1
|
Bridge SH, Pagano S, Lodge JK, Shawa IT, Marin-Crespo P, Cramp ME, Sheridan DA, Taylor-Robinson SD, Vuilleumier N, Neely RDG, Bassendine MF. Autoantibodies to apolipoprotein A-I in hepatitis C virus infection: a role in disease progression? Front Immunol 2025; 16:1461041. [PMID: 40181970 PMCID: PMC11965114 DOI: 10.3389/fimmu.2025.1461041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025] Open
Abstract
Background Chronic HCV (CHC) infection is associated with autoimmunity. IgG autoantibodies to apolipoprotein A-I (AAA-I) predict all-cause mortality. We evaluated AAA-I in CHC patients and in those who were not viraemic, either because of spontaneous resolution (SR) of infection or HCV clearance following sustained virological response (SVR) after interferon therapy. We limited the study to HCV genotypes 1 and 3, the dominant HCV genotypes circulating in the UK. Methods Serum samples from 126 CHC patients and 114 nonviraemic individuals (25 SR and 89 SVR) were assayed for AAA-I and lipoproteins. AUC was calculated for AAA-I and HDL-related parameters and used to predict cirrhosis. Fibronectin (FN) and FN-mRNA were measured in human hepatic stellate cells (LX-2) in the presence or absence of AAA-I. Results AAA-I was found in 47% of patients with CHC, 37% of SVR patients, and 16% of SR individuals (CHC vs. SR, p = 0.004). AAA-I levels in CHC patients were higher in those with cirrhosis (p = 0.0003). The AUC for AAA-I, apoA-I, and HDL-C in predicting cirrhosis was 0.72 (p < 0.001), 0.65 (p = 0.01), and 0.64 (p = 0.02). After 48 h in the presence of AAA-I, LX-2 cells showed an 80% increase in FN-mRNA compared to the LX-2/IgG control (p = 0.028) and higher levels of FN (p = 0.0016). Conclusions CHC is often associated with AAA-I, and these can persist after SVR. AAA-I is a robust predictor of cirrhosis in CHC infection. LX-2 cells exposed to AAA-I showed increased FN. Further studies are warranted to define the role of AAA-I in promoting not only viral persistence but also fibrosis.
Collapse
Affiliation(s)
- Simon H. Bridge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, London, United Kingdom
| | - Isaac T. Shawa
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
- Department of Biomedical and Forensic Science, University of Derby, Derby, United Kingdom
| | - Paula Marin-Crespo
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, United Kingdom
| | - Matthew E. Cramp
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
| | - David A. Sheridan
- Faculty of Health, Peninsula Medical School, Plymouth University, Plymouth, United Kingdom
| | - Simon D. Taylor-Robinson
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - R. Dermot G. Neely
- Department of Blood Sciences, Newcastle upon Tyne Hospitals NHS Foundations Trust, Newcastle upon Tyne, United Kingdom
| | - Margaret F. Bassendine
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
2
|
Pagano S, Somm E, Juillard C, Liaudet N, Ino F, Ferrari J, Braunersreuther V, Jornayvaz FR, Vuilleumier N. Linking Antibodies Against Apolipoprotein A-1 to Metabolic Dysfunction-Associated Steatohepatitis in Mice. Int J Mol Sci 2024; 25:11875. [PMID: 39595946 PMCID: PMC11594174 DOI: 10.3390/ijms252211875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Metabolic dysfunction-associated fatty liver disease (MASLD) is a common liver and health issue associated with heightened cardiovascular disease (CVD) risk, with Cytokeratin 18 (CK-18) as a marker of liver injury across the MASLD to cirrhosis spectrum. Autoantibodies against apolipoprotein A-1 (AAA-1s) predict increased CVD risk, promoting atherosclerosis and liver steatosis in apoE-/- mice, though their impact on liver inflammation and fibrosis remains unclear. This study examined AAA-1s' impact on low-grade inflammation, liver steatosis, and fibrosis using a MASLD mouse model exposed to AAA-1s passive immunization (PI). Ten-week-old male C57BL/6J mice under a high-fat diet underwent PI with AAA-1s or control antibodies for ten days. Compared to controls, AAA-1-immunized mice showed higher plasma CK-18 (5.3 vs. 2.1 pg/mL, p = 0.031), IL-6 (13 vs. 6.9 pg/mL, p = 0.035), IL-10 (27.3 vs. 9.8 pg/mL, p = 0.007), TNF-α (32.1 vs. 24.2 pg/mL, p = 0.032), and liver steatosis (93.4% vs. 73.8%, p = 0.007). Transcriptomic analyses revealed hepatic upregulation of pro-fibrotic mRNAs in AAA-1-recipient mice, though histological changes were absent. In conclusion, short-term AAA-1 PI exacerbated liver steatosis, inflammation, and pro-fibrotic gene expression, suggesting that AAA-1s may play a role in MASLD progression. Further research with prolonged AAA-1 exposure is warranted to clarify their potential role in liver fibrosis and associated complications.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medicine, Medical Faculty, Geneva University, 1211 Geneva, Switzerland;
| | - Emmanuel Somm
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (E.S.); (F.I.); (F.R.J.)
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Catherine Juillard
- Department of Medicine, Medical Faculty, Geneva University, 1211 Geneva, Switzerland;
| | - Nicolas Liaudet
- Bioimaging Core Facility, Medical Faculty, University of Geneva, 1211 Geneva, Switzerland;
| | - Frédérique Ino
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (E.S.); (F.I.); (F.R.J.)
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Johan Ferrari
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; (J.F.); (V.B.)
| | - Vincent Braunersreuther
- Division of Clinical Pathology, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland; (J.F.); (V.B.)
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Therapeutic Patient Education, Department of Internal Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland; (E.S.); (F.I.); (F.R.J.)
- Department of Cell Physiology and Metabolism, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center, the Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medicine, Medical Faculty, Geneva University, 1211 Geneva, Switzerland;
| |
Collapse
|
3
|
Porsch F, Binder CJ. Autoimmune diseases and atherosclerotic cardiovascular disease. Nat Rev Cardiol 2024; 21:780-807. [PMID: 38937626 DOI: 10.1038/s41569-024-01045-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
Autoimmune diseases are associated with a dramatically increased risk of atherosclerotic cardiovascular disease and its clinical manifestations. The increased risk is consistent with the notion that atherogenesis is modulated by both protective and disease-promoting immune mechanisms. Notably, traditional cardiovascular risk factors such as dyslipidaemia and hypertension alone do not explain the increased risk of cardiovascular disease associated with autoimmune diseases. Several mechanisms have been implicated in mediating the autoimmunity-associated cardiovascular risk, either directly or by modulating the effect of other risk factors in a complex interplay. Aberrant leukocyte function and pro-inflammatory cytokines are central to both disease entities, resulting in vascular dysfunction, impaired resolution of inflammation and promotion of chronic inflammation. Similarly, loss of tolerance to self-antigens and the generation of autoantibodies are key features of autoimmunity but are also implicated in the maladaptive inflammatory response during atherosclerotic cardiovascular disease. Therefore, immunomodulatory therapies are potential efficacious interventions to directly reduce the risk of cardiovascular disease, and biomarkers of autoimmune disease activity could be relevant tools to stratify patients with autoimmunity according to their cardiovascular risk. In this Review, we discuss the pathophysiological aspects of the increased cardiovascular risk associated with autoimmunity and highlight the many open questions that need to be answered to develop novel therapies that specifically address this unmet clinical need.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
4
|
Deroissart J, Binder CJ, Porsch F. Role of Antibodies and Their Specificities in Atherosclerotic Cardiovascular Disease. Arterioscler Thromb Vasc Biol 2024; 44:2154-2168. [PMID: 39114917 DOI: 10.1161/atvbaha.124.319843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Atherosclerosis is a lipid-driven chronic inflammatory disease that is modulated by innate and adaptive immunity including humoral immunity. Importantly, antibody alterations achieved by genetic means or active and passive immunization strategies in preclinical studies can improve or aggravate atherosclerosis. Additionally, a wide range of epidemiological data demonstrate not only an association between the total levels of different antibody isotypes but also levels of antibodies targeting specific antigens with atherosclerotic cardiovascular disease. Here, we discuss the potential role of atherogenic dyslipidemia on the antibody repertoire and review potential antibody-mediated effector mechanisms involved in atherosclerosis development highlighting the major atherosclerosis-associated antigens that trigger antibody responses.
Collapse
Affiliation(s)
- Justine Deroissart
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| | - Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Austria
| |
Collapse
|
5
|
Jiang K, Hwa J, Xiang Y. Novel strategies for targeting neutrophil against myocardial infarction. Pharmacol Res 2024; 205:107256. [PMID: 38866263 DOI: 10.1016/j.phrs.2024.107256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/08/2024] [Indexed: 06/14/2024]
Abstract
Inflammation is a crucial factor in cardiac remodeling after acute myocardial infarction (MI). Neutrophils, as the first wave of leukocytes to infiltrate the injured myocardium, exacerbate inflammation and cardiac injury. However, therapies that deplete neutrophils to manage cardiac remodeling after MI have not consistently produced promising outcomes. Recent studies have revealed that neutrophils at different time points and locations may have distinct functions. Thus, transferring neutrophil phenotypes, rather than simply blocking their activities, potentially meet the needs of cardiac repair. In this review, we focus on discussing the fate, heterogeneity, functions of neutrophils, and attempt to provide a more comprehensive understanding of their roles and targeting strategies in MI. We highlight the strategies and translational potential of targeting neutrophils to limit cardiac injury to reduce morbidity and mortality from MI.
Collapse
Affiliation(s)
- Kai Jiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - John Hwa
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Yaozu Xiang
- State Key Laboratory of Cardiology, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China.
| |
Collapse
|
6
|
Mongin D, Pagano S, Lamacchia C, Juillard C, Antinori-Malaspina P, Dan D, Ciurea A, Möller B, Gabay C, Finckh A, Vuilleumier N. Anti-apolipoprotein A-1 IgG, incident cardiovascular events, and lipid paradox in rheumatoid arthritis. Front Cardiovasc Med 2024; 11:1386192. [PMID: 38832312 PMCID: PMC11144907 DOI: 10.3389/fcvm.2024.1386192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Objective To validate the prognostic accuracy of anti-apolipoprotein A-1 (AAA1) IgG for incident major adverse cardiovascular (CV) events (MACE) in rheumatoid arthritis (RA) and study their associations with the lipid paradox at a multicentric scale. Method Baseline AAA1 IgG, lipid profile, atherogenic indexes, and cardiac biomarkers were measured on the serum of 1,472 patients with RA included in the prospective Swiss Clinical Quality Management registry with a median follow-up duration of 4.4 years. MACE was the primary endpoint defined as CV death, incident fatal or non-fatal stroke, or myocardial infarction (MI), while elective coronary revascularization (ECR) was the secondary endpoint. Discriminant accuracy and incidence rate ratios (IRR) were respectively assessed using C-statistics and Poisson regression models. Results During follow-up, 2.4% (35/1,472) of patients had a MACE, consisting of 6 CV deaths, 11 MIs, and 18 strokes; ECR occurred in 2.1% (31/1,472) of patients. C-statistics indicated that AAA1 had a significant discriminant accuracy for incident MACE [C-statistics: 0.60, 95% confidence interval (95% CI): 0.57-0.98, p = 0.03], mostly driven by CV deaths (C-statistics: 0.77; 95% CI: 0.57-0.98, p = 0.01). IRR indicated that each unit of AAA1 IgG increase was associated with a fivefold incident CV death rate, independent of models' adjustments. At the predefined and validated cut-off, AAA1 displayed negative predictive values above 97% for MACE. AAA1 inversely correlated with total and HDL cholesterol. Conclusions AAA1 independently predicts CV deaths, and marginally MACE in RA. Further investigations are requested to ascertain whether AAA1 could enhance CV risk stratification by identifying patients with RA at low CV risk.
Collapse
Affiliation(s)
- Denis Mongin
- Division of Rheumatology, Geneva University Hospital and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Celine Lamacchia
- Division of Rheumatology, Geneva University Hospital and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Paola Antinori-Malaspina
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Diana Dan
- Division of Rheumatology, Lausanne University Hospital and Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Adrian Ciurea
- Division of Rheumatology, Zurich University Hospital and Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | - Burkhard Möller
- Division of Rheumatology and Immunology, Bern University Hospital and Faculty of Medicine, University of Bern, Bern, Switzerland
| | - Cem Gabay
- Division of Rheumatology, Geneva University Hospital and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Axel Finckh
- Division of Rheumatology, Geneva University Hospital and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
7
|
Frias MA, Pagano S, Bararpour N, Sidibé J, Kamau F, Fétaud-Lapierre V, Hudson P, Thomas A, Lecour S, Strijdom H, Vuilleumier N. People living with HIV display increased anti-apolipoprotein A1 auto-antibodies, inflammation, and kynurenine metabolites: a case-control study. Front Cardiovasc Med 2024; 11:1343361. [PMID: 38414919 PMCID: PMC10896987 DOI: 10.3389/fcvm.2024.1343361] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/25/2024] [Indexed: 02/29/2024] Open
Abstract
Objective This study aimed to study the relationship between auto-antibodies against apolipoprotein A1 (anti-apoA1 IgG), human immunodeficiency virus (HIV) infection, anti-retroviral therapy (ART), and the tryptophan pathways in HIV-related cardiovascular disease. Design This case-control study conducted in South Africa consisted of control volunteers (n = 50), people living with HIV (PLWH) on ART (n = 50), and untreated PLWH (n = 44). Cardiovascular risk scores were determined, vascular measures were performed, and an extensive biochemical characterisation (routine, metabolomic, and inflammatory systemic profiles) was performed. Methods Anti-apoA1 IgG levels were assessed by an in-house ELISA. Inflammatory biomarkers were measured with the Meso Scale Discovery® platform, and kynurenine pathway metabolites were assessed using targeted metabolomic profiling conducted by liquid chromatography-multiple reaction monitoring/mass spectrometry (LC-MRM/MS). Results Cardiovascular risk scores and vascular measures exhibited similarities across the three groups, while important differences were observed in systemic inflammatory and tryptophan pathways. Anti-apoA1 IgG seropositivity rates were 15%, 40%, and 70% in control volunteers, PLWH ART-treated, and PLWH ART-naïve, respectively. Circulating anti-apoA1 IgG levels were significantly negatively associated with CD4+ cell counts and positively associated with viremia and pro-inflammatory biomarkers (IFNγ, TNFα, MIPα, ICAM-1, VCAM-1). While circulating anti-apoA1 IgG levels were associated with increased levels of kynurenine in both control volunteers and PLWH, the kynurenine/tryptophan ratio was significantly increased in PLWH ART-treated. Conclusion HIV infection increases the humoral response against apoA1, which is associated with established HIV severity criteria and kynurenine pathway activation.
Collapse
Affiliation(s)
- Miguel A. Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nasim Bararpour
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Genetics, Stanford University, Stanford, CA, United States
- Stanford Center for Genomics and Personalized Medicine, Stanford, CA, United States
| | - Jonathan Sidibé
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Festus Kamau
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Vanessa Fétaud-Lapierre
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Peter Hudson
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Aurélien Thomas
- Faculty Unit of Toxicology, CURML, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Unit of Forensic Toxicology and Chemistry, CURML, Lausanne and Geneva University Hospitals, Lausanne, Geneva, Switzerland
| | - Sandrine Lecour
- Cape Heart Institute, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Hans Strijdom
- Centre for Cardiometabolic Research in Africa, Division of Medical Physiology, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| |
Collapse
|
8
|
Pagano S, Bakker SJL, Juillard C, Vossio S, Moreau D, Brandt KJ, Mach F, Dullaart RPF, Vuilleumier N. Antibody against apolipoprotein-A1, non-alcoholic fatty liver disease and cardiovascular risk: a translational study. J Transl Med 2023; 21:694. [PMID: 37798764 PMCID: PMC10552329 DOI: 10.1186/s12967-023-04569-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common liver disease increasing cardiovascular disease (CVD) morbidity and mortality. Autoantibodies against apolipoprotein A-1 (AAA-1) are a possible novel CVD risk factor promoting inflammation and disrupting cellular lipid homeostasis, two prominent pathogenic features of NAFLD. We explored the role of AAA-1 in NAFLD and their association with CVD risk. METHODS HepaRG cells and liver sections from ApoE-/- mice exposed to AAA-1 were used for lipid quantification and conditional protein expression. Randomly selected sera from 312 subjects of the Prevention of Renal and Vascular End-stage Disease (PREVEND) general population cohort were used to measure AAA-1. A Fatty Liver Index (FLI) ≥ 60 and a 10-year Framingham Risk Score (FRS) ≥ 20% were used as proxy of NAFLD and high CVD risk, respectively. RESULTS In-vitro and mouse models showed that AAA-1 increased triglyceride synthesis leading to steatosis, and promoted inflammation and hepatocyte injury. In the 112 PREVEND participants with FLI ≥ 60, AAA-1 were associated with higher FRS, alkaline phosphatase levels, lower HDL cholesterol and tended to display higher FLI values. Univariate linear and logistic regression analyses (LRA) confirmed significant associations between AAA-1, FLI and FRS ≥ 20%, while in adjusted LRA, FLI was the sole independent predictor of FRS ≥ 20% (OR: 1.05, 95%CI 1.01-1.09, P = 0.003). AAA-1 was not an independent FLI predictor. CONCLUSIONS AAA-1 induce a NAFLD-compatible phenotype in vitro and in mice. Intricate associations exist between AAA-1, CVD risk and FLI in the general population. Further work is required to refine the role of AAA-1 in NAFLD and to determine if the AAA-1 association with CVD is affected by hepatic steatosis.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Rue Michel Servet 1, 1211, Geneva, Switzerland.
- Department of Medicine Specialties, Medical Faculty, Geneva University, Geneva, Switzerland.
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Catherine Juillard
- Department of Medicine Specialties, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Stefania Vossio
- School of Chemistry and Biochemistry, National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Dimitri Moreau
- School of Chemistry and Biochemistry, National Centre of Competence in Research (NCCR) Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Karim J Brandt
- Department of Cardiology, University Hospitals of Geneva, Geneva, Switzerland
| | - François Mach
- Department of Cardiology, University Hospitals of Geneva, Geneva, Switzerland
| | - Robin P F Dullaart
- Department of Internal Medicine, Division of Endocrinology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostics Department, Geneva University Hospitals, Rue Michel Servet 1, 1211, Geneva, Switzerland
- Department of Medicine Specialties, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
9
|
L'Huillier AG, Pagano S, Baggio S, Meyer B, Andrey DO, Nehme M, Guessous I, Eberhardt CS, Huttner A, Posfay-Barbe KM, Yerly S, Siegrist CA, Kaiser L, Vuilleumier N. Autoantibodies against apolipoprotein A-1 after COVID-19 predict symptoms persistence. Eur J Clin Invest 2022; 52:e13818. [PMID: 35598178 PMCID: PMC9348059 DOI: 10.1111/eci.13818] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/19/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND SARS-CoV-2 infection triggers different auto-antibodies, including anti-apolipoprotein A-1 IgGs (AAA1), which could be of concern as mediators of persistent symptoms. We determined the kinetics of AAA1 response over after COVID-19 and the impact of AAA1 on the inflammatory response and symptoms persistence. METHODS All serologies were assessed at one, three, six and twelve months in 193 hospital employees with COVID-19. ROC curve analyses and logistic regression models (LRM) were used to determine the prognostic accuracy of AAA1 and their association with patient-reported COVID-19 symptoms persistence at 12 months. Interferon (IFN)-α and-γ production by AAA1-stimulated human monocyte-derived macrophages (HMDM) was assessed in vitro. RESULTS AAA1 seropositivity was 93% at one month and declined to 15% at 12 months after COVID-19. Persistent symptoms at 12 months were observed in 45.1% of participants, with a predominance of neurological (28.5%), followed by general (15%) and respiratory symptoms (9.3%). Over time, strength of correlations between AAA1 and anti-SARS-COV2 serologies decreased, but remained significant. From the 3rd month on, AAA1 levels predicted persistent respiratory symptoms (area under the curves 0.72-0.74; p < 0.001), independently of disease severity, age and gender (adjusted odds ratios 4.81-4.94; p = 0.02), while anti-SARS-CoV-2 serologies did not. AAA1 increased IFN-α production by HMDMs (p = 0.03), without affecting the IFN-γ response. CONCLUSION COVID-19 induces a marked though transient AAA1 response, independently predicting one-year persistence of respiratory symptoms. By increasing IFN-α response, AAA1 may contribute to persistent symptoms. If and how AAA1 levels assessment could be of use for COVID-19 risk stratification remains to be determined.
Collapse
Affiliation(s)
- Arnaud G L'Huillier
- Department of Woman, Pediatric Infectious Diseases Unit, Child and Adolescent Medicine, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Stephanie Baggio
- Division of Prison Health, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland.,Institute of Primary Health Care (BIHAM), University of Bern, Bern, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Diego O Andrey
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Mayssam Nehme
- Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Idris Guessous
- Division of Primary Care Medicine, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Christiane S Eberhardt
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Angela Huttner
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Klara M Posfay-Barbe
- Department of Woman, Pediatric Infectious Diseases Unit, Child and Adolescent Medicine, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland.,Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
10
|
Bariatric Surgery Leads to a Reduction in Antibodies to Apolipoprotein A-1: a Prospective Cohort Study. Obes Surg 2021; 32:355-364. [PMID: 34888742 PMCID: PMC8794910 DOI: 10.1007/s11695-021-05738-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 10/31/2022]
Abstract
PURPOSE Autoantibodies against apolipoprotein A-1 have been associated with cardiovascular disease, poorer CV outcomes and all-cause mortality in obese individuals. The impact of bariatric surgery (BS) on the presence of circulating anti-apoA-1 IgG antibodies is unknown. This study aimed to determine the effect of bariatric surgery on auto-antibodies titres against Apolipoprotein A-1 (anti-apoA-1 IgG), looking for changes associated with lipid parameters, insulin resistance, inflammatory profile and percentage of excess body mass index loss (%EBMIL). MATERIALS AND METHODS We assessed 55 patients (40 women) before, 6 and 12 months post-operatively. Baseline and post-operative clinical history and measurements of body mass index (BMI), serum cholesterol, triglycerides, high- and low-density lipoprotein cholesterol (HDL-C and LDL-C), apoA-1, highly sensitive C-reactive protein (hsCRP), fasting glucose (FG), glycated haemoglobin (HbA1c) and HOMA-IR were taken at each point. Human anti-apoA-1 IgG were measured by ELISA. RESULTS The mean age of participants was 50 years. BS significantly improved BMI, %EBMIL triglycerides, HDL-C, apoA-1, hsCRP, HBA1c, FG and HOMA-IR. Baseline anti-apoA-1 IgG seropositivity was 25% and was associated with lower apoA-1 and higher hsCRP levels. One year after BS, anti-apoA-1 IgG seropositivity decreased to 15% (p = 0.007) and median anti-apoA-1 IgG values decreased from 0.70 (0.56-0.84) to 0.47 (0.37-0.61) AU (p < 0.001). Post-operative anti-apoA-1 IgG levels were significantly associated with a decreased post-surgical %EBMIL at 1 year. CONCLUSION Bariatric surgery results in significant reduction in anti-apoA-1 IgG levels, which may adversely influence weight loss. The exact mechanisms underpinning these results are elusive and require further study before defining any clinical recommendations.
Collapse
|
11
|
Pagano S, Yerly S, Meyer B, Juillard C, Suh N, Le Terrier C, Daguer JP, Farrera-Soler L, Barluenga S, Piumatti G, Hartley O, Lemaitre B, Eberhardt CS, Siegrist CA, Eckerle I, Stringhini S, Guessous I, Kaiser L, Pugin J, Winssinger N, Vuilleumier N. SARS-CoV-2 infection as a trigger of humoral response against apolipoprotein A-1. Eur J Clin Invest 2021; 51:e13661. [PMID: 34324704 PMCID: PMC8420318 DOI: 10.1111/eci.13661] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Unravelling autoimmune targets triggered by SARS-CoV-2 infection may provide crucial insights into the physiopathology of the disease and foster the development of potential therapeutic candidate targets and prognostic tools. We aimed at determining (a) the association between anti-SARS-CoV-2 and anti-apoA-1 humoral response and (b) the degree of linear homology between SARS-CoV-2, apoA-1 and Toll-like receptor 2 (TLR2) epitopes. DESIGN Bioinformatics modelling coupled with mimic peptides engineering and competition experiments were used to assess epitopes sequence homologies. Anti-SARS-CoV-2 and anti-apoA-1 IgG as well as cytokines were assessed by immunoassays on a case-control (n = 101), an intensive care unit (ICU; n = 126) and a general population cohort (n = 663) with available samples in the pre and post-pandemic period. RESULTS Using bioinformatics modelling, linear sequence homologies between apoA-1, TLR2 and Spike epitopes were identified but without experimental evidence of cross-reactivity. Overall, anti-apoA-1 IgG levels were higher in COVID-19 patients or anti-SARS-CoV-2 seropositive individuals than in healthy donors or anti-SARS-CoV-2 seronegative individuals (P < .0001). Significant and similar associations were noted between anti-apoA-1, anti-SARS-CoV-2 IgG, cytokines and lipid profile. In ICU patients, anti-SARS-CoV-2 and anti-apoA-1 seroconversion rates displayed similar 7-day kinetics, reaching 82% for anti-apoA-1 seropositivity. In the general population, SARS-CoV-2-exposed individuals displayed higher anti-apoA-1 IgG seropositivity rates than nonexposed ones (34% vs 16.8%; P = .004). CONCLUSION COVID-19 induces a marked humoral response against the major protein of high-density lipoproteins. As a correlate of poorer prognosis in other clinical settings, such autoimmunity signatures may relate to long-term COVID-19 prognosis assessment and warrant further scrutiny in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Sabine Yerly
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Benjamin Meyer
- Centre for Vaccinology, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Noémie Suh
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Christophe Le Terrier
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jean-Pierre Daguer
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Lluc Farrera-Soler
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Sofia Barluenga
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Giovanni Piumatti
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Faculty of BioMedicine, Università della Svizzera Italiana, Lugano, Switzerland
| | - Oliver Hartley
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Switzerland
| | - Barbara Lemaitre
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| | - Christiane S Eberhardt
- Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Claire-Anne Siegrist
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland
| | - Isabella Eckerle
- Geneva Centre for Emerging Viral Diseases, Geneva University Hospitals, Geneva, Switzerland
| | - Silvia Stringhini
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland.,Unit of Population Epidemiology, Division of Primary Care, Geneva University Hospitals, Geneva, Switzerland
| | - Idris Guessous
- Division and Department of Primary Care Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Laurent Kaiser
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland.,Faculty of Medicine, Departments of Pathology-Immunology and Pediatrics, University of Geneva, Geneva, Switzerland.,Division of Infectious Diseases, Department of Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Jerome Pugin
- Division of Intensive Care, Geneva University Hospitals and the University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Nicolas Winssinger
- Faculty of Science, Department of Organic Chemistry, NCCR Chemical Biology, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostics and of Medical Specialties, Geneva University Hospitals and Geneva University, Geneva, Switzerland
| |
Collapse
|
12
|
Pan Q, Hui D, Hu C. Associations of CD14 variants with the triglyceride levels and risk of myocardial infarction in an Eastern Chinese Han population. Int Immunopharmacol 2021; 99:108041. [PMID: 34435580 DOI: 10.1016/j.intimp.2021.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/14/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND CD14 is crucial in the progression of myocardial infarction (MI). Several studies have explored the association between the risk of MI and the CD14 C-260 T polymorphism, but have reported inconsistent results. METHODS This study analyzed the association of the CD14 C-260 T polymorphism with susceptibility to MI. Totally, 240 MI patients and 298 normal subjects were included. The association between MI risk and the target polymorphism was assessed using 95% confidence intervals and odds ratios obtained through logistic regression. RESULTS The T allele of the CD14 C-260 T polymorphism was linked with an elevated risk of MI in Chinese Han people; subgroup analysis indicated that this effect was associated with smoking, male gender, and hypertension. In addition, the data revealed that different genotype carriers of the CD14 C-260 T polymorphism showed significantly distinct TG levels in MI patients. CONCLUSION Totally, the T allele of the CD14 C-260 T polymorphism is associated with an elevated risk of MI.
Collapse
Affiliation(s)
- Quanhua Pan
- Department of Cardiology Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province 223001, China.
| | - Ding Hui
- Department of Cardiology Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province 223001, China
| | - Chuangxian Hu
- Department of Cardiology Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu Province 223001, China
| |
Collapse
|
13
|
Porsch F, Mallat Z, Binder CJ. Humoral immunity in atherosclerosis and myocardial infarction: from B cells to antibodies. Cardiovasc Res 2021; 117:2544-2562. [PMID: 34450620 DOI: 10.1093/cvr/cvab285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immune mechanisms are critically involved in the pathogenesis of atherosclerosis and its clinical manifestations. Associations of specific antibody levels and defined B cell subsets with cardiovascular disease activity in humans as well as mounting evidence from preclinical models demonstrate a role of B cells and humoral immunity in atherosclerotic cardiovascular disease. These include all aspects of B cell immunity, the generation of antigen-specific antibodies, antigen presentation and co-stimulation of T cells, as well as production of cytokines. Through their impact on adaptive and innate immune responses and the regulation of many other immune cells, B cells mediate both protective and detrimental effects in cardiovascular disease. Several antigens derived from (oxidised) lipoproteins, the vascular wall and classical autoantigens have been identified. The unique antibody responses they trigger and their relationship with atherosclerotic cardiovascular disease are reviewed. In particular, we focus on the different effector functions of specific IgM, IgG, and IgE antibodies and the cellular responses they trigger and highlight potential strategies to target B cell functions for therapy.
Collapse
Affiliation(s)
- Florentina Porsch
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Ziad Mallat
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Cambridge, United Kingdom.,INSERM U970, Paris Cardiovascular Research Centre, Paris, France.,Unversité Paris Descartes, Sorbonne Paris Cité, Paris France
| | - Christoph J Binder
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
HDL in Atherosclerotic Cardiovascular Disease: In Search of a Role. Cells 2021; 10:cells10081869. [PMID: 34440638 PMCID: PMC8394469 DOI: 10.3390/cells10081869] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022] Open
Abstract
For a long time, high-density lipoprotein cholesterol (HDL-C) has been regarded as a cardiovascular disease (CVD) protective factor. Recently, several epidemiological studies, while confirming low plasma levels of HDL-C as an established predictive biomarker for atherosclerotic CVD, indicated that not only people at the lowest levels but also those with high HDL-C levels are at increased risk of cardiovascular (CV) mortality. This “U-shaped” association has further fueled the discussion on the pathophysiological role of HDL in CVD. In fact, genetic studies, Mendelian randomization approaches, and clinical trials have challenged the notion of HDL-C levels being causally linked to CVD protection, independent of the cholesterol content in low-density lipoproteins (LDL-C). These findings have prompted a reconsideration of the biological functions of HDL that can be summarized with the word “HDL functionality”, a term that embraces the many reported biological activities beyond the so-called reverse cholesterol transport, to explain this lack of correlation between HDL levels and CVD. All these aspects are summarized and critically discussed in this review, in an attempt to provide a background scenario for the “HDL story”, a lipoprotein still in search of a role.
Collapse
|
15
|
The impact of antimalarial agents on traditional and non-traditional subclinical atherosclerosis biomarkers in systemic lupus erythematosus: A systematic review and meta-analysis. Autoimmun Rev 2021; 20:102887. [PMID: 34237422 DOI: 10.1016/j.autrev.2021.102887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Cardiovascular (CV) morbidity is a well-established problem in systemic lupus erythematosus (SLE). Antimalarial (AM) therapy has been seen as a potential atheroprotective agent. The aim was to assess the impact of AM therapy on traditional and novel atherosclerosis (AT) biomarkers in patients with SLE. METHODS A search of MEDLINE, EMbase, and Cochrane library for studies evaluating the impact of AM on AT biomarkers in SLE was conducted. Data extraction included serum, functional and structural traditional and novel biomarkers. A narrative synthesis of the findings and a meta-analysis with random effects was conducted estimating mean differences (MD), OR, HR and 95% CIs. RESULTS The search strategy produced 148 articles, of which 64 were extracted for analysis. The MD in VLDL-cholesterol (-10.29, 95% CI -15.35, 5.24), triglycerides (-15.68, 95% CI -27.51, -3.86), and diastolic BP (-3.42, 95% CI -5.62, -1.23) differed significantly in patients on AM therapy compared with those without AM therapy. Patients on AM had a lower prevalence and incidence of diabetes mellitus than patients not on AM (HR: 0.39, 95% CI 0.17, 0.88). HCQ use was associated with lower blood pressure (BP) variability. Structural markers like carotid intima-media thickness (IMT), carotid plaque (CP) and coronary artery calcification (CAC) were not influenced by AM. For functional markers like endothelial and arterial stiffness the benefit was unclear. The GRADE approach showed a very low-to-low quality of evidence (QoE) per outcome. CONCLUSIONS There is some evidence on the associations between AM therapy and some AT markers. However, the data on which this conclusion was based was of low to very low evidence.
Collapse
|
16
|
Vuilleumier N, Antiochos P, Marques‐Vidal P, Pagano S, Virzi J, Satta N, Hartley O, Gaertner H, Brandt KJ, Burger F, Montecucco F, Waeber G, Mach F, Vollenweider P. Prognostic and therapeutic considerations of antibodies against c-ter apolipoprotein A-1 in the general population. Clin Transl Immunology 2020; 9:e1220. [PMID: 33343896 PMCID: PMC7734471 DOI: 10.1002/cti2.1220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/13/2020] [Accepted: 11/06/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Autoantibodies against apolipoprotein A1 (anti-apoA1 IgGs) and its C-terminal region (cter apoA1) have emerged as an independent biomarker for cardiovascular disease. Cter apoA1 mimetic peptides were shown to reverse the deleterious anti-apoA1 IgG effects in vitro. We evaluated the association of anti-cter apoA1 IgGs with overall mortality in the general population and tested the ability of a cter apoA1 mimetic peptide to reverse the anti-apoA1 IgG-induced inflammatory response and mortality in vitro and in vivo, respectively. METHODS Anti-cter apoA1 IgGs were measured in serum samples of 6386 participants of the CoLaus study of which 5220 were followed for a median duration of 5.6 years. The primary outcome was overall mortality. The peptide inhibitory concentration 50% (IC50) was determined in vitro on HEK-Blue-4 and RAW cells. ApoE-/- mice were exposed to 16 weeks of anti-apoA1IgG passive immunisation with and without peptide co-incubation. RESULTS Anti-cter apoA1 IgGs were associated with higher interleukin 6 levels and independently predicted overall mortality; an increase of one standard deviation of anti-cter apoA1 IgG level was associated with an 18% increase in mortality risk (hazard ratio: 1.18, 95% confidence interval: 1.04-1.33; P = 0.009). The cterApoA1 analogue reversed the antibody-mediated inflammatory response with an IC50 of 1 µm in vitro but did not rescue the significant anti-apoA1 IgG-induced mortality rate in vivo (69% vs. 23%, LogRank P = 0.02). CONCLUSION Anti-cter apoA1 IgG independently predicts overall mortality in the general population. Despite being effective in vitro, our cter apoA1 analogue did not reverse the anti-apoA1 IgG-induced mortality in mice. Our data suggest that these autoantibodies are not readily treatable through cognate peptide immunomodulation.
Collapse
Affiliation(s)
- Nicolas Vuilleumier
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
- Department of Medicine SpecialtiesMedical FacultyGeneva UniversityGenevaSwitzerland
| | | | - Pedro Marques‐Vidal
- Department of Internal MedicineLausanne University HospitalLausanneSwitzerland
| | - Sabrina Pagano
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
- Department of Medicine SpecialtiesMedical FacultyGeneva UniversityGenevaSwitzerland
| | - Julien Virzi
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
| | - Nathalie Satta
- Division of Laboratory MedicineDiagnostics DepartmentGeneva University HospitalsGenevaSwitzerland
- Department of Medicine SpecialtiesMedical FacultyGeneva UniversityGenevaSwitzerland
| | - Oliver Hartley
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Hubert Gaertner
- Department of Pathology and ImmunologyFaculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Karim J Brandt
- Division of CardiologyFoundation for Medical ResearchesDepartment of Medical SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Fabienne Burger
- Division of CardiologyFoundation for Medical ResearchesDepartment of Medical SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Fabrizio Montecucco
- First Clinic of Internal MedicineDepartment of Internal MedicineUniversity of GenoaGenoaItaly
- IRCCS Ospedale Policlinico San Martino Genoa–Italian Cardiovascular NetworkGenoaItaly
| | - Gerard Waeber
- Department of Internal MedicineLausanne University HospitalLausanneSwitzerland
| | - François Mach
- Division of CardiologyFoundation for Medical ResearchesDepartment of Medical SpecialtiesUniversity of GenevaGenevaSwitzerland
| | - Peter Vollenweider
- Department of Internal MedicineLausanne University HospitalLausanneSwitzerland
| |
Collapse
|
17
|
Satta N, Weppe R, Pagano S, Frias M, Juillard C, Vuilleumier N. Auto-antibodies against apolipoprotein A-1 block cancer cells proliferation and induce apoptosis. Oncotarget 2020; 11:4266-4280. [PMID: 33245719 PMCID: PMC7679029 DOI: 10.18632/oncotarget.27814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 10/27/2020] [Indexed: 11/25/2022] Open
Abstract
Auto-antibodies against apoA-1 (anti-apoA-1 IgGs) have been identified as important actors of atherosclerosis development through pro-inflammatory and pro-atherogenic properties and to also induce apoptosis in tumoral neuronal and lymphocyte derived cell lines through unknown mechanisms. The purpose of this study was to explore the cellular pathways involved in tumoral cell survival modulated by anti-apoA-1 antibodies. We observed that anti-apoA-1 antibodies induce growth arrest (in G2/M phase) and cell apoptosis through caspase 3 activation, accompanied by a selective p53 phosphorylation on serine 15. RNA sequencing indicated that anti-apoA-1 IgGs affect the expression of more than 950 genes belonging to five major groups of genes and respectively involved in i) cell proliferation inhibition, ii) p53 stabilisation and regulation, iii) apoptosis regulation, iv) inflammation regulation, and v) oxidative stress. In conclusion, anti-apoA-1 antibodies seem to have a role in blocking tumoral cell proliferation and survival, by activating a major tumor suppressor protein and by modulating the inflammatory and oxidative stress response. Further investigations are needed to explore a possible anti-cancer therapeutic approach of these antibodies in very specific and circumscribed conditions.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Rémy Weppe
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Miguel Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Catherine Juillard
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, Geneva, Switzerland.,Department of Medicine, Medical Faculty, Geneva University, Geneva, Switzerland
| |
Collapse
|
18
|
Santiago-Raber ML, Montecucco F, Vuilleumier N, Miteva K, Baptista D, Carbone F, Pagano S, Roth A, Burger F, Mach F, Brandt KJ. Atherosclerotic plaque vulnerability is increased in mouse model of lupus. Sci Rep 2020; 10:18324. [PMID: 33110193 PMCID: PMC7591560 DOI: 10.1038/s41598-020-74579-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 10/05/2020] [Indexed: 01/11/2023] Open
Abstract
Anti-apolipoprotein A-1 (anti-apoA-1 IgG) and anti-double stranded DNA (anti-dsDNA IgG) autoantibodies have been described as mediators of atherogenesis in mice and humans. In the present study, we aim to investigate the association between atherosclerotic parameters, autoantibodies and plaque vulnerability in the context of systemic lupus erythematosus (SLE). We therefore bred a lupus prone-mouse model (Nba2.Yaa mice) with Apoe-/- mice resulting in Apoe-/-Nba2.Yaa mice spontaneously producing anti-apoA-1 IgG antibodies. Although Apoe-/-Nba2.Yaa and Apoe-/- mice subject to a high cholesterol diet displayed similar atherosclerosis lesions size in aortic roots and abdominal aorta, the levels of macrophage and neutrophil infiltration, collagen, MMP-8 and MMP-9 and pro-MMP-9 expression in Apoe-/-Nba2.Yaa mice indicated features of atherosclerotic plaque vulnerability. Even though Apoe-/-Nba2.Yaa mice and Apoe-/- mice had similar lipid levels, Apoe-/-Nba2.Yaa mice showed higher anti-apoA-1 and anti-dsDNA IgG levels. Apoe-/-Nba2.Yaa mice displayed a reduction of the size of the kidney, splenomegaly and lymph nodes (LN) hypertrophy. In addition, anti-apoA-1 and anti-dsDNA IgG increased also in relation with mRNA levels of GATA3, IL-4, Bcl-6 and CD20 in the spleen and aortic arch of Apoe-/-Nba2.Yaa mice. Our data show that although atherosclerosis-lupus-prone Apoe-/-Nba2.Yaa mice did not exhibit exacerbated atherosclerotic lesion size, they did show features of atherosclerotic plaque destabilization in correlation with the increase of pro-atherogenic autoantibodies.
Collapse
Affiliation(s)
- Marie-Laure Santiago-Raber
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- AMAL Therapeutics, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland
| | - Fabrizio Montecucco
- Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| | - Nicolas Vuilleumier
- Department of Genetic Medicine, Laboratory and Pathology, Geneva University Hospitals, Geneva, Switzerland
- Division of Laboratory Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland
| | - Federico Carbone
- Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, 10 Largo Benzi, 16132, Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 6 viale Benedetto XV, 16132, Genoa, Italy
| | - Sabrina Pagano
- Department of Genetic Medicine, Laboratory and Pathology, Geneva University Hospitals, Geneva, Switzerland
- Division of Laboratory Medicine, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland
| | - Francois Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland
| | - Karim J Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211, Geneva 4, Switzerland.
| |
Collapse
|
19
|
da Silva RF, Baptista D, Roth A, Miteva K, Burger F, Vuilleumier N, Carbone F, Montecucco F, Mach F, J. Brandt K. Anti-Apolipoprotein A-1 IgG Influences Neutrophil Extracellular Trap Content at Distinct Regions of Human Carotid Plaques. Int J Mol Sci 2020; 21:7721. [PMID: 33086507 PMCID: PMC7588926 DOI: 10.3390/ijms21207721] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Neutrophils accumulate in atherosclerotic plaques. Neutrophil extracellular traps (NET) were recently identified in experimental atherosclerosis and in complex human lesions. However, not much is known about the NET marker citrullinated histone-3 (H3Cit) expression and functionality in human carotid plaques. Moreover, the association between the proatherosclerotic autoantibody anti-apolipoprotein A-1 (anti-ApoA-1 IgG) and NET has never been investigated. METHODS Atherosclerotic plaques have been obtained from 36 patients with severe carotid stenosis that underwent carotid endarterectomy for severe carotid stenosis. Samples were sectioned into upstream and downstream regions from the same artery segment. Plaque composition and expression of NET markers neutrophil elastase (NE) and H3Cit were quantified by immunohistochemistry. H3Cit expression and function was evaluated by immunofluorescence and confocal analysis in a subset of patients. RESULTS Pathological features of vulnerable phenotypes were exacerbated in plaques developed at downstream regions, including higher accumulation of neutrophils and enhanced expression of NE and H3Cit, as compared to plaques from upstream regions. The H3Cit signal was also more intense in downstream regions, with significant extracellular distribution in spaces outside of neutrophils. The percentage of H3Cit colocalization with CD66b (neutrophils) was markedly lower in downstream portions of carotid plaques, confirming the extrusion of NET in this region. In agreement, the maximum distance of the H3Cit signal from neutrophils, extrapolated from vortex distance calculation in all possible directions, was also higher in downstream plaques. The serum anti-ApoA-1index positively correlated with the expression of H3Cit in downstream segments of plaques. Expression of the H3Cit signal outside of neutrophils and H3Cit maximal distance from CD66b-positive cells increased in plaques from serum positive anti-ApoA-1 patients compared with serum negative patients. CONCLUSION NET elements are differentially expressed in upstream versus downstream regions of human carotid plaques and may be influenced by circulating levels of anti-ApoA-1 IgG. These findings could warrant the investigation of NET elements as potential markers of vulnerability.
Collapse
Affiliation(s)
- Rafaela F. da Silva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais, 31270-901 Belo Horizonte, Brazil
| | - Daniela Baptista
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Aline Roth
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Kapka Miteva
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Fabienne Burger
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Nicolas Vuilleumier
- Department of Diagnostics, Division of Laboratory Medicine, Geneva University Hospitals, 1211 Geneva, Switzerland;
- Department of Medical Specialities, Division of Laboratory Medicine, Faculty of Medicine, 1211 Geneva, Switzerland
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, viale Benedetto XV n6, 16132 Genoa, Italy; (F.C.); (F.M.)
- IRCCS Ospedale Policlinico San Martino Genoa-Italian Cardiovascular Network, Largo Rosanna Benzi n10, 16132 Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| | - Karim J. Brandt
- Division of Cardiology, Foundation for Medical Researches, Department of Medicine Specialties, Faculty of Medicine, University of Geneva, Av. de la Roseraie 64, 1211 Geneva, Switzerland; (R.F.d.S.); (D.B.); (A.R.); (K.M.); (F.B.); (F.M.)
| |
Collapse
|
20
|
Satta N, Frias MA, Vuilleumier N, Pagano S. Humoral Immunity Against HDL Particle: A New Perspective in Cardiovascular Diseases? Curr Pharm Des 2020; 25:3128-3146. [PMID: 31470782 DOI: 10.2174/1381612825666190830164917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/24/2019] [Indexed: 01/03/2023]
Abstract
BACKGROUND Autoimmune diseases are closely associated with cardiovascular diseases (CVD). Over the last decades, the comprehension of atherosclerosis, the principal initiator of CVD, evolved from a lipidcentered disease to a predominant inflammatory and immune response-driven disease displaying features of autoimmunity against a broad range of auto-antigens, including lipoproteins. Among them, high density lipoproteins (HDL) are important actors of cholesterol transport and bear several anti-atherogenic properties, raising a growing interest as therapeutic targets to decrease atherosclerosis and CVD burden, with nevertheless rather disappointing results so far. Reflecting HDL composition complexity, autoimmune responses and autoantibodies against various HDL components have been reported. RESULTS In this review, we addressed the important complexity of humoral autoimmunity towards HDL and particularly how this autoimmune response could help improving our understanding of HDL biological implication in atherosclerosis and CVD. We also discussed several issues related to specific HDL autoantibody subclasses characteristics, including etiology, prognosis and pathological mechanisms according to Rose criteria. CONCLUSION Finally, we addressed the possible clinical value of using these antibodies not only as potential biomarkers of atherogenesis and CVD, but also as a factor potentially mitigating the benefit of HDL-raising therapies.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Miguel A Frias
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Diagnostic, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland.,Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1211 Geneva, Switzerland
| |
Collapse
|
21
|
Li M, Chen F, Zhang Y, Xiong Y, Li Q, Huang H. Identification of Post-myocardial Infarction Blood Expression Signatures Using Multiple Feature Selection Strategies. Front Physiol 2020; 11:483. [PMID: 32581823 PMCID: PMC7287215 DOI: 10.3389/fphys.2020.00483] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 04/20/2020] [Indexed: 12/24/2022] Open
Abstract
Myocardial infarction (MI) is a type of serious heart attack in which the blood flow to the heart is suddenly interrupted, resulting in injury to the heart muscles due to a lack of oxygen supply. Although clinical diagnosis methods can be used to identify the occurrence of MI, using the changes of molecular markers or characteristic molecules in blood to characterize the early phase and later trend of MI will help us choose a more reasonable treatment plan. Previously, comparative transcriptome studies focused on finding differentially expressed genes between MI patients and healthy people. However, signature molecules altered in different phases of MI have not been well excavated. We developed a set of computational approaches integrating multiple machine learning algorithms, including Monte Carlo feature selection (MCFS), incremental feature selection (IFS), and support vector machine (SVM), to identify gene expression characteristics on different phases of MI. 134 genes were determined to serve as features for building optimal SVM classifiers to distinguish acute MI and post-MI. Subsequently, functional enrichment analyses followed by protein-protein interaction analysis on 134 genes identified several hub genes (IL1R1, TLR2, and TLR4) associated with progression of MI, which can be used as new diagnostic molecules for MI.
Collapse
Affiliation(s)
- Ming Li
- Department of Cardiology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Fuli Chen
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yaling Zhang
- Department of Nephrology, Eastern Hospital, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Yan Xiong
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Qiyong Li
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| | - Hui Huang
- Department of Cardiology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, Chengdu, China
| |
Collapse
|
22
|
Vecchié A, Bonaventura A, Carbone F, Maggi D, Ferraiolo A, Carloni B, Andraghetti G, Affinito Bonabello L, Liberale L, Fetaud V, Pagano S, Dallegri F, Cordera R, Montecucco F, Vuilleumier N. Antiapolipoprotein A-1 Autoantibody Positivity Is Associated with Threatened Abortion. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9309121. [PMID: 32219148 PMCID: PMC7081016 DOI: 10.1155/2020/9309121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/08/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Autoantibodies against apolipoprotein A-1 (anti-ApoA-1 IgG) were demonstrated to be associated with cardiovascular outcomes in several inflammatory diseases. As balanced inflammation is critical for uncomplicated pregnancy, we aimed to investigate the prevalence of anti-ApoA-1 IgG and anti-c-terminal ApoA-1 autoantibodies (Ac-terAA1 IgG) in a cohort of pregnant women and their potential relationship with threatened abortion (TA). METHODS Between 2012 and 2014, 371 consecutive outpatient pregnant women were included in this study and followed until delivery. Anti-ApoA-1 and anti-Ac-terAA1 IgG were measured by ELISA technique on serum samples collected between the 24th and 26th week of pregnancy. Associations with TA were tested using linear regression analysis and C-statistics. RESULTS Median age was 34 with a prevalence of the Caucasian ethnicity (90.5%). TA occurred in 10 women (2.7%). C-statistics indicated that anti-ApoA-1 and anti-Ac-terAA1 IgG levels upon study inclusion were predictive of TA (0.73, 95% confidence interval [CI] 0.69-0.78, p < 0.001 and 0.76, 95% CI 0.71-0.80, p < 0.001 and 0.76, 95% CI 0.71-0.80, p < 0.001 and 0.76, 95% CI 0.71-0.80, p < 0.001 and 0.76, 95% CI 0.71-0.80. CONCLUSION Anti-ApoA-1 and anti-Ac-terAA1 IgG are independently associated with TA during pregnancy with an appealing NPV. The causal biological mechanisms underlying this association as well as the possible clinical relevance of these findings require further investigations.
Collapse
Affiliation(s)
- Alessandra Vecchié
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, 1200 East Marshall Street, 23298 Richmond, Virginia, USA
| | - Aldo Bonaventura
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- Virginia Commonwealth University, Pauley Heart Center, Division of Cardiology, Department of Internal Medicine, 1200 East Marshall Street, 23298 Richmond, Virginia, USA
| | - Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Davide Maggi
- Diabetology Unit, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Antonella Ferraiolo
- Department of Obstetrics and Gynecology, IRCCS Ospedale Policlinico San Martino Genova, 10 Largo Benzi, 16132 Genoa, Italy
| | - Beatrice Carloni
- Diabetology Unit, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Gabriella Andraghetti
- Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Laura Affinito Bonabello
- Diabetology Unit, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Luca Liberale
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- Center for Molecular Cardiology, University of Zurich, 12 Wagistrasse, 8952 Schlieren, Switzerland
| | - Vanessa Fetaud
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
- Division of Laboratory Medicine, Department of Medical Specialties, Geneva Faculty of Medicine, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
- Division of Laboratory Medicine, Department of Medical Specialties, Geneva Faculty of Medicine, Switzerland
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino Genova-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
| | - Renzo Cordera
- Diabetology Unit, Department of Internal Medicine, University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genova-Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy
- First Clinic of Internal Medicine, Department of Internal Medicine and Center of Excellence for Biomedical Research (CEBR), University of Genoa, 6 Viale Benedetto XV, 16132 Genoa, Italy
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland
- Division of Laboratory Medicine, Department of Medical Specialties, Geneva Faculty of Medicine, Switzerland
| |
Collapse
|
23
|
Anti-ApoA-1 IgGs in Familial Hypercholesterolemia Display Paradoxical Associations with Lipid Profile and Promote Foam Cell Formation. J Clin Med 2019; 8:jcm8122035. [PMID: 31766415 PMCID: PMC6947407 DOI: 10.3390/jcm8122035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
AIMS Anti-Apolipoprotein A-1 autoantibodies (anti-ApoA-1 IgG) promote atherogenesis via innate immune receptors, and may impair cellular cholesterol homeostasis (CH). We explored the presence of anti-ApoA-1 IgG in children (5-15 years old) with or without familial hypercholesterolemia (FH), analyzing their association with lipid profiles, and studied their in vitro effects on foam cell formation, gene regulation, and their functional impact on cholesterol passive diffusion (PD). METHODS Anti-ApoA-1 IgG and lipid profiles were measured on 29 FH and 25 healthy children. The impact of anti-ApoA-1 IgG on key CH regulators (SREBP2, HMGCR, LDL-R, ABCA1, and miR-33a) and foam cell formation detected by Oil Red O staining were assessed using human monocyte-derived macrophages. PD experiments were performed using a validated THP-1 macrophage model. RESULTS Prevalence of high anti-ApoA-1 IgG levels (seropositivity) was about 38% in both study groups. FH children seropositive for anti-ApoA-1 IgG had significant lower total cholesterol LDL and miR-33a levels than those who were seronegative. On macrophages, anti-ApoA-1 IgG induced foam cell formation in a toll-like receptor (TLR) 2/4-dependent manner, accompanied by NF-kB- and AP1-dependent increases of SREBP-2, LDL-R, and HMGCR. Despite increased ABCA1 and decreased mature miR-33a expression, the increased ACAT activity decreased membrane free cholesterol, functionally culminating to PD inhibition. CONCLUSIONS Anti-ApoA-1 IgG seropositivity is frequent in children, unrelated to FH, and paradoxically associated with a favorable lipid profile. In vitro, anti-ApoA-1 IgG induced foam cell formation through a complex interplay between innate immune receptors and key cholesterol homeostasis regulators, functionally impairing the PD cholesterol efflux capacity of macrophages.
Collapse
|
24
|
Vuilleumier N, Pagano S, Montecucco F, Quercioli A, Schindler TH, Mach F, Cipollari E, Ronda N, Favari E. Relationship between HDL Cholesterol Efflux Capacity, Calcium Coronary Artery Content, and Antibodies against ApolipoproteinA-1 in Obese and Healthy Subjects. J Clin Med 2019; 8:1225. [PMID: 31443207 PMCID: PMC6722652 DOI: 10.3390/jcm8081225] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/16/2022] Open
Abstract
AIMS To explore the associations between cholesterol efflux capacity (CEC), coronary artery calcium (CAC) score, Framingham risk score (FRS), and antibodies against apolipoproteinA-1 (anti-apoA-1 IgG) in healthy and obese subjects (OS). METHODS AND RESULTS ABCA1-, ABCG1-, passive diffusion (PD)-CEC and anti-apoA-1 IgG were measured in sera from 34 controls and 35 OS who underwent CAC score determination by chest computed tomography. Anti-apoA-1 IgG ability to modulate CEC and macrophage cholesterol content (MCC) was tested in vitro. Controls and OS displayed similar ABCG1-, ABCA1-, PD-CEC, CAC and FRS scores. Logistic regression analyses indicated that FRS was the only significant predictor of CAC lesion. Overall, anti-apoA-1 IgG were significantly correlated with ABCA1-CEC (r = 0.48, p < 0.0001), PD-CEC (r = -0.33, p = 0.004), and the CAC score (r = 0.37, p = 0.03). ABCA1-CEC was correlated with CAC score (r = 0.47, p = 0.004) and FRS (r = 0.18, p = 0.29), while PD-CEC was inversely associated with the same parameters (CAC: r = -0.46, p = 0.006; FRS: score r = -0.40, p = 0.01). None of these associations was replicated in healthy controls or after excluding anti-apoA-1 IgG seropositive subjects. In vitro, anti-apoA-1 IgG inhibited PD-CEC (p < 0.0001), increased ABCA1-CEC (p < 0.0001), and increased MCC (p < 0.0001). CONCLUSIONS We report a paradoxical positive association between ABCA1-CEC and the CAC score, with the latter being inversely associated with PD in OS. Corroborating our clinical observations, anti-apoA-1 IgG enhanced ABCA1 while repressing PD-CEC, leading to MCC increase in vitro. These results indicate that anti-apoA-1 IgG have the potential to interfere with CEC and macrophage lipid metabolism, and may underpin paradoxical associations between ABCA1-CEC and cardiovascular risk.
Collapse
Affiliation(s)
- Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland
- Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 1211 Geneva, Switzerland.
- Division of Laboratory Medicine, Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1206 Geneva, Switzerland.
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV, 16132 Genoa, Italy
- Ospedale Policlinico San Martino, Genoa, 10 Largo Benzi, 16132 Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Alessandra Quercioli
- Division of Cardiology, "SS. Antonio e Biagio e Cesare Arrigo" Hospital, 6 via Venezia 16, 15121 Alessandria, Italy
| | - Thomas H Schindler
- Division of Nuclear Medicine-Cardiovascular Section, Department of Radiology and Radiological Science, School of Medicine, Johns Hopkins University, JHOC 3225, 601 N. Caroline Street, Baltimore, MD 21287, USA
- Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| | - François Mach
- Division of Cardiology, Cardiology Center, Geneva University Hospital, 1211 Geneva, Switzerland
| | - Eleonora Cipollari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 43124 Parma 27/A, Italy
| | - Nicoletta Ronda
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 43124 Parma 27/A, Italy
| | - Elda Favari
- Department of Food and Drug, University of Parma, Parco Area delle Scienze, 43124 Parma 27/A, Italy
| |
Collapse
|
25
|
Non-Linear Relationship between Anti-Apolipoprotein A-1 IgGs and Cardiovascular Outcomes in Patients with Acute Coronary Syndromes. J Clin Med 2019; 8:jcm8071002. [PMID: 31324073 PMCID: PMC6679072 DOI: 10.3390/jcm8071002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/26/2019] [Accepted: 07/08/2019] [Indexed: 12/13/2022] Open
Abstract
Autoantibodies against apolipoprotein A-I (anti-apoA-I IgGs) are prevalent in atherosclerosis-related conditions. It remains elusive whether they improve the prognostic accuracy of the Global Registry of Acute Coronary Events (GRACE) score 2.0 (GS) in acute coronary syndromes (ACS). In this prospective multicenter registry, 1713 ACS patients were included and followed for 1 year. The primary endpoint (major adverse cardiovascular events (MACE)) was defined as the composite of myocardial infarction, stroke (including transient ischemic attack), or cardiovascular (CV) death with individual events independently adjudicated. Plasma levels of anti-apoA-I IgGs upon study inclusion were assessed using ELISA. The association between anti-apoA-I IgGs and incident MACE was assessed using Cox models with splines and C-statistics. One-year MACE incidence was 8.4% (144/1713). Anti-apoA-I IgG levels were associated with MACE with a non-linear relationship (p = 0.01), which remained unchanged after adjusting for the GS (p = 0.04). The hazard increased progressively across the two first anti-apoA-I IgG quartiles before decreasing thereafter. Anti-apoA-I IgGs marginally improved the prognostic accuracy of the GS (c-statistics increased from 0.68 to 0.70). In this multicenter study, anti-apoA-I IgGs were predictive of incident MACE in ACS independently of the GS but in a nonlinear manner. The practical implications of these findings remain to be defined.
Collapse
|
26
|
Anderson JLC, Pagano S, Virzi J, Dullaart RPF, Annema W, Kuipers F, Bakker SJL, Vuilleumier N, Tietge UJF. Autoantibodies to Apolipoprotein A-1 as Independent Predictors of Cardiovascular Mortality in Renal Transplant Recipients. J Clin Med 2019; 8:jcm8070948. [PMID: 31261925 PMCID: PMC6679113 DOI: 10.3390/jcm8070948] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/24/2019] [Accepted: 06/27/2019] [Indexed: 12/15/2022] Open
Abstract
Renal transplant recipients (RTRs) are known to have a high cardio-vascular disease (CVD) burden only partly explained by traditional CVD risk factors. The aim of this paper was therefore to determine: i) the prognostic value of autoantibodies against apoA-1 (anti-apoA-1 IgG) for incidence of CVD mortality, all-cause mortality and graft failure in RTR. Four hundred and sixty two (462) prospectively included RTRs were followed for 7.0 years. Baseline anti-apoA-1 IgG were determined and associations with incidence of CVD mortality (n = 48), all-cause mortality (n = 92) and graft failure (n = 39) were tested. Kaplan-Meier analyses demonstrated significant associations between tertiles of anti-apoA-1 IgG and CVD mortality (log rank test: p = 0.048). Adjusted Cox regression analysis showed a 54% increase in risk for CVD mortality for each anti-apoA-1 IgG levels standard deviation increase (hazard ratio [HR]: 1.54, 95% Confidence Interval [95%CI]: 1.14-2.05, p = 0.005), and a 33% increase for all-cause mortality (HR: 1.33; 95%CI: 1.06-1.67, p = 0.01), independent of CVD risk factors, renal function and HDL function. The association with all-cause mortality disappeared after excluding cases of CVD specific mortality. The sensitivity, specificity, positive predictive value, and negative predictive value of anti-apoA-1 positivity for CVD mortality were 18.0%, 89.3%, 17.0%, and 90.0%, respectively. HDL functionality was not associated with anti-apoA-1 IgG levels. This prospective study demonstrates that in RTR, anti-apoA-1 IgG are independent predictors of CVD mortality and are not associated with HDL functionality.
Collapse
Affiliation(s)
- Josephine L C Anderson
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 1205 Groningen, The Netherlands
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospital, 1205 Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| | - Julien Virzi
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospital, 1205 Geneva, Switzerland
- Department of Medical Specialties, Faculty of Medicine, Geneva University, 1205 Geneva, Switzerland
| | - Robin P F Dullaart
- Department of Endocrinology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Wijtske Annema
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 1205 Groningen, The Netherlands
- Institute of Clinical Chemistry, University Hospital of Zurich and University of Zurich, 8006 Zurich, Switzerland
| | - Folkert Kuipers
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 1205 Groningen, The Netherlands
- Laboratory Medicine, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Stephan J L Bakker
- Department of Nephrology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospital, 1205 Geneva, Switzerland
| | - Uwe J F Tietge
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, 1205 Groningen, The Netherlands.
- Division of Clinical Chemistry, Department of Laboratory Medicine H5, Karolinska Institutet, 14183 Stockholm, Sweden.
- Clinical Chemistry, Karolinska University Laboratory, Karolinska University Hospital, SE-141 86 Stockholm, Sweden.
| |
Collapse
|
27
|
Frias MA, Virzi J, Batuca J, Pagano S, Satta N, Delgado Alves J, Vuilleumier N. ELISA methods comparison for the detection of auto-antibodies against apolipoprotein A1. J Immunol Methods 2019; 469:33-41. [PMID: 30926534 DOI: 10.1016/j.jim.2019.03.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 01/20/2023]
Abstract
BACKGROUND Autoantibodies against apolipoprotein A1 (anti-apoA1 IgG) have emerged as an independent biomarker for cardiovascular disease and mortality. Across studies, different ELISA methods have been used to measure the level of circulating anti-apoA1 IgG which could lead to substantial result differences between assays. OBJECTIVES To make a comparative study of available anti-apoA1 IgG detection methods and to determine whether the choice of matrix sample (serum vs plasma) could influence the results. METHODS Blood samples were obtained from 160 healthy blood donors and collected on 4 different matrixes (serum, plasma-EDTA, -citrate, -lithium-heparinate). Anti-apoA1 IgG was measured using two homemade (Geneva's and Lisbon's) and one commercial ELISA kits. Passing-Bablok and Bland-Altman were used to compare the results. Anti-apoA1 IgG seropositivity cut-offs were defined according to the user's/manufacturer's criterion. RESULTS The current results showed substantial differences between those 3 assays. The dynamic ranges were significantly different, the commercial kit displaying the narrowest one. Passing-Bablok analysis demonstrated important proportional and constant biases between assays. The anti-apoA1 IgG seropositivity rate in Geneva, Lisbon and commercial assays varied between 24.5% and 1.9%. Matrix comparisons demonstrated that the matrix choice (plasma versus serum) influenced anti-apoA1 IgG results as well as the seropositivity rate in an assay-dependent manner. The coating antigen source was identified as important factor underlying results heterogeneity across assays. CONCLUSIONS These results highlight the impact of the method and the cut-off used on anti-apoA1 IgG results and emphasize the need of standardizing existing assays. Given the important matrix influence, we suggest to use serum as matrix of choice.
Collapse
Affiliation(s)
- Miguel A Frias
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland; Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1205 Geneva, Switzerland.
| | - Julien Virzi
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland; Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1205 Geneva, Switzerland
| | - Joana Batuca
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sabrina Pagano
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland; Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1205 Geneva, Switzerland
| | - Natahlie Satta
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland; Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1205 Geneva, Switzerland
| | - Jose Delgado Alves
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal; Department of Medicine IV/Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Diagnostic Department, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland; Department of Medical Specialties, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, 1205 Geneva, Switzerland
| |
Collapse
|
28
|
Antibodies Against the C-Terminus of ApoA-1 Are Inversely Associated with Cholesterol Efflux Capacity and HDL Metabolism in Subjects with and without Type 2 Diabetes Mellitus. Int J Mol Sci 2019; 20:ijms20030732. [PMID: 30744100 PMCID: PMC6387386 DOI: 10.3390/ijms20030732] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/06/2019] [Accepted: 02/06/2019] [Indexed: 01/31/2023] Open
Abstract
Background: We determined relationships of cholesterol efflux capacity (CEC), plasma cholesterol esterification (EST) and cholesteryl ester transfer (CET) with anti-c-terminus apoA-1 (Ac-terAA1) and anti-apolipoprotein (apo)-1 (AAA1) autoantibodies in subjects with and without Type 2 diabetes mellitus (T2D). Methods: In 75 T2D subjects and 75 nondiabetic subjects, Ac-terAA1 and AAA1 plasma levels were measured by enzyme-linked immunosorbent assay. CEC was measured as [3H]-cholesterol efflux from human cultured fibroblasts to diluted individual subject plasma. Plasma EST and CET were assayed by isotope methods. Results: Ac-terAA1 and AAA1 levels and were similar between T2D and control subjects. Univariate regression analysis (n = 150) demonstrated that Ac-terAA1 levels were inversely correlated with CEC, EST, CET, total cholesterol, non-HDL cholesterol, triglycerides and apolipoprotein B, (p < 0.05 to p < 0.01), but not with glucose and HbA1c. In separate multivariable linear regression models, CEC, EST and CET were inversely associated with Ac-terAA1 levels independently of age, sex, T2D and drug use (β = −0.186, p = 0.026; β = −0.261, p < 0.001; and β = −0.321, p < 0.001; respectively). These associations were lost after additional adjustment for non-HDL cholesterol and triglycerides. No associations were observed for AAA1. Conclusions: CEC, plasma EST and CET are inversely associated with Ac-terAA1 autoantibodies, conceivably attributable to an inverse relationship of these autoantibodies with apolipoprotein B-containing lipoproteins.
Collapse
|
29
|
Lagerstedt JO, Dalla-Riva J, Marinkovic G, Del Giudice R, Engelbertsen D, Burlin J, Petrlova J, Lindahl M, Bernfur K, Melander O, Nilsson J, Schiopu A. Anti-ApoA-I IgG antibodies are not associated with carotid artery disease progression and first-time cardiovascular events in middle-aged individuals. J Intern Med 2019; 285:49-58. [PMID: 30028049 DOI: 10.1111/joim.12817] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE IgG antibodies against apolipoprotein A-I (ApoA-I) have been found to be elevated in subjects from the general population with clinically manifest cardiovascular disease and in myocardial infarction patients with an adverse prognosis. Here, we investigated whether these antibodies are prospectively associated with carotid artery disease progression and with the risk for first-time cardiovascular events in individuals with no previous history of cardiovascular disease. APPROACH AND RESULTS We selected 383 subjects from the cardiovascular cohort of Malmö Diet and Cancer study who suffered a coronary event during a median follow-up period of 15.4 (10.3-16.4) years and 395 age- and sex-matched controls. None of the study participants had a previous history of coronary artery disease or stroke. Anti-ApoA-I IgG were measured by ELISA in serum samples collected at baseline. Intima-media thickness (IMT) was measured in the common carotid artery and in the carotid bifurcation at baseline and after 15.9 (±1.5) years. We found no associations between anti-ApoA-I IgG and carotid artery IMT at baseline or with IMT progression during follow-up. In Cox proportional hazards analyses adjusted for traditional cardiovascular risk factors, the hazard ratio (HR 95%CI) for the primary outcome, incident coronary events, was 0.97 (0.75-1.25), P = 0.782, in subjects with anti-ApoA-I IgG within the highest tertile compared with the lowest tertile. Similarly, we did not find any associations with the secondary outcome, incident first-time stroke. CONCLUSIONS Serum autoantibodies against ApoA-I do not correlate with disease progression and adverse events in cardiovascular disease-free individuals from the general population.
Collapse
Affiliation(s)
- J O Lagerstedt
- Medical Protein Science Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - J Dalla-Riva
- Medical Protein Science Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - G Marinkovic
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - R Del Giudice
- Medical Protein Science Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - D Engelbertsen
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - J Burlin
- Medical Protein Science Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - J Petrlova
- Medical Protein Science Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - M Lindahl
- Medical Protein Science Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - K Bernfur
- Department of Biochemistry and Structural Biology, Lund University, Lund, Sweden
| | - O Melander
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - J Nilsson
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden
| | - A Schiopu
- Department of Clinical Sciences Malmö, Lund University, Lund, Sweden.,Department of Cardiology, Skåne University Hospital Malmö, Malmö, Sweden
| |
Collapse
|
30
|
|
31
|
Adlbrecht C, Blanco-Verea A, Bouzas-Mosquera MC, Brion M, Burtscher M, Carbone F, Chang TT, Charmandari E, Chen JW, Correia-Costa L, Dullaart RPF, Eleftheriades M, Fernandez-Fernandez B, Goliasch G, Gremmel T, Groeneveld ME, Henrique A, Huelsmann M, Jung C, Lichtenauer M, Montecucco F, Nicolaides NC, Niessner A, Palmeira C, Pirklbauer M, Sanchez-Niño MD, Sotiriadis A, Sousa T, Sulzgruber P, van Beek AP, Veronese N, Winter MP, Yeung KK, Bouzas-Mosquera A. Research update for articles published in EJCI in 2016. Eur J Clin Invest 2018; 48:e13016. [PMID: 30099749 DOI: 10.1111/eci.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 08/08/2018] [Indexed: 11/28/2022]
Affiliation(s)
- Christopher Adlbrecht
- Fourth Medical Department, Hietzing Hospital, Karl Landsteiner Institute for Cardiovascular and Intensive Care Research, Vienna, Austria
| | - Alejandro Blanco-Verea
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
- Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - María Brion
- Xenética Cardiovascular, Instituto de Investigación Sanitaria de Santiago de Compostela, Servicio de Cardiología, Complexo Hospitalario Universitario de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
- Medicina Xenómica, Fundación Pública Galega de Medicina Xenómica, Instituto de Investigación Sanitaria de Santiago de Compostela, Universidade de Santiago de Compostela, Santiago de Compostela, A Coruña, Spain
| | | | - Federico Carbone
- First Clinical of Internal Medicine Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Ting-Ting Chang
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
| | - Evangelia Charmandari
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Jaw-Wen Chen
- Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Division of Clinical Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Liane Correia-Costa
- Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal
- EPIUnit - Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Department of Pediatric Nephrology, Centro Materno-Infantil do Norte, Centro Hospitalar do Porto, Porto, Portugal
| | - Robin P F Dullaart
- Department of Endocrinology, University of Groningen, Groningen, the Netherlands
- University Medical Center, Groningen, the Netherlands
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynecology, Aretaieion Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Georg Goliasch
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Thomas Gremmel
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Menno Evert Groeneveld
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Alexandrino Henrique
- Serviço de Cirurgia A - Centro Hospitalar e Universitário de Coimbra, Faculdade de Medicina - Universidade de Coimbra, Coimbra, Portugal
| | - Martin Huelsmann
- Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Jung
- Division of Cardiology, Pulmonology, and Vascular Medicine, Medical Faculty, University of Duesseldorf, Duesseldorf, Germany
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, Salzburg, Austria
| | - Fabrizio Montecucco
- First Clinical of Internal Medicine Department of Internal Medicine, Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Nicolas C Nicolaides
- Division of Endocrinology, Metabolism and Diabetes, First Department of Pediatrics, National and Kapodistrian University of Athens Medical School, "Aghia Sophia" Children's Hospital, Athens, Greece
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Alexander Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Carlos Palmeira
- Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, Coimbra, Portugal
| | - Markus Pirklbauer
- Department for Internal Medicine IV, Nephrology and Hypertension, Medical University Innsbruck, Innsbruck, Austria
| | | | - Alexandros Sotiriadis
- Second Department of Obstetrics and Gynecology, "Hippokrateion" General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Teresa Sousa
- Department of Biomedicine - Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
- MedInUP - Center for Drug Discovery and Innovative Medicines, University of Porto, Porto, Portugal
| | - Patrick Sulzgruber
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna, Vienna, Austria
| | - André P van Beek
- Department of Endocrinology, University of Groningen, Groningen, the Netherlands
- University Medical Center, Groningen, the Netherlands
| | - Nicola Veronese
- Neuroscience Institute, National Research Council, Padova, Italy
| | - Max-Paul Winter
- Department of Cardiology, Medical University of Vienna, Vienna, Austria
| | - Kak Khee Yeung
- Department of Vascular Surgery, Amsterdam University Medical Center, Amsterdam, the Netherlands
- Department of Amsterdam Cardiovascular Sciences, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Alberto Bouzas-Mosquera
- Unidad de Imagen y Función Cardiacas, Servicio de Cardiología, Complexo Hospitalario Universitario A Coruña, A Coruña, Spain
| |
Collapse
|
32
|
Meier LA, Binstadt BA. The Contribution of Autoantibodies to Inflammatory Cardiovascular Pathology. Front Immunol 2018; 9:911. [PMID: 29755478 PMCID: PMC5934424 DOI: 10.3389/fimmu.2018.00911] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/12/2018] [Indexed: 12/19/2022] Open
Abstract
Chronic inflammation and resulting tissue damage underlie the vast majority of acquired cardiovascular disease (CVD), a general term encompassing a widely diverse array of conditions. Both innate and adaptive immune mechanisms contribute to chronic inflammation in CVD. Although maladies, such as atherosclerosis and cardiac fibrosis, are commonly conceptualized as disorders of inflammation, the cellular and molecular mechanisms that promote inflammation during the natural history of these diseases in human patients are not fully defined. Autoantibodies (AAbs) with specificity to self-derived epitopes accompany many forms of CVD in humans. Both adaptive/induced iAAbs (generated following cognate antigen encounter) and also autoantigen-reactive natural antibodies (produced independently of infection and in the absence of T cell help) have been demonstrated to modulate the natural history of multiple forms of CVD including atherosclerosis (atherosclerotic cardiovascular disease), dilated cardiomyopathy, and valvular heart disease. Despite the breadth of experimental evidence for the role of AAbs in CVD, there is a lack of consensus regarding their specific functions, primarily due to disparate conclusions reached, even when similar approaches and experimental models are used. In this review, we seek to summarize the current understanding of AAb function in CVD through critical assessment of the clinical and experimental evidence in this field. We additionally highlight the difficulty in translating observations made in animal models to human physiology and disease and provide a summary of unresolved questions that are critical to address in future studies.
Collapse
Affiliation(s)
- Lee A Meier
- Center for Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Bryce A Binstadt
- Center for Immunology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, United States
| |
Collapse
|
33
|
Satta N, Pagano S, Montecucco F, Gencer B, Mach F, Kaiser L, Calmy A, Vuilleumier N. Anti-apolipoprotein A-1 autoantibodies are associated with immunodeficiency and systemic inflammation in HIV patients. J Infect 2018; 76:186-195. [PMID: 29198606 DOI: 10.1016/j.jinf.2017.11.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 01/09/2023]
Abstract
OBJECTIVES To determine the existence of autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) in HIV patients and explore their association with biological features of HIV infection and different inflammatory biomarkers. We also evaluated their impact on CD4+ lymphocytes survival. METHODS Anti-apoA-1 IgG plasma levels were assessed by ELISA in 237 HIV positive patients from a national prospective cohort with no current lipid-lowering therapy. RESULTS 58% of patients were found positive for anti-apoA-1 IgG and were associated with lower CD4+ counts, but higher viremia and systemic inflammation. Logistic regression analyses indicated that high anti-apoA-1 IgG levels were associated with a 16-fold increased risk of displaying low CD4+ levels, independent of HIV RNA levels and treatment (adjusted Odds ratio [OR]:16.1, 95% Confidence Interval [95%CI]:1.80-143.6; p = 0.01), and a 6-fold increased risk of having a detectable viremia, independent of antiretroviral treatment (OR:5.47; 95% CI:1.63-18.36; p = 0.006). In vitro, anti-apoA-1 IgG induced dose and time-dependent CD4+ apoptosis that was increased by exposure to HIV RNA. CONCLUSIONS In HIV patients, anti-apoA-1 IgG levels are associated with low CD4+ counts, high viremia and a pro-inflammatory systemic profile. Anti-apoA-1 IgG can promote CD4+ lymphocyte apoptosis via undefined pathways.
Collapse
Affiliation(s)
- Nathalie Satta
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland; Clinical Chemistry and Proteomic Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland.
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland; Clinical Chemistry and Proteomic Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Fabrizio Montecucco
- First Medical Clinic, Laboratory of Phagocyte Physiopathology and Inflammation, Department of Internal Medicine, University of Genoa, 6 viale Benedetto XV 16132 Genoa, Italy; IRCCS AOU San Martino - IST, Genova, largo Benzi 10 16143 Genoa, Italy; Centre of Excellence for Biomedical Research (CEBR), University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Baris Gencer
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, 64 Avenue de la Roseraie, 1211 Geneva, Switzerland
| | - Laurent Kaiser
- Division of Infectious Diseases and of Laboratory Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alexandra Calmy
- Division of Infectious Diseases and of Laboratory Medicine, Geneva University Hospitals and Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland; Clinical Chemistry and Proteomic Group, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
34
|
Woudberg NJ, Pedretti S, Lecour S, Schulz R, Vuilleumier N, James RW, Frias MA. Pharmacological Intervention to Modulate HDL: What Do We Target? Front Pharmacol 2018; 8:989. [PMID: 29403378 PMCID: PMC5786575 DOI: 10.3389/fphar.2017.00989] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 12/22/2017] [Indexed: 12/24/2022] Open
Abstract
The cholesterol concentrations of low-density lipoprotein (LDL) and high-density lipoprotein (HDL) have traditionally served as risk factors for cardiovascular disease. As such, novel therapeutic interventions aiming to raise HDL cholesterol have been tested in the clinical setting. However, most trials led to a significant increase in HDL cholesterol with no improvement in cardiovascular events. The complexity of the HDL particle, which exerts multiple physiological functions and is comprised of a number of subclasses, has raised the question as to whether there should be more focus on HDL subclass and function rather than cholesterol quantity. We review current data regarding HDL subclasses and subclass-specific functionality and highlight how current lipid modifying drugs such as statins, cholesteryl ester transfer protein inhibitors, fibrates and niacin often increase cholesterol concentrations of specific HDL subclasses. In addition this review sets out arguments suggesting that the HDL3 subclass may provide better protective effects than HDL2.
Collapse
Affiliation(s)
- Nicholas J. Woudberg
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sarah Pedretti
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sandrine Lecour
- Hatter Institute for Cardiovascular Research in Africa and South African Medical Research Council Inter-University Cape Heart Group, Department of Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University Giessen, Giessen, Germany
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Richard W. James
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Miguel A. Frias
- Division of Endocrinology, Diabetes, Hypertension and Nutrition, Department of Internal Medicine Specialities, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
35
|
Antiochos P, Marques-Vidal P, Virzi J, Pagano S, Satta N, Hartley O, Montecucco F, Mach F, Kutalik Z, Waeber G, Vollenweider P, Vuilleumier N. Impact of CD14 Polymorphisms on Anti-Apolipoprotein A-1 IgG-Related Coronary Artery Disease Prediction in the General Population. Arterioscler Thromb Vasc Biol 2017; 37:2342-2349. [PMID: 29074586 DOI: 10.1161/atvbaha.117.309602] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 10/10/2017] [Indexed: 11/16/2022]
Abstract
OBJECTIVE We aimed to determine whether autoantibodies against apoA-1 (apolipoprotein A-1; anti-apoA-1 IgG) predict incident coronary artery disease (CAD), defined as adjudicated incident myocardial infarction, angina, percutaneous coronary revascularization, or bypass grafting, in the general population. We further investigated whether this association is modulated by a functional CD14 receptor single nucleotide polymorphism. APPROACH AND RESULTS In a prospectively studied, population-based cohort of 5220 subjects (mean age 52.6±10.7 years, 47.4% males), followed over a median period of 5.6 years, subjects positive versus negative for anti-apoA-1 IgG presented a total CAD rate of 3.9% versus 2.8% (P=0.077) and a nonfatal CAD rate of 3.6% versus 2.3% (P=0.018), respectively. After multivariate adjustment for established cardiovascular risk factors, the hazard ratios of anti-apoA-1 IgG for total and nonfatal CAD were: hazard ratio=1.36 (95% confidence interval, 0.94-1.97; P=0.105) and hazard ratio=1.53 (95% confidence interval, 1.03-2.26; P=0.034), respectively. In subjects with available genetic data for the C260T rs2569190 single nucleotide polymorphism in the CD14 receptor gene (n=4247), we observed a significant interaction between anti-apoA-1 IgG and rs2569190 allele status with regards to CAD risk, with anti-apoA-1 IgG conferring the highest risk for total and nonfatal CAD in non-TT carriers, whereas being associated with the lowest risk for total and nonfatal CAD in TT homozygotes (P for interaction =0.011 and P for interaction =0.033, respectively). CONCLUSIONS Anti-apoA-1 IgG are independent predictors of nonfatal incident CAD in the general population. The strength of this association is dependent on a functional polymorphism of the CD14 receptor gene, a finding suggesting a gene-autoantibody interaction for the development of CAD.
Collapse
Affiliation(s)
- Panagiotis Antiochos
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.).
| | - Pedro Marques-Vidal
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Julien Virzi
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Sabrina Pagano
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Nathalie Satta
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Oliver Hartley
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Fabrizio Montecucco
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - François Mach
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Zoltan Kutalik
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Gerard Waeber
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Peter Vollenweider
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| | - Nicolas Vuilleumier
- From the Department of Internal Medicine, University Hospital of Lausanne, Switzerland (P.A., P.M.-V., G.W., P.V.); Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Switzerland (J.V., S.P., N.S., F. Montecucco, N.V.); Department of Human Protein Sciences, Faculty of Medicine, (J.V., S.P., N.S., N.V.), Department of Pathology and Immunology, Faculty of Medicine (O.H.), and Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties (F. Montecucco, F. Mach), University of Geneva, Switzerland; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Italy (F. Montecucco); Institute of Social and Preventive Medicine, University Hospital of Lausanne, Switzerland (Z.K.); and Swiss Institute of Bioinformatics, Lausanne, Switzerland (Z.K.)
| |
Collapse
|
36
|
Atherosclerosis in systemic lupus erythematosus. Best Pract Res Clin Rheumatol 2017; 31:364-372. [PMID: 29224678 DOI: 10.1016/j.berh.2017.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/05/2017] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease (CVD), comprising coronary heart disease and stroke, is one of the most important causes of death in patients with systemic lupus erythematosus (SLE). The risks of developing both clinical CVD and sub-clinical atherosclerosis are increased in patients with SLE. This increase is not fully explained by traditional cardiovascular risk factors such as smoking, hypertension and elevated cholesterol, and it is believed that immune dysfunction also contributes to CVD risk in SLE. In particular, recent studies have shown that abnormalities in both serum lipid profile and the autoantibody and T lymphocyte response to lipids may play a role in development of atherosclerosis. The standard CVD risk calculation algorithms based on traditional risk factors underestimate the risk of developing CVD in patients with SLE. Thus, novel algorithms incorporating new biomarkers such as pro-inflammatory high-density lipoprotein and use of imaging techniques such as carotid ultrasound scanning may become increasingly valuable.
Collapse
|
37
|
Antiochos P, Marques-Vidal P, Virzi J, Pagano S, Satta N, Hartley O, Montecucco F, Mach F, Kutalik Z, Waeber G, Vollenweider P, Vuilleumier N. Anti-Apolipoprotein A-1 IgG Predict All-Cause Mortality and Are Associated with Fc Receptor-Like 3 Polymorphisms. Front Immunol 2017; 8:437. [PMID: 28458671 PMCID: PMC5394854 DOI: 10.3389/fimmu.2017.00437] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/28/2017] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) have emerged as an independent biomarker for cardiovascular disease and mortality. However, their association with all-cause mortality in the community, as well as their genetic determinants, have not been studied. OBJECTIVE To determine whether anti-apoA-1 IgG: (a) predict all-cause mortality in the general population and (b) are associated with single-nucleotide polymorphisms (SNPs) in a genome-wide association study (GWAS). METHODS Clinical, biological, and genetic data were obtained from the population-based, prospective CoLaus study, including 5,220 participants (mean age 52.6 years, 47.3% men) followed over a median duration of 5.6 years. The primary study outcome was all-cause mortality. RESULTS After multivariate adjustment, anti-apoA-1 IgG positivity independently predicted all-cause mortality: hazard ratio (HR) = 1.54, 95% confidence interval (95% CI): 1.11-2.13, P = 0.01. A dose-effect relationship was also observed, each SD of logarithmically transformed anti-apoA-1 IgG being associated with a 15% increase in mortality risk: HR = 1.15, 95% CI: 1.02-1.28, P = 0.028. The GWAS yielded nine SNPs belonging to the Fc receptor-like 3 (FCRL3) gene, which were significantly associated with anti-apoA-1 IgG levels, with the lead SNP (rs6427397, P = 1.54 × 10-9) explaining 0.67% of anti-apoA-1 IgG level variation. CONCLUSION Anti-apoA-1 IgG levels (a) independently predict all-cause mortality in the general population and (b) are linked to FCRL3, a susceptibility gene for numerous autoimmune diseases. Our findings indicate that preclinical autoimmunity to anti-apoA-1 IgG may represent a novel mortality risk factor.
Collapse
Affiliation(s)
- Panagiotis Antiochos
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Pedro Marques-Vidal
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Virzi
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Sabrina Pagano
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Nathalie Satta
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| | - Oliver Hartley
- Faculty of Medicine, Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Fabrizio Montecucco
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, Genoa, Italy
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, Department of Medical Specialties, University of Geneva, Geneva, Switzerland
| | - Zoltán Kutalik
- Institute of Social and Preventive Medicine, University Hospital of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gerard Waeber
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Peter Vollenweider
- Department of Internal Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- Faculty of Medicine, Department of Human Protein Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
38
|
Liu X, Li J, Peng X, Lv B, Wang P, Zhao X, Yu B. Geraniin Inhibits LPS-Induced THP-1 Macrophages Switching to M1 Phenotype via SOCS1/NF-κB Pathway. Inflammation 2017; 39:1421-33. [PMID: 27290719 DOI: 10.1007/s10753-016-0374-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
M1 macrophage polarization is proved to promote inflammation in atherosclerosis process. In this study, we evaluated the inhibitory effect of geraniin, a bioactive polyphenolic compound, on the LPS-induced switch of THP-1 macrophages to M1 phenotype, and we propose a molecular basis for its action. Flow cytometry analysis indicated that geraniin significantly inhibited LPS-induced M1 macrophage polarization. Geraniin downregulated the protein and the mRNA level of typical cytokines of M1 macrophage, including tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), indicating that geraniin can suppress typical mediators of M1 macrophage at the transcriptional level. Moreover, geraniin inhibited LPS-induced reactive oxygen species (ROS) and nitric oxide (NO) production, as well as inducible nitric oxide synthase (iNOS) activity, in THP-1 macrophages. Furthermore, western blot analysis indicated that geraniin decreased both LPS-induced phosphorylation of NF-κB-p65 and NF-κB-p65 expression without affecting the level of IκB-α. This suggested that geraniin inhibited NF-κB, a transcription factor pivotal in the LPS-induced expression of pro-inflammatory genes and an important player in M1 macrophage polarization. Moreover, an electrophoretic mobility shift assay (EMSA) demonstrated that geraniin blocked the LPS-induced translocation of NF-κB to the nucleus. Moreover, we found that geraniin up-regulated the expression of SOCS1, an upstream regulator of NF-κB activation that can directly bind to NF-κB-p65 and downregulate it, thus inhibiting NF-κB activation. In conclusion, geraniin inhibits LPS-induced THP-1 macrophages switching to M1 phenotype through SOCS1/NF-κB pathway.
Collapse
Affiliation(s)
- Xinxin Liu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Ji Li
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Xiaohong Peng
- Heilongjiang Province Lumber Industry General Hospital, Harbin, 150040, China
| | - Bo Lv
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China
| | - Peng Wang
- Engineering Research Center of Forest Bio-preparation, Ministry of Education, Northeast Forestry University, Harbin, 150040, China
| | - Xiaoming Zhao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Department of Cardiology, Vanderbilt University Medical Center, Nashville, 37232, USA.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
39
|
Batuca JR, Amaral MC, Favas C, Paula FS, Ames PRJ, Papoila AL, Delgado Alves J. Extended-release niacin increases anti-apolipoprotein A-I antibodies that block the antioxidant effect of high-density lipoprotein-cholesterol: the EXPLORE clinical trial. Br J Clin Pharmacol 2017; 83:1002-1010. [PMID: 27891663 DOI: 10.1111/bcp.13198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/18/2016] [Accepted: 11/14/2016] [Indexed: 12/15/2022] Open
Abstract
AIMS Extended-release niacin (ERN) is the most effective agent for increasing high-density lipoprotein-cholesterol (HDL-C). Having previously identified anti-HDL antibodies, we investigated whether ERN affected the antioxidant capacity of HDL and whether ERN was associated with the production of antibodies against HDL (aHDL) and apolipoprotein A-I (aApoA-I). METHODS Twenty-one patients older than 18 years, with HDL-C ≤40 mg dl-1 (men) or ≤50 mg dl-1 (women) were randomly assigned to receive daily ERN (n = 10) or placebo (n = 11) for two sequential 12-week periods, with 4 weeks of wash-out before cross-over. Primary outcome was change of paraoxonase-1 (PON1) activity and secondary outcomes were changes in aHDL and aApoA-I antibodies. Clinical Trial Unique Identifier: EudraCT 2006-006889-42. RESULTS The effect of ERN on PON1 activity was nonsignificant (coefficient estimate 20.83 U l-1 , 95% confidence interval [CI] -9.88 to 51.53; P = 0.184). ERN was associated with an increase in HDL-C levels (coefficient estimate 5.21 mg dl-1 , 95% CI 1.16 to 9.25; P = 0.012) and its subclasses HDL2 (coefficient estimate 2.46 mg dl-1 , 95% CI 0.57 to 4.34; P = 0.011) and HDL3 (coefficient estimate 2.73 mg dl-1 , 95% CI 0.47 to 4.98; P = 0.018). ERN was significantly associated with the production of aApoA-I antibodies (coefficient estimate 0.25 μg ml-1 , 95% CI 0.09-0.40; P = 0.001). aApoA-I titres at baseline were correlated with decreased PON activity. CONCLUSIONS The rise in HDL-C achieved with ERN was not matched by improved antioxidant capacity, eventually hampered by the emergence of aApoA-I antibodies. These results may explain why Niacin and other lipid lowering agents fail to reduce cardiovascular risk.
Collapse
Affiliation(s)
- Joana R Batuca
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Marta C Amaral
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Catarina Favas
- Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Filipe S Paula
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| | - Paul R J Ames
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Ana L Papoila
- CEAUL, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisbon, Portugal
| | - José Delgado Alves
- CEDOC, NOVA Medical School
- Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.,Department of Medicine IV / Immune-mediated Systemic Diseases Unit, Fernando Fonseca Hospital, Amadora, Portugal
| |
Collapse
|
40
|
High-density Lipoprotein and Inflammation and Its Significance to Atherosclerosis. Am J Med Sci 2016; 352:408-415. [DOI: 10.1016/j.amjms.2016.06.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 06/06/2016] [Accepted: 06/24/2016] [Indexed: 01/09/2023]
|
41
|
Antiochos P, Marques-Vidal P, Virzi J, Pagano S, Satta N, Bastardot F, Hartley O, Montecucco F, Mach F, Waeber G, Vollenweider P, Vuilleumier N. Association between anti-apolipoprotein A-1 antibodies and cardiovascular disease in the general population. Results from the CoLaus study. Thromb Haemost 2016; 116:764-771. [PMID: 27384400 DOI: 10.1160/th16-03-0248] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 06/01/2016] [Indexed: 12/13/2022]
Abstract
We aimed to determine the association between autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) and prevalent cardiovascular (CV) disease (CVD) as well as markers of CV risk in the general population. Cross-sectional data were obtained from 6649 subjects (age 52.6 ± 10.7 years, 47.4 % male) of the population-based CoLaus study. CVD was defined as myocardial infarction, angina pectoris, percutaneous revascularisation or bypass grafting for ischaemic heart disease stroke or transient ischaemic attack, and was assessed according to standardised medical records. Anti-apoA-1 IgG and biological markers were measured by ELISA and conventional automated techniques, respectively. Prevalence of high anti-apoA-1 IgG levels in the general population was 19.9 %. Presence of anti-apoA-1 IgG was significantly associated with CVD [odds ratio 1.34, 95 % confidence interval (1.05-1.70), p=0.018], independently of established CV risk factors (CVRFs) including age, sex, hypertension, smoking, diabetes, low and high-density lipoprotein cholesterol levels. The n=455 (6.8 %) study participants with a history of CVD (secondary prevention subgroup) presented higher median anti-ApoA-1 IgG values compared with subjects without CVD (p=0.029). Among patients in the secondary prevention subgroup, those with positive anti-apoA-1 IgG levels had lower HDL (p=0.002) and magnesium (p=0.001) levels, but increased uric acid and high-sensitivity C-reactive protein levels (p=0.022, and p<0.001, respectively) compared to patients with negative anti-apoA-1 IgG levels. In conclusion, anti-apoA-1 IgG levels are independently associated with CVD in the general population and also related to CV biomarkers in secondary prevention. These findings indicate that anti-apoA-1 IgG may represent a novel CVRF and need further study in prospective cohorts.
Collapse
Affiliation(s)
- Panagiotis Antiochos
- Dr. Panagiotis Antiochos, CoLaus Study, Bâtiment des Instituts, 19, Rue du Bugnon, CH-1005 Lausanne, Switzerland, Tel.: +41 79 556 03 11, Fax: +41 21 314 80 37, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Carbone F, Satta N, Montecucco F, Virzi J, Burger F, Roth A, Roversi G, Tamborino C, Casetta I, Seraceni S, Trentini A, Padroni M, Dallegri F, Lalive PH, Mach F, Fainardi E, Vuilleumier N. Anti-ApoA-1 IgG serum levels predict worse poststroke outcomes. Eur J Clin Invest 2016; 46:805-817. [PMID: 27490973 DOI: 10.1111/eci.12664] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/01/2016] [Indexed: 12/17/2022]
Abstract
BACKGROUND Autoantibodies to apolipoprotein A-1 (anti-ApoA-1 IgG) were shown to predict major adverse cardiovascular events and promote atherogenesis. However, their potential relationship with clinical disability and ischaemic lesion volume after acute ischaemic stroke (AIS) remains unexplored. MATERIALS AND METHODS We included n = 76 patients admitted for AIS and we investigated whether baseline serum anti-ApoA-1 IgG levels could predict (i) AIS-induced clinical disability [assessed by the modified Rankin Scale (mRS)], and (ii) AIS-related ischaemic lesion volume [assessed by Computed Tomography (CT)]. We also evaluated the possible pro-apoptotic and pro-necrotic effects of anti-ApoA-1 IgG on human astrocytoma cell line (U251) using flow cytometry. RESULTS High levels of anti-ApoA-1 IgG were retrieved in 15·8% (12/76) of patients. Increased baseline levels of anti-ApoA-1 IgG were independently correlated with worse mRS [β = 0·364; P = 0·002; adjusted odds ratio (OR): 1·05 (95% CI 1·01-1·09); P = 0·017] and CT-assessed ischaemic lesion volume [β = 0·333; P < 0·001; adjusted OR: 1·06 (95% CI 1·01-1·12); P = 0·048] at 3 months. No difference in baseline clinical, biochemical and radiological characteristics was observed between patients with high vs. low levels of anti-ApoA-1 IgG. Incubating human astrocytoma cells with anti-ApoA-1 IgG dose dependently induced necrosis and apoptosis of U251 cells in vitro. CONCLUSION Anti-ApoA-1 IgG serum levels at AIS onset are associated with poorer clinical recovery and worse brain lesion volume 3 months after AIS. These observations could be partly explained by the deleterious effect of anti-ApoA-1 IgG on human brain cell survival in vitro and may have clinical implication in the prediction of poor outcome in AIS.
Collapse
Affiliation(s)
- Federico Carbone
- First Clinic of Internal Medicine, Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
| | - Nathalie Satta
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino - IST, Genoa, Italy
- Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Genoa, Italy
| | - Julien Virzi
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Fabienne Burger
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Aline Roth
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Gloria Roversi
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Carmine Tamborino
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Ilaria Casetta
- Department of Biological, Psychiatric and Psychological Science, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Silva Seraceni
- Institute for Maternal and Child Health 'IRCCS Burlo Garofolo', Trieste, Italy
| | - Alessandro Trentini
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Padroni
- Section of Medical Biochemistry, Molecular Biology and Genetics, Department of Biomedical and Specialist Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Franco Dallegri
- First Clinic of Internal Medicine, Department of Internal Medicine, School of Medicine, University of Genoa, Genoa, Italy
- IRCCS AOU San Martino - IST, Genoa, Italy
| | - Patrice H Lalive
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - François Mach
- Division of Cardiology, Department of Medical Specialties, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria, Arcispedale S. Anna, Ferrara, Italy
| | - Nicolas Vuilleumier
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| |
Collapse
|
43
|
Pagano S, Carbone F, Burger F, Roth A, Bertolotto M, Pane B, Spinella G, Palombo D, Pende A, Dallegri F, Satta N, Virzi J, Fontana P, Mach F, Montecucco F, Vuilleumier N. Anti-apolipoprotein A-1 auto-antibodies as active modulators of atherothrombosis. Thromb Haemost 2016; 116:554-564. [PMID: 27356567 DOI: 10.1160/th16-03-0229] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/25/2016] [Indexed: 12/18/2022]
Abstract
Humoral autoimmune-mediated inflammation plays a role in atherogenesis, and potentially in arterial thrombosis. Anti-apolipoprotein A-1 (apoA-1) IgG have been reported to represent emergent mediators of atherogenesis through Toll-like receptors (TLR) 2, 4 and CD14 signalling. We investigated the role of anti-apoA-1 IgG on tissue factor (TF) expression and activation, a key coagulation regulator underlying atherothrombosis. Atherothrombosis features were determined by immunohistochemical TF staining of human carotid biopsies derived from patients with severe carotid stenosis undergoing elective surgery (n=176), and on aortic roots of different genetic backgrounds mice (ApoE-/-; TLR2-/-ApoE-/- and TLR4-/-ApoE-/-) exposed to passive immunisation with anti-apoA-1 IgG. Human serum levels of anti-apoA-1 IgG were measured by ELISA. In vitro, on human-monocyte-derived-macrophages (HMDM) the anti-apoA-1 IgG increased TF expression and activity were analysed by FACS and chromogenic assays in presence of different pharmacological inhibitors. Human serum anti-apoA-1 IgG levels significantly correlated to intraplaque TF expression in carotid biopsies (r=0.31, p<0.001), which was predictive of clinically symptomatic lesions. On HMDM, anti-apoA-1 IgG induced a TLR2, 4 and CD14-dependent increase in TF expression and activity, involving NF-kappaB and a c-Jun N-terminal kinase-dependent AP-1 transcription factors. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation significantly enhanced intraplaque TF expression when compared to control IgG. This effect was lost in both TLR2-/-ApoE-/- and TLR4-/-ApoE-/- mice. These results demonstrate that anti-apoA-1 IgG are associated with TF expression in human atherosclerotic plaques, induce TF expression in vitro and in vivo through TLR2 and 4 signalling, supporting a possible causal relationship between anti-apoA-1 IgG and atherothrombosis.
Collapse
Affiliation(s)
- Sabrina Pagano
- Sabrina Pagano, PhD, Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle Perret-Gentil, 1205 Geneva, Switzerland, Tel.: +41 22 37 95 321, Fax: +41 22 3795502, E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chistiakov DA, Orekhov AN, Bobryshev YV. ApoA1 and ApoA1-specific self-antibodies in cardiovascular disease. J Transl Med 2016; 96:708-18. [PMID: 27183204 DOI: 10.1038/labinvest.2016.56] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 03/21/2016] [Accepted: 04/03/2016] [Indexed: 12/15/2022] Open
Abstract
Apolipoprotein A1 (ApoA1) is a main protein moiety in high-density lipoprotein (HDL) particles. Generally, ApoA1 and HDL are considered as atheroprotective. In prooxidant and inflammatory microenvironment in the vicinity to the atherosclerotic lesion, ApoA1/HDL are subjected to modification. The chemical modifications such as oxidation, nitration, etc result in altering native architecture of ApoA1 toward dysfunctionality and abnormality. Neutrophil myeloperoxidase has a prominent role in this mechanism. Neo-epitopes could be formed and then exposed that makes them immunogenic. Indeed, these epitopes may be recognized by immune cells and induce production of proatherogenic ApoA1-specific IgG antibodies. These antibodies are biologically relevant because they are able to react with Toll-like receptor (TLR)-2 and TLR4 in target cells and induce a variety of pro-inflammatory responses. Epidemiological and functional studies underline a prognostic value of ApoA1 self-antibodies for several cardiovascular diseases, including myocardial infarction, acute coronary syndrome, and severe carotid stenosis.
Collapse
Affiliation(s)
- Dimitry A Chistiakov
- Department of Molecular Genetic Diagnostics and Cell Biology, Division of Laboratory Medicine, Institute of Pediatrics, Research Center for Children's Health, Moscow, Russia
| | - Alexander N Orekhov
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Biology, Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Yuri V Bobryshev
- Institute of General Pathology and Pathophysiology, Russian Academy of Sciences, Moscow, Russia.,Faculty of Medicine, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,School of Medicine, University of Western Sydney, Campbelltown, NSW, Australia
| |
Collapse
|
45
|
Annema W, von Eckardstein A. Dysfunctional high-density lipoproteins in coronary heart disease: implications for diagnostics and therapy. Transl Res 2016; 173:30-57. [PMID: 26972566 DOI: 10.1016/j.trsl.2016.02.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/15/2016] [Accepted: 02/17/2016] [Indexed: 12/18/2022]
Abstract
Low plasma levels of high-density lipoprotein (HDL) cholesterol are associated with increased risks of coronary heart disease. HDL mediates cholesterol efflux from macrophages for reverse transport to the liver and elicits many anti-inflammatory and anti-oxidative activities which are potentially anti-atherogenic. Nevertheless, HDL has not been successfully targeted by drugs for prevention or treatment of cardiovascular diseases. One potential reason is the targeting of HDL cholesterol which does not capture the structural and functional complexity of HDL particles. Hundreds of lipid species and dozens of proteins as well as several microRNAs have been identified in HDL. This physiological heterogeneity is further increased in pathologic conditions due to additional quantitative and qualitative molecular changes of HDL components which have been associated with both loss of physiological function and gain of pathologic dysfunction. This structural and functional complexity of HDL has prevented clear assignments of molecules to the functions of normal HDL and dysfunctions of pathologic HDL. Systematic analyses of structure-function relationships of HDL-associated molecules and their modifications are needed to test the different components and functions of HDL for their relative contribution in the pathogenesis of atherosclerosis. The derived biomarkers and targets may eventually help to exploit HDL for treatment and diagnostics of cardiovascular diseases.
Collapse
Affiliation(s)
- Wijtske Annema
- Institute of Clinical Chemistry, University Hospital Zurich, Zurich, Switzerland
| | | |
Collapse
|
46
|
El-Lebedy D, Rasheed E, Kafoury M, Abd-El Haleem D, Awadallah E, Ashmawy I. Anti-apolipoprotein A-1 autoantibodies as risk biomarker for cardiovascular diseases in type 2 diabetes mellitus. J Diabetes Complications 2016; 30:580-5. [PMID: 26965796 DOI: 10.1016/j.jdiacomp.2016.02.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/04/2016] [Accepted: 02/16/2016] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Anti-Apolipoprotein A-1 autoantibodies (anti-ApoA-1 IgG) represent an emerging prognostic cardiovascular marker in patients with myocardial infarction or autoimmune diseases associated with high thrombotic events. The aim of this work is to investigate the incidence of anti-apoA-1 autoantibodies in type 2 diabetes (T2DM) patients with and without CVD and to study potential association with disease risk and its effect on plasma lipid parameters. METHODS Qualitative determination of anti-apoA-1 IgG was assayed in sera from 302 subjects classified into T2DM patients (n=102), T2DM+CVD (n=112) and healthy controls (n=88). RESULTS The incidence of anti-apoA-1 IgG was significantly higher among CVD patients (35.7%) than T2DM patients (8.8%) or control subjects (6.1%), p<0.0001. A significant association with CVD was identified (p<0.0001) and subjects who were positive for anti-apoA-1 IgG were at 8.5 times increased risk to develop CVD when compared to controls. Diabetic patients who were positive for the antibodies showed 5.7 times increased CVD risk. ROC analysis indicated anti-apoA-1 IgG as a risk biomarker for CVD in T2DM patients with an AUC value of 0.76, sensitivity of 35.7% and specificity of 91.2%. Studying the effect on lipid parameters, anti-apoA-1 IgG associated with significantly higher serum concentrations of TC and non-HDL-C in all groups and with higher concentrations of LDL-C in diabetic patients and higher TC/HDL-C ratio in CVD patients. CONCLUSION Our results indicate that anti-apoA-1 IgG is a cardiovascular risk biomarker in T2DM patients.
Collapse
Affiliation(s)
- Dalia El-Lebedy
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Enas Rasheed
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Mona Kafoury
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Dalia Abd-El Haleem
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Eman Awadallah
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| | - Ingy Ashmawy
- Department of Clinical and Chemical Pathology, Medical Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
47
|
Mannic T, Satta N, Pagano S, Python M, Virzi J, Montecucco F, Frias MA, James RW, Maturana AD, Rossier MF, Vuilleumier N. CD14 as a Mediator of the Mineralocorticoid Receptor-Dependent Anti-apolipoprotein A-1 IgG Chronotropic Effect on Cardiomyocytes. Endocrinology 2015; 156:4707-4719. [PMID: 26393305 DOI: 10.1210/en.2015-1605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In vitro and animal studies point to autoantibodies against apolipoprotein A-1 (anti-apoA-1 IgG) as possible mediators of cardiovascular (CV) disease involving several mechanisms such as basal heart rate interference mediated by a mineralocorticoid receptor-dependent L-type calcium channel activation, and a direct pro-inflammatory effect through the engagement of the toll-like receptor (TLR) 2/CD14 complex. Nevertheless, the possible implication of these receptors in the pro-arrhythmogenic effect of anti-apoA-1 antibodies remains elusive. We aimed at determining whether CD14 and TLRs could mediate the anti-apoA-1 IgG chronotropic response in neonatal rat ventricular cardiomyocytes (NRVC). Blocking CD14 suppressed anti-apoA-1 IgG binding to NRVC and the related positive chronotropic response. Anti-apoA-1 IgG alone induced the formation of a TLR2/TLR4/CD14 complex, followed by the phosphorylation of Src, whereas aldosterone alone promoted the phosphorylation of Akt by phosphatidylinositol 3-kinase (PI3K), without affecting the chronotropic response. In the presence of both aldosterone and anti-apoA-1 IgG, the localization of TLR2/TLR4/CD14 was increased in membrane lipid rafts, followed by PI3K and Src activation, leading to an L-type calcium channel-dependent positive chronotropic response. Pharmacological inhibition of the Src pathway led to the decrease of L-type calcium channel activity and abrogated the NRVC chronotropic response. Activation of CD14 seems to be a key regulator of the mineralocorticoid receptor-dependent anti-apoA-1 IgG positive chronotropic effect on NRVCs, involving relocation of the CD14/TLR2/TLR4 complex into lipid rafts followed by PI3K and Src-dependent L-type calcium channel activation.
Collapse
Affiliation(s)
- Tiphaine Mannic
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nathalie Satta
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Sabrina Pagano
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Magaly Python
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Julien Virzi
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Fabrizio Montecucco
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Miguel A Frias
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Richard W James
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Andres D Maturana
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Michel F Rossier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| | - Nicolas Vuilleumier
- Human Protein Sciences Department, Chemistry and Proteomic Group, Auto-immunity and Atherogenesis group; and Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine (T.M., N.S., J.V., F.M., N.V., M.F.R.), Geneva University Hospitals, 1201 Geneva, Switzerland; Department of Internal Medicine, Division of Endocrinology, Diabetology, Hypertension and Nutrition (M.P., M.A.F., R.W.J.), Geneva University Hospitals, Switzerland; Department of Bioengineering Sciences (A.D.M.), Graduate School of Bioagricultural Sciences, Furo-cho, Chikusa-ku, Nagoya 464-8601, Nagoya University, Japan; and Central Institute of the Hospital of Valais (M.F.R.), 1951 Sion, Switzerland
| |
Collapse
|
48
|
Rodríguez-Carrio J, Alperi-López M, López P, Ballina-García FJ, Abal F, Suárez A. Antibodies to high-density lipoproteins are associated with inflammation and cardiovascular disease in rheumatoid arthritis patients. Transl Res 2015; 166:529-39. [PMID: 26279255 DOI: 10.1016/j.trsl.2015.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 07/01/2015] [Accepted: 07/23/2015] [Indexed: 11/17/2022]
Abstract
Several lines of evidence suggest that chronic inflammation and immune dysregulation are related to altered lipid profiles in rheumatoid arthritis (RA), but the actual mechanisms are still unclear. We wondered whether the development of antibodies against high-density lipoprotein (HDL) can be found in RA patients linked to clinical and cardiovascular (CV) risk factors. To this end, immunoglobulin G (IgG) anti-HDL antibodies and total IgG serum levels were quantified in 212 RA patients, 131 sex- and age-matched healthy controls (HC), and 52 subjects with traditional CV risk factors (tCVRs). A subgroup of 13 RA patients was prospectively followed on TNFα-blockade. TNFα, interferon (IFN)α, MIP1α, IFNγ, IL-8, VEGF, GM-CSF, IL-17, MCP-1, SDF-1α, resistin, and leptin serum levels were quantified by immunoassays. IgG anti-HDL levels were higher in RA patients compared with HC (P < 0.0001) and tCVR subjects (P = 0.015). Differences with HC remained after correction for total IgG levels (P < 0.003). Anti-HDL/IgG were negatively associated with HDL levels in RA (-1.182 [-1.823 to -0.541], P = 0.0003) after adjusting for demographical, clinical, inflammatory parameters, and treatments. RA patients with high levels of anti-HDL/IgG (n = 40, 18.8%) were more likely to have experienced a CV event (P < 0.0001) and exhibited increased levels of several proinflammatory mediators (C-reactive protein, IFNα, MIP1α, IFNγ, IL-8, GM-CSF, IL-17 and MCP-1). Finally, change in anti-HDL antibodies on TNFα-blockade was independently associated with increasing HDL levels. Overall, IgG anti-HDL antibodies are increased in RA independently of tCVRs and associated with a proinflammatory milieu and impaired lipid blood profile, which may contribute to the increased rate of CV events in these patients.
Collapse
Affiliation(s)
- Javier Rodríguez-Carrio
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | - Mercedes Alperi-López
- Department of Rheumatology, Hospital Universitario Central de Asturias, Oviedo, Spain
| | - Patricia López
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain
| | | | - Francisco Abal
- Centro de Salud Sariego, Servicio de Salud del Principado de Asturias, Pola de Siero, Spain
| | - Ana Suárez
- Area of Immunology, Department of Functional Biology, University of Oviedo, Oviedo, Asturias, Spain.
| |
Collapse
|
49
|
Montecucco F, Braunersreuther V, Burger F, Lenglet S, Pelli G, Carbone F, Fraga-Silva R, Stergiopulos N, Monaco C, Mueller C, Pagano S, Dallegri F, Mach F, Vuilleumier N. Anti-apoA-1 auto-antibodies increase mouse atherosclerotic plaque vulnerability, myocardial necrosis and mortality triggering TLR2 and TLR4. Thromb Haemost 2015; 114:410-422. [PMID: 25879306 DOI: 10.1160/th14-12-1039] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 02/19/2015] [Indexed: 12/12/2022]
Abstract
Auto-antibodies to apolipoprotein A-1 (anti-apoA-1 IgG) were shown to promote inflammation and atherogenesis, possibly through innate immune receptors signalling. Here, we aimed at investigating the role of Toll-like receptors (TLR) 2 and 4 on anti-apoA-1 IgG-induced atherosclerotic plaque vulnerability, myocardial necrosis and mortality in mice. Adult male apolipoprotein E knockout (ApoE)-/- (n=72), TLR2-/-ApoE-/- (n=36) and TLR4-/-Apo-/- (n=28) mice were intravenously injected with 50 µg/mouse of endotoxin-free polyclonal anti-apoA-1 IgG or control isotype IgG (CTL IgG) every two weeks for 16 weeks. Atherosclerotic plaque size and vulnerability were assessed by histology. Myocardial ischaemia and necrosis, respectively, were determined by electrocardiographic (ECG) changes assessed by telemetry and serum troponin I (cTnI) measurements. Impact on survival was assessed by Kaplan-Meier analyses. In ApoE-/- mice, anti-apoA-1 IgG passive immunisation enhanced histological features of atherosclerotic plaque vulnerability (increase in neutrophil and MMP-9 and reduction in collagen content), induced a substantial cTnI elevation (p=0.001), and increased mortality rate by 23 % (LogRank, p=0.04) when compared to CTL IgG. On a subgroup of ApoE-/- mice equipped with telemetry (n=4), a significant ST-segment depression was noted in anti-apoA-1 IgG-treated mice when compared to CTL IgG recipients (p< 0.001), and an acute ST-segment elevation myocardial infarction preceding mouse death was observed in one case. The deleterious effects of anti-apoA-1 IgG on atherosclerotic plaque vulnerability, myocardial necrosis and death were partially reversed in TLR2-/-ApoE-/- and TLR4-/-ApoE-/- backgrounds. In conclusion, anti-apoA-1 auto-antibodies seem to be active mediators of atherosclerotic plaque vulnerability, myocardial necrosis, and mortality in mice through TLR2- and TLR4-mediated pathways.
Collapse
Affiliation(s)
- F Montecucco
- Fabrizio Montecucco, MD, PhD, Avenue de la Roseraie 64, Division of Laboratory Medicine and Department of Genetics and Laboratory Medicine, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil, 1205 Geneva, Switzerland, Tel.: +41 22 38 27 238, Fax: +41 22 38 27 245, E mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Pagano S, Gaertner H, Cerini F, Mannic T, Satta N, Teixeira PC, Cutler P, Mach F, Vuilleumier N, Hartley O. The Human Autoantibody Response to Apolipoprotein A-I Is Focused on the C-Terminal Helix: A New Rationale for Diagnosis and Treatment of Cardiovascular Disease? PLoS One 2015; 10:e0132780. [PMID: 26177543 PMCID: PMC4503694 DOI: 10.1371/journal.pone.0132780] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
Background Cardiovascular disease (CVD) is the leading cause of death worldwide and new approaches for both diagnosis and treatment are required. Autoantibodies directed against apolipoprotein A-I (ApoA-I) represent promising biomarkers for use in risk stratification of CVD and may also play a direct role in pathogenesis. Methodology To characterize the anti-ApoA-I autoantibody response, we measured the immunoreactivity to engineered peptides corresponding to the different alpha-helical regions of ApoA-I, using plasma from acute chest pain cohort patients known to be positive for anti-ApoA-I autoantibodies. Principal Findings Our results indicate that the anti-ApoA-I autoantibody response is strongly biased towards the C-terminal alpha-helix of the protein, with an optimized mimetic peptide corresponding to this part of the protein recapitulating the diagnostic accuracy for an acute ischemic coronary etiology (non-ST segment elevation myocardial infarction and unstable angina) obtainable using intact endogenous ApoA-I in immunoassay. Furthermore, the optimized mimetic peptide strongly inhibits the pathology-associated capacity of anti-ApoA-I antibodies to elicit proinflammatory cytokine release from cultured human macrophages. Conclusions In addition to providing a rationale for the development of new approaches for the diagnosis and therapy of CVD, our observations may contribute to the elucidation of how anti-ApoA-I autoantibodies are elicited in individuals without autoimmune disease.
Collapse
Affiliation(s)
- Sabrina Pagano
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Hubert Gaertner
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Fabrice Cerini
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Tiphaine Mannic
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Nathalie Satta
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
| | - Priscila Camillo Teixeira
- Pharmaceutical Sciences, Pharma Research and Early Development, F.Hoffmann-La Roche, Basel, Switzerland
| | - Paul Cutler
- Pharmaceutical Sciences, Pharma Research and Early Development, F.Hoffmann-La Roche, Basel, Switzerland
| | - François Mach
- Division of Cardiology, Foundation for Medical Researches, University of Geneva, Geneva, Switzerland
| | - Nicolas Vuilleumier
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Division of Laboratory Medicine, Department of Genetics and Laboratory Medicine, Geneva University Hospitals, Geneva, Switzerland
- * E-mail: (OH); (NV)
| | - Oliver Hartley
- Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- * E-mail: (OH); (NV)
| |
Collapse
|