anti-apoA-1 IgG may represent a novel CVRF and need further study in prospective cohorts.
Collapse
Affiliation(s)
- Panagiotis Antiochos
- Dr. Panagiotis Antiochos, CoLaus Study, Bâtiment des Instituts, 19, Rue du Bugnon, CH-1005 Lausanne, Switzerland, Tel.: +41 79 556 03 11, Fax: +41 21 314 80 37, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Carbone F, Satta N, Montecucco F, Virzi J, Burger F, Roth A, Roversi G, Tamborino C, Casetta I, Seraceni S, Trentini A, Padroni M, Dallegri F, Lalive PH, Mach F, Fainardi E, Vuilleumier N. Anti-ApoA-1 IgG serum levels predict worse poststroke outcomes. Eur J Clin Invest 2016; 46:805-817. [PMID: 27490973 DOI: 10.1111/eci.12664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Autoantibodies to apolipoprotein A-1 (anti-ApoA-1 IgG) were shown to predict major adverse cardiovascular events and promote atherogenesis. However, their potential relationship with clinical disability and ischaemic lesion volume after acute ischaemic stroke (AIS) remains unexplored. MATERIALS AND METHODS We included n = 76 patients admitted for AIS and we investigated whether baseline serum anti-ApoA-1 IgG levels could predict (i) AIS-induced clinical disability [assessed by the modified Rankin Scale (mRS)], and (ii) AIS-related ischaemic lesion volume [assessed by Computed Tomography (CT)]. We also evaluated the possible pro-apoptotic and pro-necrotic effects of anti-ApoA-1 IgG on human astrocytoma cell line (U251) using flow cytometry. RESULTS High levels of anti-ApoA-1 IgG were retrieved in 15·8% (12/76) of patients. Increased baseline levels of anti-ApoA-1 IgG were independently correlated with worse mRS [β = 0·364; P = 0·002; adjusted odds ratio (OR): 1·05 (95% CI 1·01-1·09); P = 0·017] and CT-assessed ischaemic lesion volume [β = 0·333; P < 0·001; adjusted OR: 1·06 (95% CI 1·01-1·12); P = 0·048] at 3 months. No difference in baseline clinical, biochemical and radiological characteristics was observed between patients with high vs. low levels of anti-ApoA-1 IgG. Incubating human astrocytoma cells with anti-ApoA-1 IgG dose dependently induced necrosis and apoptosis of U251 cells in vitro. CONCLUSION Anti-ApoA-1 IgG serum levels at AIS onset are associated with poorer clinical recovery and worse brain lesion volume 3 months after AIS. These observations could be partly explained by the deleterious effect of anti-ApoA-1 IgG on human brain cell survival in vitro and may have clinical implication in the prediction of poor outcome in AIS.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
| | - Nathalie Satta
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino - IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Julien Virzi
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Gloria Roversi
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Carmine Tamborino
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Ilaria Casetta
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Silva Seraceni
- Institute for Maternal and Child Health 'IRCCS Burlo Garofolo', Trieste, Italy
| | - Alessandro Trentini
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Padroni
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino - IST, Genoa, Italy
| | - Patrice H Lalive
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
13
|
Pagano S, Carbone F, Burger F, Roth A, Bertolotto M, Pane B, Spinella G, Palombo D, Pende A, Dallegri F, Satta N, Virzi J, Fontana P, Mach F, Montecucco F, Vuilleumier N. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb Haemost 2016; 116:554-564. [PMID: 27356567 DOI: 10.1160/th16-03-0229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022]
Abstract
Humoral autoimmune-mediated inflammation plays a role in atherogenesis, and potentially in arterial thrombosis. Anti-apolipoprotein A-1 (apoA-1) IgG have been reported to represent emergent mediators of atherogenesis through Toll-like receptors (TLR) 2, 4 and CD14 signalling. We investigated the role of anti-apoA-1 IgG on tissue factor (TF) expression and activation, a key coagulation regulator underlying atherothrombosis. Atherothrombosis features were determined by immunohistochemical TF staining of human carotid biopsies derived from patients with severe carotid stenosis undergoing elective surgery (n=176), and on aortic roots of different genetic backgrounds mice (ApoE-/-; TLR2-/-ApoE-/- and TLR4-/-ApoE-/-) exposed to passive immunisation with anti-apoA-1 IgG. Human serum levels of anti-apoA-1 IgG were measured by ELISA. In vitro, on human-monocyte-derived-macrophages (HMDM) the anti-apoA-1 IgG increased TF expression and activity were analysed by FACS and chromogenic assays in presence of different pharmacological inhibitors. Human serum anti-apoA-1 IgG levels significantly correlated to intraplaque TF expression in carotid biopsies (r=0.31, p<0.001), which was predictive of clinically symptomatic lesions. On HMDM, anti-apoA-1 IgG induced a TLR2, 4 and CD14-dependent increase in TF expression and activity, involving NF-kappaB and a c-Jun N-terminal kinase-dependent AP-1 transcription factors. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation significantly enhanced intraplaque TF expression when compared to control IgG. This effect was lost in both TLR2-/-ApoE-/- and TLR4-/-ApoE-/- mice. These results demonstrate that anti-apoA-1 IgG are associated with TF expression in human atherosclerotic plaques, induce TF expression in vitro and in vivo through TLR2 and 4 signalling, supporting a possible causal relationship between anti-apoA-1 IgG and atherothrombosis.
Collapse
Affiliation(s)
- Sabrina Pagano
- Sabrina Pagano, PhD, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland, Tel.: +41 22 37 95 321, Fax: +41 22 3795502, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Chistiakov DA, Orekhov AN, Bobryshev YV. ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. J Transl Med 2016; 96:708-18. [PMID: 27183204 DOI: 10.1038/labinvest.2016.56] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/21/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a main protein moiety in high-density lipoprotein (HDL) particles. Generally, ApoA1 and HDL are considered as atheroprotective. In prooxidant and inflammatory microenvironment in the vicinity to the atherosclerotic lesion, ApoA1/HDL are subjected to modification. The chemical modifications such as oxidation, nitration, etc result in altering native architecture of ApoA1 toward dysfunctionality and abnormality. Neutrophil myeloperoxidase has a prominent role in this mechanism. Neo-epitopes could be formed and then exposed that makes them immunogenic. Indeed, these epitopes may be recognized by immune cells and induce production of proatherogenic ApoA1-specific IgG antibodies. These antibodies are biologically relevant because they are able to react with Toll-like receptor (TLR)-2 and TLR4 in target cells and induce a variety of pro-inflammatory responses. Epidemiological and functional studies underline a prognostic value of ApoA1 self-antibodies for several cardiovascular diseases, including myocardial infarction, acute coronary syndrome, and severe carotid stenosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
15
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
16
|
Mannic T, Satta N, Pagano S, Python M, Virzi J, Montecucco F, Frias MA, James RW, Maturana AD, Rossier MF, Vuilleumier N. CD14 as a Mediator of the Mineralocorticoid Receptor-Dependent Anti-apolipoprotein A-1 IgG Chronotropic Effect on Cardiomyocytes. Endocrinology 2015; 156:4707-4719. [PMID: 26393305 DOI: 10.1210/en.2015-1605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro and animal studies point to autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) as possible mediators of cardiovascular (CV) disease involving several mechanisms such as basal heart rate interference mediated by a mineralocorticoid receptor-dependent L-type calcium channel activation, and a direct pro-inflammatory effect through the engagement of the toll-like receptor (TLR) 2/CD14 complex. Nevertheless, the possible implication of these receptors in the pro-arrhythmogenic effect of anti-apoA-1 antibodies remains elusive. We aimed at determining whether CD14 and TLRs could mediate the anti-apoA-1 IgG chronotropic response in neonatal rat ventricular cardiomyocytes (NRVC). Blocking CD14 suppressed anti-apoA-1 IgG binding to NRVC and the related positive chronotropic response. Anti-apoA-1 IgG alone induced the formation of a TLR2/TLR4/CD14 complex, followed by the phosphorylation of Src, whereas aldosterone alone promoted the phosphorylation of Akt by phosphatidylinositol 3-kinase (PI3K), without affecting the chronotropic response. In the presence of both aldosterone and anti-apoA-1 IgG, the localization of TLR2/TLR4/CD14 was increased in membrane lipid rafts, followed by PI3K and Src activation, leading to an L-type calcium channel-dependent positive chronotropic response. Pharmacological inhibition of the Src pathway led to the decrease of L-type calcium channel activity and abrogated the NRVC chronotropic response. Activation of CD14 seems to be a key regulator of the mineralocorticoid receptor-dependent anti-apoA-1 IgG positive chronotropic effect on NRVCs, involving relocation of the CD14/TLR2/TLR4 complex into lipid rafts followed by PI3K and Src-dependent L-type calcium channel activation.
Collapse
Affiliation(s)
- Tiphaine Mannic
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nathalie Satta
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Sabrina Pagano
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Magaly Python
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Julien Virzi
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Fabrizio Montecucco
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Miguel A Frias
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Richard W James
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Andres D Maturana
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Michel F Rossier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nicolas Vuilleumier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| |
Collapse
|
17
|
Montecucco F, Braunersreuther V, Burger F, Lenglet S, Pelli G, Carbone F, Fraga-Silva R, Stergiopulos N, Monaco C, Mueller C, Pagano S, Dallegri F, Mach F, Vuilleumier N. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb Haemost 2015; 114:410-422. [PMID: 25879306 DOI: 10.1160/th14-12-1039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Auto-antibodies to apolipoprotein A-1 (anti-apoA-1 IgG) were shown to promote inflammation and atherogenesis, possibly through innate immune receptors signalling. Here, we aimed at investigating the role of Toll-like receptors (TLR) 2 and 4 on anti-apoA-1 IgG-induced atherosclerotic plaque vulnerability, myocardial necrosis and mortality in mice. Adult male apolipoprotein E knockout (ApoE)-/- (n=72), TLR2-/-ApoE-/- (n=36) and TLR4-/-Apo-/- (n=28) mice were intravenously injected with 50 µg/mouse of endotoxin-free polyclonal anti-apoA-1 IgG or control isotype IgG (CTL IgG) every two weeks for 16 weeks. Atherosclerotic plaque size and vulnerability were assessed by histology. Myocardial ischaemia and necrosis, respectively, were determined by electrocardiographic (ECG) changes assessed by telemetry and serum troponin I (cTnI) measurements. Impact on survival was assessed by Kaplan-Meier analyses. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation enhanced histological features of atherosclerotic plaque vulnerability (increase in neutrophil and MMP-9 and reduction in collagen content), induced a substantial cTnI elevation (p=0.001), and increased mortality rate by 23 % (LogRank, p=0.04) when compared to CTL IgG. On a subgroup of ApoE-/- mice equipped with telemetry (n=4), a significant ST-segment depression was noted in anti-apoA-1 IgG-treated mice when compared to CTL IgG recipients (p< 0.001), and an acute ST-segment elevation myocardial infarction preceding mouse death was observed in one case. The deleterious effects of anti-apoA-1 IgG on atherosclerotic plaque vulnerability, myocardial necrosis and death were partially reversed in TLR2-/-ApoE-/- and TLR4-/-ApoE-/- backgrounds. In conclusion, anti-apoA-1 auto-antibodies seem to be active mediators of atherosclerotic plaque vulnerability, myocardial necrosis, and mortality in mice through TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- F Montecucco
- Fabrizio Montecucco, MD, PhD, Avenue de la Roseraie 64, Division of Laboratory Medicine and Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland, Tel.: +41 22 38 27 238, Fax: +41 22 38 27 245, E mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Pagano S, Gaertner H, Cerini F, Mannic T, Satta N, Teixeira PC, Cutler P, Mach F, Vuilleumier N, Hartley O. The Human Autoantibody Response to Apolipoprotein A-I Is Focused on the C-Terminal Helix: A New Rationale for Diagnosis and Treatment of Cardiovascular Disease? PLoS One 2015; 10:e0132780. [PMID: 26177543 PMCID: PMC4503694 DOI: 10.1371/journal.pone.0132780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death worldwide and new approaches for both diagnosis and treatment are required. Autoantibodies directed against apolipoprotein A-I (ApoA-I) represent promising biomarkers for use in risk stratification of CVD and may also play a direct role in pathogenesis. Methodology To characterize the anti-ApoA-I autoantibody response, we measured the immunoreactivity to engineered peptides corresponding to the different alpha-helical regions of ApoA-I, using plasma from acute chest pain cohort patients known to be positive for anti-ApoA-I autoantibodies. Principal Findings Our results indicate that the anti-ApoA-I autoantibody response is strongly biased towards the C-terminal alpha-helix of the protein, with an optimized mimetic peptide corresponding to this part of the protein recapitulating the diagnostic accuracy for an acute ischemic coronary etiology (non-ST segment elevation myocardial infarction and unstable angina) obtainable using intact endogenous ApoA-I in immunoassay. Furthermore, the optimized mimetic peptide strongly inhibits the pathology-associated capacity of anti-ApoA-I antibodies to elicit proinflammatory cytokine release from cultured human macrophages. Conclusions In addition to providing a rationale for the development of new approaches for the diagnosis and therapy of CVD, our observations may contribute to the elucidation of how anti-ApoA-I autoantibodies are elicited in individuals without autoimmune disease.
Collapse
Affiliation(s)
- Sabrina Pagano
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Hubert Gaertner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tiphaine Mannic
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Satta
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Priscila Camillo Teixeira
- Pharmaceutical Sciences, Pharma Research and Early Development, F.Hoffmann-La Roche, Basel, Switzerland
| | - Paul Cutler
- Pharmaceutical Sciences, Pharma Research and Early Development, F.Hoffmann-La Roche, Basel, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- * E-mail: (OH); (NV)
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail: (OH); (NV)
| |
Collapse
|
19
|
Rubini Gimenez M, Pagano S, Virzi J, Montecucco F, Twerenbold R, Reichlin T, Wildi K, Grueter D, Jaeger C, Haaf P, Vuilleumier N, Mueller C. Diagnostic and prognostic value of autoantibodies anti-apolipoprotein A-1 and anti-phosphorylcholine in acute non-ST elevation myocardial infarction. Eur J Clin Invest 2015; 45:369-379. [PMID: 25627775 DOI: 10.1111/eci.12411] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2014] [Accepted: 01/22/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Autoantibodies have been shown to play a critical role in predicting major adverse cardiovascular events in atherosclerotic patients. We aimed to assess the diagnostic accuracy of autoantibodies to apolipoprotein A-1 (anti-apoA-1 IgG) and to phosphorylcholine (anti-PC IgM) for non-ST segment elevation acute myocardial infarction (NSTEMI) and to explore their potential prognostic value. METHODS This prospective multicentre study included 1072 patients presenting to the emergency department for suspected NSTEMI. The final diagnosis was adjudicated by two independent cardiologists. For both antibodies alone or expressed as a ratio (anti-apoA-1 IgG/anti-PC IgM), we determined their (i) diagnostic accuracy for NSTEMI and (ii) prognostic accuracy for major adverse cardiovascular events (MACE) during 1-year follow-up. RESULTS A total of 154 patients (14%) had a final diagnosis of NSTEMI. Diagnostic accuracy for the diagnosis of NSTEMI as quantified by the area under the receiver operating characteristics curve (AUC) was very low for both autoantibodies separately as well as combined as a ratio: AUC anti-apoA-1 IgG 0.50 (95%CI, 0.47-0.53, P = 0.99), AUC anti-PC IgM 0.53 (95%CI, 0.50-0.56, P = 0.30) and AUC of the ratio 0.52 (95%CI, 0.49-0.55, P = 0.47). Adding the anti-apoA-1 IgG/Anti-PC IgM ratio to hs-cTnT did not provide incremental diagnostic value over hs-cTnT alone. MACE occurred in 221 patients (21%) during follow-up. The autoantibodies, separately or expressed as ratio, also had very low accuracy to predict MACE (p=ns). CONCLUSIONS Anti-apoA-1 IgG and anti-PC IgM autoantibodies did not have diagnostic or prognostic value in patients with NSTEMI.
Collapse
|
20
|
Rubini Gimenez M, Twerenbold R, Mueller C. Beyond cardiac troponin: recent advances in the development of alternative biomarkers for cardiovascular disease. Expert Rev Mol Diagn 2015; 15:547-56. [PMID: 25676700 DOI: 10.1586/14737159.2015.1010519] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Biomarkers complement clinical assessment, electrocardiogram and cardiac imaging in the diagnosis, risk stratification, triage and management of patients with suspected acute cardiovascular diseases. While there is broad consensus that cardiac troponin is the preferred biomarker in clinical practice for the detection of cardiomyocyte damage, the role of alternative biomarkers is less clear. In fact, despite high quality basic and clinical research by hundreds of groups worldwide, only a single new alternative cardiovascular biomarker (natriuretic peptides) has managed to achieve widespread clinical acceptance and inclusion in contemporary clinical practice guidelines in the last decade. This review aims to discuss the remaining unmet needs (and hence opportunities for new biomarkers) in two major clinical areas: early diagnosis of acute myocardial infarction; and early diagnosis and management of acute heart failure, and to evaluate in detail selected alternative biomarkers and recent insights gained from measuring novel biomarkers in large randomized treatment studies in patients with stable coronary artery disease, a setting in which alternative biomarkers may play a more prominent role in the future.
Collapse
Affiliation(s)
- Maria Rubini Gimenez
- Department of Cardiology and Cardiovascular Research Institute Basel, University Hospital, Petersgraben 4, CH-4031 Basel, Switzerland
| | | | | |
Collapse
|
21
|
Teixeira PC, Ducret A, Ferber P, Gaertner H, Hartley O, Pagano S, Butterfield M, Langen H, Vuilleumier N, Cutler P. Definition of human apolipoprotein A-I epitopes recognized by autoantibodies present in patients with cardiovascular diseases. J Biol Chem 2014; 289:28249-59. [PMID: 25170076 PMCID: PMC4192480 DOI: 10.1074/jbc.m114.589002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autoantibodies to apolipoprotein A-I (anti-apoA-I IgG) have been shown to be both markers and mediators of cardiovascular disease, promoting atherogenesis and unstable atherosclerotic plaque. Previous studies have shown that high levels of anti-apoA-I IgGs are independently associated with major adverse cardiovascular events in patients with myocardial infarction. Autoantibody responses to apoA-I can be polyclonal and it is likely that more than one epitope may exist. To identify the specific immunoreactive peptides in apoA-I, we have developed a set of methodologies and procedures to isolate, purify, and identify novel apoA-I endogenous epitopes. First, we generated high purity apoA-I from human plasma, using thiophilic interaction chromatography followed by enzymatic digestion specifically at lysine or arginine residues. Immunoreactivity to the different peptides generated was tested by ELISA using serum obtained from patients with acute myocardial infarction and high titers of autoantibodies to native apoA-I. The immunoreactive peptides were further sequenced by mass spectrometry. Our approach successfully identified two novel immunoreactive peptides, recognized by autoantibodies from patients suffering from myocardial infarction, who contain a high titer of anti-apoA-I IgG. The discovery of these epitopes may open innovative prognostic and therapeutic opportunities potentially suitable to improve current cardiovascular risk stratification.
Collapse
Affiliation(s)
- Priscila Camillo Teixeira
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel, the Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, 1205 Geneva University Hospitals, 1205 Geneva, and
| | - Axel Ducret
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Philippe Ferber
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Hubert Gaertner
- the Department of Immunopathology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Oliver Hartley
- the Department of Immunopathology, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | - Sabrina Pagano
- the Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, 1205 Geneva University Hospitals, 1205 Geneva, and
| | - Michelle Butterfield
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Hanno Langen
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| | - Nicolas Vuilleumier
- the Department of Genetics and Laboratory Medicine, Division of Laboratory Medicine, 1205 Geneva University Hospitals, 1205 Geneva, and
| | - Paul Cutler
- From the Pharma Research and Early Development, Roche Innovation Center, 4070 Basel
| |
Collapse
|
22
|
Vuilleumier N, Montecucco F, Hartley O. Autoantibodies to apolipoprotein A-1 as a biomarker of cardiovascular autoimmunity. World J Cardiol 2014; 6:314-326. [PMID: 24944761 PMCID: PMC4062126 DOI: 10.4330/wjc.v6.i5.314] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 03/18/2014] [Indexed: 02/06/2023] Open
Abstract
Immune-driven inflammation plays an important part in atherogenesis and is therefore believed to be key to the development of cardiovascular disease (CVD), which is currently the leading cause of death in the Western world. By fulfilling some of the Koch postulates, atherogenesis has even been proposed to be considered as an autoimmune disease, raising the hope that CVD could be prevented by immunomodulation. Nevertheless, the role of the immune system and autoimmune reactions in atherosclerosis appear to be a double edged-sword, with both pro-atherogenic and anti-atherogenic attributes. Hence, if immunomodulation is to become a therapeutic option for atherosclerosis and CVD, it will be crucial to correctly identify patients who might benefit from targeted suppression of deleterious autoimmune responses. This could be achieved, for example, by the detection of disease-associated autoantibodies. In this work, we will review the currently available clinical, in vitro, and animal studies dedicated to autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG), the major proteic fraction of high density lipoprotein. Current clinical studies indicate that high levels of anti-apoA-1 IgG are associated with a worse cardiovascular prognosis. In addition, in vitro and animal studies indicate a pro-inflammatory and pro-atherogenic role, supporting the hypothesis that these autoantibodies may play a direct causal role in CVD, and furthermore that they could potentially represent a therapeutic target for CVD in the future.
Collapse
|
23
|
Carbone F, Nencioni A, Mach F, Vuilleumier N, Montecucco F. Evidence on the pathogenic role of auto-antibodies in acute cardiovascular diseases. Thromb Haemost 2013; 109:854-868. [PMID: 23446994 DOI: 10.1160/th12-10-0768] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Accepted: 01/29/2013] [Indexed: 02/06/2023]
Abstract
Atherothrombosis is the major determinant of acute ischaemic cardiovascular events, such as myocardial infarction and stroke. Inflammatory processes have been linked to all phases of atherogenesis In particular, the identification of autoimmunity mediators in the complex microenvironment of chronic inflammation has become the focus of attention in both early and advanced atherogenic processes. Auto-antibodies against self-molecules or new epitopes generated by oxidative processes infiltrate atherosclerotic plaques and were shown to modulate the activity of immune cells by binding various types of receptors. However, despite mounting evidence for a pathophysiological role of autoantibodies in atherothrombosis, the clinical relevance for circulating autoantibodies in cardiovascular outcomes is still debated. This review aims at illustrating the mechanisms by which different types of autoantibodies might either promote or repress atherothrombosis and to discuss the clinical studies assessing the role of auto-antibodies as prognostic biomarkers of plaque vulnerability.
Collapse
Affiliation(s)
- F Carbone
- Cardiology Division, Department of Medicine, Geneva University Hospital, Foundation for Medical Researches, 64 Avenue Roseraie, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
24
|
Vuilleumier N, Montecucco F, Spinella G, Pagano S, Bertolotto M, Pane B, Pende A, Galan K, Roux-Lombard P, Combescure C, Dallegri F, Mach F, Palombo D. Serum levels of anti-apolipoprotein A-1 auto-antibodies and myeloperoxidase as predictors of major adverse cardiovascular events after carotid endarterectomy. Thromb Haemost 2013; 109:706-715. [PMID: 23364307 DOI: 10.1160/th12-10-0714] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Accepted: 01/06/2013] [Indexed: 12/12/2022]
Abstract
We aimed at challenging the prognostic accuracies of myeloperoxidase (MPO) and antibodies anti-apolipoprotein A-1 (anti-apoA-1 IgG), alone or in combination, for major adverse cardiovascular events (MACE) prediction, one year after carotid endarterectomy (CEA). In this prospective single centre study, 178 patients undergoing elective CEA were included. Serum anti-apoA-1 IgG and MPO were assessed by enzyme-linked immunosorbent assay prior to the surgery. Post-hoc determination of the MPO cut-off was performed by receiver operating characteristics (ROC) analyses. MACE was defined by the occurrence of fatal or non-fatal acute coronary syndromes or stroke during one year follow-up. Prognostic accuracy of anti-apoA-1 IgG was assessed by ROC curve analyses, survival analyses and reclassification statistics. During follow-up, 5% (9/178) of patients presented a MACE, and 29% (52/178) were positive for anti-apoA-1 IgG. Patients with MACE had higher median MPO and anti-apoA-1 IgG levels at admission (p=0.01), but no difference for the 10-year global Framingham risk score (FRS) was observed (p=0.22). ROC analyses indicated that both MPO and anti-apoA-1 IgG were significant predictors of subsequent MACE (area under the curve [AUC]: 0.75, 95% confidence interval [95%CI]: 0.61-0.89, p=0.01; and 0.74, 95%CI: 0.59-90; p=0.01), but combining anti-apoA-1 IgG positivity and MPO>857 ng/ml displayed the best predictive accuracy (AUC: 0.78, 95%CI: 0.65-0.91; p=0.007). It was associated with a poorer MACE-free survival (98.2% vs. 57.1%; p<0.001, LogRank), with a positive likelihood ratio of 13.67, and provided incremental predictive ability over FRS. In conclusion, combining the assessment of anti-apoA-1 IgG and MPO appears as a promising risk stratification tool in patients with severe carotid stenosis.
Collapse
Affiliation(s)
- Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Autoantibodies to apolipoprotein A-1 in cardiovascular diseases: current perspectives. Clin Dev Immunol 2012; 2012:868251. [PMID: 23227091 PMCID: PMC3511844 DOI: 10.1155/2012/868251] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 10/19/2012] [Indexed: 01/31/2023]
Abstract
Immune-mediated inflammation plays a major role in atherosclerosis and atherothrombosis, two essential features for cardiovascular disease (CVD) development, currently considered as the leading cause of death in the western world. There is accumulating evidence showing that humoral autoimmunity might play an important role in CVD and that some autoantibodies could represent emerging cardiovascular risk factors. Recent studies demonstrate that IgG autoantibodies against apolipoprotein A-1 (apoA-1) are raised in many diseases associated with a high cardiovascular risk, such as systemic lupus erythematosus, acute coronary syndrome, rheumatoid arthritis, severe carotid stenosis, and end-stage renal disease. In this work, we aimed at reviewing current data in the literature pointing to anti-apolipoprotein A-1 antibodies (anti-apoA-1 IgG) as a possible prognostic and diagnostic biomarker of cardiovascular risk and appraising their potential role as active mediators of atherogenesis.
Collapse
|
26
|
Quercioli A, Montecucco F, Galan K, Ratib O, Roux-Lombard P, Pagano S, Mach F, Schindler TH, Vuilleumier N. Anti-apolipoprotein A-1 IgG levels predict coronary artery calcification in obese but otherwise healthy individuals. Mediators Inflamm 2012; 2012:243158. [PMID: 23258951 PMCID: PMC3509370 DOI: 10.1155/2012/243158] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 10/10/2012] [Accepted: 10/11/2012] [Indexed: 12/12/2022] Open
Abstract
We aimed at determining whether anti-apolipoprotein (apo) A-1 IgG levels are independent predictors of coronary artery calcification (CAC) and coronary endothelial dysfunction in obese and nonobese subjects without cardiovascular disease. 48 nonobese and 43 obese subjects were included. CAC score was measured by thorax scanner and defined by an Agatston score > 0. Coronary endothelial dysfunction was determined by measuring myocardial blood flow responses to cold pressor test (CPT) on PET/CT. Serum anti-apoA-1 IgG levels were measured by ELISA. Prevalence of coronary calcification was similar between the two study groups, but the prevalence of coronary endothelial dysfunction was higher in obese subjects. Anti-apoA-1 IgG levels and positivity rate were higher in obese than in nonobese individuals. CAC score was higher in anti-apoA-1 IgG positive subjects. ROC analyses indicated that anti-apoA-1 IgG levels were significant predictors of CAC > 0, but not of coronary endothelial dysfunction with a negative predictive value of 94%. Anti-apoA-1 IgG positivity was associated with a 17-fold independent increased risk of CAC > 0. In conclusion, those preliminary results indicate that anti-apoA-1 IgG autoantibodies are raised in obese subjects and independently predict the presence of coronary calcification in this population but not the presence of coronary endothelial dysfunction.
Collapse
Affiliation(s)
- Alessandra Quercioli
- Division of Cardiology, Department of Medical Specialties, Geneva University Hospitals and University of Geneva, 4 Rue Gabrielle Perret-Gentil, 1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Wick PA, Mombelli A, Pagano S, Moren X, Giannopoulou C, Mach F, Roux-Lombard P, Vuilleumier N. Anti-apolipoprotein A-1 autoantibodies as biomarker for atherosclerosis burden in patients with periodontitis. J Periodontal Res 2012; 48:350-6. [PMID: 23050768 DOI: 10.1111/jre.12014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVE Anti-apolipoprotein A-1 (anti-apoA-1) IgG is a potential marker of atherosclerotic plaque vulnerability and cardiovascular complications. In patients with periodontitis the presence of anti-apoA-1 IgGs in serum and their association with atherosclerosis is unknown. MATERIAL AND METHODS One-hundred and thirty subjects with periodontal disease and 46 healthy subjects, matched for age and gender, participated in this study. Anti-apoA-1 IgG, high-sensitivity C-reactive protein (hsCRP) and matrix metalloproteinase (MMP) -2, -3, -8 and -9 were measured in serum samples. An ankle-brachial index (ABI) value below 1.11 served as a surrogate marker of atherosclerosis. Predictive accuracies of biomarkers for abnormal ABI were determined using receiver-operating characteristics curves and logistic regression analyses. RESULTS Compared with healthy controls, periodontitis patients showed lower median ABI values (1.10 vs. 1.15; p < 0.0001), a higher prevalence of anti-apoA-1 IgG positivity (23.8% vs. 6.5%; p = 0.009) and higher concentrations of hsCRP (1.62 mg/L vs. 0.85 mg/L; p = 0.02) and MMP-9 (435 μg/mL vs. 283 μg/mL; p < 0.0001). In patients younger than 50 years of age (n = 66), anti-apoA-1 IgG was found to be the best predictor for an abnormal ABI (area under the curve = 0.63; p = 0.03). Anti-apoA-1 IgG positivity increased the risk of having an abnormal ABI (odds ratio = 4.20; p = 0.04), independently of diabetes, smoking and body mass index. CONCLUSIONS Anti-apoA-1 IgG positivity and atherosclerosis, as reflected by abnormal ABI, were more prevalent in periodontitis patients than in age- and gender-matched controls. In younger periodontitis patients, anti-apoA-1 IgG was found to be the best predictor of atherosclerosis burden.
Collapse
Affiliation(s)
- P A Wick
- Department of Periodontology, School of Dental Medicine, University of Geneva, Geneva, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|