1
|
Silva-Santana G. Staphylococcus aureus: Dynamics of pathogenicity and antimicrobial-resistance in hospital and community environments - Comprehensive overview. Res Microbiol 2025; 176:104267. [PMID: 39805330 DOI: 10.1016/j.resmic.2025.104267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
This study reviews Staphylococcus aureus, a significant pathogen in both hospital and community-acquired infections, addressing its epidemiology, pathogenesis, and antimicrobial resistance. It highlights virulence mechanisms, such as adhesion factors, toxins, enzymes, and biofilms, which contribute to survival and immune evasion. The spread of resistance occurs through the transfer of mobile genetic elements like SCCmec and genetic mutations. The analysis also compares hospital and community strains, including multidrug-resistant lineages like MRSA, VISA, and VRSA. The study concludes that S. aureus presents a major public health challenge, requiring new therapeutic approaches and preventive strategies.
Collapse
Affiliation(s)
- Giorgio Silva-Santana
- Health Science Center, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro (RJ), Brazil.
| |
Collapse
|
2
|
Li J, Chen K, Zang C, Zhao X, Cheng Z, Li X, Wang C, Chen Y, Yang K. Alterations in Whey Protein Abundance Correlated with the Somatic Cell Count Identified via Label-Free and Selected Reaction Monitoring Proteomic Approaches. Animals (Basel) 2025; 15:675. [PMID: 40075958 PMCID: PMC11898894 DOI: 10.3390/ani15050675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 02/15/2025] [Accepted: 02/17/2025] [Indexed: 03/14/2025] Open
Abstract
The somatic cell count (SCC) is widely used to assess milk quality and diagnose intramammary infections. Several whey proteins have been shown to correlate significantly with SCC and are considered potential indicators of udder health. However, the relationship between milk whey proteins and SCC has not been fully elucidated. In this study, milk samples were grouped into five categories based on SCC levels. Subsequently, whey proteins were identified using a label-free proteomics approach, and the differential abundance of proteins was validated through a selected reaction monitoring (SRM) method. The levels of various proteins, including azurocidin 1 and kininogen-2, exhibited an increase, whereas topoisomerase I, tropomyosin-1, and desmin showed a significant decrease depending on the SCCs. Principal component analysis unveiled that these proteins contributed to the developmental alterations in milk proteins. A majority of these differentially abundant proteins were associated with response to stimulus, localization, and defense response. Our results provide fundamental information on the SCC that can be utilized for evaluating milk quality and serve as potential indicators for detecting intramammary infections.
Collapse
Affiliation(s)
- Jing Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Kaixu Chen
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Changjiang Zang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Xiaowei Zhao
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
- Institute of Animal Science and Veterinary Medicine, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhiqiang Cheng
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Xiaobin Li
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Caidie Wang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Yong Chen
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| | - Kailun Yang
- Xinjiang Key Laboratory of Herbivore Nutrition for Meat & Milk, College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (J.L.); (K.C.); (X.Z.); (Z.C.); (X.L.); (C.W.); (Y.C.); (K.Y.)
| |
Collapse
|
3
|
Hasan MI, Aggarwal S. Matrix matters: How extracellular substances shape biofilm structure and mechanical properties. Colloids Surf B Biointerfaces 2025; 246:114341. [PMID: 39536603 DOI: 10.1016/j.colsurfb.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024]
Abstract
Biofilms possess unique mechanical properties that are vital to their stability and function. Biofilms are made of extracellular polymeric substances (EPS) secreted by microorganisms and comprise polysaccharides, proteins, extracellular DNA (eDNA), and lipids. EPS is the primary contributor and driver of the biofilm structure and mechanical properties such as stiffness, cohesion, and adhesion. EPS enhances the elasticity and viscosity of biofilms, allowing them to withstand mechanical stresses, shear forces, and deformation. Therefore, biofilms are notoriously difficult to remove and can result in billions of dollars in losses for various industries due to their adverse effects, such as contamination, pressure loss, and corrosion. As a result, it is essential to comprehend the mechanical properties of biofilms to control or remove them in various scenarios. We undertook a fundamental study to determine the relationship between individual EPS components and biofilm mechanical properties. In this study, a CDC biofilm reactor was used to grow pure culture biofilms (Staphylococcus epidermidis) which were treated with six EPS modifier agents (Ca2+, Mg2+, periodic acid, protease K, lipase, and DNAase I) to modify or cleave specific EPS components. The mechanical properties (Young's Modulus) of treated biofilms were subsequently tested using atomic force microscopy (AFM), the biofilm EPS functional groups were measured via the Fourier transform infrared (FTIR) spectroscopy, and biofilm structural characteristics using confocal imaging. The FTIR results showed that EPS modifier agents successfully reduced their target EPS components. Similarly, the confocal microscopic analysis results showed that most of these modifier agents (except lipase) significantly reduced (P-value <0.05) the biovolume and thickness of treated biofilms. Conversely, most of these modifier agents (except protease K) significantly increased (P-value <0.05) the roughness coefficient of the biofilms. Finally, data from AFM showed that biofilm mechanical properties (Young's modulus) significantly (P-value <0.05) changed with their EPS composition. These results have significant ramifications for biofilm management and control in myriad scenarios.
Collapse
Affiliation(s)
- Md Ibnul Hasan
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Srijan Aggarwal
- Department of Civil, Geological, and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| |
Collapse
|
4
|
Yarawsky AE, Herr AB. Assembly landscape of the complete B-repeat superdomain from Staphylococcus epidermidis strain 1457. Biophys J 2025; 124:363-378. [PMID: 39668565 PMCID: PMC11788477 DOI: 10.1016/j.bpj.2024.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/15/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024] Open
Abstract
The accumulation-associated protein (Aap) is the primary determinant of Staphylococcus epidermidis device-related infections. The B-repeat superdomain is responsible for intercellular adhesion that leads to the development of biofilms occurring in such infections. It was recently demonstrated that Zn-induced B-repeat assembly leads to formation of functional amyloid fibrils, which offer strength and stability to the biofilm. Rigorous biophysical studies of Aap B-repeats from S. epidermidis strain RP62A revealed Zn-induced assembly into stable, reversible dimers and tetramers, prior to aggregation into amyloid fibrils. Genetic manipulation is not tractable for many S. epidermidis strains, including RP62A; instead, many genetic studies have used strain 1457. Therefore, to better connect findings from biophysical and structural studies of B-repeats to in vivo studies, the B-repeat superdomain from strain 1457 was examined. Differences between the B-repeats from strains RP62A and 1457 include the number of B-repeats, which has been shown to play a critical role in assembly into amyloid fibrils, as well as the distribution of consensus and variant B-repeat subtypes, which differ in assembly competency and thermal stability. Detailed investigation of the Zn-induced assembly of the full B-repeat superdomain from strain 1457 was conducted using analytical ultracentrifugation. Whereas the previous construct from RP62A (Brpt5.5) formed a stable tetramer prior to aggregation, Brpt6.5 from 1457 forms extremely large stable species on the order of ≈28-mers, prior to aggregation into similar amyloid fibrils. Our data suggest that both assembly pathways may proceed through the same mechanism of dimerization and tetramerization, and both conclude with the formation of amyloid-like fibrils. Discussion of assembly behavior of B-repeats from different strains and of different length is provided with considerations of biological implications.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio.
| |
Collapse
|
5
|
Weißelberg S, Both A, Failla AV, Huang J, Linder S, Ohnezeit D, Bartsch P, Aepfelbacher M, Rohde H. Staphylococcus epidermidis alters macrophage polarization and phagocytic uptake by extracellular DNA release in vitro. NPJ Biofilms Microbiomes 2024; 10:131. [PMID: 39567551 PMCID: PMC11579364 DOI: 10.1038/s41522-024-00604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024] Open
Abstract
Biofilm formation shields Staphylococcus epidermidis from host defense mechanisms, contributing to chronic implant infections. Using wild-type S. epidermidis 1457, a PIA-negative mutant (1457-M10), and an eDNA-negative mutant (1457ΔatlE), this study examined the influence of biofilm matrix components on human monocyte-derived macrophage (hMDM) interactions. The wild-type strain was resistant to phagocytosis and induced an anti-inflammatory response in hMDMs, while both mutants were more susceptible to phagocytosis and triggered a pro-inflammatory response. Removing eDNA from the 1457 biofilm matrix increased hMDM uptake and a pro-inflammatory reaction, whereas adding eDNA to the 1457ΔatlE mutant reduced phagocytosis and promoted an anti-inflammatory response. Inhibiting TLR9 enhanced bacterial uptake and induced a pro-inflammatory response in hMDMs exposed to wild-type S. epidermidis. This study highlights the critical role of eDNA in immune evasion and the central role of TLR9 in modulating macrophage responses, advancing the understanding of implant infections.
Collapse
Affiliation(s)
- Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Antonio Virgilio Failla
- UKE Microscopy Imaging Facility (Umif), Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jiabin Huang
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Denise Ohnezeit
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Patricia Bartsch
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
6
|
Keim K, Bhattacharya M, Crosby HA, Jenul C, Mills K, Schurr M, Horswill A. Polymicrobial interactions between Staphylococcus aureus and Pseudomonas aeruginosa promote biofilm formation and persistence in chronic wound infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.04.621402. [PMID: 39574578 PMCID: PMC11580920 DOI: 10.1101/2024.11.04.621402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Chronic, non-healing wounds are a leading cause of prolonged patient morbidity and mortality due to biofilm- associated, polymicrobial infections. Staphylococcus aureus and Pseudomonas aeruginosa are the most frequently co-isolated pathogens from chronic wound infections. Competitive interactions between these pathogens contribute to enhanced virulence, persistence, and antimicrobial tolerance. P. aeruginosa utilizes the extracellular proteases LasB, LasA, and AprA to degrade S. aureus surface structures, disrupt cellular physiology, and induce cell lysis, gaining a competitive advantage during co-infection. S. aureus evades P. aeruginosa by employing aggregation mechanisms to form biofilms. The cell wall protein SasG is implicated in S. aureus biofilm formation by facilitating intercellular aggregation upon cleavage by an extracellular protease. We have previously shown that proteolysis by a host protease can induce aggregation. In this study, we report that P. aeruginosa proteases LasA, LasB, and AprA cleave SasG to induce S. aureus aggregation. We demonstrate that SasG contributes to S. aureus biofilm formation in response to interactions with P. aeruginosa proteases by quantifying aggregation, SasG degradation, and proteolytic kinetics. Additionally, we assess the role of SasG in influencing S. aureus biofilm architecture during co-infection in vivo, chronic wound co-infections. This work provides further knowledge of some of the principal interactions that contribute to S. aureus persistence within chronic wounds co-infected with P. aeruginosa, and their impact on healing and infection outcomes.
Collapse
Affiliation(s)
- Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Mohini Bhattacharya
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Heidi A Crosby
- New England Biolabs, Ipswich, MA, United States of America
| | - Christian Jenul
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Krista Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
- Alphabet Health, New York, NY, United States of America
| | - Michael Schurr
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| | - Alexander Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States of America
| |
Collapse
|
7
|
Cruikshank MJ, Pitzer JM, Ameri K, Rother CV, Cooper K, Nuxoll AS. Characterization of Staphylococcus lugdunensis biofilms through ethyl methanesulfonate mutagenesis. AIMS Microbiol 2024; 10:880-893. [PMID: 39628716 PMCID: PMC11609425 DOI: 10.3934/microbiol.2024038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 12/06/2024] Open
Abstract
Staphylococcus lugdunensis is a coagulase-negative species responsible for a multitude of infections. These infections often resemble those caused by the more pathogenic staphylococcal species, Staphylococcus aureus, such as skin and soft tissue infections, prosthetic joint infections, and infective endocarditis. Despite a high mortality rate and infections that differ from other coagulase-negative species, little is known regarding S. lugdunensis pathogenesis. The objective of this study is to identify the essential factors for biofilm formation in S. lugdunensis. S. lugdunensis was mutagenized through ethyl methanesulfonate (EMS) exposure, and the individual cells were separated using a cell sorter and examined for biofilm formation at 8 hr and 24 hr timepoints. Mutations that resulted in either increased or decreased biofilm formation were sequenced to identify the genes responsible for the respective phenotypes. A mutation within the S. lugdunensis surface protein A (slsA) gene was common among all of the low biofilm formers, thus suggesting that high expression of this protein is important in biofilm formation. However, other mutations common among the mutants with decreased biofilm formation were in the putative divalent cation transport gene, mgtE. Conversely, a mutation in the gene that codes for the von Willebrand factor binding protein, vwbl, was common among the mutants with increased biofilm formation. Following proteinase K treatment, a significant dispersal of the S. lugdunensis biofilm matrix occurred, thus confirming the presence of primarily protein-mediated biofilms; this is in agreement with previous S. lugdunensis studies. Additionally, all low biofilm formers exhibited decreased protein levels (1.95-2.77 fold change) within the biofilm matrix, while no difference was observed with extracellular DNA (eDNA) or polysaccharides. This study presents a unique methodology to identify genes that affect biofilm formation and sheds light on S. lugdunensis pathogenesis.
Collapse
Affiliation(s)
- McKenna J. Cruikshank
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Justine M. Pitzer
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Kimia Ameri
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Caleb V. Rother
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| | - Kathryn Cooper
- School of Interdisciplinary Informatics, College of Information Science and Technology, University of Nebraska at Omaha, Omaha, NE, USA
| | - Austin S. Nuxoll
- Department of Biology, University of Nebraska at Kearney, Kearney, NE, United States
| |
Collapse
|
8
|
Sethi G, Hwang JH, Krishna R. Structure based exploration of potential lead molecules against the extracellular cysteine protease (EcpA) of Staphylococcus epidermidis: a therapeutic halt. J Biomol Struct Dyn 2024; 42:9167-9183. [PMID: 37615425 DOI: 10.1080/07391102.2023.2250455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 08/15/2023] [Indexed: 08/25/2023]
Abstract
Nosocomial infection caused by Staphylococcus epidermidis is one of the most widely spread diseases affecting the world's population. No strategies have been developed to overcome this infection and inhibit its spread in immunocompromised patients or patients with indwelling medical devices. EcpA is an extracellular cysteine protease protein involved in biofilm formation on medical devices. Thus, blocking this mechanism may be viable for developing a drug against S. epidermidis. The current research aimed to find new, potent inhibitors that could stop the S. epidermidis EcpA protein from functioning. This study attempted to identify the most promising drug candidates using structure-based virtual screening (SBVS) from libraries of natural ligands. The top-scored molecules were shortlisted based on their IC50 values and pharmacophore properties and further validated through density functional theory (DFT) studies. We found five inhibitors using virtual screening, and the results indicate that these drugs had the highest energy binding potential towards the EcpA targets when compared to the reference molecule E-64, a known cysteine protease inhibitor. In order to evaluate the binding conformational stability of protein-ligand complexes, molecular dynamics (MD) simulations were performed in triplicate for 100 ns, revealing the significant stability of anticipated molecules at the docked site. Furthermore, principal component analysis and binding free energy calculations were performed to understand the dynamics and stability of the complexes. The current study indicated that these compounds looked to be suitable novel inhibitors of the EcpA protein and pave the path for further discovery of novel inhibitors of EcpA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Guneswar Sethi
- Department of Bioinformatics, Pondicherry University, Puducherry, India
- Department of Predictive Toxicology, Korea Institute of Toxicology (KIT), Daejeon, Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Korea Institute of Toxicology, Jeonguep, Republic of Korea
| | - Ramadas Krishna
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
9
|
Monecke S, Boswihi S, Braun SD, Diezel C, Müller E, Reinicke M, Udo E, Ehricht R. Sequencing a CC239-MRSA-III with a novel composite SCC mec element from Kuwait. Eur J Clin Microbiol Infect Dis 2024; 43:1761-1775. [PMID: 38990431 DOI: 10.1007/s10096-024-04891-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/28/2024] [Indexed: 07/12/2024]
Abstract
Staphylococcus aureus CC239-MRSA-III is an ancient pandemic strain of hospital-associated, methicillin-resistant S. aureus that spread globally for decades and that still can be found in some parts of the world. In Kuwait, microarray-based surveillance identified from 2019 to 2022 a series of isolates of a hitherto unknown variant of this strain that carried a second set of recombinase genes, ccrA/B-2. To elucidate the structure of its SCCmec element, two isolates were subjected to nanopore sequencing. This revealed, in addition to ccrA/B-2, several SCC-associated genes including speG (spermidine N acetyltransferase) and a gene encoding a large "E-domain containing protein" (dubbed as edcP-SCC). This gene contained three regions consisting of multiple repeating units. In terms of sequence and structure it was similar but not identical to the biofilm-related aap gene from S. epidermidis. A review of published sequences identified edcP-SCC in eighteen genome sequences of S. aureus, S. epidermidis and S. capitis, and frequently it appears in a similar cluster of genes as in the strains sequenced herein. Isolates also carried a prophage with the adhesion factor sasX/sesI and aminoglycoside resistance genes. This is consistent with an affiliation to the "South-East Asian" Clade of CC239. The emergence of edcP-SCC and sasX-positive CC239 strain shows that, against a global trend towards community-associated MRSA, the ancient pandemic CC239 hospital strain still continues to evolve and to cause outbreaks.
Collapse
Affiliation(s)
- Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany.
- InfectoGnostics Research Campus, Jena, Germany.
| | - Samar Boswihi
- Faculty of Medicine, Department of Microbiology, Kuwait University, Kuwait City, Kuwait
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Celia Diezel
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Martin Reinicke
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Edet Udo
- Faculty of Medicine, Department of Microbiology, Kuwait University, Kuwait City, Kuwait
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Leibniz Center for Photonics in Infection Research (LPI), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich-Schiller University, Jena, Germany
| |
Collapse
|
10
|
Crosby HA, Keim K, Kwiecinski JM, Langouët-Astrié CJ, Oshima K, LaRivière WB, Schmidt EP, Horswill AR. Host-derived protease promotes aggregation of Staphylococcus aureus by cleaving the surface protein SasG. mBio 2024; 15:e0348323. [PMID: 38511930 PMCID: PMC11005337 DOI: 10.1128/mbio.03483-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 02/21/2024] [Indexed: 03/22/2024] Open
Abstract
Staphylococcus aureus is one of the leading causes of hospital-acquired infections, many of which begin following attachment and accumulation on indwelling medical devices or diseased tissue. These infections are often linked to the establishment of biofilms, but another often overlooked key characteristic allowing S. aureus to establish persistent infection is the formation of planktonic aggregates. Such aggregates are physiologically similar to biofilms and protect pathogens from innate immune clearance and increase antibiotic tolerance. The cell-wall-associated protein SasG has been implicated in biofilm formation via mechanisms of intercellular aggregation but the mechanism in the context of disease is largely unknown. We have previously shown that the expression of cell-wall-anchored proteins involved in biofilm formation is controlled by the ArlRS-MgrA regulatory cascade. In this work, we demonstrate that the ArlRS two-component system controls aggregation, by repressing the expression of sasG by activation of the global regulator MgrA. We also demonstrate that SasG must be proteolytically processed by a non-staphylococcal protease to induce aggregation and that strains expressing functional full-length sasG aggregate significantly upon proteolysis by a mucosal-derived host protease found in human saliva. We used fractionation and N-terminal sequencing to demonstrate that human trypsin within saliva cleaves within the A domain of SasG to expose the B domain and induce aggregation. Finally, we demonstrated that SasG is involved in virulence during mouse lung infection. Together, our data point to SasG, its processing by host proteases, and SasG-driven aggregation as important elements of S. aureus adaptation to the host environment.IMPORTANCEHere, we demonstrate that the Staphylococcus aureus surface protein SasG is important for cell-cell aggregation in the presence of host proteases. We show that the ArlRS two-component regulatory system controls SasG levels through the cytoplasmic regulator MgrA. We identified human trypsin as the dominant protease triggering SasG-dependent aggregation and demonstrated that SasG is important for S. aureus lung infection. The discovery that host proteases can induce S. aureus aggregation contributes to our understanding of how this pathogen establishes persistent infections. The observations in this study demonstrate the need to strengthen our knowledge of S. aureus surface adhesin function and processing, regulation of adhesin expression, and the mechanisms that promote biofilm formation to develop strategies for preventing chronic infections.
Collapse
Affiliation(s)
- Heidi A. Crosby
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Klara Keim
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jakub M. Kwiecinski
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Christophe J. Langouët-Astrié
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Kaori Oshima
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Wells B. LaRivière
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Eric P. Schmidt
- Division of Pulmonary Sciences and Critical Care, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Department of Veterans Affairs Eastern Colorado Health Care System, Denver, Colorado, USA
| |
Collapse
|
11
|
Yousuf B, Flint A, Weedmark K, Pagotto F, Ramirez-Arcos S. Comparative virulome analysis of four Staphylococcus epidermidis strains from human skin and platelet concentrates using whole genome sequencing. Access Microbiol 2024; 6:000780.v3. [PMID: 38737800 PMCID: PMC11083402 DOI: 10.1099/acmi.0.000780.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 02/29/2024] [Indexed: 05/14/2024] Open
Abstract
Staphylococcus epidermidis is one of the predominant bacterial contaminants in platelet concentrates (PCs), a blood component used to treat bleeding disorders. PCs are a unique niche that triggers biofilm formation, the main pathomechanism of S. epidermidis infections. We performed whole genome sequencing of four S. epidermidis strains isolated from skin of healthy human volunteers (AZ22 and AZ39) and contaminated PCs (ST10002 and ST11003) to unravel phylogenetic relationships and decipher virulence mechanisms compared to 24 complete S. epidermidis genomes in GenBank. AZ39 and ST11003 formed a separate unique lineage with strains 14.1 .R1 and SE95, while AZ22 formed a cluster with 1457 and ST10002 closely grouped with FDAAGOS_161. The four isolates were assigned to sequence types ST1175, ST1174, ST73 and ST16, respectively. All four genomes exhibited biofilm-associated genes ebh, ebp, sdrG, sdrH and atl. Additionally, AZ22 had sdrF and aap, whereas ST10002 had aap and icaABCDR. Notably, AZ39 possesses truncated ebh and sdrG and harbours a toxin-encoding gene. All isolates carry multiple antibiotic resistance genes conferring resistance to fosfomycin (fosB), β-lactams (blaZ) and fluoroquinolones (norA). This study reveales a unique lineage for S. epidermidis and provides insight into the genetic basis of virulence and antibiotic resistance in transfusion-associated S. epidermidis strains.
Collapse
Affiliation(s)
- Basit Yousuf
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| | - Annika Flint
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Kelly Weedmark
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Franco Pagotto
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Canada
| | - Sandra Ramirez-Arcos
- Medical Affairs and Innovation, Canadian Blood Services, Ottawa, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Canada
| |
Collapse
|
12
|
Zou Y, Li X, Mao Y, Song W, Liu Q. Enhanced Biofilm Formation by Tetracycline in a Staphylococcus aureus Naturally Lacking ica Operon and atl. Microb Drug Resist 2024; 30:82-90. [PMID: 38252794 DOI: 10.1089/mdr.2023.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024] Open
Abstract
Staphylococcus aureus is a major, widespread pathogen, and its biofilm-forming characteristics make it even more difficult to eliminate by biocides. Tetracycline (TCY) is a major broad-spectrum antibiotic, the residues of which can cause deleterious health impacts, and subinhibitory concentrations of TCY have the potential to increase biofilm formation in S. aureus. In this study, we showed how the biofilm formation of S. aureus 123786 is enhanced in the presence of TCY at specific subinhibitory concentrations. S. aureus 123786 used in this study was identified as Staphylococcal Cassette Chromosome mec III, sequence type239 and naturally lacking ica operon and atl gene. Two assays were performed to quantify the formation of S. aureus biofilm. In the crystal violet (CV) assay, the absorbance values of biofilm stained with CV at optical density (OD)540 nm increased after 8 and 16 hr of incubation when the concentration of TCY was 1/2 minimum inhibitory concentration (MIC), whereas at the concentration of 1/16 MIC, the absorbance values increased after 16 and 24 hr of incubation. In tetrazolium salt reduction assay, the absorbance value at OD490 nm of S. aureus 123786 biofilms mixed with 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium solution increased after 8 hr when the concentration of TCY was 1/4 MIC, which may be correlated with the higher proliferation and maturation of biofilm. In conclusion, the biofilm formation of S. aureus 123786 could be enhanced in the presence of TCY at specific subinhibitory concentrations.
Collapse
Affiliation(s)
- Yimin Zou
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuejie Li
- Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Yanxiong Mao
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Wenjuan Song
- Department of Economics, School of Economics and Management, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qing Liu
- Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
13
|
Dietrich M, Besser M, Stuermer EK. Characterization of the Human Plasma Biofilm Model (hpBIOM) to Identify Potential Therapeutic Targets for Wound Management of Chronic Infections. Microorganisms 2024; 12:269. [PMID: 38399673 PMCID: PMC10892339 DOI: 10.3390/microorganisms12020269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/18/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
The treatment of chronic wounds still represents a major challenge in wound management. Recent estimates suggest that 60-80% of chronic wounds are colonized by pathogenic microorganisms, which are strongly considered to have a major inhibiting influence on the healing process. By means of an innovative biofilm model based on human plasma, the time-dependent behavior of various bacterial strains under wound-milieu-like conditions were investigated, and the growth habits of different cocci species were compared. Undescribed fusion events between colonies of MRSA as well as of Staphylococcus epidermidis were detected, which were associated with the remodeling and reorganization of the glycocalyx of the wound tissue. After reaching a maximum colony size, the spreading of individual bacteria was observed. Interestingly, the combination of different cocci species with Pseudomonas aeruginosa in the human plasma biofilm revealed partial synergistic effects in these multispecies organizations. RT-qPCR analyses gave a first impression of the relevant proteins involved in the formation and maturation of biofilms, especially the role of fibrinogen-binding proteins. Knowledge of the maturation and growth behavior of persistent biofilms investigated in a translational human biofilm model reflects a starting point for the development of novel tools for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Michael Dietrich
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Manuela Besser
- Institute of Virology and Microbiology, Centre for Biomedical Education and Research (ZBAF), Faculty of Health, Witten/Herdecke University, 58455 Witten, Germany
| | - Ewa Klara Stuermer
- Department of Vascular Medicine, University Heart and Vascular Center, University Medical Center Hamburg-Eppendorf (UKE), 20246 Hamburg, Germany
| |
Collapse
|
14
|
Myckatyn TM, Duran Ramirez JM, Walker JN, Hanson BM. Management of Biofilm with Breast Implant Surgery. Plast Reconstr Surg 2023; 152:919e-942e. [PMID: 37871028 DOI: 10.1097/prs.0000000000010791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
LEARNING OBJECTIVES After studying this article, the participant should be able to: 1. Understand how bacteria negatively impact aesthetic and reconstructive breast implants. 2. Understand how bacteria infect breast implants. 3. Understand the evidence associated with common implant infection-prevention strategies, and their limitations. 4. Understand why implementation of bacteria-mitigation strategies such as antibiotic administration or "no-touch" techniques may not indefinitely prevent breast implant infection. SUMMARY Bacterial infection of aesthetic and reconstructive breast implants is a common and expensive problem. Subacute infections or chronic capsular contractures leading to device explantation are the most commonly documented sequelae. Although bench and translational research underscores the complexities of implant-associated infection, high-quality studies with adequate power, control groups, and duration of follow-up are lacking. Common strategies to minimize infections use antibiotics-administered systemically, in the breast implant pocket, or by directly bathing the implant before insertion-to limit bacterial contamination. Limiting contact between the implant and skin or breast parenchyma represents an additional common strategy. The clinical prevention of breast implant infection is challenged by the clean-contaminated nature of breast parenchyma, and the variable behavior of not only specific bacterial species but also their strains. These factors impact bacterial virulence and antibiotic resistance.
Collapse
Affiliation(s)
- Terence M Myckatyn
- From the Division of Plastic and Reconstructive Surgery, Washington University in St. Louis School of Medicine
| | | | - Jennifer N Walker
- Department of Microbiology and Molecular Genetics
- Center for Infectious Diseases, Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston
| | - Blake M Hanson
- Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School
- Center for Infectious Diseases, Department of Epidemiology, School of Public Health, University of Texas Health Science Center at Houston
| |
Collapse
|
15
|
Kim SY, Kim M, Kim TJ. Regulation of σ B-Dependent Biofilm Formation in Staphylococcus aureus through Strain-Specific Signaling Induced by Diosgenin. Microorganisms 2023; 11:2376. [PMID: 37894034 PMCID: PMC10609180 DOI: 10.3390/microorganisms11102376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/15/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Staphylococcus aureus is a commensal skin bacterium and a causative agent of infectious diseases. Biofilm formation in S. aureus is a mechanism that facilitates the emergence of resistant strains. This study proposes a mechanism for the regulation of biofilm formation in S. aureus through strain-specific physiological changes induced by the plant steroid diosgenin. A comparison of diosgenin-induced changes in the expression of regulatory genes associated with physiological changes revealed the intracellular regulatory mechanisms involved in biofilm formation. Diosgenin reduced biofilm formation in S. aureus ATCC 6538 and methicillin-resistant S. aureus (MRSA) CCARM 3090 by 39% and 61%, respectively. Conversely, it increased biofilm formation in S. aureus ATCC 29213 and MRSA CCARM 3820 by 186% and 582%, respectively. Cell surface hydrophobicity and extracellular protein and carbohydrate contents changed in a strain-specific manner in response to biofilm formation. An assessment of the changes in gene expression associated with biofilm formation revealed that diosgenin treatment decreased the expression of icaA and spa and increased the expression of RNAIII, agrA, sarA, and sigB in S. aureus ATCC 6538 and MRSA CCARM 3090; however, contrasting gene expression changes were noted in S. aureus ATCC 29213 and MRSA CCARM 3820. These results suggest that a regulatory mechanism of biofilm formation is that activated sigB expression sequentially increases the expression of sarA, agrA, and RNAIII. This increased RNAIII expression decreases the expression of spa, a surface-associated adhesion factor. An additional regulatory mechanism of biofilm formation is that activated sigB expression decreases the expression of an unknown regulator that increases the expression of icaA. This in turn decreases the expression of icaA, which decreases the synthesis of polysaccharide intercellular adhesins and ultimately inhibits biofilm formation. By assessing strain-specific contrasting regulatory signals induced by diosgenin in S. aureus without gene mutation, this study elucidated the signal transduction mechanisms that regulate biofilm formation based on physiological and gene expression changes.
Collapse
Affiliation(s)
| | | | - Tae-Jong Kim
- Department of Forest Products and Biotechnology, Kookmin University, Seoul 02707, Republic of Korea
| |
Collapse
|
16
|
Szemraj M, Glajzner P, Sienkiewicz M. Decreased susceptibility to vancomycin and other mechanisms of resistance to antibiotics in Staphylococcus epidermidis as a therapeutic problem in hospital treatment. Sci Rep 2023; 13:13629. [PMID: 37604965 PMCID: PMC10442409 DOI: 10.1038/s41598-023-40866-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Multidrug-resistant coagulase-negative staphylococci represent a real therapeutic challenge. The aim of the study was to emphasize the importance of heteroresistance to vancomycin presence in methicillin-resistant strains of S. epidermidis. The research comprised 65 strains of S. epidermidis. Heteroresistance to vancomycin was detected with the use of the agar screening method with Brain Heart Infusion and a population profile analysis (PAP test). In addition, types of cassettes and genes responsible for resistance to antibiotics for 22 multidrug resistant strains were determined. Our investigations showed that 56 of 65 S. epidermidis strains were phenotypically resistant to methicillin. The tested strains were mostly resistant to erythromycin, gentamicin, clindamycin, and ciprofloxacin. Six strains showed decreased susceptibility to vancomycin and their heterogeneous resistance profiles were confirmed with the PAP test. All tested multi-resistant strains exhibited the mecA gene. More than half of them possessed type IV cassettes. ant(4')-Ia and aac(6')/aph(2''), ermC and tetK genes were most commonly found. The described phenomenon of heteroresistance to vancomycin in multidrug resistant bacteria of the Staphylococcus genus effectively inhibits a therapeutic effect of treatment with this antibiotic. That is why it is so important to search for markers that will enable to identify heteroresistance to vancomycin strains under laboratory conditions.
Collapse
Affiliation(s)
- Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland.
| | - Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
17
|
Jin X, Yu FB, Yan J, Weakley AM, Dubinkina V, Meng X, Pollard KS. Culturing of a complex gut microbial community in mucin-hydrogel carriers reveals strain- and gene-associated spatial organization. Nat Commun 2023; 14:3510. [PMID: 37316519 PMCID: PMC10267222 DOI: 10.1038/s41467-023-39121-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/26/2023] [Indexed: 06/16/2023] Open
Abstract
Microbial community function depends on both taxonomic composition and spatial organization. While composition of the human gut microbiome has been deeply characterized, less is known about the organization of microbes between regions such as lumen and mucosa and the microbial genes regulating this organization. Using a defined 117 strain community for which we generate high-quality genome assemblies, we model mucosa/lumen organization with in vitro cultures incorporating mucin hydrogel carriers as surfaces for bacterial attachment. Metagenomic tracking of carrier cultures reveals increased diversity and strain-specific spatial organization, with distinct strains enriched on carriers versus liquid supernatant, mirroring mucosa/lumen enrichment in vivo. A comprehensive search for microbial genes associated with this spatial organization identifies candidates with known adhesion-related functions, as well as novel links. These findings demonstrate that carrier cultures of defined communities effectively recapitulate fundamental aspects of gut spatial organization, enabling identification of key microbial strains and genes.
Collapse
Affiliation(s)
- Xiaofan Jin
- Gladstone Institutes, San Francisco, CA, USA
| | | | - Jia Yan
- Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | | | | | - Xiandong Meng
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA
| | - Katherine S Pollard
- Gladstone Institutes, San Francisco, CA, USA.
- Chan-Zuckerberg Biohub, San Francisco, CA, USA.
- University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Yadav R, Shaikh T, Tikole S, Herr AB, Fitzkee NC. 1H, 15N, and 13C chemical shift backbone resonance NMR assignment of the accumulation-associated protein (Aap) lectin domain from Staphylococcus epidermidis. BIOMOLECULAR NMR ASSIGNMENTS 2023; 17:95-99. [PMID: 37022616 PMCID: PMC10247473 DOI: 10.1007/s12104-023-10126-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/30/2023] [Indexed: 06/02/2023]
Abstract
Staphylococcus epidermidis is the leading causative agent for hospital-acquired infections, especially device-related infections, due to its ability to form biofilms. The accumulation-associated protein (Aap) of S. epidermidis is primarily responsible for biofilm formation and consists of two domains, A and B. It was found that the A domain is responsible for the attachment to the abiotic/biotic surface, whereas the B domain is responsible for the accumulation of bacteria during biofilm formation. One of the parts of the A domain is the Aap lectin, which is a carbohydrate-binding domain having 222 amino acids in its structure. Here we report the near complete backbone chemical shift assignments for the lectin domain, as well as its predicted secondary structure. This data will provide a platform for future NMR studies to explore the role of lectin in biofilm formation.
Collapse
Affiliation(s)
- Rahul Yadav
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
- Physical Sciences Department, University of Arkansas, Ft. Smith, AR, 72913, USA
| | - Tanveer Shaikh
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Suhas Tikole
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA
| | - Andrew B Herr
- Department of Pediatrics, Division of Immunobiology, Cincinnati Children's Hospital Medical Center, University of Cincinnati School of Medicine, Cincinnati, OH, 45229, USA
| | - Nicholas C Fitzkee
- Department of Chemistry, Mississippi State University, Starkville, MS, 39762, USA.
| |
Collapse
|
19
|
El-Kirat-Chatel S, Varbanov M, Retourney C, Salles E, Risler A, Brunel JM, Beaussart A. AFM reveals the interaction and nanoscale effects imposed by squalamine on Staphylococcus epidermidis. Colloids Surf B Biointerfaces 2023; 226:113324. [PMID: 37146477 DOI: 10.1016/j.colsurfb.2023.113324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 04/07/2023] [Accepted: 04/21/2023] [Indexed: 05/07/2023]
Abstract
The Gram-positive bacterium Staphylococcus epidermidis is responsible for important nosocomial infections. With the continuous emergence of antibiotic-resistant strains, the search for new treatments has been amplified in the last decades. A potential candidate against multidrug-resistant bacteria is squalamine, a natural aminosterol discovered in dogfish sharks. Despite its broad-spectrum efficiency, little is known about squalamine mode of action. Here, we used atomic force microscopy (AFM) imaging to decipher the effect of squalamine on S. epidermidis morphology, revealing the peptidoglycan structure at the bacterial surface after the drug action. Single-molecule force spectroscopy with squalamine-decorated tips shows that squalamine binds to the cell surface via the spermidine motif, most likely through electrostatic interactions between the amine groups of the molecule and the negatively-charged bacterial cell wall. We demonstrated that - although spermidine is sufficient for the initial attachment of squalamine to S. epidermidis - the integrity of the molecule needs to be conserved for its antimicrobial action. A deeper analysis of the AFM force-distance signatures suggests the implication of the accumulation-associated protein (Aap), one of the main adhesins of S. epidermidis, in the initial binding of squalamine to the bacterial cell wall. This work highlights that AFM -combined with microbiological assays at the bacterial suspension scale- is a valuable approach to better understand the molecular mechanisms behind the efficiency of squalamine antibacterial activity.
Collapse
Affiliation(s)
| | - Mihayl Varbanov
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France; Laboratoire de Virologie, CHRU de Nancy Brabois, F-54500 Vandœuvre-lès-Nancy, France
| | | | - Elsa Salles
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Arnaud Risler
- Université de Lorraine, CNRS, L2CM, F-54000 Nancy, France
| | - Jean-Michel Brunel
- UMR_MD1, U-1261, Aix Marseille Université, INSERM, SSA, MCT, Marseille, France
| | | |
Collapse
|
20
|
Hellmann KT, Challagundla L, Gray BM, Robinson DA. Improved Genomic Prediction of Staphylococcus epidermidis Isolation Sources with a Novel Polygenic Score. J Clin Microbiol 2023; 61:e0141222. [PMID: 36840569 PMCID: PMC10035303 DOI: 10.1128/jcm.01412-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 01/22/2023] [Indexed: 02/25/2023] Open
Abstract
Staphylococcus epidermidis infections can be challenging to diagnose due to the species frequent contamination of clinical specimens and indolent course of infection. Nevertheless, S. epidermidis is the major cause of late-onset sepsis among premature infants and of intravascular infection in all age groups. Prior work has shown that bacterial virulence factors, antimicrobial resistances, and strains have up to 80% in-sample accuracy to distinguish hospital from community sources, but are unable to distinguish true bacteremia from blood culture contamination. Here, a phylogeny-informed genome-wide association study of 88 isolates was used to estimate effect sizes of particular genomic variants for isolation sources. A "polygenic score" was calculated for each isolate as the summed effect sizes of its repertoire of genomic variants. Predictive models of isolation sources based on polygenic scores were tested with in-samples and out-samples from prior studies of different patient populations. Polygenic scores from accessory genes (AGs) distinguished hospital from community sources with the highest accuracy to date, up to 98% for in-samples and 65% to 91% for various out-samples, whereas scores from single nucleotide polymorphisms (SNPs) had lower accuracy. Scores from AGs and SNPs achieved the highest in-sample accuracy to date, up to 76%, in distinguishing infection from contaminant sources within a hospital. Model training and testing data sets with more similar population structures resulted in more accurate predictions. This study reports the first use of a polygenic score for predicting a complex bacterial phenotype and shows the potential of this approach for enhancing S. epidermidis diagnosis.
Collapse
Affiliation(s)
- K. Taylor Hellmann
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Lavanya Challagundla
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Barry M. Gray
- Department of Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, Illinois, USA
| | - D. Ashley Robinson
- Department of Cell and Molecular Biology, University of Mississippi Medical Center, Jackson, Mississippi, USA
- Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, Mississippi, USA
| |
Collapse
|
21
|
Caldwell M, Hughes M, Wei F, Ngo C, Pascua R, Pugazhendhi AS, Coathup MJ. Promising applications of D-amino acids in periprosthetic joint infection. Bone Res 2023; 11:14. [PMID: 36894568 PMCID: PMC9998894 DOI: 10.1038/s41413-023-00254-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/02/2023] [Accepted: 02/10/2023] [Indexed: 03/11/2023] Open
Abstract
Due to the rise in our aging population, a disproportionate demand for total joint arthroplasty (TJA) in the elderly is forecast. Periprosthetic joint infection (PJI) represents one of the most challenging complications that can occur following TJA, and as the number of primary and revision TJAs continues to rise, an increasing PJI burden is projected. Despite advances in operating room sterility, antiseptic protocols, and surgical techniques, approaches to prevent and treat PJI remain difficult, primarily due to the formation of microbial biofilms. This difficulty motivates researchers to continue searching for an effective antimicrobial strategy. The dextrorotatory-isoforms of amino acids (D-AAs) are essential components of peptidoglycan within the bacterial cell wall, providing strength and structural integrity in a diverse range of species. Among many tasks, D-AAs regulate cell morphology, spore germination, and bacterial survival, evasion, subversion, and adhesion in the host immune system. When administered exogenously, accumulating data have demonstrated that D-AAs play a pivotal role against bacterial adhesion to abiotic surfaces and subsequent biofilm formation; furthermore, D-AAs have substantial efficacy in promoting biofilm disassembly. This presents D-AAs as promising and novel targets for future therapeutic approaches. Despite their emerging antibacterial efficacy, their role in disrupting PJI biofilm formation, the disassembly of established TJA biofilm, and the host bone tissue response remains largely unexplored. This review aims to examine the role of D-AAs in the context of TJAs. Data to date suggest that D-AA bioengineering may serve as a promising future strategy in the prevention and treatment of PJI.
Collapse
Affiliation(s)
- Matthew Caldwell
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Megan Hughes
- School of Biosciences, Cardiff University, CF10 3AT, Wales, UK
| | - Fei Wei
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Christopher Ngo
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Raven Pascua
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Abinaya Sindu Pugazhendhi
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA
| | - Melanie J Coathup
- Biionix Cluster & College of Medicine, University of Central Florida, 6900 Lake Nona Blvd, Orlando, FL, 32827, USA.
| |
Collapse
|
22
|
Clark LC, Atkin KE, Whelan F, Brentnall AS, Harris G, Towell AM, Turkenburg JP, Liu Y, Feizi T, Griffiths SC, Geoghegan JA, Potts JR. Staphylococcal Periscope proteins Aap, SasG, and Pls project noncanonical legume-like lectin adhesin domains from the bacterial surface. J Biol Chem 2023; 299:102936. [PMID: 36702253 PMCID: PMC9999234 DOI: 10.1016/j.jbc.2023.102936] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/08/2023] [Accepted: 01/18/2023] [Indexed: 01/25/2023] Open
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are frequently associated with medical device infections that involve establishment of a bacterial biofilm on the device surface. Staphylococcal surface proteins Aap, SasG, and Pls are members of the Periscope Protein class and have been implicated in biofilm formation and host colonization; they comprise a repetitive region ("B region") and an N-terminal host colonization domain within the "A region," predicted to be a lectin domain. Repetitive E-G5 domains (as found in Aap, SasG, and Pls) form elongated "stalks" that would vary in length with repeat number, resulting in projection of the N-terminal A domain variable distances from the bacterial cell surface. Here, we present the structures of the lectin domains within A regions of SasG, Aap, and Pls and a structure of the Aap lectin domain attached to contiguous E-G5 repeats, suggesting the lectin domains will sit at the tip of the variable length rod. We demonstrate that these isolated domains (Aap, SasG) are sufficient to bind to human host desquamated nasal epithelial cells. Previously, proteolytic cleavage or a deletion within the A domain had been reported to induce biofilm formation; the structures suggest a potential link between these observations. Intriguingly, while the Aap, SasG, and Pls lectin domains bind a metal ion, they lack the nonproline cis peptide bond thought to be key for carbohydrate binding by the lectin fold. This suggestion of noncanonical ligand binding should be a key consideration when investigating the host cell interactions of these bacterial surface proteins.
Collapse
Affiliation(s)
- Laura C Clark
- Department of Biology, University of York, York, United Kingdom
| | - Kate E Atkin
- Department of Biology, University of York, York, United Kingdom
| | - Fiona Whelan
- Department of Biology, University of York, York, United Kingdom; Department of Molecular and Biomedical Science, School of Biological Sciences, University of Adelaide, South Australia, Australia.
| | | | - Gemma Harris
- Department of Biology, University of York, York, United Kingdom
| | - Aisling M Towell
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland
| | | | - Yan Liu
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Ten Feizi
- Glycosciences Laboratory, Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, London, United Kingdom
| | | | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College Dublin, Dublin, Ireland; Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Jennifer R Potts
- Department of Biology, University of York, York, United Kingdom; School of Life and Environmental Sciences, University of Sydney, New South Wales, Australia.
| |
Collapse
|
23
|
Mahapatra SR, Dey J, Raj TK, Misra N, Suar M. Designing a Next-Generation Multiepitope-Based Vaccine against Staphylococcus aureus Using Reverse Vaccinology Approaches. Pathogens 2023; 12:376. [PMID: 36986298 PMCID: PMC10058999 DOI: 10.3390/pathogens12030376] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Staphylococcus aureus is a human bacterial pathogen that can cause a wide range of symptoms. As virulent and multi-drug-resistant strains of S. aureus have evolved, invasive S. aureus infections in hospitals and the community have become one of the leading causes of mortality and morbidity. The development of novel techniques is therefore necessary to overcome this bacterial infection. Vaccines are an appropriate alternative in this context to control infections. In this study, the collagen-binding protein (CnBP) from S. aureus was chosen as the target antigen, and a series of computational methods were used to find epitopes that may be used in vaccine development in a systematic way. The epitopes were passed through a filtering pipeline that included antigenicity, toxicity, allergenicity, and cytokine inducibility testing, with the objective of identifying epitopes capable of eliciting both T and B cell-mediated immune responses. To improve vaccine immunogenicity, the final epitopes and phenol-soluble modulin α4 adjuvant were fused together using appropriate linkers; as a consequence, a multiepitope vaccine was developed. The chosen T cell epitope ensemble is expected to cover 99.14% of the global human population. Furthermore, docking and dynamics simulations were used to examine the vaccine's interaction with the Toll-like receptor 2 (TLR2), revealing great affinity, consistency, and stability between the two. Overall, the data indicate that the vaccine candidate may be extremely successful, and it will need to be evaluated in experimental systems to confirm its efficiency.
Collapse
Affiliation(s)
- Soumya Ranjan Mahapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Jyotirmayee Dey
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - T. Kiran Raj
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education & Research, Mysuru 570015, India
| | - Namrata Misra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| | - Mrutyunjay Suar
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
- KIIT-Technology Business Incubator (KIIT-TBI), Kalinga Institute of Industrial Technology (KIIT), Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
24
|
Staphylococcus epidermidis and its dual lifestyle in skin health and infection. Nat Rev Microbiol 2023; 21:97-111. [PMID: 36042296 PMCID: PMC9903335 DOI: 10.1038/s41579-022-00780-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2022] [Indexed: 01/20/2023]
Abstract
The coagulase-negative bacterium Staphylococcus epidermidis is a member of the human skin microbiota. S. epidermidis is not merely a passive resident on skin but actively primes the cutaneous immune response, maintains skin homeostasis and prevents opportunistic pathogens from causing disease via colonization resistance. However, it is now appreciated that S. epidermidis and its interactions with the host exist on a spectrum of potential pathogenicity derived from its high strain-level heterogeneity. S. epidermidis is the most common cause of implant-associated infections and is a canonical opportunistic biofilm former. Additional emerging evidence suggests that some strains of S. epidermidis may contribute to the pathogenesis of common skin diseases. Here, we highlight new developments in our understanding of S. epidermidis strain diversity, skin colonization dynamics and its multifaceted interactions with the host and other members of the skin microbiota.
Collapse
|
25
|
Maciag JJ, Chantraine C, Mills KB, Yadav R, Yarawsky AE, Chaton CT, Vinod D, Fitzkee NC, Mathelié-Guinlet M, Dufrêne YF, Fey PD, Horswill AR, Herr AB. Mechanistic basis of staphylococcal interspecies competition for skin colonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.26.525635. [PMID: 36747832 PMCID: PMC9900903 DOI: 10.1101/2023.01.26.525635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Staphylococci, whether beneficial commensals or pathogens, often colonize human skin, potentially leading to competition for the same niche. In this multidisciplinary study we investigate the structure, binding specificity, and mechanism of adhesion of the Aap lectin domain required for Staphylococcus epidermidis skin colonization and compare its characteristics to the lectin domain from the orthologous Staphylococcus aureus adhesin SasG. The Aap structure reveals a legume lectin-like fold with atypical architecture, showing specificity for N-acetyllactosamine and sialyllactosamine. Bacterial adhesion assays using human corneocytes confirmed the biological relevance of these Aap-glycan interactions. Single-cell force spectroscopy experiments measured individual binding events between Aap and corneocytes, revealing an extraordinarily tight adhesion force of nearly 900 nN and a high density of receptors at the corneocyte surface. The SasG lectin domain shares similar structural features, glycan specificity, and corneocyte adhesion behavior. We observe cross-inhibition of Aap-and SasG-mediated staphylococcal adhesion to corneocytes. Together, these data provide insights into staphylococcal interspecies competition for skin colonization and suggest potential avenues for inhibition of S. aureus colonization.
Collapse
Affiliation(s)
- Joseph J. Maciag
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Constance Chantraine
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Krista B. Mills
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Rahul Yadav
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Catherine T. Chaton
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
| | - Divya Vinod
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Medical Sciences Undergraduate Program, University of Cincinnati, Cincinnati, OH
| | - Nicholas C. Fitzkee
- Department of Chemistry, Mississippi State University, Mississippi State, MS
| | - Marion Mathelié-Guinlet
- Institut de Chimie et Biologie des Membranes et des Nano-Objets, CNRS UMR 5248, University of Bordeaux, Pessac, France
| | - Yves F. Dufrêne
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Louvain-la-Neuve, Belgium
| | - Paul D. Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE
| | - Alexander R. Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| |
Collapse
|
26
|
The Regulations of Essential WalRK Two-Component System on Enterococcus faecalis. J Clin Med 2023; 12:jcm12030767. [PMID: 36769415 PMCID: PMC9917794 DOI: 10.3390/jcm12030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/04/2023] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
Enterococcus faecalis (E. faecalis) is a Gram-positive, facultative anaerobic bacterium that is highly adaptable to its environment. In humans, it can cause serious infections with biofilm formation. With increasing attention on its health threat, prevention and control of biofilm formation in E. faecalis have been observed. Many factors including polysaccharides as well as autolysis, proteases, and eDNA regulate biofilm formation. Those contributors are regulated by several important regulatory systems involving the two-component signal transduction system (TCS) for its adaptation to the environment. Highly conserved WalRK as one of 17 TCSs is the only essential TCS in E. faecalis. In addition to biofilm formation, various metabolisms, including cell wall construction, drug resistance, as well as interactions among regulatory systems and resistance to the host immune system, can be modulated by the WalRK system. Therefore, WalRK has been identified as a key target for E. faecalis infection control. In the present review, the regulation of WalRK on E. faecalis pathogenesis and associated therapeutic strategies are demonstrated.
Collapse
|
27
|
Chajęcka-Wierzchowska W, Gajewska J, Zakrzewski AJ, Caggia C, Zadernowska A. Molecular Analysis of Pathogenicity, Adhesive Matrix Molecules (MSCRAMMs) and Biofilm Genes of Coagulase-Negative Staphylococci Isolated from Ready-to-Eat Food. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1375. [PMID: 36674132 PMCID: PMC9859056 DOI: 10.3390/ijerph20021375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
This paper provides a snapshot on the pathogenic traits within CoNS isolated from ready-to-eat (RTE) food. Eighty-five strains were subjected to biofilm and slime production, as well as biofilm-associated genes (icaA, icaD, icaB, icaC, eno, bap, bhp, aap, fbe, embP and atlE), the insertion sequence elements IS256 and IS257 and hemolytic genes. The results showed that the most prevalent determinants responsible for the primary adherence were eno (57.6%) and aap (56.5%) genes. The icaADBC operon was detected in 45.9% of the tested strains and was correlated to slime production. Moreover, most strains carrying the icaADBC operon simultaneously carried the IS257 insertion sequence element. Among the genes encoding for surface proteins involved in the adhesion to abiotic surfaces process, atlE was the most commonly (31.8%) followed by bap (4.7%) and bhp (1.2%). The MSCRAMMs, including fbe and embp were detected in the 11.8% and 28.2% of strains, respectively. A high occurrence of genes involved in the hemolytic toxin production were detected, such as hla_yiD (50.6%), hlb (48.2%), hld (41.2%) and hla_haem (34.1%). The results of the present study revealed an unexpected occurrence of the genes involved in biofilm production and the high hemolytic activity among the CoNS strains, isolated from RTE food, highlighting that this group seems to be acquiring pathogenic traits similar to those of S. aureus, suggesting the need to be included in the routine microbiological analyses of food.
Collapse
Affiliation(s)
- Wioleta Chajęcka-Wierzchowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Joanna Gajewska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Arkadiusz Józef Zakrzewski
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| | - Cinzia Caggia
- Department of Agriculture, Food and Environment (Di3A), University of Catania, Via Santa Sofia 100, 95123 Catania, Italy
| | - Anna Zadernowska
- Department of Industrial and Food Microbiology, Faculty of Food Science, University of Warmia and Mazury in Olsztyn, 10-693 Olsztyn, Poland
| |
Collapse
|
28
|
Yarawsky AE, Ori AL, English LR, Whitten ST, Herr AB. Convergent behavior of extended stalk regions from staphylococcal surface proteins with widely divergent sequence patterns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.06.523059. [PMID: 36711672 PMCID: PMC9881980 DOI: 10.1101/2023.01.06.523059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Staphylococcus epidermidis and S. aureus are highly problematic bacteria in hospital settings. This stems, at least in part, from strong abilities to form biofilms on abiotic or biotic surfaces. Biofilms are well-organized multicellular aggregates of bacteria, which, when formed on indwelling medical devices, lead to infections that are difficult to treat. Cell wall-anchored (CWA) proteins are known to be important players in biofilm formation and infection. Many of these proteins have putative stalk-like regions or regions of low complexity near the cell wall-anchoring motif. Recent work demonstrated the strong propensity of the stalk region of the S. epidermidis accumulation-associated protein (Aap) to remain highly extended under solution conditions that typically induce compaction or other significant conformational changes. This behavior is consistent with the expected function of a stalk-like region that is covalently attached to the cell wall peptidoglycan and projects the adhesive domains of Aap away from the cell surface. In this study, we evaluate whether the ability to resist compaction is a common theme among stalk regions from various staphylococcal CWA proteins. Circular dichroism spectroscopy was used to examine secondary structure changes as a function of temperature and cosolvents along with sedimentation velocity analytical ultracentrifugation and SAXS to characterize structural characteristics in solution. All stalk regions tested are intrinsically disordered, lacking secondary structure beyond random coil and polyproline type II helix, and they all sample highly extended conformations. Remarkably, the Ser-Asp dipeptide repeat region of SdrC exhibited nearly identical behavior in solution when compared to the Aap Pro/Gly-rich region, despite highly divergent sequence patterns, indicating conservation of function by various distinct staphylococcal CWA protein stalk regions.
Collapse
Affiliation(s)
- Alexander E. Yarawsky
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Andrea L. Ori
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Medical Sciences Baccalaureate Program, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Lance R. English
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Steven T. Whitten
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, TX 78666, USA
| | - Andrew B. Herr
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| |
Collapse
|
29
|
Asante J, Abia ALK, Anokwah D, Hetsa BA, Fatoba DO, Bester LA, Amoako DG. Phenotypic and Genomic Insights into Biofilm Formation in Antibiotic-Resistant Clinical Coagulase-Negative Staphylococcus Species from South Africa. Genes (Basel) 2022; 14:104. [PMID: 36672846 PMCID: PMC9858754 DOI: 10.3390/genes14010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
The work aims to investigate biofilm formation and biofilm/adhesion-encoding genes in coagulase-negative staphylococci (CoNS) species recovered from blood culture isolates. Eighty-nine clinical CoNS were confirmed using the VITEK 2 system, and antibiotic susceptibility testing of isolates was conducted using the Kirby-Bauer disk diffusion method against a panel of 20 antibiotics. Isolates were qualitatively screened using the Congo red agar medium. Quantitative assays were performed on microtiter plates, where the absorbances of the solubilised biofilms were recorded as optical densities and quantified. In all, 12.4% of the isolates were strong biofilm formers, 68.5% had moderate biofilm capacity, and 17.9% showed weak capacity. A subset of 18 isolates, mainly methicillin-resistant S. epidermidis, were investigated for adherence-related genes using whole-genome sequencing and bioinformatics analysis. The highest antibiotic resistance rates for strongly adherent isolates were observed against penicillin (100%) and cefoxitin (81.8%), but the isolates showed no resistance to linezolid (0.0%) and tigecycline (0.0%). The icaABC genes involved in biofilm formation were detected in 50% of the screened isolates. Other adherence-related genes, including autolysin gene atl (88.8%), elastin binding protein gene ebp (94.4%), cell wall-associated fibronectin-binding protein gene ebh (66.7%), clumping factor A gene clfA (5.5%), and pili gene ebpC (22.2%) were also found. The insertion sequence IS256, involved in biofilm formation, was found in 10/18 (55.5%) screened isolates. We demonstrate a high prevalence of biofilm-forming coagulase-negative staphylococci associated with various resistance phenotypes and a substantial agreement between the possession of biofilm-associated genes and the biofilm phenotype.
Collapse
Affiliation(s)
- Jonathan Asante
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L. K. Abia
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Environmental Research Foundation, Westville 3630, South Africa
| | - Daniel Anokwah
- School of Pharmacy and Pharmaceutical Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Bakoena A. Hetsa
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Dorcas O. Fatoba
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
30
|
Wang C, Chantraine C, Viljoen A, Herr AB, Fey PD, Horswill AR, Mathelié-Guinlet M, Dufrêne YF. The staphylococcal biofilm protein Aap mediates cell-cell adhesion through mechanically distinct homophilic and lectin interactions. PNAS NEXUS 2022; 1:pgac278. [PMID: 36712378 PMCID: PMC9802226 DOI: 10.1093/pnasnexus/pgac278] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/01/2022] [Indexed: 12/04/2022]
Abstract
The accumulation phase of staphylococcal biofilms relies on both the production of an extracellular polysaccharide matrix and the expression of bacterial surface proteins. A prototypical example of such adhesive proteins is the long multidomain protein Aap (accumulation-associated protein) from Staphylococcus epidermidis, which mediates zinc-dependent homophilic interactions between Aap B-repeat regions through molecular forces that have not been investigated yet. Here, we unravel the remarkable mechanical strength of single Aap-Aap homophilic bonds between living bacteria and we demonstrate that intercellular adhesion also involves sugar binding through the lectin domain of the Aap A region. We find that the mechanical force needed to unfold individual β-sheet-rich G5-E domains from the Aap B-repeat regions is very high, ranging from 300 up to 1,000 pN at high loading rates, indicating these are extremely stable. This high mechanostability provides a means to the cells to form highly adhesive and cohesive biofilms capable of sustaining high physiological shear stress. Importantly, we identify a previously undescribed role of Aap in bacterial-bacterial adhesion, that is, heterophilic sugar binding by a specific lectin domain located in the N-terminal A region, which might be important to establish initial contacts between cells before strong homophilic bonds come into play. This study emphasizes the remarkable mechanical and binding properties of Aap as well as its wide diversity of adhesive functions.
Collapse
Affiliation(s)
| | | | - Albertus Viljoen
- Louvain Institute of Biomolecular Science and Technology, UCLouvain, Croix du Sud, 4-5, bte L7.07.07, B-1348 Louvain-la-Neuve, Belgium
| | - Andrew B Herr
- Divisions of Immunobiology and Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Alexander R Horswill
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | | | | |
Collapse
|
31
|
Kiselev AN, Lebedev MA, Syrbu SA, Yurina ES, Gubarev YA, Lebedeva NS, Belyanina NA, Shirokova IY, Kovalishena OV, Koifman OI. Synthesis and study of water-soluble asymmetric cationic porphyrins as potential photoinactivators of pathogens. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3698-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
32
|
The long and the short of Periscope Proteins. Biochem Soc Trans 2022; 50:1293-1302. [PMID: 36196877 DOI: 10.1042/bst20220194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/10/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022]
Abstract
Bacteria sense, interact with, and modify their environmental niche by deploying a molecular ensemble at the cell surface. The changeability of this exposed interface, combined with extreme changes in the functional repertoire associated with lifestyle switches from planktonic to adherent and biofilm states necessitate dynamic variability. Dynamic surface changes include chemical modifications to the cell wall; export of diverse extracellular biofilm components; and modulation of expression of cell surface proteins for adhesion, co-aggregation and virulence. Local enrichment for highly repetitive proteins with high tandem repeat identity has been an enigmatic phenomenon observed in diverse bacterial species. Preliminary observations over decades of research suggested these repeat regions were hypervariable, as highly related strains appeared to express homologues with diverse molecular mass. Long-read sequencing data have been interrogated to reveal variation in repeat number; in combination with structural, biophysical and molecular dynamics approaches, the Periscope Protein class has been defined for cell surface attached proteins that dynamically expand and contract tandem repeat tracts at the population level. Here, I review the diverse high-stability protein folds and coherent interdomain linkages culminating in the formation of highly anisotropic linear repeat arrays, so-called rod-like protein 'stalks', supporting roles in bacterial adhesion, biofilm formation, cell surface spatial competition, and immune system modulation. An understanding of the functional impacts of dynamic changes in repeat arrays and broader characterisation of the unusual protein folds underpinning this variability will help with the design of immunisation strategies, and contribute to synthetic biology approaches including protein engineering and microbial consortia construction.
Collapse
|
33
|
Yarawsky AE, Hopkins JB, Chatzimagas L, Hub JS, Herr AB. Solution Structural Studies of Pre-amyloid Oligomer States of the Biofilm Protein Aap. J Mol Biol 2022; 434:167708. [PMID: 35777467 PMCID: PMC9615840 DOI: 10.1016/j.jmb.2022.167708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/20/2022] [Accepted: 06/25/2022] [Indexed: 11/16/2022]
Abstract
Staphylococcus epidermidis is a commensal bacterium on human skin that is also the leading cause of medical device-related infections. The accumulation-associated protein (Aap) from S. epidermidis is a critical factor for infection via its ability to mediate biofilm formation. The B-repeat superdomain of Aap is composed of 5 to 17 Zn2+-binding B-repeats, which undergo rapid, reversible assembly to form dimer and tetramer species. The tetramer can then undergo a conformational change and nucleate highly stable functional amyloid fibrils. In this study, multiple techniques including analytical ultracentrifugation (AUC) and small-angle X-ray scattering (SAXS) are used to probe a panel of B-repeat mutant constructs that assemble to distinct oligomeric states to define the structural characteristics of B-repeat dimer and tetramer species. The B-repeat region from Aap forms an extremely elongated conformation that presents several challenges for standard SAXS analyses. Specialized approaches, such as cross-sectional analyses, allowed for in-depth interpretation of data, while explicit-solvent calculations via WAXSiS allowed for accurate evaluation of atomistic models. The resulting models suggest mechanisms by which Aap functional amyloid fibrils form, illuminating an important contributing factor to recurrent staphylococcal infections.
Collapse
Affiliation(s)
- Alexander E Yarawsky
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Jesse B Hopkins
- The Biophysics Collaborative Access Team (BioCAT), Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL, USA
| | - Leonie Chatzimagas
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Andrew B Herr
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
34
|
Characterization of Biofilm Producing Coagulase-Negative Staphylococci Isolated from Bulk Tank Milk. Vet Sci 2022; 9:vetsci9080430. [PMID: 36006345 PMCID: PMC9416249 DOI: 10.3390/vetsci9080430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/30/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Coagulase-negative staphylococci (CoNS) are considered less virulent as they do not produce a large number of toxic enzymes and toxins; however, they have been increasingly recognized as an important cause of bovine mastitis. In particular, the ability to form biofilms appears to be an important factor in CoNS pathogenicity, and it contributes more resistance to antimicrobials. The aim of this study was to investigate the pathogenic potential by assessing the biofilm-forming ability of CoNS isolated from normal bulk tank milk using the biofilm formation assay and to analyze the biofilm-associated resistance to antimicrobial agents using the disc diffusion method. One hundred and twenty-seven (78.4%) among 162 CoNS showed the ability of biofilm formation, and all species showed a significantly high ability of biofilm formation (p < 0.05). Although the prevalence of weak biofilm formers (39.1% to 80.0%) was significantly higher than that of other biofilm formers in all species (p < 0.05), the prevalence of strong biofilm formers was significantly higher in Staphylococcus haemolyticus (36.4%), Staphylococcus chromogenes (24.6%), and Staphylococcus saprophyticus (21.7%) (p < 0.05). Also, 4 (11.4%) among 35 non-biofilm formers did not harbor any biofilm-associated genes, whereas all 54 strong or moderate biofilm formers harbored 1 or more of these genes. The prevalence of MDR was significantly higher in biofilm formers (73.2%) than in non-formers (20.0%) (p < 0.05). Moreover, the distribution of MDR in strong or moderate biofilm formers was 81.5%, which was significantly higher than in weak (67.1%) and non-formers (20.0%) (p < 0.05). Our results indicated that various CoNS isolated from bulk tank milk, not from bovine with mastitis, have already showed a high ability to form biofilms, while also displaying a high prevalence of MDR.
Collapse
|
35
|
Xiao L, Lapu M, Kang S, Jiang P, Li J, Liu Y, Liu D, Liu M. Effects of Tartary buckwheat on physicochemical properties and microbial community of low salt natural fermented soybean paste. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108953] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Stamm J, Weißelberg S, Both A, Failla AV, Nordholt G, Büttner H, Linder S, Aepfelbacher M, Rohde H. Development of an artificial synovial fluid useful for studying Staphylococcus epidermidis joint infections. Front Cell Infect Microbiol 2022; 12:948151. [PMID: 35967857 PMCID: PMC9374174 DOI: 10.3389/fcimb.2022.948151] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/04/2022] [Indexed: 11/24/2022] Open
Abstract
Staphylococcus epidermidis is a major causative agent of prosthetic joint infections (PJI). The ability to form biofilms supports this highly selective pathogenic potential. In vitro studies essentially relying on phenotypic assays and genetic approaches have provided a detailed picture of the molecular events contributing to biofilm assembly. A major limitation in these studies is the use of synthetic growth media, which significantly differs from the environmental conditions S. epidermidis encounters during host invasion. Building on evidence showing that growth in serum substantially affects S. epidermidis gene expression profiles and phenotypes, the major aim of this study was to develop and characterize a growth medium mimicking synovial fluid, thereby facilitating research addressing specific aspects related to PJI. Using fresh human plasma, a protocol was established allowing for the large-scale production of a medium that by biochemical analysis matches key characteristics of synovial fluid and therefore is referred to as artificial synovial fluid (ASF). By analysis of biofilm-positive, polysaccharide intercellular adhesion (PIA)-producing S. epidermidis 1457 and its isogenic, PIA- and biofilm-negative mutant 1457-M10, evidence is provided that the presence of ASF induces cluster formation in S. epidermidis 1457 and mutant 1457-M10. Consistent with the aggregative properties, both strains formed multilayered biofilms when analyzed by confocal laser scanning microscopy. In parallel to the phenotypic findings, expression analysis after growth in ASF found upregulation of genes encoding for intercellular adhesins (icaA, aap, and embp) as well as atlE, encoding for the major cell wall autolysin being responsible for eDNA release. In contrast, growth in ASF was associated with reduced expression of the master regulator agr. Collectively, these results indicate that ASF induces expression profiles that are able to support intercellular adhesion in both PIA-positive and PIA-negative S. epidermidis. Given the observation that ASF overall induced biofilm formation in a collection of S. epidermidis isolates from PJI, the results strongly support the idea of using growth media mimicking host environments. ASF may play an important role in future studies related to the pathogenesis of S. epidermidis PJI.
Collapse
Affiliation(s)
- Johanna Stamm
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
| | - Samira Weißelberg
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
| | - Anna Both
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
| | | | - Gerhard Nordholt
- Institute for Clinical Chemistry, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Henning Büttner
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
| | - Stefan Linder
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
| | - Martin Aepfelbacher
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Hamburg, Germany
- Deutsches Zentrum für Infektionsmedizin, Standort Hamburg-Lübeck-Borstel, Hamburg, Germany
- *Correspondence: Holger Rohde,
| |
Collapse
|
37
|
Jin Y, Wang Q, Zhang H, Zhao N, Yang Z, Wang H, Li M, Liu Q. Phenol-soluble modulin contributes to the dispersal of Staphylococcus epidermidis isolates from catheters. Front Microbiol 2022; 13:934358. [PMID: 35958143 PMCID: PMC9358717 DOI: 10.3389/fmicb.2022.934358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/04/2022] [Indexed: 11/13/2022] Open
Abstract
Staphylococcus epidermidis (S. epidermidis), a human commensal, has been implicated in invasive infection in humans due to their ability to form biofilm. It is assumed that when a biofilm is dispersed it will subsequently cause a more severe infection. The clinical significance of S. epidermidis isolated from sterile body fluid (BF) remains unclear, and might be related to dispersal from catheter-associated biofilm infection. To evaluate this relationship, we evaluated S. epidermidis isolates from catheters (CA) or BF in hospitalized patients. Sequence type 2 (ST2) is the most prevalent type isolated from infection sites. Although the specific STs were also observed in isolates from different sites, we observed that the main sequence type was ST2, followed by ST59, among all the 114 isolates from different infection sites. Interestingly, ST2 strains isolated from BF exhibited significantly thicker biofilm than those from CA. The thicker biofilm was due to the higher expression of accumulation-associated protein (aap) but not intercellular adhesion (ica) operon. Moreover, the transcription of PSMδ and PSMε were significantly increased in ST2 strains isolated from BF. Although the bacterial loads on catheters were similar infected by CA- or BF-originated strains in mouse biofilm-associated infection model, we observed a higher CFU in peri-catheter tissues infected by ST2 clones isolated from BF, suggesting that S. epidermidis with thicker biofilm formation might be able to disperse. Taken together, our data suggested that S. epidermidis originated from diverse infection sites exhibited different biofilm forming capacity. The major ST2 clone isolated from BF exhibited thicker biofilm by increasing the expression of Aap. The higher expression of PSM of these strains may contribute to bacteria dispersal from biofilm and the following bacterial spread.
Collapse
|
38
|
Ferreira EM, Romero LC, Cunha MDLRDSD, Malagó Junior W, Camargo CH, Barioni Júnior W, Zafalon LF. Persistence of Staphylococcus spp. in milk from cows undergoing homeopathy to control subclinical mastitis. BMC Vet Res 2022; 18:273. [PMID: 35831890 PMCID: PMC9277819 DOI: 10.1186/s12917-022-03364-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Background Mastitis is one of the major diseases in dairy cattle, as it causes great economic losses to producers due to the reduction of milk production and changes in the quality of the product. The disease is mainly caused by bacteria of the genus Staphylococcus spp., these microorganisms can express various virulence factors, such as biofilms for example. In herds with organic management, producers and technicians use unconventional ways to treat and control the disease, such as homeopathy. However, it is not known if this type of treatment is able to control pathogenic bacteria such as those of the genus Staphylococcus, of relevance to animal and human health. Thus, the objective of this study was to investigate the production of biofilm in vitro and its genes by Staphylococcus spp. isolated in the milk of cows treated with homeopathy, as well as the persistence of microorganisms in animals. Methods Ninety-nine isolates of Staphylococcus spp. from cows treated and not treated with homeopathy were identified by internal transcribed space-polymerase chain reaction and investigated for the presence of the icaABCD, bap, aap, atlE, and bhp genes and in vitro biofilm production using the adhesion method on polystyrene plates. The enzyme restriction profile was determined by Pulsed-Field Gel Electrophoresis. Clusters of S. aureus and S. epidermidis with three or more isolates had an isolate selected for Multilocus Sequence Typing. Results The frequency of S. aureus isolations was similar in treated and untreated cows, while 71.4% of the coagulase-negative identified were isolated in cows treated with homeopathy. The distribution of the operon ica genes was similar in animals with and without treatment, except for the icaD gene, more frequent in treated cows. Production of biofilm was associated with presence of one or more genes from the icaADBC operon. S. aureus revealed a greater diversity and greater dissemination in cows treated and not treated with homeopathy. Sequence Types ST1, ST5, and ST126 were identified in S. aureus. Conclusions The presence of biofilm-associated genes and the in vitro production of biofilms, combined with the persistence of clonal profiles of Staphylococcus spp. demonstrate other forms of control for bovine mastitis should be researched for organic production herds.
Collapse
Affiliation(s)
- Elka Machado Ferreira
- Department of Pathology, Reproduction, and One Health, Paulista State University "Júlio de Mesquita Filho" - FCAV, Jaboticabal, São Paulo, Brazil.
| | - Letícia Castilho Romero
- Department of Microbiology and Immunology, Paulista State University "Júlio de Mesquita Filho" - IB, Botucatu, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
39
|
Visperas A, Santana D, Klika AK, Higuera‐Rueda CA, Piuzzi NS. Current treatments for biofilm-associated periprosthetic joint infection and new potential strategies. J Orthop Res 2022; 40:1477-1491. [PMID: 35437846 PMCID: PMC9322555 DOI: 10.1002/jor.25345] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023]
Abstract
Periprosthetic joint infection (PJI) remains a devastating complication after total joint arthroplasty. Bacteria involved in these infections are notorious for adhering to foreign implanted surfaces and generating a biofilm matrix. These biofilms protect the bacteria from antibiotic treatment and the immune system making eradication difficult. Current treatment strategies including debridement, antibiotics, and implant retention, and one- and two-stage revisions still present a relatively high overall failure rate. One of the main shortcomings that has been associated with this high failure rate is the lack of a robust approach to treating bacterial biofilm. Therefore, in this review, we will highlight new strategies that have the potential to combat PJI by targeting biofilm integrity, therefore giving antibiotics and the immune system access to the internal network of the biofilm structure. This combination antibiofilm/antibiotic therapy may be a new strategy for PJI treatment while promoting implant retention.
Collapse
Affiliation(s)
- Anabelle Visperas
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | - Daniel Santana
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
- Cleveland Clinic Lerner College of MedicineCase Western Reserve UniversityClevelandOhioUSA
| | - Alison K. Klika
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| | | | - Nicolas S. Piuzzi
- Department of Orthopaedic SurgeryCleveland Clinic FoundationClevelandOhioUSA
| |
Collapse
|
40
|
Vahdati SN, Behboudi H, Navasatli SA, Tavakoli S, Safavi M. New insights into the inhibitory roles and mechanisms of D-amino acids in bacterial biofilms in medicine, industry, and agriculture. Microbiol Res 2022; 263:127107. [PMID: 35843196 DOI: 10.1016/j.micres.2022.127107] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 11/26/2022]
Abstract
Biofilms are complex aggregates of microbes that are tightly protected by an extracellular matrix (ECM) and may attach to a surface or adhere together. A higher persistence of bacteria on biofilms makes them resistant not only to harsh conditions but also to various antibiotics which led to the emergence of problems in different applications. Recently, it has been discovered that many bacteria produce and release various D-amino acids (D-AAs) to inhibit biofilm formation, which made a great deal of interest in research into the control of bacterial biofilms in diverse fields, such as human health, industrial settings, and medical devices. D-AAs have various mechanisms to inhibit bacterial biofilms such as: (i) interfering with protein synthesis (ii) Inhibition of extracellular polymeric materials (EPS) productions (protein, eDNA, and polysaccharide) (iii) Inhibition of quorum sensing (autoinducers), and (iv) interfere with peptidoglycan synthesis, these various modes of action, enables these small molecules to inhibit both Gram-negative and Gram-positive bacterial biofilms. Since most biofilms are multi-species, D-AAs in combination with other antimicrobial agents are good choices to combat a variety of bacterial biofilms without displaying toxicity on human cells. This review article addressed the role of D-AAs in controlling several bacterial biofilms and described the possible or definite mechanisms involved in this process.
Collapse
Affiliation(s)
- Saeed Niazi Vahdati
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Hossein Behboudi
- Department of Biology, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, Iran.
| | - Sepideh Aliniaye Navasatli
- Institute of Biochemistry and Biophysics, Department of Biochemistry, University of Tehran, Tehran, Iran
| | - Sara Tavakoli
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology, Tehran, Iran
| |
Collapse
|
41
|
Carcione D, Leccese G, Conte G, Rossi E, Intra J, Bonomi A, Sabella S, Moreo M, Landini P, Brilli M, Paroni M. Lack of Direct Correlation between Biofilm Formation and Antimicrobial Resistance in Clinical Staphylococcus epidermidis Isolates from an Italian Hospital. Microorganisms 2022; 10:1163. [PMID: 35744681 PMCID: PMC9230108 DOI: 10.3390/microorganisms10061163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/01/2022] [Accepted: 06/03/2022] [Indexed: 11/28/2022] Open
Abstract
Staphylococcus epidermidis is an opportunistic pathogen and a frequent cause of nosocomial infections. In this work, we show that, among 51 S. epidermidis isolates from an Italian hospital, only a minority displayed biofilm formation, regardless of their isolation source (peripheral blood, catheter, or skin wounds); however, among the biofilm-producing isolates, those from catheters were the most efficient in biofilm formation. Interestingly, most isolates including strong biofilm producers displayed production levels of PIA (polysaccharide intercellular adhesin), the main S. epidermidis extracellular polysaccharide, similar to reference S. epidermidis strains classified as non-biofilm formers, and much lower than those classified as intermediate or high biofilm formers, possibly suggesting that high levels of PIA production do not confer a particular advantage for clinical isolates. Finally, while for the reference S. epidermidis strains the biofilm production clearly correlated with the decreased sensitivity to antibiotics, in particular, protein synthesis inhibitors, in our clinical isolates, such positive correlation was limited to tetracycline. In contrast, we observed an inverse correlation between biofilm formation and the minimal inhibitory concentrations for levofloxacin and teicoplanin. In addition, in growth conditions favoring PIA production, the biofilm-forming isolates showed increased sensitivity to daptomycin, clindamycin, and erythromycin, with increased tolerance to the trimethoprim/sulfamethoxazole association. The lack of direct correlation between the biofilm production and increased tolerance to antibiotics in S. epidermidis isolates from a clinical setting would suggest, at least for some antimicrobials, the possible existence of a trade-off between the production of biofilm determinants and antibiotic resistance.
Collapse
Affiliation(s)
- Davide Carcione
- Laboratory of Microbiology and Virology, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy;
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Gabriella Leccese
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Gianmarco Conte
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Elio Rossi
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Jari Intra
- Clinical Chemistry Laboratory, University of Milano-Bicocca, Azienda Socio Sanitaria Territoriale di Monza ASST-Monza, San Gerardo Hospital, Via Pergolesi 33, 20900 Monza, Italy;
| | - Alice Bonomi
- Unit of Biostatistics, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy;
| | - Simona Sabella
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Massimo Moreo
- Department of Laboratory Medicine, IRCCS Centro Cardiologico Monzino, 20138 Milan, Italy; (S.S.); (M.M.)
| | - Paolo Landini
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Matteo Brilli
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| | - Moira Paroni
- Department of Bioscience, University of Milan, 20133 Milan, Italy; (G.L.); (G.C.); (E.R.); (P.L.)
| |
Collapse
|
42
|
Visnapuu A, Van der Gucht M, Wagemans J, Lavigne R. Deconstructing the Phage-Bacterial Biofilm Interaction as a Basis to Establish New Antibiofilm Strategies. Viruses 2022; 14:v14051057. [PMID: 35632801 PMCID: PMC9145820 DOI: 10.3390/v14051057] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/19/2022] Open
Abstract
The bacterial biofilm constitutes a complex environment that endows the bacterial community within with an ability to cope with biotic and abiotic stresses. Considering the interaction with bacterial viruses, these biofilms contain intrinsic defense mechanisms that protect against phage predation; these mechanisms are driven by physical, structural, and metabolic properties or governed by environment-induced mutations and bacterial diversity. In this regard, horizontal gene transfer can also be a driver of biofilm diversity and some (pro)phages can function as temporary allies in biofilm development. Conversely, as bacterial predators, phages have developed counter mechanisms to overcome the biofilm barrier. We highlight how these natural systems have previously inspired new antibiofilm design strategies, e.g., by utilizing exopolysaccharide degrading enzymes and peptidoglycan hydrolases. Next, we propose new potential approaches including phage-encoded DNases to target extracellular DNA, as well as phage-mediated inhibitors of cellular communication; these examples illustrate the relevance and importance of research aiming to elucidate novel antibiofilm mechanisms contained within the vast set of unknown ORFs from phages.
Collapse
|
43
|
Low Concentration of the Neutrophil Proteases Cathepsin G, Cathepsin B, Proteinase-3 and Metalloproteinase-9 Induce Biofilm Formation in Non-Biofilm-Forming Staphylococcus epidermidis Isolates. Int J Mol Sci 2022; 23:ijms23094992. [PMID: 35563384 PMCID: PMC9102557 DOI: 10.3390/ijms23094992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Neutrophils play a crucial role in eliminating bacteria that invade the human body; however, cathepsin G can induce biofilm formation in a non-biofilm-forming Staphylococcus epidermidis 1457 strain, suggesting that neutrophil proteases may be involved in biofilm formation. Cathepsin G, cathepsin B, proteinase-3, and metalloproteinase-9 (MMP-9) from neutrophils were tested on the biofilm induction in commensal (skin isolated) and clinical non-biofilm-forming S. epidermidis isolates. From 81 isolates, 53 (74%) were aap+, icaA−, icaD− genotype, and without the capacity of biofilm formation under conditions of 1% glucose, 4% ethanol or 4% NaCl, but these 53 non-biofilm-forming isolates induced biofilm by the use of different neutrophil proteases. Of these, 62.3% induced biofilm with proteinase-3, 15% with cathepsin G, 10% with cathepsin B and 5% with MMP -9, where most of the protease-induced biofilm isolates were commensal strains (skin). In the biofilm formation kinetics analysis, the addition of phenylmethylsulfonyl fluoride (PMSF; a proteinase-3 inhibitor) showed that proteinase-3 participates in the cell aggregation stage of biofilm formation. A biofilm induced with proteinase-3 and DNAse-treated significantly reduced biofilm formation at an early time (initial adhesion stage of biofilm formation) compared to untreated proteinase-3-induced biofilm (p < 0.05). A catheter inoculated with a commensal (skin) non-biofilm-forming S. epidermidis isolate treated with proteinase-3 and another one without the enzyme were inserted into the back of a mouse. After 7 days of incubation period, the catheters were recovered and the number of grown bacteria was quantified, finding a higher amount of adhered proteinase-3-treated bacteria in the catheter than non-proteinase-3-treated bacteria (p < 0.05). Commensal non-biofilm-forming S. epidermidis in the presence of neutrophil cells significantly induced the biofilm formation when multiplicity of infection (MOI) 1:0.01 (neutrophil:bacteria) was used, but the addition of a cocktail of protease inhibitors impeded biofilm formation. A neutrophil:bacteria assay did not induce neutrophil extracellular traps (NETs). Our results suggest that neutrophils, in the presence of commensal non-biofilm-forming S. epidermidis, do not generate NETs formation. The effect of neutrophils is the production of proteases, and proteinase-3 releases bacterial DNA at the initial adhesion, favoring cell aggregation and subsequently leading to biofilm formation.
Collapse
|
44
|
Rademacher F, Bartels J, Gläser R, Rodewald M, Schubert S, Drücke D, Rohde H, Harder J. Staphylococcus epidermidis-derived protease Esp mediates proteolytic activation of pro-IL-1beta in human keratinocytes. J Invest Dermatol 2022; 142:2756-2765.e8. [PMID: 35490742 DOI: 10.1016/j.jid.2022.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/03/2022] [Accepted: 04/07/2022] [Indexed: 11/16/2022]
Abstract
The gram-positive bacterium Staphylococcus epidermidis (SE) is an abundant skin commensal. It plays an important role in cutaneous defense by activation of IL-1 signaling. In keratinocytes, SE induces the release of mature IL-1beta. IL-1beta serves as an important cytokine of host defense. It contains an N-terminal prodomain that has to be cleaved off to generate active mature IL-1beta. Typically, processing and release of IL-1beta are associated with inflammasome assembly and activation of the protease caspase-1. Here we report that bacterial challenge of keratinocytes with SE induced the release of mature IL-1beta in a caspase-1-independent manner. Instead, the SE -derived serine protease Esp was identified as a pro-IL-1beta processing factor leading to a proteolytic maturation of active IL-1beta. Esp production and secretion by various SE strains correlated with their capacity to induce release of mature IL-1beta in human primary keratinocytes. Reconstitution of Esp-lacking SE strains with Esp enhanced their capacity to induce IL-1beta release in keratinocytes and skin. Intracellular abundance of pro-IL-1beta and cytotoxic effects of SE suggest release of pro-IL-1beta during injury followed by extracellular Esp-mediated processing to mature IL-1beta. These findings provide further insights into how a skin commensal interacts with keratinocytes to activate cutaneous host innate defense.
Collapse
Affiliation(s)
| | | | - Regine Gläser
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Meno Rodewald
- Department of Dermatology, Kiel University, Kiel, Germany
| | - Sabine Schubert
- Institute of Infection Medicine, Kiel University, Kiel, Germany
| | - Daniel Drücke
- Department of Reconstructive Surgery, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Holger Rohde
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Jürgen Harder
- Department of Dermatology, Kiel University, Kiel, Germany.
| |
Collapse
|
45
|
The expression of glycosyltransferases sdgA and sdgB in Staphylococcus epidermidis depends on the conditions of biofilm formation. Arch Microbiol 2022; 204:274. [PMID: 35449342 DOI: 10.1007/s00203-022-02891-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/02/2022] [Accepted: 04/01/2022] [Indexed: 11/02/2022]
Abstract
The Staphylococcus aureus SdrG protein is glycosylated by SdgA and SdgB for protection against its degradation by the neutrophil cathepsin G. So far, there is no information about the role of Staphylococcus epidermidis SdgA or SdgB in biofilm-forming; therefore, the focus of this work was to determine the distribution and expression of the sdrG, sdgA and sdgB genes in S. epidermidis under in vitro and in vivo biofilm conditions. The frequencies of the sdrG, sdgA and sdgB genes were evaluated by PCR in a collection of 75 isolates. Isolates were grown in dynamic (non-biofilm-forming) or static (biofilm-forming) conditions. The expression of sdrG, sdgA and sdgB was determined by RT-qPCR in cells grown under dynamic conditions (CGDC), as well as in planktonic and sessile cells from a biofilm and cells adhered to a catheter implanted in Balb/c mice. The sdrG and sdgB genes were detected in 100% of isolates, while the sdgA gene was detected in 71% of the sample (p < 0.001). CGDC did not express sdrG, sdgA and sdgB mRNAs. Planktonic and sessile cells expressed sdrG and sdgB, and the same was observed in cells adhered to the catheter. In particular, one isolate, capable of inducing a biofilm under treatment with cathepsin G, expressed sdrG and sdgB in planktonic and sessile cells and cells adhering to the catheter. This suggests that bacteria require biofilm conditions as an important factor for the transcription of the sdgA, sdgB and sdrG genes.
Collapse
|
46
|
Mirzaei R, Ranjbar R. Hijacking host components for bacterial biofilm formation: An advanced mechanism. Int Immunopharmacol 2022; 103:108471. [PMID: 34952466 DOI: 10.1016/j.intimp.2021.108471] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/12/2022]
Abstract
Biofilm is a community of bacteria embedded in the extracellular matrix that accounts for 80% of bacterial infections. Biofilm enables bacterial cells to provide particular conditions and produce virulence determinants in response to the unavailability of micronutrients and local oxygen, resulting in their resistance to various antibacterial agents. Besides, the human immune reactions are not completely competent in the elimination of biofilm. Most importantly, the growing body of evidence shows that some bacterial spp. use a variety of mechanisms by which hijack the host components to form biofilm. In this regard, host components, such as DNA, hyaluronan, collagen, fibronectin, mucin, oligosaccharide moieties, filamentous polymers (F-actin), plasma, platelets, keratin, sialic acid, laminin, vitronectin, C3- and C4- binding proteins, antibody, proteases, factor I, factor H, and acidic proline-rich proteins have been reviewed. Hence, the characterization of interactions between bacterial biofilm and the host would be critical to effectively address biofilm-associated infections. In this paper, we review the latest information on the hijacking of host factors by bacteria to form biofilm.
Collapse
Affiliation(s)
- Rasoul Mirzaei
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Look Who's Talking: Host and Pathogen Drivers of Staphylococcus epidermidis Virulence in Neonatal Sepsis. Int J Mol Sci 2022; 23:ijms23020860. [PMID: 35055041 PMCID: PMC8775791 DOI: 10.3390/ijms23020860] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/10/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Preterm infants are at increased risk for invasive neonatal bacterial infections. S. epidermidis, a ubiquitous skin commensal, is a major cause of late-onset neonatal sepsis, particularly in high-resource settings. The vulnerability of preterm infants to serious bacterial infections is commonly attributed to their distinct and developing immune system. While developmentally immature immune defences play a large role in facilitating bacterial invasion, this fails to explain why only a subset of infants develop infections with low-virulence organisms when exposed to similar risk factors in the neonatal ICU. Experimental research has explored potential virulence mechanisms contributing to the pathogenic shift of commensal S. epidermidis strains. Furthermore, comparative genomics studies have yielded insights into the emergence and spread of nosocomial S. epidermidis strains, and their genetic and functional characteristics implicated in invasive disease in neonates. These studies have highlighted the multifactorial nature of S. epidermidis traits relating to pathogenicity and commensalism. In this review, we discuss the known host and pathogen drivers of S. epidermidis virulence in neonatal sepsis and provide future perspectives to close the gap in our understanding of S. epidermidis as a cause of neonatal morbidity and mortality.
Collapse
|
48
|
Sharma S, Meena M, Marwal A, Swapnil P. Biofilm matrix proteins. APPLICATION OF BIOFILMS IN APPLIED MICROBIOLOGY 2022:51-64. [DOI: 10.1016/b978-0-323-90513-8.00007-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
49
|
Oliveira F, Rohde H, Vilanova M, Cerca N. Fighting Staphylococcus epidermidis Biofilm-Associated Infections: Can Iron Be the Key to Success? Front Cell Infect Microbiol 2021; 11:798563. [PMID: 34917520 PMCID: PMC8670311 DOI: 10.3389/fcimb.2021.798563] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 11/11/2021] [Indexed: 12/29/2022] Open
Abstract
Staphylococcus epidermidis is one of the most important commensal microorganisms of human skin and mucosae. However, this bacterial species is also the cause of severe infections in immunocompromised patients, specially associated with the utilization of indwelling medical devices, that often serve as a scaffold for biofilm formation. S. epidermidis strains are often multidrug resistant and its association with biofilm formation makes these infections hard to treat. Their remarkable ability to form biofilms is widely regarded as its major pathogenic determinant. Although a significant amount of knowledge on its biofilm formation mechanisms has been achieved, we still do not understand how the species survives when exposed to the host harsh environment during invasion. A previous RNA-seq study highlighted that iron-metabolism associated genes were the most up-regulated bacterial genes upon contact with human blood, which suggested that iron acquisition plays an important role in S. epidermidis biofilm development and escape from the host innate immune system. In this perspective article, we review the available literature on the role of iron metabolism on S. epidermidis pathogenesis and propose that exploiting its dependence on iron could be pursued as a viable therapeutic alternative.
Collapse
Affiliation(s)
- Fernando Oliveira
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| | - Holger Rohde
- Institut für Medizinische Mikrobiologie, Virologie und Hygiene, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel Vilanova
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
- Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto (ICBAS-UP), Porto, Portugal
| | - Nuno Cerca
- Centre of Biological Engineering, Laboratory of Research in Biofilms Rosário Oliveira (LIBRO), University of Minho, Braga, Portugal
| |
Collapse
|
50
|
Abstract
The stratum corneum is the outermost layer of the epidermis and is thus directly exposed to the environment. It consists mainly of corneocytes, which are keratinocytes in the last stage of differentiation, having neither nuclei nor organelles. However, they retain keratin filaments embedded in filaggrin matrix and possess a lipid envelope which protects the body from desiccation. Despite the desiccated, nutrient-poor, and acidic nature of the skin making it a hostile environment for most microorganisms, this organ is colonized by commensal microbes. Among the classic skin commensals are Propionibacterium acnes and coagulase-negative staphylococci (CoNS) with Staphylococcus epidermidis as a leading species. An as-yet-unanswered question is what enables S. epidermis to colonize skin so successfully. In their recent article, P. D. Fey and his colleagues (P. Roy, A. R. Horswill, and P. D. Fey, mBio 12:e02908-20, 2021, https://doi.org/10.1128/mBio.02908-20) have brought us one step closer to answering this question.
Collapse
|