1
|
van Marwick B, Sevastyanova TN, Wühler F, Schneider-Wald B, Loy C, Gravius S, Rädle M, Schilder A. A novel MIR imaging approach for precise detection of S. epidermidis biofilms in seconds. Biofilm 2025; 9:100270. [PMID: 40130066 PMCID: PMC11931313 DOI: 10.1016/j.bioflm.2025.100270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025] Open
Abstract
The impact of microbial biofilm growth poses a threat to both human health and the performance of industrial systems, manifesting as a global crisis with noteworthy economic implications for modern society. Exploring new methods and alternative approaches for the detection of biofilm signatures are imperative for developing optimized and cost-effective strategies that can help to identify early-stage biofilm formation. Clinical diagnostic technologies are constantly looking for more affordable, practical and faster methods of prevention and detection of chronic infections in periprosthetic joint infections (PJIs), which are often characterized by biofilm formation on implant surfaces. Staphylococcus epidermidis (SE) is especially known for its strong biofilm production and is considered a leading cause of biomaterial-associated infections, including PJIs. Implant-associated infections are severe and difficult to treat, therefore it is crucial to continue identifying bacterial biomarkers that contribute to its structural stability and attachment to implant surfaces. This study presents a pioneering approach for fast spectral detection of biofilm formation with a novel mid-infrared (MIR) scanning system. To highlight the advantages of our MIR system, we performed a comparative analysis with measurements from a commercially available Fourier-transform infrared (FTIR) scanner. We have assessed SE biofilms grown for 3 days comparing the processing times between a commercially available infrared (IR) scanning system (∼8 h/cm2), and our innovative scanning approach with rapid self-built MIR detection, achieving a reduction in scanning time to seconds. K-means clustering analysis identified pronounced differences in distribution of clusters, representing a significant variation between biofilm producing (RP62A) and non-biofilm producing (ATCC 12228) bacterial strains. The distribution serves as a critical tool for identifying biofilm phenotypes, particularly where poly-N-acetylglucosamine (PNAG), a key constituent of extracellular polymeric substances (EPS) in S. epidermidis, represents the dominant mass fraction in the samples analyzed by our infrared (IR) scanning systems. In addition to faster processing times, our novel MIR system demonstrated significantly higher sensitivity compared to FTIR, enabling clear differentiation between the chemical signatures of biofilm and planktonic strains. The corresponding novel approach integrates advanced data analytics with a newly designed rapid MIR prototype, enabling optimized and swift detection of biofilm signatures. These signatures, now recognized as critical targets in diagnosing complex infections, provide an alternative to traditional microbial detection methods in clinical diagnostics.
Collapse
Affiliation(s)
- Björn van Marwick
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Tatyana N. Sevastyanova
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Felix Wühler
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Barbara Schneider-Wald
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Cornelia Loy
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Sascha Gravius
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Matthias Rädle
- Mannheim Technical University, Paul-Wittsack-Straße 10, Mannheim, 68163, Germany
| | - Andreas Schilder
- Department of Orthopaedic and Trauma Surgery, University Medical Centre Mannheim, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
2
|
Anderson AC, Malloch T, Clarke AJ. From structure to function: Decoding peptidoglycan O-acetylation in pathogenic bacteria. Carbohydr Res 2025; 554:109517. [PMID: 40393299 DOI: 10.1016/j.carres.2025.109517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/26/2025] [Accepted: 05/09/2025] [Indexed: 05/22/2025]
Abstract
Numerous pathogenic and non-pathogenic bacteria modulate the structure of their cell wall to escape the action of lytic enzymes that target it, threatening cell integrity. Of these modifications, the most taxonomically widespread is the addition of an acetyl to the C6 hydroxyl group of muramyl residues within the essential cell-wall heteropolymer peptidoglycan. This modification is found in many clinically important pathogens, including the WHO priority pathogens Neisseria gonorrhoeae, Staphylococcus aureus, Enterococcus faecium, and Streptococcus pneumoniae. In this review, we summarize the last 60 years of discoveries about the genetics, biochemistry, structural biology, and cellular metabolism that underlie this enigmatic bacterial self-defence mechanism.
Collapse
Affiliation(s)
- Alexander C Anderson
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Tyler Malloch
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada
| | - Anthony J Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, N1G 2W1, Canada; Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, ON, N2L 3C5, Canada.
| |
Collapse
|
3
|
Nowrouzian FL, Lumingkit K, Gio-Batta M, Jaén-Luchoro D, Thordarson T, Elfvin A, Wold AE, Adlerberth I. Tracing Staphylococcus capitis and Staphylococcus epidermidis strains causing septicemia in extremely preterm infants to the skin, mouth, and gut microbiota. Appl Environ Microbiol 2025; 91:e0098024. [PMID: 39692500 PMCID: PMC11784025 DOI: 10.1128/aem.00980-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Abstract
Coagulase-negative staphylococci (CoNS) comprise about 50 species, some of which cause septicemia in preterm neonates. CoNS establish early on the skin and in the oral and gut microbiota, from where they may spread to the bloodstream. The colonization pattern preceding septicemia is not well-defined. Forty-two extremely preterm neonates (≤28 + 0 gestational weeks) were followed from birth to 2 months with regular sampling and culturing of the skin and oral and gut microbiota. Blood samples were drawn upon clinical suspicion of septicemia and cultured. CoNS species were identified using matrix-assisted laser-desorption ionization time of flight mass spectrometry (MALDI-TOF). Random amplified polymorphic DNA was used for strain typing, and strains were characterized regarding biofilm production and virulence gene carriage. CoNS blood isolates underwent whole genome sequencing. Staphylococcus epidermidis represented 72% of the CoNS isolates on skin or mucous membranes, followed by Staphylococcus capitis (13%) and Staphylococcus haemolyticus (7%). CoNS septicemia was diagnosed in nine infants, yielding 11 septicemia isolates: seven S. capitis and four S. epidermidis, of which nine were further analyzed. The S. capitis septicemia isolates belonged to the NRCS-A clone. Two-thirds of the septicemia strains were traced back to the commensal microbiota. Colonization of the oral cavity by S. capitis was significantly associated with CoNS septicemia development, although the blood-borne S. capitis strains were more commonly found on the skin than in the mouth prior to invasion. Biofilm production was not associated with septicemia. Our results implicate CoNS colonization as a step that precedes septicemia in preterm neonates. Early colonization of the oral cavity by S. capitis may represent a particular risk. IMPORTANCE Septicemia is a major cause of morbidity in preterm infants. Coagulase-negative staphylococci (CoNS) can colonize skin, oral cavity, and intestines and are a common cause of septicemia in this group. The relation between CoNS colonization pattern at the species and strain level and septicemia has scarcely been studied. We mapped colonization of the skin, oral cavity, and intestines by CoNS species in extremely preterm infants and speciated and strain-typed the skin, mucosal, and blood isolates. Two-thirds of the CoNS septicemia blood strains, including a majority of S. capitis strains belonging to the NRCS-A clone, were tracked to the commensal microbiota. We demonstrated that CoNS species differ in their colonization patterns, whereby S. capitis was primarily a skin colonizer. However, its colonization of the oral cavity was enhanced among infants developing septicemia. Our study provides a starting point for further explorations of the relationship between CoNS colonization and septicemia in preterm infants.
Collapse
Affiliation(s)
- Forough L. Nowrouzian
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kirth Lumingkit
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Monica Gio-Batta
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Daniel Jaén-Luchoro
- Department of Clinical Microbiology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Thordur Thordarson
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anders Elfvin
- Institute of Clinical Science, Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Sahlgrenska University Hospital, The Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Agnes E. Wold
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingegerd Adlerberth
- Institute of Biomedicine, Department of Infectious Diseases,The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Burke Ó, Zeden MS, O’Gara JP. The pathogenicity and virulence of the opportunistic pathogen Staphylococcus epidermidis. Virulence 2024; 15:2359483. [PMID: 38868991 PMCID: PMC11178275 DOI: 10.1080/21505594.2024.2359483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/19/2024] [Indexed: 06/14/2024] Open
Abstract
The pervasive presence of Staphylococcus epidermidis and other coagulase-negative staphylococci on the skin and mucous membranes has long underpinned a casual disregard for the infection risk that these organisms pose to vulnerable patients in healthcare settings. Prior to the recognition of biofilm as an important virulence determinant in S. epidermidis, isolation of this microorganism in diagnostic specimens was often overlooked as clinically insignificant with potential delays in diagnosis and onset of appropriate treatment, contributing to the establishment of chronic infection and increased morbidity or mortality. While impressive progress has been made in our understanding of biofilm mechanisms in this important opportunistic pathogen, research into other virulence determinants has lagged S. aureus. In this review, the broader virulence potential of S. epidermidis including biofilm, toxins, proteases, immune evasion strategies and antibiotic resistance mechanisms is surveyed, together with current and future approaches for improved therapeutic interventions.
Collapse
Affiliation(s)
- Órla Burke
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| | | | - James P. O’Gara
- Microbiology, School of Biological and Chemical Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
5
|
Hu TY, Montgomery JA. How to Approach Patients with Cardiac Implantable Electronic Devices and Bacteremia. Card Electrophysiol Clin 2024; 16:373-382. [PMID: 39461828 DOI: 10.1016/j.ccep.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The approach to a patient with a cardiac implantable electronic device (CIED) and bacteremia requires a high index of suspicion. The microorganism and duration of bacteremia affect the pretest probability of CIED infection. When transesophageal echocardiography findings are equivocal, fluorodeoxyglucose-PET/computed tomography can increase the sensitivity and specificity for CIED infection. Confirmed CIED infection warrants complete system extraction. In patients with persistent gram-positive bacteremia despite antimicrobial therapy and unclear involvement of the CIED, the device is sometimes empirically extracted. Long-term effects of extraction (such as risk of suboptimal/failed cardiac resynchronization therapy reimplant) should be factored into decisions regarding empiric CIED extraction.
Collapse
Affiliation(s)
- Tiffany Ying Hu
- Division of Cardiovascular Medicine, Arrhythmia Section, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jay Alan Montgomery
- Division of Cardiovascular Medicine, Arrhythmia Section, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
6
|
Han W, Xiao Y, Shen L, Yuan X, Yu J, Gao H, Hu R, Shi J, Wang B, Zhang J, Zhou P, Wan C, Huang Y, Lv J, Yu F. The roles of cell wall inhibition responsive protein CwrA in the pathogenicity of Staphylococcus aureus. Virulence 2024; 15:2411540. [PMID: 39359063 PMCID: PMC11457683 DOI: 10.1080/21505594.2024.2411540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 07/13/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
The ability to form robust biofilms and secrete a diverse array of virulence factors are key pathogenic determinants of Staphylococcus aureus, causing a wide range of infectious diseases. Here, we characterized cwrA as a VraR-regulated gene encoding a cell wall inhibition-responsive protein (CwrA) using electrophoretic mobility shift assays. We constructed cwrA deletion mutants in the genetic background of methicillin-resistant S. aureus (MRSA) and methicillin-sensitive S. aureus (MSSA) strains. Phenotypic analyses indicated that deletion of cwrA led to impaired biofilm formation, which was correlated with polysaccharide intercellular adhesin (PIA). Besides, the results of real-time quantitative PCR (RT-qPCR) and β-galactosidase activity assay revealed that CwrA promoted biofilm formation by influence the ica operon activity in S. aureus. Furthermore, cwrA deletion mutants released less extracellular DNA (eDNA) in the biofilm because of their reduced autolytic activity compared to the wild-type (WT) strains. We also found that cwrA deletion mutant more virulence than the parental strain because of its enhanced hemolytic activity. Mechanistically, this phenotypic alteration is related to activation of the SaeRS two-component system, which positively regulates the transcriptional levels of genes encoding membrane-damaging toxins. Overall, our results suggest that CwrA plays an important role in modulating biofilm formation and hemolytic activity in S. aureus.
Collapse
Affiliation(s)
- Weihua Han
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yanghua Xiao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Li Shen
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Xinru Yuan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jingyi Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Haojin Gao
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Rongrong Hu
- Shanghai Institute of Immunity and Infection, Chinese Academy of Science, Shanghai, People’s Republic of China
| | - Junhong Shi
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Bingjie Wang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jiao Zhang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Peiyao Zhou
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Cailing Wan
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Yu Huang
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - JianBo Lv
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Fangyou Yu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| |
Collapse
|
7
|
Chen X, Sun H, Wang W, Wang H, Tan R, Zhu T. SarZ inhibits the hemolytic activity through regulation of phenol soluble modulins in Staphylococcus epidermidis. Front Cell Infect Microbiol 2024; 14:1476287. [PMID: 39628668 PMCID: PMC11612630 DOI: 10.3389/fcimb.2024.1476287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/17/2024] [Indexed: 12/06/2024] Open
Abstract
Background Staphylococcus epidermidis is an important conditionally pathogenic bacterium. SarZ, belonging to the SarA family protein, has been demonstrated in S. aureus to promote the expression of invasive virulence factors while inhibiting biofilm formation. However, the regulatory role of SarZ on S. epidermidis virulence is not completely understood. Results In this study, we successfully deleted the sarZ gene by allelic replacement in S. epidermidis. The sarZ mutant strain exhibited remarkably increased hemolytic activity and drastically impaired biofilm formation, suggesting that SarZ is key regulator of virulence in S. epidermidis. Through butanol extraction of the spent medium and HPLC-MS/MS analysis, production of phenol soluble modulins (PSMs) possessing cytolytic effect was found to be elevated significantly in the mutant. Subsequent qRT-PCR experiments demonstrated that expression of the psm genes, especially the β-type, was upregulated dramatically in the mutant. Meanwhile, transcription of icaA gene responsible for biofilm formation was sharply diminished. The sarZ psmβ double mutant was further generated and displayed a significantly decreased hemolytic activity compared with the sarZ mutant. EMSA assays implied that recombinant SarZ protein can directly bind to the promoter regions of the psmβ and ica operon. DNase I footprinting assays further pinpointed two SarZ-binding sites on the psmβ operon promoter. Conclusion Taken together, the results confirmed that SarZ is a pivotal regulator of virulence in S. epidermidis and might respectively regulate the hemolytic activity and biofilm formation mainly by directly controlling the transcription of psm genes, particularly the β-type, and the ica operon.
Collapse
Affiliation(s)
- Xiao Chen
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Huiru Sun
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Wei Wang
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Han Wang
- Department of Pharmacy, Wannan Medical College, Wuhu, China
| | - Runan Tan
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| | - Tao Zhu
- Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, China
| |
Collapse
|
8
|
Crossman L, Sims L, Dean R, Felgate H, Calvo TD, Hill C, McNamara I, Webber MA, Wain J. Sticking together: independent evolution of biofilm formation in different species of staphylococci has occurred multiple times via different pathways. BMC Genomics 2024; 25:812. [PMID: 39198733 PMCID: PMC11350952 DOI: 10.1186/s12864-024-10719-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/16/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Staphylococci cause a wide range of infections, including implant-associated infections which are difficult to treat due to the presence of biofilms. Whilst some proteins involved in biofilm formation are known, the differences in biofilm production between staphylococcal species remains understudied. Currently biofilm formation by Staphylococcus aureus is better understood than other members of the genus as more research has focused on this species. RESULTS We assembled a panel of 385 non-aureus Staphylococcus isolates of 19 species from a combination of clinical sources and reference strains. We used a high-throughput crystal violet assay to assess the biofilm forming ability of all strains and assign distinct biofilm formation categories. We compared the prevalence of Pfam domains between the categories and used machine learning to identify amino acid 20-mers linked to biofilm formation. This identified some domains within proteins already linked to biofilm formation and important domains not previously linked to biofilm formation in staphylococci. RT-qPCR confirmed the expression of selected genes predicted to encode important domains within biofilms in Staphylococcus epidermidis. The prevalence and distribution of biofilm associated domains showed a link to phylogeny, suggesting different Staphylococcus species have independently evolved different mechanisms of biofilm production. CONCLUSIONS This work has identified different routes to biofilm formation in diverse species of Staphylococcus and suggests independent evolution of biofilm has occurred multiple times across the genus. Understanding the mechanisms of biofilm formation in any given species is likely to require detailed study of relevant strains and the ability to generalise across the genus may be limited.
Collapse
Affiliation(s)
- Lisa Crossman
- Quadram Institute Bioscience, Norwich, UK
- School of Biological Sciences, University of East Anglia, Norwich, UK
- SequenceAnalysis.Co.Uk, Norwich, UK
| | | | | | | | - Teresa Diaz Calvo
- Quadram Institute Bioscience, Norwich, UK
- School of Medicine, University of East Anglia, Norwich, UK
| | | | | | - Mark A Webber
- Quadram Institute Bioscience, Norwich, UK.
- School of Medicine, University of East Anglia, Norwich, UK.
| | - John Wain
- Quadram Institute Bioscience, Norwich, UK
- School of Medicine, University of East Anglia, Norwich, UK
| |
Collapse
|
9
|
Jonblat S, As-sadi F, El Khoury A, Badr N, Kallassy M, Chokr A. Determining the dispersion time in Staphylococcus epidermidis biofilm using physical and molecular approaches. Heliyon 2024; 10:e32389. [PMID: 38975180 PMCID: PMC11225768 DOI: 10.1016/j.heliyon.2024.e32389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 07/09/2024] Open
Abstract
Despite being an innocuous commensal of human skin and mucous membranes, Staphylococcus epidermidis, infects surgical wounds and causes infections through biofilm formation. This study evaluates, in a time-dependent experiment, the self-dispersion of S. epidermidis CIP 444 biofilm when formed on borosilicate glass (hydrophilic) and polystyrene (hydrophobic) surfaces, using physical and molecular approaches. During a seven-day period of incubation, absorbance measurement revealed a drop in biofilm optical density on both studied surfaces on day 4 (0.043-0.035 nm/cm2, polystyrene), (0.06-0.053 nm/cm2, borosilicate glass). Absorbance results were correlated with crystal violet staining that showed a clear detachment from day 4. The blue color increases again on day 7, with an increase in biofilm optical density indicating the regeneration of the biofilm. Changes in gene expression in the S. epidermidis biofilm were assessed using a real-time reverse transcription-polymerase chain reaction. High expression of agr genes was detected on days 4 and 5, confirming our supposition of dispersion in this period, autolysin genes like atlE1 and aae were upregulated from day 3 until day 6 and the genes responsible for slime production and biofilm accumulation, were upregulated on days 4, 5, and 6 (ica ADBC) and on days 5, 6 and 7 (aap), indicating a dual process taking place. These findings suggest that S. epidermidis CIP 444 biofilms disperse at day 4 and reform at day 7. Over the course of the seven-day investigation, 2-ΔΔCt results showed that some genes in the biofilm were dramatically enhanced while others were significantly decreased as compared to planktonic ones.
Collapse
Affiliation(s)
- Suzanne Jonblat
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Functional Genomic and Proteomic Laboratory, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Falah As-sadi
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Department of Plant Production, Faculty of Agriculture and Veterinary Medicine, Lebanese University, Beirut, 999095, Lebanon
| | - Andre El Khoury
- Centre d'Analyses et de Recherche (CAR), Unité de Recherche Technologies et Valorisation Agro-Alimentaire (UR-TVA), Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
| | - Neressa Badr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
| | - Mireille Kallassy
- Functional Genomic and Proteomic Laboratory, Faculté des Sciences, Université Saint-Joseph de Beyrouth, Campus des Sciences et Technologies, Mar Roukos, Matn, Lebanon
| | - Ali Chokr
- Research Laboratory of Microbiology (RLM), Department of Life and Earth Sciences, Faculty of Sciences I, Lebanese University, Hadat Campus, Beirut, Lebanon
- Platform of Research and Analysis in Environmental Sciences (PRASE), Doctoral School of Sciences and Technologies, Lebanese University, Hadat Campus, Beirut, Lebanon
| |
Collapse
|
10
|
Yanagihara A, Matsue K, Kobayashi K, Wakinaka T, Mogi Y, Watanabe J. Polysaccharide intercellular adhesin and proper phospholipid composition are important for aggregation in Tetragenococcus halophilus SL10. Appl Environ Microbiol 2024; 90:e0033424. [PMID: 38624197 PMCID: PMC11107175 DOI: 10.1128/aem.00334-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
Aggregating strains of Tetragenococcus halophilus tend to be trapped during soy sauce mash-pressing process and are, therefore, critical for clear soy sauce production. However, the precise molecular mechanism involved in T. halophilus aggregation remains elusive. In previous studies, we isolated a number of aggregating strains, including T. halophilus AB4 and AL1, and showed that a cell surface proteinaceous aggregation factor is responsible for their aggregation phenotype. In the present study, we explored the role of polysaccharide intercellular adhesin (PIA) in aggregate formation in T. halophilus SL10, isolated from soy sauce. SL10 exhibited similar aggregation to AB4 and AL1 but formed a non-uniform precipitate with distinctive wrinkles at the bottom of the test tube, unlike AB4 and AL1. Insertion sequence mutations in each gene of the ica operon diminished aggregation and PIA production, highlighting the critical role of IcaADBC-mediated PIA production in T. halophilus aggregation. Furthermore, two non-aggregating cardiolipin synthase (cls) gene mutants with intact ica operon did not produce detectable PIA. Phospholipid composition analysis in cls mutants revealed a decrease in cardiolipin and an increase in phosphatidylglycerol levels, highlighting the association between phospholipid composition and PIA production. These findings provide evidence for the pivotal role of cls in PIA-mediated aggregation and lay the foundation for future studies to understand the intricate networks of the multiple aggregation factors governing microbial aggregation.IMPORTANCEAggregation, commonly observed in various microbes, triggers biofilm formation in pathogenic variants and plays a beneficial role in efficient food production in those used for food production. Here, we showed that Tetragenococcus halophilus, a microorganism used in soy sauce fermentation, forms aggregates in a polysaccharide intercellular adhesin (PIA)-mediated manner. Additionally, we unveiled the relationship between phospholipid composition and PIA production. This study provides evidence for the presence of aggregation factors in T. halophilus other than the proteinaceous aggregation factor and suggests that further understanding of the coordinated action of these factors may improve clarified soy sauce production.
Collapse
Affiliation(s)
- Airi Yanagihara
- Graduate School of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kouta Matsue
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | - Kurumi Kobayashi
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
| | | | - Yoshinobu Mogi
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
| | - Jun Watanabe
- Graduate School of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Faculty of Food and Agricultural Sciences, Fukushima University, Fukushima, Japan
- Manufacturing Division, Yamasa Corporation, Choshi, Japan
- Institute of Fermentation Sciences, Fukushima University, Fukushima, Japan
| |
Collapse
|
11
|
Minero GA, Møllebjerg A, Thiesen C, Johansen M, Jørgensen N, Birkedal V, Otzen DE, Meyer R. Extracellular G-quadruplexes and Z-DNA protect biofilms from DNase I, and G-quadruplexes form a DNAzyme with peroxidase activity. Nucleic Acids Res 2024; 52:1575-1590. [PMID: 38296834 PMCID: PMC10939358 DOI: 10.1093/nar/gkae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 02/02/2024] Open
Abstract
Many bacteria form biofilms to protect themselves from predators or stressful environmental conditions. In the biofilm, bacteria are embedded in a protective extracellular matrix composed of polysaccharides, proteins and extracellular DNA (eDNA). eDNA most often is released from lysed bacteria or host mammalian cells, and it is the only matrix component most biofilms appear to have in common. However, little is known about the form DNA takes in the extracellular space, and how different non-canonical DNA structures such as Z-DNA or G-quadruplexes might contribute to its function in the biofilm. The aim of this study was to determine if non-canonical DNA structures form in eDNA-rich staphylococcal biofilms, and if these structures protect the biofilm from degradation by nucleases. We grew Staphylococcus epidermidis biofilms in laboratory media supplemented with hemin and NaCl to stabilize secondary DNA structures and visualized their location by immunolabelling and fluorescence microscopy. We furthermore visualized the macroscopic biofilm structure by optical coherence tomography. We developed assays to quantify degradation of Z-DNA and G-quadruplex DNA oligos by different nucleases, and subsequently investigated how these enzymes affected eDNA in the biofilms. Z-DNA and G-quadruplex DNA were abundant in the biofilm matrix, and were often present in a web-like structures. In vitro, the structures did not form in the absence of NaCl or mechanical shaking during biofilm growth, or in bacterial strains deficient in eDNA or exopolysaccharide production. We thus infer that eDNA and polysaccharides interact, leading to non-canonical DNA structures under mechanical stress when stabilized by salt. We also confirmed that G-quadruplex DNA and Z-DNA was present in biofilms from infected implants in a murine implant-associated osteomyelitis model. Mammalian DNase I lacked activity against Z-DNA and G-quadruplex DNA, while Micrococcal nuclease could degrade G-quadruplex DNA and S1 Aspergillus nuclease could degrade Z-DNA. Micrococcal nuclease, which originates from Staphylococcus aureus, may thus be key for dispersal of biofilm in staphylococci. In addition to its structural role, we show for the first time that the eDNA in biofilms forms a DNAzyme with peroxidase-like activity in the presence of hemin. While peroxidases are part of host defenses against pathogens, we now show that biofilms can possess intrinsic peroxidase activity in the extracellular matrix.
Collapse
Affiliation(s)
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Celine Thiesen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
| | - Mikkel Illemann Johansen
- Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark
| | - Nis Pedersen Jørgensen
- Department Infectious Diseases, Aarhus University Hospital, Palle Juul-Jensens bvld 99, 8200 Aarhus N, Denmark
| | - Victoria Birkedal
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
| | - Daniel Erik Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Molecular Biology and Genetics, Aarhus University, Universitetsbyen 81, 8000 Aarhus, Denmark
| | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, 8000 Aarhus, Denmark
- Department of Biology, Aarhus University, Ny Munkegade 114, 8000 Aarhus, Denmark
| |
Collapse
|
12
|
Mirzaei R, Campoccia D, Ravaioli S, Arciola CR. Emerging Issues and Initial Insights into Bacterial Biofilms: From Orthopedic Infection to Metabolomics. Antibiotics (Basel) 2024; 13:184. [PMID: 38391570 PMCID: PMC10885942 DOI: 10.3390/antibiotics13020184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/29/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Bacterial biofilms, enigmatic communities of microorganisms enclosed in an extracellular matrix, still represent an open challenge in many clinical contexts, including orthopedics, where biofilm-associated bone and joint infections remain the main cause of implant failure. This study explores the scenario of biofilm infections, with a focus on those related to orthopedic implants, highlighting recently emerged substantial aspects of the pathogenesis and their potential repercussions on the clinic, as well as the progress and gaps that still exist in the diagnostics and management of these infections. The classic mechanisms through which biofilms form and the more recently proposed new ones are depicted. The ways in which bacteria hide, become impenetrable to antibiotics, and evade the immune defenses, creating reservoirs of bacteria difficult to detect and reach, are delineated, such as bacterial dormancy within biofilms, entry into host cells, and penetration into bone canaliculi. New findings on biofilm formation with host components are presented. The article also delves into the emerging and critical concept of immunometabolism, a key function of immune cells that biofilm interferes with. The growing potential of biofilm metabolomics in the diagnosis and therapy of biofilm infections is highlighted, referring to the latest research.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Venom and Biotherapeutics Molecules Laboratory, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran 1316943551, Iran;
| | - Davide Campoccia
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.)
| | - Stefano Ravaioli
- Laboratorio di Patologia delle Infezioni Associate all’Impianto, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (D.C.); (S.R.)
| | - Carla Renata Arciola
- Laboratory of Immunorheumatology and Tissue Regeneration, Laboratory of Pathology of Implant Infections, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Via San Giacomo 14, 40126 Bologna, Italy
| |
Collapse
|
13
|
Eddenden A, Dooda MK, Morrison ZA, Subramanian AS, Howell PL, Troutman JM, Nitz M. Metabolic Usage and Glycan Destinations of GlcNAz in E. coli. ACS Chem Biol 2024; 19:69-80. [PMID: 38146215 PMCID: PMC11138243 DOI: 10.1021/acschembio.3c00501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Bacteria use a diverse range of carbohydrates to generate a profusion of glycans, with amino sugars, such as N-acetylglucosamine (GlcNAc), being prevalent in the cell wall and in many exopolysaccharides. The primary substrate for GlcNAc-containing glycans, UDP-GlcNAc, is the product of the bacterial hexosamine pathway and a key target for bacterial metabolic glycan engineering. Using the strategy of expressing NahK, to circumvent the hexosamine pathway, it is possible to directly feed the analogue of GlcNAc, N-azidoacetylglucosamine (GlcNAz), for metabolic labeling in Escherichia coli. The cytosolic production of UDP-GlcNAz was confirmed by using fluorescence-assisted polyacrylamide gel electrophoresis. The key question of where GlcNAz is incorporated was interrogated by analyzing potential sites including peptidoglycan (PGN), the biofilm-related exopolysaccharide poly-β-1,6-N-acetylglucosamine (PNAG), lipopolysaccharide (LPS), and the enterobacterial common antigen (ECA). The highest levels of incorporation were observed in PGN with lower levels in PNAG and no observable incorporation in LPS or ECA. The promiscuity of the PNAG synthase (PgaCD) toward UDP-GlcNAz in vitro and the lack of undecaprenyl-pyrophosphoryl-GlcNAz intermediates generated in vivo confirmed the incorporation preferences. The results of this work will guide the future development of carbohydrate-based probes and metabolic engineering strategies.
Collapse
Affiliation(s)
- Alexander Eddenden
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Manoj K. Dooda
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223-0001, United States
| | - Zachary A. Morrison
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Adithya Shankara Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - P. Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, M5G 0A4, Canada
| | - Jerry M. Troutman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, 28223-0001, United States
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
14
|
Moran CL, Debowski A, Vrielink A, Stubbs K, Sarkar-Tyson M. N-acetyl-β-hexosaminidase activity is important for chitooligosaccharide metabolism and biofilm formation in Burkholderia pseudomallei. Environ Microbiol 2024; 26:e16571. [PMID: 38178319 DOI: 10.1111/1462-2920.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-β-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-β-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-β-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.
Collapse
Affiliation(s)
- Clare L Moran
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Aleksandra Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Keith Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
15
|
Casillo A, D’Angelo C, Imbimbo P, Monti DM, Parrilli E, Lanzetta R, Gomez d’Ayala G, Mallardo S, Corsaro MM, Duraccio D. Aqueous Extracts from Hemp Seeds as a New Weapon against Staphylococcus epidermidis Biofilms. Int J Mol Sci 2023; 24:16026. [PMID: 38003214 PMCID: PMC10671263 DOI: 10.3390/ijms242216026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
This study investigated the antibiofilm activity of water-soluble extracts obtained under different pH conditions from Cannabis sativa seeds and from previously defatted seeds. The chemical composition of the extracts, determined through GC-MS and NMR, revealed complex mixtures of fatty acids, monosaccharides, amino acids and glycerol in ratios depending on extraction pH. In particular, the extract obtained at pH 7 from defatted seeds (Ex7d) contained a larger variety of sugars compared to the others. Saturated and unsaturated fatty acids were found in all of the analysed extracts, but linoleic acid (C18:2) was detected only in the extracts obtained at pH 7 and pH 10. The extracts did not show cytotoxicity to HaCaT cells and significantly inhibited the formation of Staphylococcus epidermidis biofilms. The exception was the extract obtained at pH 10, which appeared to be less active. Ex7d showed the highest antibiofilm activity, i.e., around 90%. Ex7d was further fractionated by HPLC, and the antibiofilm activity of all fractions was evaluated. The 2D-NMR analysis highlighted that the most active fraction was largely composed of glycerolipids. This evidence suggested that these molecules are probably responsible for the observed antibiofilm effect but does not exclude a possible synergistic contribution by the other components.
Collapse
Affiliation(s)
- Angela Casillo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Caterina D’Angelo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Paola Imbimbo
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Daria Maria Monti
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Ermenegilda Parrilli
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Rosa Lanzetta
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Giovanna Gomez d’Ayala
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Salvatore Mallardo
- Institute of Polymers, Composites and Biomaterials (IPCB)-CNR, Via Campi Flegrei 34, 80078 Pozzuoli, Italy;
| | - Maria Michela Corsaro
- Department of Chemical Sciences, University of Naples “Federico II”, Via Cintia 21, 80126 Napoli, Italy; (A.C.); (C.D.); (P.I.); (D.M.M.); (E.P.); (R.L.); (M.M.C.)
| | - Donatella Duraccio
- Institute of Sciences and Technologies for Sustainable Energy and Mobility (STEMS)-CNR, Strada Delle Cacce 73, 10135 Torino, Italy;
| |
Collapse
|
16
|
Wang S, Zhao Y, Breslawec AP, Liang T, Deng Z, Kuperman LL, Yu Q. Strategy to combat biofilms: a focus on biofilm dispersal enzymes. NPJ Biofilms Microbiomes 2023; 9:63. [PMID: 37679355 PMCID: PMC10485009 DOI: 10.1038/s41522-023-00427-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Bacterial biofilms, which consist of three-dimensional extracellular polymeric substance (EPS), not only function as signaling networks, provide nutritional support, and facilitate surface adhesion, but also serve as a protective shield for the residing bacterial inhabitants against external stress, such as antibiotics, antimicrobials, and host immune responses. Biofilm-associated infections account for 65-80% of all human microbial infections that lead to serious mortality and morbidity. Tremendous effort has been spent to address the problem by developing biofilm-dispersing agents to discharge colonized microbial cells to a more vulnerable planktonic state. Here, we discuss the recent progress of enzymatic eradicating strategies against medical biofilms, with a focus on dispersal mechanisms. Particularly, we review three enzyme classes that have been extensively investigated, namely glycoside hydrolases, proteases, and deoxyribonucleases.
Collapse
Affiliation(s)
- Shaochi Wang
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Yanteng Zhao
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA
| | - Tingting Liang
- Key Laboratory of Natural Medicine and Immune-Engineering of Henan Province, Henan University Jinming Campus, 475004, Kaifeng, Henan, China
| | - Zhifen Deng
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China
| | - Laura L Kuperman
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD, 20740, USA.
- Mirimus Inc., 760 Parkside Avenue, Brooklyn, NY, 11226, USA.
| | - Qiuning Yu
- Otorhinolaryngology Hospital, The First Affiliated Hospital of Zhengzhou University, 450052, Zhengzhou, China.
| |
Collapse
|
17
|
Vo LH, Hong S, Stepler KE, Liyanaarachchi SM, Yang J, Nemes P, Poulin MB. Mapping protein-exopolysaccharide binding interaction in Staphylococcus epidermidis biofilms by live cell proximity labeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555326. [PMID: 37693546 PMCID: PMC10491226 DOI: 10.1101/2023.08.29.555326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bacterial biofilms consist of cells encased in an extracellular polymeric substance (EPS) composed of exopolysaccharides, extracellular DNA, and proteins that are critical for cell-cell adhesion and protect the cells from environmental stress, antibiotic treatments, and the host immune response. Degrading EPS components or blocking their production have emerged as promising strategies for prevention or dispersal of bacterial biofilms, but we still have little information about the specific biomolecular interactions that occur between cells and EPS components and how those interactions contribute to biofilm production. Staphylococcus epidermidis is a leading cause of nosocomial infections as a result of producing biofilms that use the exopolysaccharide poly-(1→6)-β-N-acetylglucosamine (PNAG) as a major structural component. In this study, we have developed a live cell proximity labeling approach combined with quantitative mass spectrometry-based proteomics to map the PNAG interactome of live S. epidermidis biofilms. Through these measurements we discovered elastin-binding protein (EbpS) as a major PNAG-interacting protein. Using live cell binding measurements, we found that the lysin motif (LysM) domain of EbpS specifically binds to PNAG present in S. epidermidis biofilms. Our work provides a novel method for the rapid identification of exopolysaccharide-binding proteins in live biofilms that will help to extend our understanding of the biomolecular interactions that are required for bacterial biofilm formation.
Collapse
Affiliation(s)
- Luan H. Vo
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Steven Hong
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Kaitlyn E. Stepler
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Sureshee M. Liyanaarachchi
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Jack Yang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Peter Nemes
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| | - Myles B. Poulin
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
18
|
Szemraj M, Glajzner P, Sienkiewicz M. Decreased susceptibility to vancomycin and other mechanisms of resistance to antibiotics in Staphylococcus epidermidis as a therapeutic problem in hospital treatment. Sci Rep 2023; 13:13629. [PMID: 37604965 PMCID: PMC10442409 DOI: 10.1038/s41598-023-40866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Multidrug-resistant coagulase-negative staphylococci represent a real therapeutic challenge. The aim of the study was to emphasize the importance of heteroresistance to vancomycin presence in methicillin-resistant strains of S. epidermidis. The research comprised 65 strains of S. epidermidis. Heteroresistance to vancomycin was detected with the use of the agar screening method with Brain Heart Infusion and a population profile analysis (PAP test). In addition, types of cassettes and genes responsible for resistance to antibiotics for 22 multidrug resistant strains were determined. Our investigations showed that 56 of 65 S. epidermidis strains were phenotypically resistant to methicillin. The tested strains were mostly resistant to erythromycin, gentamicin, clindamycin, and ciprofloxacin. Six strains showed decreased susceptibility to vancomycin and their heterogeneous resistance profiles were confirmed with the PAP test. All tested multi-resistant strains exhibited the mecA gene. More than half of them possessed type IV cassettes. ant(4')-Ia and aac(6')/aph(2''), ermC and tetK genes were most commonly found. The described phenomenon of heteroresistance to vancomycin in multidrug resistant bacteria of the Staphylococcus genus effectively inhibits a therapeutic effect of treatment with this antibiotic. That is why it is so important to search for markers that will enable to identify heteroresistance to vancomycin strains under laboratory conditions.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland.
| | - Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
19
|
Eddenden A, Dooda MK, Morrison ZA, Subramanian AS, Howell PL, Troutman JM, Nitz M. The Metabolic Usage and Glycan Destinations of GlcNAz in E. coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553294. [PMID: 37645909 PMCID: PMC10462111 DOI: 10.1101/2023.08.17.553294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Bacteria use a diverse range of carbohydrates to generate a profusion of glycans, with amino sugars such as N-acetylglucosamine (GlcNAc) being prevalent in the cell wall and in many exopolysaccharides. The primary substrate for GlcNAc-containing glycans, UDP-GlcNAc, is the product of the bacterial hexosamine pathway, and a key target for bacterial metabolic glycan engineering. Using the strategy of expressing NahK, to circumvent the hexosamine pathway, it is possible to directly feed the analogue of GlcNAc, N-azidoacetylglucosamine (GlcNAz), for metabolic labelling in E. coli. The cytosolic production of UDP-GlcNAz was confirmed using fluorescence assisted polyacrylamide gel electrophoresis. The key question of where GlcNAz is incorporated, was interrogated by analyzing potential sites including: peptidoglycan (PGN), the biofilm-related exopolysaccharide poly-β-1,6-N-acetylglucosamine (PNAG), lipopolysaccharide (LPS) and the enterobacterial common antigen (ECA). The highest levels of incorporation were observed in PGN with lower levels in PNAG and no observable incorporation in LPS or ECA. The promiscuity of the PNAG synthase (PgaCD) towards UDP-GlcNAz in vitro and lack of undecaprenyl-pyrophosphoryl-GlcNAz intermediates generated in vivo confirmed the incorporation preferences. The results of this work will guide the future development of carbohydrate-based probes and metabolic engineering strategies.
Collapse
Affiliation(s)
- Alexander Eddenden
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Manoj K Dooda
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, United States
| | - Zachary A Morrison
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| | - Adithya Shankara Subramanian
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - P Lynne Howell
- Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jerry M Troutman
- Department of Chemistry, University of North Carolina at Charlotte, Charlotte, North Carolina, United States
| | - Mark Nitz
- Department of Chemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Chang SC, Kao MR, Saldivar RK, Díaz-Moreno SM, Xing X, Furlanetto V, Yayo J, Divne C, Vilaplana F, Abbott DW, Hsieh YSY. The Gram-positive bacterium Romboutsia ilealis harbors a polysaccharide synthase that can produce (1,3;1,4)-β-D-glucans. Nat Commun 2023; 14:4526. [PMID: 37500617 PMCID: PMC10374906 DOI: 10.1038/s41467-023-40214-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/16/2023] [Indexed: 07/29/2023] Open
Abstract
(1,3;1,4)-β-D-Glucans are widely distributed in the cell walls of grasses (family Poaceae) and closely related families, as well as some other vascular plants. Additionally, they have been found in other organisms, including fungi, lichens, brown algae, charophycean green algae, and the bacterium Sinorhizobium meliloti. Only three members of the Cellulose Synthase-Like (CSL) genes in the families CSLF, CSLH, and CSLJ are implicated in (1,3;1,4)-β-D-glucan biosynthesis in grasses. Little is known about the enzymes responsible for synthesizing (1,3;1,4)-β-D-glucans outside the grasses. In the present study, we report the presence of (1,3;1,4)-β-D-glucans in the exopolysaccharides of the Gram-positive bacterium Romboutsia ilealis CRIBT. We also report that RiGT2 is the candidate gene of R. ilealis that encodes (1,3;1,4)-β-D-glucan synthase. RiGT2 has conserved glycosyltransferase family 2 (GT2) motifs, including D, D, D, QXXRW, and a C-terminal PilZ domain that resembles the C-terminal domain of bacteria cellulose synthase, BcsA. Using a direct gain-of-function approach, we insert RiGT2 into Saccharomyces cerevisiae, and (1,3;1,4)-β-D-glucans are produced with structures similar to those of the (1,3;1,4)-β-D-glucans of the lichen Cetraria islandica. Phylogenetic analysis reveals that putative (1,3;1,4)-β-D-glucan synthase candidate genes in several other bacterial species support the finding of (1,3;1,4)-β-D-glucans in these species.
Collapse
Affiliation(s)
- Shu-Chieh Chang
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Mu-Rong Kao
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Rebecka Karmakar Saldivar
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan
| | - Sara M Díaz-Moreno
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Xiaohui Xing
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Valentina Furlanetto
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Johannes Yayo
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Christina Divne
- Department of Industrial Biotechnology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - Francisco Vilaplana
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden
| | - D Wade Abbott
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Yves S Y Hsieh
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE10691, Sweden.
- School of Pharmacy, College of Pharmacy, Taipei Medical University, 250 Wuxing Street, Taipei, 11031, Taiwan.
| |
Collapse
|
21
|
Heo S, Oh SE, Lee G, Lee J, Ha NC, Jeon CO, Jeong K, Lee JH, Jeong DW. Staphylococcus equorum plasmid pKS1030-3 encodes auxiliary biofilm formation and trans-acting gene mobilization systems. Sci Rep 2023; 13:11108. [PMID: 37429971 DOI: 10.1038/s41598-023-38274-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 07/06/2023] [Indexed: 07/12/2023] Open
Abstract
The foodborne bacterium Staphylococcus equorum strain KS1030 harbours plasmid pSELNU1, which encodes a lincomycin resistance gene. pSELNU1 undergoes horizontal transfer between bacterial strains, thus spreading antibiotic resistance. However, the genes required for horizontal plasmid transfer are not encoded in pSELNU1. Interestingly, a relaxase gene, a type of gene related to horizontal plasmid transfer, is encoded in another plasmid of S. equorum KS1030, pKS1030-3. The complete genome of pKS1030-3 is 13,583 bp long and encodes genes for plasmid replication, biofilm formation (the ica operon), and horizontal gene transfer. The replication system of pKS1030-3 possesses the replication protein-encoding gene repB, a double-stranded origin of replication, and two single-stranded origins of replication. The ica operon, relaxase gene, and a mobilization protein-encoding gene were detected in pKS1030-3 strain-specifically. When expressed in S. aureus RN4220, the ica operon and relaxase operon of pKS1030-3 conferred biofilm formation ability and horizontal gene transfer ability, respectively. The results of our analyses show that the horizontal transfer of pSELNU1 of S. equorum strain KS1030 depends on the relaxase encoded by pKS1030-3, which is therefore trans-acting. Genes encoded in pKS1030-3 contribute to important strain-specific properties of S. equorum KS1030. These results could contribute to preventing the horizontal transfer of antibiotic resistance genes in food.
Collapse
Affiliation(s)
- Sojeong Heo
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Seung-Eun Oh
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Gawon Lee
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea
| | - Jinwook Lee
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Nam-Chul Ha
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul, 08826, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Keuncheol Jeong
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Jong-Hoon Lee
- Department of Food Science and Biotechnology, Kyonggi University, Suwon, 16227, Republic of Korea
| | - Do-Won Jeong
- Department of Food and Nutrition, Dongduk Women's University, Seoul, 02748, Republic of Korea.
| |
Collapse
|
22
|
Qin J, Yu L, Peng F, Ye X, Li G, Sun C, Cheng F, Peng C, Xie X. Tannin extracted from Penthorum chinense Pursh, a potential drug with antimicrobial and antibiofilm effects against methicillin-sensitive Staphylococcus aureus and methicillin-resistant Staphylococcus aureus. Front Microbiol 2023; 14:1134207. [PMID: 37465024 PMCID: PMC10351983 DOI: 10.3389/fmicb.2023.1134207] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 06/13/2023] [Indexed: 07/20/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen. Due to the widespread use and abuse of antibiotics, various drug-resistant strains of S. aureus have emerged, with methicillin-resistant Staphylococcus aureus (MRSA) being the most prevalent. Bacterial biofilm is a significant contributor to bacterial infection and drug resistance. Consequently, bacterial biofilm formation has emerged as a therapeutic strategy. In this study, the chemical constituents, antimicrobial and antibiofilm properties of tannins isolated from Penthorum chinense Pursh (TPCP) were investigated. In vitro, TPCP exhibited antimicrobial properties. The minimum inhibitory concentrations (MIC) and minimum bactericidal concentrations (MBC) for methicillin-sensitive Staphylococcus aureus (MSSA) and MRSA were 156.25 and 312.5 μg/mL, and 312.5 and 625 μg/mL, respectively. According to the growth curves, TPCP significantly inhibited the growth of MSSA and MRSA. The results of the crystal violet biofilm assay in conjunction with confocal laser scanning and scanning electron microscopy demonstrated that TPCP destroyed preformed MSSA and MRSA biofilms. TPCP significantly decreased the secretion of exopolysaccharides and extracellular DNA. Subsequently, the mechanism was investigated using RT-PCR. Examining the expression of icaA, cidA, sigB, agrA, and sarA genes in MRSA, we discovered that TPCP inhibited biofilm formation by affecting the quorum-sensing system in bacteria. Our study demonstrates that TPCP exerts antibacterial effects by disrupting the formation of bacterial biofilms, suggesting that TPCP has clinical potential as a novel antibacterial agent for the prevention and treatment of MSSA and MRSA infections.
Collapse
Affiliation(s)
- Junyuan Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lei Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xin Ye
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Gangmin Li
- Department of Pharmacy, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Chen Sun
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fang Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaofang Xie
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
23
|
Sharma S, Mohler J, Mahajan SD, Schwartz SA, Bruggemann L, Aalinkeel R. Microbial Biofilm: A Review on Formation, Infection, Antibiotic Resistance, Control Measures, and Innovative Treatment. Microorganisms 2023; 11:1614. [PMID: 37375116 PMCID: PMC10305407 DOI: 10.3390/microorganisms11061614] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/15/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Biofilm is complex and consists of bacterial colonies that reside in an exopolysaccharide matrix that attaches to foreign surfaces in a living organism. Biofilm frequently leads to nosocomial, chronic infections in clinical settings. Since the bacteria in the biofilm have developed antibiotic resistance, using antibiotics alone to treat infections brought on by biofilm is ineffective. This review provides a succinct summary of the theories behind the composition of, formation of, and drug-resistant infections attributed to biofilm and cutting-edge curative approaches to counteract and treat biofilm. The high frequency of medical device-induced infections due to biofilm warrants the application of innovative technologies to manage the complexities presented by biofilm.
Collapse
Affiliation(s)
- Satish Sharma
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
| | - James Mohler
- Department of Urology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203, USA;
| | - Supriya D. Mahajan
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
| | - Stanley A. Schwartz
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| | - Liana Bruggemann
- Department of Biomedical Informatics, University at Buffalo, Buffalo, NY 14260, USA;
| | - Ravikumar Aalinkeel
- Department of Urology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14260, USA; (S.S.); (S.A.S.)
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY 14203, USA;
- Department of Medicine, VA Western New York Healthcare System, Buffalo, NY 14215, USA
| |
Collapse
|
24
|
Hellmann KT, Challagundla L, Gray BM, Robinson DA. Improved Genomic Prediction of Staphylococcus epidermidis Isolation Sources with a Novel Polygenic Score. J Clin Microbiol 2023; 61:e0141222. [PMID: 36840569 PMCID: PMC10035303 DOI: 10.1128/jcm.01412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/22/2023] [Indexed: 02/25/2023] Open
Abstract
Staphylococcus epidermidis infections can be challenging to diagnose due to the species frequent contamination of clinical specimens and indolent course of infection. Nevertheless, S. epidermidis is the major cause of late-onset sepsis among premature infants and of intravascular infection in all age groups. Prior work has shown that bacterial virulence factors, antimicrobial resistances, and strains have up to 80% in-sample accuracy to distinguish hospital from community sources, but are unable to distinguish true bacteremia from blood culture contamination. Here, a phylogeny-informed genome-wide association study of 88 isolates was used to estimate effect sizes of particular genomic variants for isolation sources. A "polygenic score" was calculated for each isolate as the summed effect sizes of its repertoire of genomic variants. Predictive models of isolation sources based on polygenic scores were tested with in-samples and out-samples from prior studies of different patient populations. Polygenic scores from accessory genes (AGs) distinguished hospital from community sources with the highest accuracy to date, up to 98% for in-samples and 65% to 91% for various out-samples, whereas scores from single nucleotide polymorphisms (SNPs) had lower accuracy. Scores from AGs and SNPs achieved the highest in-sample accuracy to date, up to 76%, in distinguishing infection from contaminant sources within a hospital. Model training and testing data sets with more similar population structures resulted in more accurate predictions. This study reports the first use of a polygenic score for predicting a complex bacterial phenotype and shows the potential of this approach for enhancing S. epidermidis diagnosis.
Collapse
Affiliation(s)
- K. Taylor Hellmann
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lavanya Challagundla
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Barry M. Gray
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
25
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
26
|
Biology and Regulation of Staphylococcal Biofilm. Int J Mol Sci 2023; 24:ijms24065218. [PMID: 36982293 PMCID: PMC10049468 DOI: 10.3390/ijms24065218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Despite continuing progress in medical and surgical procedures, staphylococci remain the major Gram-positive bacterial pathogens that cause a wide spectrum of diseases, especially in patients requiring the utilization of indwelling catheters and prosthetic devices implanted temporarily or for prolonged periods of time. Within the genus, if Staphylococcus aureus and S. epidermidis are prevalent species responsible for infections, several coagulase-negative species which are normal components of our microflora also constitute opportunistic pathogens that are able to infect patients. In such a clinical context, staphylococci producing biofilms show an increased resistance to antimicrobials and host immune defenses. Although the biochemical composition of the biofilm matrix has been extensively studied, the regulation of biofilm formation and the factors contributing to its stability and release are currently still being discovered. This review presents and discusses the composition and some regulation elements of biofilm development and describes its clinical importance. Finally, we summarize the numerous and various recent studies that address attempts to destroy an already-formed biofilm within the clinical context as a potential therapeutic strategy to avoid the removal of infected implant material, a critical event for patient convenience and health care costs.
Collapse
|
27
|
Breslawec AP, Wang S, Monahan KN, Barry LL, Poulin MB. The endoglycosidase activity of Dispersin B is mediated through electrostatic interactions with cationic poly-β-(1→6)-N-acetylglucosamine. FEBS J 2023; 290:1049-1059. [PMID: 36083143 DOI: 10.1111/febs.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 07/28/2022] [Accepted: 09/08/2022] [Indexed: 11/28/2022]
Abstract
Bacterial biofilms consist of bacterial cells embedded within a self-produced extracellular polymeric substance (EPS) composed of exopolysaccharides, extra cellular DNA, proteins and lipids. The enzyme Dispersin B (DspB) is a CAZy type 20 β-hexosaminidase enzyme that catalyses the hydrolysis of poly-N-acetylglucosamine (PNAG), a major biofilm polysaccharide produced by a wide variety of biofilm-forming bacteria. Native PNAG is partially de-N-acetylated, and the degree of deacetylation varies between species and dependent on the environment. We have previously shown that DspB is able to perform both endo- and exo-glycosidic bond cleavage of PNAG depending on the de-N-acetylation patterns present in the PNAG substrate. Here, we used a combination of synthetic PNAG substrate analogues, site-directed mutagenesis and in vitro biofilm dispersal assay to investigate the molecular basis for the endo-glycosidic cleavage activity of DspB and the importance of this activity for dispersal of PNAG-dependent Staphylococcus epidermidis biofilms. We found that D242 contributes to the endoglycosidase activity of DspB through electrostatic interactions with cationic substrates in the -2 binding site. A DspBD242N mutant was highly deficient in endoglycosidase activity while maintaining exoglycosidase activity. When used to disperse S. epidermidis biofilms, this DspBD242N mutant resulted in an increase in residual biofilm biomass after treatment when compared to wild-type DspB. These results suggest that the de-N-acetylation of PNAG in S. epidermidis biofilms is not uniformly distributed and that the endoglycosidase activity of DspB is required for efficient biofilm dispersal.
Collapse
Affiliation(s)
- Alexandra P Breslawec
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Shaochi Wang
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Kathleen N Monahan
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Lucas L Barry
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| | - Myles B Poulin
- Department of Chemistry and Biochemistry, University of Maryland at College Park, MD, USA
| |
Collapse
|
28
|
Pouget C, Chatre C, Lavigne JP, Pantel A, Reynes J, Dunyach-Remy C. Effect of Antibiotic Exposure on Staphylococcus epidermidis Responsible for Catheter-Related Bacteremia. Int J Mol Sci 2023; 24:ijms24021547. [PMID: 36675063 PMCID: PMC9863639 DOI: 10.3390/ijms24021547] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/16/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023] Open
Abstract
Coagulase-negative staphylococci (CoNS) and especially Staphylococcus epidermidis are responsible for health care infections, notably in the presence of foreign material (e.g., venous or central-line catheters). Catheter-related bacteremia (CRB) increases health care costs and mortality. The aim of our study was to evaluate the impact of 15 days of antibiotic exposure (ceftobiprole, daptomycin, linezolid and vancomycin) at sub-inhibitory concentration on the resistance, fitness and genome evolution of 36 clinical strains of S. epidermidis responsible for CRB. Resistance was evaluated by antibiogram, the ability to adapt metabolism by the Biofilm Ring test® and the in vivo nematode virulence model. The impact of antibiotic exposure was determined by whole-genome sequencing (WGS) and biofilm formation experiments. We observed that S. epidermidis strains presented a wide variety of virulence potential and biofilm formation. After antibiotic exposure, S. epidermidis strains adapted their fitness with an increase in biofilm formation. Antibiotic exposure also affected genes involved in resistance and was responsible for cross-resistance between vancomycin, daptomycin and ceftobiprole. Our data confirmed that antibiotic exposure modified bacterial pathogenicity and the emergence of resistant bacteria.
Collapse
Affiliation(s)
- Cassandra Pouget
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Clotilde Chatre
- Department of Infectious and Tropical Diseases, CH Perpignan, 66000 Perpignan, France
| | - Jean-Philippe Lavigne
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Alix Pantel
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
| | - Jacques Reynes
- Department of Infectious and Tropical Diseases, IRD UMI 233, INSERM U1175, CHU Montpellier, University Montpellier, CEDEX 5, 34295 Montpellier, France
| | - Catherine Dunyach-Remy
- Department of Microbiology and Hospital Hygiene, Bacterial Virulence and Chronic Infections, INSERM U1047, CHU Nîmes Univiversity Montpellier, CEDEX 09, 30029 Nîmes, France
- Correspondence: ; Tel.: +33-4-6668-3202
| |
Collapse
|
29
|
Kutsuno S, Hayashi I, Yu L, Yamada S, Hisatsune J, Sugai M. Non-deacetylated poly- N-acetylglucosamine-hyperproducing Staphylococcus aureus undergoes immediate autoaggregation upon vortexing. Front Microbiol 2023; 13:1101545. [PMID: 36699608 PMCID: PMC9868172 DOI: 10.3389/fmicb.2022.1101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 12/14/2022] [Indexed: 01/11/2023] Open
Abstract
Biofilms are microbial communities of cells embedded in a matrix of extracellular polymeric substances generated and adhering to each other or to a surface. Cell aggregates formed in the absence of a surface and floating pellicles that form biofilms at the air-liquid interface are also considered to be a type of biofilm. Staphylococcus aureus is a well-known cause of biofilm infections and high-molecular-weight polysaccharides, poly-N-acetylglucosamine (PNAG) is a main constituent of the biofilm. An icaADBC operon comprises major machinery to synthesize and extracellularly secrete PNAG. Extracellular PNAG is partially deacetylated by IcaB deacetylase, and the positively charged PNAG hence interacts with negatively charged cell surface to form the major component of biofilm. We previously reported a new regulator of biofilm (Rob) and demonstrated that Rob binds to a unique 5-bp motif, TATTT, present in intergenic region between icaADBC operon and its repressor gene icaR in Yu et al. The deletion of the 5-bp motif induces excessive adherent biofilm formation. The real function of the 5-bp motif is still unknown. In an attempt to isolate the 5-bp motif deletion mutant, we isolated several non-adherent mutants. They grew normally in turbid broth shaking culture but immediately auto-aggregated upon weak vortexing and sedimented as a lump resulting in a clear supernatant. Whole genome sequencing of the mutants identified they all carried mutations in icaB in addition to deletion of the 5-bp motif. Purification and molecular characterization of auto-aggregating factor in the culture supernatant of the mutant identified that the factor was a massively produced non-deacetylated PNAG. Therefore, we created a double deficient strain of biofilm inhibitory factors (5-bp motif, icaR, rob) and icaB to confirm the aggregation phenomenon. This peculiar phenomenon was only observed in Δ5bpΔicaB double mutant but not in ΔicaR ΔicaB or ΔrobΔicaB mutant. This study explains large amount of extracellularly produced non-deacetylated PNAG by Δ5bpΔicaB double mutation induced rapid auto-aggregation of S. aureus cells by vortexing. This phenomenon indicated that Staphylococcus aureus may form biofilms that do not adhere to solid surfaces and we propose this as a new mechanism of non-adherent biofilm formation of S. aureus.
Collapse
Affiliation(s)
- Shoko Kutsuno
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Ikue Hayashi
- Research Facility, Hiroshima University Faculty of Dentistry, Hiroshima, Japan
| | - Liansheng Yu
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Sakuo Yamada
- Department of Medical Technology, Faculty of Health Sciences & Technology, Kawasaki University of Medical Welfare, Okayama, Japan
| | - Junzo Hisatsune
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan,Department of Antimicrobial Resistance, Hiroshima University Graduate School of Biomedical & Health Sciences, Hiroshima, Japan,*Correspondence: Motoyuki Sugai,
| |
Collapse
|
30
|
Asante J, Abia ALK, Anokwah D, Hetsa BA, Fatoba DO, Bester LA, Amoako DG. Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa. Genes (Basel) 2022; 14:104. [PMID: 36672846 PMCID: PMC9858754 DOI: 10.3390/genes14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The work aims to investigate biofilm formation and biofilm/adhesion-encoding genes in coagulase-negative staphylococci (CoNS) species recovered from blood culture isolates. Eighty-nine clinical CoNS were confirmed using the VITEK 2 system, and antibiotic susceptibility testing of isolates was conducted using the Kirby-Bauer disk diffusion method against a panel of 20 antibiotics. Isolates were qualitatively screened using the Congo red agar medium. Quantitative assays were performed on microtiter plates, where the absorbances of the solubilised biofilms were recorded as optical densities and quantified. In all, 12.4% of the isolates were strong biofilm formers, 68.5% had moderate biofilm capacity, and 17.9% showed weak capacity. A subset of 18 isolates, mainly methicillin-resistant S. epidermidis, were investigated for adherence-related genes using whole-genome sequencing and bioinformatics analysis. The highest antibiotic resistance rates for strongly adherent isolates were observed against penicillin (100%) and cefoxitin (81.8%), but the isolates showed no resistance to linezolid (0.0%) and tigecycline (0.0%). The icaABC genes involved in biofilm formation were detected in 50% of the screened isolates. Other adherence-related genes, including autolysin gene atl (88.8%), elastin binding protein gene ebp (94.4%), cell wall-associated fibronectin-binding protein gene ebh (66.7%), clumping factor A gene clfA (5.5%), and pili gene ebpC (22.2%) were also found. The insertion sequence IS256, involved in biofilm formation, was found in 10/18 (55.5%) screened isolates. We demonstrate a high prevalence of biofilm-forming coagulase-negative staphylococci associated with various resistance phenotypes and a substantial agreement between the possession of biofilm-associated genes and the biofilm phenotype.
Collapse
Affiliation(s)
- Jonathan Asante
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L. K. Abia
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Daniel Anokwah
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bakoena A. Hetsa
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Dorcas O. Fatoba
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
31
|
Zhu T, Wang W, Wang H, Zhao Y, Qu D, Wu Y. Mutation of gdpS gene induces a viable but non-culturable state in Staphylococcus epidermidis and changes in the global transcriptional profile. BMC Microbiol 2022; 22:288. [PMID: 36457079 PMCID: PMC9714401 DOI: 10.1186/s12866-022-02708-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND In the genome of staphylococci, only the gdpS gene encodes the conserved GGDEF domain, which is the characteristic of diguanylate cyclases. In our previous study, we have demonstrated that the gdpS gene can modulate biofilm formation by positively regulating the expression of ica operon in Staphylococcus epidermidis. Moreover, this regulation seems to be independent of the c-di-GMP signaling pathway and the protein-coding function of this gene. Therefore, the biological function of the gdpS gene remains to be further investigated. RESULTS In the present study, it was observed that mutation of the gdpS gene induced S. epidermidis to enter into a presumed viable but nonculturable state (VBNC) after cryopreservation with glycerol. Similarly, when moved from liquid to solid culture medium, the gdpS mutant strain also exhibited a VBNC state. Compared with the wild-type strain, the gdpS mutant strain autolyzed more quickly during storage at 4℃, indicating its increased susceptibility to low temperature. Transcriptional profiling analysis showed that the gdpS mutation affected the transcription of 188 genes (92 genes were upregulated and 96 genes were downregulated). Specifically, genes responsible for glycerol metabolism were most markedly upregulated and most of the altered genes in the mutant strain are those involved in nitrogen metabolism. In addition, the most significantly downregulated genes included the betB gene, whose product catalyzes the synthesis of glycine betaine and confers tolerance to cold. CONCLUSION The preliminary results suggest that the gdpS gene may participate in VBNC formation of S. epidermidis in face of adverse environmental factors, which is probably achieved by regulating expression of energy metabolism genes. Besides, the gdpS gene is critical for S. epidermidis to survive low temperature, and the underlying mechanism may be partly explained by its influence on expression of betB gene.
Collapse
Affiliation(s)
- Tao Zhu
- grid.443626.10000 0004 1798 4069Department of Medical Microbiology and Immunology, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Wei Wang
- grid.443626.10000 0004 1798 4069Department of Pharmacy, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Han Wang
- grid.443626.10000 0004 1798 4069Department of Pharmacy, Wannan Medical College, Wuhu, 241002 People’s Republic of China
| | - Yanfeng Zhao
- grid.452511.6Department of Laboratory Medicine, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011 People’s Republic of China
| | - Di Qu
- grid.11841.3d0000 0004 0619 8943Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 People’s Republic of China
| | - Yang Wu
- grid.11841.3d0000 0004 0619 8943Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, 200032 People’s Republic of China
| |
Collapse
|
32
|
Afshar M, Møllebjerg A, Minero GA, Hollensteiner J, Poehlein A, Himmelbach A, Lange J, Meyer RL, Brüggemann H. Biofilm formation and inflammatory potential of Staphylococcus saccharolyticus: A possible cause of orthopedic implant-associated infections. Front Microbiol 2022; 13:1070201. [DOI: 10.3389/fmicb.2022.1070201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 11/09/2022] [Indexed: 11/29/2022] Open
Abstract
Staphylococcus saccharolyticus, a coagulase-negative staphylococcal species, has some unusual characteristics for human-associated staphylococci, such as slow growth and its preference for anoxic culture conditions. This species is a relatively abundant member of the human skin microbiota, but its microbiological properties, as well as the pathogenic potential, have scarcely been investigated so far, despite being occasionally isolated from different types of infections including orthopedic implant-associated infections. Here, we investigated the growth and biofilm properties of clinical isolates of S. saccharolyticus and determined host cell responses. Growth assessments in anoxic and oxic conditions revealed strain-dependent outcomes, as some strains can also grow aerobically. All tested strains of S. saccharolyticus were able to form biofilm in a microtiter plate assay. Strain-dependent differences were determined by optical coherence tomography, revealing that medium supplementation with glucose and sodium chloride enhanced biofilm formation. Visualization of the biofilm by confocal laser scanning microscopy revealed the role of extracellular DNA in the biofilm structure. In addition to attached biofilms, S. saccharolyticus also formed bacterial aggregates at an early stage of growth. Transcriptome analysis of biofilm-grown versus planktonic cells revealed a set of upregulated genes in biofilm-embedded cells, including factors involved in adhesion, colonization, and competition such as epidermin, type I toxin-antitoxin system, and phenol-soluble modulins (beta and epsilon). To investigate consequences for the host after encountering S. saccharolyticus, cytokine profiling and host cell viability were assessed by infection experiments with differentiated THP-1 cells. The microorganism strongly triggered the secretion of the tested pro-inflammatory cyto- and chemokines IL-6, IL-8, and TNF-alpha, determined at 24 h post-infection. S. saccharolyticus was less cytotoxic than Staphylococcus aureus. Taken together, the results indicate that S. saccharolyticus has substantial pathogenic potential. Thus, it can be a potential cause of orthopedic implant-associated infections and other types of deep-seated infections.
Collapse
|
33
|
Matharu RK, Ahmed J, Seo J, Karu K, Golshan MA, Edirisinghe M, Ciric L. Antibacterial Properties of Honey Nanocomposite Fibrous Meshes. Polymers (Basel) 2022; 14:polym14235155. [PMID: 36501550 PMCID: PMC9740266 DOI: 10.3390/polym14235155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 11/21/2022] [Indexed: 11/30/2022] Open
Abstract
Natural substances are increasingly being developed for use in health-related applications. Honey has attracted significant interest, not only for its physical and chemical properties, but also for its antibacterial activity. For the first time, suspensions of Black Forest honeydew honey and manuka honey UMF 20+ were examined for their antibacterial properties against Escherichia coli and Staphylococcus epidermidis using flow cytometry. The inhibitory effect of honey on bacterial growth was evident at concentrations of 10, 20 and 30 v/v%. The minimum inhibitory effects of both honey types against each bacterium were also investigated and reported. Electrospray ionisation (ESI) mass spectrometry was performed on both Black Forest honeydew honey and manuka honey UMF 20+. Manuka honey had a gluconic concentration of 2519 mg/kg, whilst Black Forest honeydew honey had a concentration of 2195 mg/kg. Manuka honey demonstrated the strongest potency when compared to Black Forest honeydew honey; therefore, it was incorporated into nanofiber scaffolds using pressurised gyration and 10, 20 and 30 v/v% manuka honey-polycaprolactone solutions. Composite fibres were analysed for their morphology and topography using scanning electron microscopy. The average fibre diameter of the manuka honey-polycaprolactone scaffolds was found to range from 437 to 815 nm. The antibacterial activity of the 30 v/v% scaffolds was studied using S. epidermidis. Strong antibacterial activity was observed with a bacterial reduction rate of over 90%. The results show that honey composite fibres formed using pressurised gyration can be considered a natural therapeutic agent for various medicinal purposes, including wound-healing applications.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
- Correspondence:
| | - Jubair Ahmed
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Jegak Seo
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Kersti Karu
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Mitra Ashrafi Golshan
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London WC1E 7JE, UK
| | - Lena Ciric
- Department of Civil, Environmental & Geomatic Engineering, University College London, Chadwick Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
34
|
Wang X, Luan Y, Hou J, Jiang T, Zhao Y, Song W, Wang L, Kong X, Guan J, Song D, Wang B, Li M. The protection effect of rhodionin against methicillin-resistant Staphylococcus aureus-induced pneumonia through sortase A inhibition. World J Microbiol Biotechnol 2022; 39:18. [PMID: 36409383 DOI: 10.1007/s11274-022-03457-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a zoonotic antibiotic-resistant pathogen that negatively impacts society from medical, veterinary, and societal standpoints. The search for alternative therapeutic strategies and innovative anti-infective agents is urgently needed. Among the pathogenic mechanisms of Staphylococcus aureus (S. aureus), sortase A is a virulence factor of great concern because it is highly linked with the ability of MRSA to invade the host. In this study, we identified that rhodionin, a natural compound of flavonoid glucosides, effectively inhibited the activity of SrtA without affecting the survival and growth of bacteria, and its half maximal inhibitory concentration (IC50) value was 22.85 μg/mL. In vitro, rhodionin prominently attenuated the virulence-related phenotype of SrtA by reducing the adhesion of S. aureus to fibrinogen, reducing the capacity of protein A (SpA) on the bacterial surface and biofilm formation. Subsequently, fluorescence quenching and molecular docking were performed to verify that rhodionin directly bonded to SrtA molecule with KA value of 6.22 × 105 L/mol. More importantly, rhodionin showed a significant protective effect on mice pneumonia model and improved the survival rate of mice. According to the above findings, rhodionin achieved efficacy in the treatment of MRSA-induced infections, which holds promising potential to be developed into a candidate used for MRSA-related infections.
Collapse
Affiliation(s)
- Xingye Wang
- Changchun University of Chinese Medicine, Changchun, China.,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Yanhe Luan
- The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Juan Hou
- Changchun University of Chinese Medicine, Changchun, China
| | - Tao Jiang
- Changchun University of Chinese Medicine, Changchun, China
| | - Yicheng Zhao
- Changchun University of Chinese Medicine, Changchun, China
| | - Wu Song
- Changchun University of Chinese Medicine, Changchun, China
| | - Li Wang
- Changchun University of Chinese Medicine, Changchun, China
| | - Xiangri Kong
- Changchun University of Chinese Medicine, Changchun, China.,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China
| | - Jiyu Guan
- Key Laboratory of Zoonosis, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Danning Song
- Changchun University of Chinese Medicine, Changchun, China.
| | - Bingmei Wang
- Changchun University of Chinese Medicine, Changchun, China.
| | - Mingquan Li
- Changchun University of Chinese Medicine, Changchun, China. .,The Third Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China. .,The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, China.
| |
Collapse
|
35
|
Siems K, Runzheimer K, Rehm A, Schwengers O, Heidler von Heilborn D, Kaser L, Arndt F, Neidhöfer C, Mengel JP, Parcina M, Lipski A, Hain T, Moeller R. Phenotypic and genomic assessment of the potential threat of human spaceflight-relevant Staphylococcus capitis isolates under stress conditions. Front Microbiol 2022; 13:1007143. [PMID: 36406458 PMCID: PMC9669719 DOI: 10.3389/fmicb.2022.1007143] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/06/2022] [Indexed: 08/05/2023] Open
Abstract
Previous studies have reported that spaceflight specific conditions such as microgravity lead to changes in bacterial physiology and resistance behavior including increased expression of virulence factors, enhanced biofilm formation and decreased susceptibility to antibiotics. To assess if spaceflight induced physiological changes can manifest in human-associated bacteria, we compared three spaceflight relevant Staphylococcus capitis isolates (DSM 111179, ISS; DSM 31028, clean room; DSM 113836; artificial gravity bedrest study) with the type strain (DSM 20326T). We tested the three strains regarding growth, colony morphology, metabolism, fatty acid and polar lipid pattern, biofilm formation, susceptibility to antibiotics and survival in different stress conditions such as treatment with hydrogen peroxide, exposure to desiccation, and irradiation with X-rays and UV-C. Moreover, we sequenced, assembled, and analyzed the genomes of all four strains. Potential genetic determinants for phenotypic differences were investigated by comparative genomics. We found that all four strains show similar metabolic patterns and the same susceptibility to antibiotics. All four strains were considered resistant to fosfomycin. Physiological differences were mainly observed compared to the type strain and minor differences among the other three strains. The ISS isolate and the bedrest study isolate exhibit a strong delayed yellow pigmentation, which is absent in the other two strains. Pigments were extracted and analyzed by UV/Vis spectroscopy showing characteristic carotenoid spectra. The ISS isolate showed the highest growth rate as well as weighted average melting temperature (WAMT) of fatty acids (41.8°C) of all strains. The clean room isolate showed strongest biofilm formation and a high tolerance to desiccation. In general, all strains survived desiccation better in absence of oxygen. There were no differences among the strains regarding radiation tolerance. Phenotypic and genomic differences among the strains observed in this study are not inevitably indicating an increased virulence of the spaceflight isolate. However, the increased growth rate, higher WAMT and colony pigmentation of the spaceflight isolate are relevant phenotypes that require further research within the human spaceflight context. We conclude that combining genetic analysis with classical microbiological methods allows the detailed assessment of the potential threat of bacteria in highly regulated and extreme environments such as spaceflight environments.
Collapse
Affiliation(s)
- Katharina Siems
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Katharina Runzheimer
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Anna Rehm
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Oliver Schwengers
- Department of Bioinformatics and Systems Biology, Justus Liebig University Giessen, Giessen, Germany
| | - David Heidler von Heilborn
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Liv Kaser
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| | - Franca Arndt
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital of Cologne, Cologne, Germany
| | - Claudio Neidhöfer
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jan Philipp Mengel
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
| | - Marijo Parcina
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - André Lipski
- Institute of Nutritional and Food Sciences, Food Microbiology and Hygiene, University of Bonn, Bonn, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University Giessen, Giessen, Germany
- German Center for Infection Research (DZIF), Justus Liebig University Giessen, Partner Site Giessen-Marburg-Langen, Giessen, Germany
| | - Ralf Moeller
- Department of Radiation Biology, Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
| |
Collapse
|
36
|
Ahmad S, Rahman H, Qasim M, Nawab J, Alzahrani KJ, Alsharif KF, Alzahrani FM. Staphylococcus epidermidis Pathogenesis: Interplay of icaADBC Operon and MSCRAMMs in Biofilm Formation of Isolates from Pediatric Bacteremia in Peshawar, Pakistan. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1510. [PMID: 36363467 PMCID: PMC9696285 DOI: 10.3390/medicina58111510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/16/2022] [Accepted: 10/20/2022] [Indexed: 11/04/2023]
Abstract
Background and Objective: Staphylococcus epidermidis is an opportunistic pathogen from pediatric bacteremia that is commonly isolated. Biofilm is the major virulence factor of S. epidermidis; however, the role of biofilm determinants in biofilm formation is highly contradictory and diverse. The current study aimed to investigate the role of polysaccharide-dependent and polysaccharide-independent pathogenic determinants in biofilm formation under physiological stress conditions. Materials and Methods: The isolates (n = 75) were identified and screened for the icaADBC operon, IS256, and an array of MSCRAMMs (Microbial Surface Component Recognizing Adhesive Matrix Molecules) through PCR analysis. The activity of the icaADBC operon was detected by Congo red assay, and the biofilm formation was analyzed through microtiter plate assay. Results: S. epidermidis isolates produced biofilm (n = 65; 86.6%) frequently. The icaA was the major representative module of the actively expressing icaADBC operon (n = 21; 80.7% sensitivity). The MSCRAMMs, including fbe (n = 59; 90.7%; p = 0.007), and embp (n = 57; 87.6%; p = 0.026), were highly prevalent and associated with biofilm positive S. epidermidis. The prevalence of icaADBC operon in biofilm positive and negative S. epidermidis was not significant (n = 41; 63%; p = 0.429). No significant association was found between IS256 and actively complete icaADBC operon (n = 10; 47.6%; p = 0.294). In the presence of 5% human plasma and glucose stress, S. epidermidis produced a strong biofilm (n = 55; 84.6%). Conclusion: The polysaccharide-dependent biofilm formation is significantly replaced (n = 21; 28%; p = 0.149) by a polysaccharide-independent mechanism (n = 59; 90.7%; p = 0.007), in which the MSCRAMMs might actively play their role. The fibrinogen-binding protein and extracellular matrix-binding protein might be potential anti-biofilm drug targets, markers of rapid diagnosis, and potential vaccine candidates of S. epidermidis involved in pediatric bacteremia.
Collapse
Affiliation(s)
- Saghir Ahmad
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Hazir Rahman
- Department of Microbiology, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Muhammad Qasim
- Department of Microbiology, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Javed Nawab
- Department of Environmental Sciences, Kohat University of Science and Technology, Kohat 26000, Pakistan
| | - Khalid J. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Khalaf F. Alsharif
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Fuad M. Alzahrani
- Department of Clinical Laboratories Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| |
Collapse
|
37
|
Lu Y, Cai WJ, Ren Z, Han P. The Role of Staphylococcal Biofilm on the Surface of Implants in Orthopedic Infection. Microorganisms 2022; 10:1909. [PMID: 36296183 PMCID: PMC9612000 DOI: 10.3390/microorganisms10101909] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/11/2022] [Accepted: 09/20/2022] [Indexed: 08/27/2023] Open
Abstract
Despite advanced implant sterilization and aseptic surgical techniques, implant-associated infection remains a major challenge for orthopedic surgeries. The subject of bacterial biofilms is receiving increasing attention, probably as a result of the wide acknowledgement of the ubiquity of biofilms in the clinical environment, as well as the extreme difficulty in eradicating them. Biofilm can be defined as a structured microbial community of cells that are attached to a substratum and embedded in a matrix of extracellular polymeric substances (EPS) that they have produced. Biofilm development has been proposed as occurring in a multi-step process: (i) attachment and adherence, (ii) accumulation/maturation due to cellular aggregation and EPS production, and (iii) biofilm detachment (also called dispersal) of bacterial cells. In all these stages, characteristic proteinaceous and non-proteinaceous compounds are expressed, and their expression is strictly controlled. Bacterial biofilm formation around implants shelters the bacteria and encourages the persistence of infection, which could lead to implant failure and osteomyelitis. These complications need to be treated by major revision surgeries and extended antibiotic therapies, which could lead to high treatment costs and even increase mortality. Effective preventive and therapeutic measures to reduce risks for implant-associated infections are thus in urgent need.
Collapse
Affiliation(s)
| | | | | | - Pei Han
- Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
38
|
Chi Y, Wang Y, Ji M, Li Y, Zhu H, Yan Y, Fu D, Zou L, Ren B. Natural products from traditional medicine as promising agents targeting at different stages of oral biofilm development. Front Microbiol 2022; 13:955459. [PMID: 36033896 PMCID: PMC9411938 DOI: 10.3389/fmicb.2022.955459] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Oral cavity is an ideal habitat for more than 1,000 species of microorganisms. The diverse oral microbes form biofilms over the hard and soft tissues in the oral cavity, affecting the oral ecological balance and the development of oral diseases, such as caries, apical periodontitis, and periodontitis. Currently, antibiotics are the primary agents against infectious diseases; however, the emergence of drug resistance and the disruption of oral microecology have challenged their applications. The discovery of new antibiotic-independent agents is a promising strategy against biofilm-induced infections. Natural products from traditional medicine have shown potential antibiofilm activities in the oral cavity with high safety, cost-effectiveness, and minimal adverse drug reactions. Aiming to highlight the importance and functions of natural products from traditional medicine against oral biofilms, here we summarized and discussed the antibiofilm effects of natural products targeting at different stages of the biofilm formation process, including adhesion, proliferation, maturation, and dispersion, and their effects on multi-species biofilms. The perspective of antibiofilm agents for oral infectious diseases to restore the balance of oral microecology is also discussed.
Collapse
Affiliation(s)
- Yaqi Chi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ye Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengzhen Ji
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hualing Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yujia Yan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Di Fu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Zou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ling Zou,
| | - Biao Ren
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Biao Ren,
| |
Collapse
|
39
|
Functionalized Self-Assembled Monolayers: Versatile Strategies to Combat Bacterial Biofilm Formation. Pharmaceutics 2022; 14:pharmaceutics14081613. [PMID: 36015238 PMCID: PMC9415113 DOI: 10.3390/pharmaceutics14081613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/16/2022] Open
Abstract
Bacterial infections due to biofilms account for up to 80% of bacterial infections in humans. With the increased use of antibiotic treatments, indwelling medical devices, disinfectants, and longer hospital stays, antibiotic resistant infections are sharply increasing. Annual deaths are predicted to outpace cancer and diabetes combined by 2050. In the past two decades, both chemical and physical strategies have arisen to combat biofilm formation on surfaces. One such promising chemical strategy is the formation of a self-assembled monolayer (SAM), due to its small layer thickness, strong covalent bonds, typically facile synthesis, and versatility. With the goal of combating biofilm formation, the SAM could be used to tether an antibacterial agent such as a small-molecule antibiotic, nanoparticle, peptide, or polymer to the surface, and limit the agent’s release into its environment. This review focuses on the use of SAMs to inhibit biofilm formation, both on their own and by covalent grafting of a biocidal agent, with the potential to be used in indwelling medical devices. We conclude with our perspectives on ongoing challenges and future directions for this field.
Collapse
|
40
|
Genomic Study on Blood Culture Isolates From Patients With Staphylococcus Infection-associated Glomerulonephritis. Kidney Int Rep 2022; 7:2264-2278. [PMID: 36217522 PMCID: PMC9546744 DOI: 10.1016/j.ekir.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/05/2022] [Accepted: 07/11/2022] [Indexed: 11/23/2022] Open
|
41
|
Visperas A, Santana D, Klika AK, Higuera‐Rueda CA, Piuzzi NS. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J Orthop Res 2022; 40:1477-1491. [PMID: 35437846 PMCID: PMC9322555 DOI: 10.1002/jor.25345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) remains a devastating complication after total joint arthroplasty. Bacteria involved in these infections are notorious for adhering to foreign implanted surfaces and generating a biofilm matrix. These biofilms protect the bacteria from antibiotic treatment and the immune system making eradication difficult. Current treatment strategies including debridement, antibiotics, and implant retention, and one- and two-stage revisions still present a relatively high overall failure rate. One of the main shortcomings that has been associated with this high failure rate is the lack of a robust approach to treating bacterial biofilm. Therefore, in this review, we will highlight new strategies that have the potential to combat PJI by targeting biofilm integrity, therefore giving antibiotics and the immune system access to the internal network of the biofilm structure. This combination antibiofilm/antibiotic therapy may be a new strategy for PJI treatment while promoting implant retention.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - Daniel Santana
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Alison K. Klika
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | | | - Nicolas S. Piuzzi
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
42
|
Deficiency of exopolysaccharides and O-antigen makes Halomonas bluephagenesis self-flocculating and amenable to electrotransformation. Commun Biol 2022; 5:623. [PMID: 35750760 PMCID: PMC9232590 DOI: 10.1038/s42003-022-03570-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/08/2022] [Indexed: 11/17/2022] Open
Abstract
Halomonas bluephagenesis, a haloalkaliphilic bacterium and native polyhydroxybutyrate (PHB) producer, is a non-traditional bioproduction chassis for the next generation industrial biotechnology (NGIB). A single-sgRNA CRISPR/Cas9 genome editing tool is optimized using dual-sgRNA strategy to delete large DNA genomic fragments (>50 kb) with efficiency of 12.5% for H. bluephagenesis. The non-essential or redundant gene clusters of H. bluephagenesis, including those encoding flagella, exopolysaccharides (EPSs) and O-antigen, are sequentially deleted using this improved genome editing strategy. Totally, ~3% of the genome is reduced with its rapid growth and high PHB-production ability unaffected. The deletion of EPSs and O-antigen gene clusters shows two excellent properties from industrial perspective. Firstly, the EPSs and O-antigen deleted mutant rapidly self-flocculates and precipitates within 20 min without centrifugation. Secondly, DNA transformation into the mutant using electroporation becomes feasible compared to the wild-type H. bluephagenesis. The genome-reduced H. bluephagenesis mutant reduces energy and carbon source requirement to synthesize PHB comparable to its wild type. The H. bluephagenesis chassis with a reduced genome serves as an improved version of a NGIB chassis for productions of polyhydroxyalkanoates (PHA) or other chemicals. CRISPR/Cas9 editing of a PHB-producing H. bluephagenesis strain is used to delete the redundant synthesis pathways of flagella and EPSs, allowing for enhanced self-flocculation, less carbon and energy requirement for metabolic processes and feasible electrotransformation.
Collapse
|
43
|
Bellou V, Gkentzi D, Giormezis N, Vervenioti A, Spiliopoulou I, Dimitriou G. Persistent Coagulase-Negative Staphylococcal Bacteremia in Neonates: Clinical, Microbiological Characteristics and Changes within a Decade. Antibiotics (Basel) 2022; 11:765. [PMID: 35740171 PMCID: PMC9219984 DOI: 10.3390/antibiotics11060765] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 12/02/2022] Open
Abstract
Atypical outbreaks of persistent coagulase-negative staphylococci (CoNS) bacteremias, defined as three or more consecutive positive blood cultures with the same CoNS species, at least 48 h apart, have been reported in neonatal intensive-care units (NICUs). Our aim was to describe the profile of these cases in our NICU over a two-year period with the objective of assessing possible changes within a decade. Demographics, clinical and microbiological data were recorded for all CoNS bacteremias in our tertiary NICU during 2016-2017 and compared with the results of the same study in 2006-2007. Fifty-six cases of CoNS sepsis were recorded. Fourteen (25%) of them were persistent. There were no significant differences in demographic and clinical characteristics between cases with persistent vs. non-persistent bacteremia. Staphylococcus epidermidis was the most common species. In logistic regression analysis, biofilm production (β = 2.464, p = 0.04) was the most significant determinant for the development of persistent CoNS bacteremia. Our isolates were less likely to produce biofilm and carry ica operon as compared to those of 2006-2007. The cases of persistent CoNS sepsis have decreased within a decade, which could be attributed to the implementation of intensive infection control practices. Biofilm production remains the most important risk factor.
Collapse
Affiliation(s)
- Venetia Bellou
- Department of Paediatrics, Medical School, University of Patras, Rion, 26504 Patras, Greece; (V.B.); (A.V.); (G.D.)
| | - Despoina Gkentzi
- Department of Paediatrics, Medical School, University of Patras, Rion, 26504 Patras, Greece; (V.B.); (A.V.); (G.D.)
| | - Nikolaos Giormezis
- Department of Microbiology, Medical School, University of Patras, Rion, 26504 Patras, Greece; (N.G.); (I.S.)
| | - Aggeliki Vervenioti
- Department of Paediatrics, Medical School, University of Patras, Rion, 26504 Patras, Greece; (V.B.); (A.V.); (G.D.)
| | - Iris Spiliopoulou
- Department of Microbiology, Medical School, University of Patras, Rion, 26504 Patras, Greece; (N.G.); (I.S.)
| | - Gabriel Dimitriou
- Department of Paediatrics, Medical School, University of Patras, Rion, 26504 Patras, Greece; (V.B.); (A.V.); (G.D.)
| |
Collapse
|
44
|
Colonization and Infection of Indwelling Medical Devices by Staphylococcus aureus with an Emphasis on Orthopedic Implants. Int J Mol Sci 2022; 23:ijms23115958. [PMID: 35682632 PMCID: PMC9180976 DOI: 10.3390/ijms23115958] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 02/08/2023] Open
Abstract
The use of indwelling medical devices has constantly increased in recent years and has revolutionized the quality of life of patients affected by different diseases. However, despite the improvement of hygiene conditions in hospitals, implant-associated infections remain a common and serious complication in prosthetic surgery, mainly in the orthopedic field, where infection often leads to implant failure. Staphylococcus aureus is the most common cause of biomaterial-centered infection. Upon binding to the medical devices, these bacteria proliferate and develop dense communities encased in a protective matrix called biofilm. Biofilm formation has been proposed as occurring in several stages-(1) attachment; (2) proliferation; (3) dispersal-and involves a variety of host and staphylococcal proteinaceous and non-proteinaceous factors. Moreover, biofilm formation is strictly regulated by several control systems. Biofilms enable staphylococci to avoid antimicrobial activity and host immune response and are a source of persistent bacteremia as well as of localized tissue destruction. While considerable information is available on staphylococcal biofilm formation on medical implants and important results have been achieved on the treatment of biofilms, preclinical and clinical applications need to be further investigated. Thus, the purpose of this review is to gather current studies about the mechanism of infection of indwelling medical devices by S. aureus with a special focus on the biochemical factors involved in biofilm formation and regulation. We also provide a summary of the current therapeutic strategies to combat biomaterial-associated infections and highlight the need to further explore biofilm physiology and conduct research for innovative anti-biofilm approaches.
Collapse
|
45
|
The expression of glycosyltransferases sdgA and sdgB in Staphylococcus epidermidis depends on the conditions of biofilm formation. Arch Microbiol 2022; 204:274. [PMID: 35449342 DOI: 10.1007/s00203-022-02891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
The Staphylococcus aureus SdrG protein is glycosylated by SdgA and SdgB for protection against its degradation by the neutrophil cathepsin G. So far, there is no information about the role of Staphylococcus epidermidis SdgA or SdgB in biofilm-forming; therefore, the focus of this work was to determine the distribution and expression of the sdrG, sdgA and sdgB genes in S. epidermidis under in vitro and in vivo biofilm conditions. The frequencies of the sdrG, sdgA and sdgB genes were evaluated by PCR in a collection of 75 isolates. Isolates were grown in dynamic (non-biofilm-forming) or static (biofilm-forming) conditions. The expression of sdrG, sdgA and sdgB was determined by RT-qPCR in cells grown under dynamic conditions (CGDC), as well as in planktonic and sessile cells from a biofilm and cells adhered to a catheter implanted in Balb/c mice. The sdrG and sdgB genes were detected in 100% of isolates, while the sdgA gene was detected in 71% of the sample (p < 0.001). CGDC did not express sdrG, sdgA and sdgB mRNAs. Planktonic and sessile cells expressed sdrG and sdgB, and the same was observed in cells adhered to the catheter. In particular, one isolate, capable of inducing a biofilm under treatment with cathepsin G, expressed sdrG and sdgB in planktonic and sessile cells and cells adhering to the catheter. This suggests that bacteria require biofilm conditions as an important factor for the transcription of the sdgA, sdgB and sdrG genes.
Collapse
|
46
|
Gaio V, Lima T, Vilanova M, Cerca N, França A. mazEF Homologue Has a Minor Role in Staphylococcus epidermidis 1457 Virulence Potential. Front Cell Infect Microbiol 2022; 11:803134. [PMID: 35096651 PMCID: PMC8792614 DOI: 10.3389/fcimb.2021.803134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/06/2021] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus epidermidis biofilm cells are characterized by increased antimicrobial tolerance and improved ability to evade host immune system defenses. These features are, in part, due to the presence of viable but non-culturable (VBNC) cells. A previous study identified genes potentially involved in VBNC cells formation in S. epidermidis biofilms, among which SERP1682/1681 raised special interest due to their putative role as a toxin–antitoxin system of the mazEF family. Herein, we constructed an S. epidermidis mutant lacking the mazEF genes homologues and determined their role in (i) VBNC state induction during biofilm formation, (ii) antimicrobial susceptibility, (iii) survival in human blood and plasma, and (iv) activation of immune cells. Our results revealed that mazEF homologue did not affect the proportion of VBNC cells in S. epidermidis 1457, refuting the previous hypothesis that mazEF homologue could be linked with the emergence of VBNC cells in S. epidermidis biofilms. Additionally, mazEF homologue did not seem to influence key virulence factors on this strain, since its deletion did not significantly affect the mutant biofilm formation capacity, antimicrobial tolerance or the response by immune cells. Surprisingly, our data suggest that mazEF does not behave as a toxin–antitoxin system in S. epidermidis strain 1457, since no decrease in the viability and culturability of bacteria was found when only the mazF toxin homologue was being expressed.
Collapse
Affiliation(s)
- Vânia Gaio
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Tânia Lima
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Nuno Cerca
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Angela França
- Laboratory of Research in Biofilms Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
| |
Collapse
|
47
|
Chiba A, Seki M, Suzuki Y, Kinjo Y, Mizunoe Y, Sugimoto S. Staphylococcus aureus utilizes environmental RNA as a building material in specific polysaccharide-dependent biofilms. NPJ Biofilms Microbiomes 2022; 8:17. [PMID: 35379830 PMCID: PMC8980062 DOI: 10.1038/s41522-022-00278-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Biofilms are surface-bound microbial communities that are typically embedded in a matrix of self-produced extracellular polymeric substances and can cause chronic infections. Extracellular DNA is known to play a crucial role in biofilm development in diverse bacteria; however, the existence and function of RNA are poorly understood. Here, we show that RNA contributes to the structural integrity of biofilms formed by the human pathogen Staphylococcus aureus. RNase A dispersed both fresh and mature biofilms, indicating the importance of RNA at various stages. RNA-sequencing analysis demonstrated that the primary source of RNA in the biofilm matrix was the Brain Heart Infusion medium (>99.32%). RNA purified from the medium promoted biofilm formation. Microscopic and molecular interaction analyses demonstrated that polysaccharides were critical for capturing and stabilizing external RNA in biofilms, which contributes to biofilm organization. These findings provide a basis for exploring the role of externally derived substances in bacterial biofilm organization.
Collapse
|
48
|
The Transcription Factor SpoVG Is of Major Importance for Biofilm Formation of Staphylococcus epidermidis under In Vitro Conditions, but Dispensable for In Vivo Biofilm Formation. Int J Mol Sci 2022; 23:ijms23063255. [PMID: 35328675 PMCID: PMC8949118 DOI: 10.3390/ijms23063255] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus epidermidis is a common cause of device related infections on which pathogens form biofilms (i.e., multilayered cell populations embedded in an extracellular matrix). Here, we report that the transcription factor SpoVG is essential for the capacity of S. epidermidis to form such biofilms on artificial surfaces under in vitro conditions. Inactivation of spoVG in the polysaccharide intercellular adhesin (PIA) producing S. epidermidis strain 1457 yielded a mutant that, unlike its parental strain, failed to produce a clear biofilm in a microtiter plate-based static biofilm assay. A decreased biofilm formation capacity was also observed when 1457 ΔspoVG cells were co-cultured with polyurethane-based peripheral venous catheter fragments under dynamic conditions, while the cis-complemented 1457 ΔspoVG::spoVG derivative formed biofilms comparable to the levels seen with the wild-type. Transcriptional studies demonstrated that the deletion of spoVG significantly altered the expression of the intercellular adhesion (ica) locus by upregulating the transcription of the ica operon repressor icaR and down-regulating the transcription of icaADBC. Electrophoretic mobility shift assays (EMSA) revealed an interaction between SpoVG and the icaA-icaR intergenic region, suggesting SpoVG to promote biofilm formation of S. epidermidis by modulating ica expression. However, when mice were challenged with the 1457 ΔspoVG mutant in a foreign body infection model, only marginal differences in biomasses produced on the infected catheter fragments between the mutant and the parental strain were observed. These findings suggest that SpoVG is critical for the PIA-dependent biofilm formation of S. epidermis under in vitro conditions, but is largely dispensable for biofilm formation of this skin commensal under in vivo conditions.
Collapse
|
49
|
Zheng Y, Hunt RL, Villaruz AE, Fisher EL, Liu R, Liu Q, Cheung GYC, Li M, Otto M. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe 2022; 30:301-313.e9. [PMID: 35123653 PMCID: PMC8917079 DOI: 10.1016/j.chom.2022.01.004] [Citation(s) in RCA: 133] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/07/2021] [Accepted: 01/11/2022] [Indexed: 12/19/2022]
Abstract
Previously either regarded as insignificant or feared as potential sources of infection, the bacteria living on our skin are increasingly recognized for their role in benefitting human health. Skin commensals modulate mucosal immune defenses and directly interfere with pathogens; however, their contribution to the skin's physical integrity is less understood. Here, we show that the abundant skin commensal Staphylococcus epidermidis contributes to skin barrier integrity. S. epidermidis secretes a sphingomyelinase that acquires essential nutrients for the bacteria and assists the host in producing ceramides, the main constituent of the epithelial barrier that averts skin dehydration and aging. In mouse models, S. epidermidis significantly increases skin ceramide levels and prevents water loss of damaged skin in a fashion entirely dependent on its sphingomyelinase. Our findings reveal a symbiotic mechanism that demonstrates an important role of the skin microbiota in the maintenance of the skin's protective barrier.
Collapse
Affiliation(s)
- Yue Zheng
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA
| | - Rachelle L Hunt
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA
| | - Amer E Villaruz
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA
| | - Emilie L Fisher
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA
| | - Ryan Liu
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA
| | - Qian Liu
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Gordon Y C Cheung
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA
| | - Min Li
- Department of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Michael Otto
- Pathogen Molecular Genetics Section, Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, US National Institutes of Health, Bethesda, MD 20814, USA.
| |
Collapse
|
50
|
Pimentel de Araujo F, Pirolo M, Monaco M, Del Grosso M, Ambretti S, Lombardo D, Cassetti T, Gargiulo R, Riccobono E, Visca P, Pantosti A. Virulence Determinants in Staphylococcus aureus Clones Causing Osteomyelitis in Italy. Front Microbiol 2022; 13:846167. [PMID: 35308345 PMCID: PMC8927738 DOI: 10.3389/fmicb.2022.846167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus aureus is the most common pathogen causing osteomyelitis (OM). The aim of this study was to explore the clonal complex (CC) distribution and the pattern of virulence determinants of S. aureus isolates from OM in Italy. Whole-genome sequencing was performed on 83 S. aureus isolates from OM cases in six hospitals. Antibiotic susceptibility tests showed that 30.1% of the isolates were methicillin-resistant S. aureus (MRSA). The most frequent CCs detected were CC22, CC5, CC8, CC30, and CC15, which represent the most common lineages circulating in Italian hospitals. MRSA were limited in the number of lineages (CC22, CC5, CC8, and CC1). Phylogenetic analysis followed the sequence type-CC groupings and revealed a non-uniform distribution of the isolates from the different hospitals. No significant difference in the mean number of virulence genes carried by MRSA or MSSA isolates was observed. Some virulence genes, namely cna, fib, fnbA, coa, lukD, lukE, sak, and tst, were correlated with the CC. However, different categories of virulence factors, such as adhesins, exoenzymes, and toxins, were frequently detected and unevenly distributed among all lineages. Indeed, each lineage carried a variable combination of virulence genes, likely reflecting functional redundancy, and arguing for the importance of those traits for the pathogenicity in OM. In conclusion, no specific genetic trait in the most frequent lineages could explain their high prevalence among OM isolates. Our findings highlight that CCs detected in OM isolates follow the epidemiology of S. aureus infections in the country. It is conceivable that any of the most common S. aureus CC can cause a variety of infections, including OM.
Collapse
Affiliation(s)
- Fernanda Pimentel de Araujo
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
- Department of Science, Roma Tre University, Rome, Italy
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Monica Monaco
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Maria Del Grosso
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - Simone Ambretti
- Unit of Microbiology, Policlinico S. Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Donatella Lombardo
- Unit of Microbiology, Policlinico S. Orsola, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tiziana Cassetti
- Unit of Clinical Microbiology, S. Agostino-Estense Hospital Baggiovara, AUSL Modena, Modena, Italy
| | - Raffaele Gargiulo
- Unit of Clinical Microbiology, S. Agostino-Estense Hospital Baggiovara, AUSL Modena, Modena, Italy
| | - Eleonora Riccobono
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- Santa Lucia Foundation (IRCCS), Rome, Italy
- *Correspondence: Paolo Visca,
| | - Annalisa Pantosti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|