1
|
Myachina TA, Butova XA, Simonova RA, Volzhaninov DA, Kochurova AM, Kopylova GV, Shchepkin DV, Khokhlova AD. The Contractile Function of Ventricular Cardiomyocytes Is More Sensitive to Acute 17β-Estradiol Treatment Compared to Atrial Cardiomyocytes. Cells 2025; 14:561. [PMID: 40277887 PMCID: PMC12026394 DOI: 10.3390/cells14080561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/26/2025] Open
Abstract
17β-estradiol (E2) is the most active metabolite of estrogen with a wide range of physiological action on cardiac muscle. Previous studies have reported E2 effects predominantly for the ventricles, while the E2 impact on the atria has been less examined. In this study, we focused on the direct E2 effects on atrial and ventricular contractility at the cellular and molecular levels. Single atrial and ventricular cardiomyocytes (CM) from adult (24 weeks-old) female Wistar rats were incubated with 10 nM E2 for 15 min. Sarcomere length and cytosolic [Ca2+]i transients were measured in mechanically non-loaded CM, and the tension-length relationship was studied in CM mechanically loaded by carbon fibers. The actin-myosin interaction and sarcomeric protein phosphorylation were analyzed using an in vitro motility assay and gel electrophoresis with Pro-Q Diamond phosphoprotein stain. E2 had chamber-specific effects on the contractile function of CM with a pronounced influence on ventricular CM. The characteristics of [Ca2+]i transients did not change in both atrial and ventricular CM. However, in ventricular CM, E2 reduced the amplitude and maximum velocity of sarcomere shortening and decreased the slope of the passive tension-length relationship that was associated with increased TnI and cMyBP-C phosphorylation. E2 treatment accelerated the cross-bridge cycle of both atrial and ventricular myosin that was associated with increased phosphorylation of the myosin essential light chain. This study shows that E2 impairs the mechanical function of the ventricular myocardium while atrial contractility remains mostly preserved. Hormonal replacement therapy (HRT) with estrogen is by far the most effective therapy for treating climacteric symptoms experienced during menopause. Here we found a chamber specificity of myocardial contractile function to E2 that should be taken into account for the potential side effects of HRT.
Collapse
Affiliation(s)
- Tatiana A. Myachina
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Xenia A. Butova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Raisa A. Simonova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Denis A. Volzhaninov
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Anastasia M. Kochurova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Galina V. Kopylova
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
| | - Daniil V. Shchepkin
- Institute of Immunology and Physiology UrB RAS, 620049 Yekaterinburg, Russia; (T.A.M.); (R.A.S.); (D.A.V.); (D.V.S.)
- Institute of Natural Sciences and Mathematics, Ural Federal University, 620026 Yekaterinburg, Russia
| | | |
Collapse
|
2
|
Ariyasinghe NR, Gupta D, Escopete S, Rai D, Stotland A, Sundararaman N, Ngu B, Dabke K, McCarthy L, Santos RS, McCain ML, Sareen D, Parker SJ. Identification of Disease-Relevant, Sex-Based Proteomic Differences in iPSC-Derived Vascular Smooth Muscle Cells. Int J Mol Sci 2024; 26:187. [PMID: 39796045 PMCID: PMC11719605 DOI: 10.3390/ijms26010187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 12/12/2024] [Indexed: 01/13/2025] Open
Abstract
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insights into some aspects of human biology; however, not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology. Our analysis confirmed that differentiated cells have a proteomic profile more similar to healthy primary aortic smooth muscle cells than iPSCs. We also identified sex-based differences in iPSC-derived vascular smooth muscle cells in pathways related to ATP binding, glycogen metabolic process, and cadherin binding as well as multiple proteins relevant to cardiovascular pathophysiology and disease. Additionally, we explored the role of autosomal and sex chromosomes in protein regulation, identifying that proteins on autosomal chromosomes also show sex-based regulation that may affect the protein expression of proteins from autosomal chromosomes. This work supports the biological relevance of iPSC-derived vascular smooth muscle cells as a model for disease, and further exploration of the pathways identified here can lead to the discovery of sex-specific pharmacological targets for cardiovascular disease.
Collapse
Affiliation(s)
- Nethika R. Ariyasinghe
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Divya Gupta
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Sean Escopete
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Deepika Rai
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Aleksandr Stotland
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Benjamin Ngu
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA; (B.N.); (M.L.M.)
| | - Kruttika Dabke
- Center for Bioinformatics and Functional Genomics, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Liam McCarthy
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
| | - Roberta S. Santos
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.S.S.); (D.S.)
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
| | - Megan L. McCain
- Alfred E. Mann Department of Biomedical Engineering, University of Southern California, Los Angeles, CA 90007, USA; (B.N.); (M.L.M.)
- Department of Stem Cell Biology and Regenerative Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Dhruv Sareen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (R.S.S.); (D.S.)
- Cedars-Sinai Biomanufacturing Center, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
- iPSC Core, David and Janet Polak Foundation Stem Cell Core Laboratory, Cedars-Sinai Medical Center, West Hollywood, CA 90069, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Sarah J. Parker
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (N.R.A.); (D.G.); (S.E.); (D.R.); (A.S.); (N.S.); (L.M.)
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Board of Governors Innovation Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
3
|
Wells SP, O'Shea C, Hayes S, Weeks KL, Kirchhof P, Delbridge LM, Pavlovic D, Bell JR. Male and female atria exhibit distinct acute electrophysiological responses to sex steroids. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 9:100079. [PMID: 39309304 PMCID: PMC11413518 DOI: 10.1016/j.jmccpl.2024.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 06/10/2024] [Accepted: 06/19/2024] [Indexed: 09/25/2024]
Abstract
The electrophysiological properties of the hearts of women and men are different. These differences are at least partly mediated by the actions of circulating estrogens and androgens on the cardiomyocytes. Experimentally, much of our understanding in this field is based on studies focusing on ventricular tissue, with considerably less known in the context of atrial electrophysiology. The aim of this investigation was to compare the electrophysiological properties of male and female atria and assess responses to acute sex steroid exposure. Age-matched adult male and female C57BL/6 mice were anesthetized (4 % isoflurane) and left atria isolated. Atria were loaded with Di-4-ANEPPS voltage sensitive dye and optical mapping performed to assess action potential duration (APD; at 10 %, 20 %, 30 %, 50 %, and 70 % repolarization) and conduction velocity in the presence of 1 nM and 100 nM 17β-estradiol or testosterone. Male and female left atria demonstrated similar baseline action potential duration and conduction velocity, with significantly greater APD70 spatial heterogeneity evident in females. 17β-estradiol prolonged action potential duration in both sexes - an effect that was augmented in females. Atrial conduction was slowed in the presence of 100 nM 17β-estradiol in both males and females. Testosterone prolonged action potential duration in males only and did not modulate conduction velocity in either sex. This study provides novel insights into male and female atrial electrophysiology and its regulation by sex steroids. As systemic sex steroid levels change and intra-cardiac estrogen synthesis capacity increases with aging, these actions may have an increasingly important role in determining atrial arrhythmia vulnerability.
Collapse
Affiliation(s)
- Simon P. Wells
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Christopher O'Shea
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Sarah Hayes
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| | - Kate L. Weeks
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Baker Department of Cardiometabolic Health, University of Melbourne, Parkville, Victoria, Australia
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Paulus Kirchhof
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
- Department of Cardiology, University Heart and Vascular Center UKE, Hamburg, Hamburg, Germany
| | - Lea M.D. Delbridge
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom
| | - James R. Bell
- Department of Anatomy and Physiology, University of Melbourne, Parkville, Victoria, Australia
- Centre for Cardiovascular Biology and Disease Research, Cardiac Disease Mechanisms Division, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Bundoora, Victoria, Australia
- Department of Microbiology, Anatomy, Physiology & Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
4
|
Ariyasinghe NR, Gupta D, Escopete S, Stotland AB, Sundararaman N, Ngu B, Dabke K, Rai D, McCarthy L, Santos RS, McCain ML, Sareen D, Parker SJ. Identification of Disease-relevant, Sex-based Proteomic Differences in iPSC-derived Vascular Smooth Muscle. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605659. [PMID: 39211096 PMCID: PMC11361011 DOI: 10.1101/2024.07.30.605659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The prevalence of cardiovascular disease varies with sex, and the impact of intrinsic sex-based differences on vasculature is not well understood. Animal models can provide important insight into some aspects of human biology, however not all discoveries in animal systems translate well to humans. To explore the impact of chromosomal sex on proteomic phenotypes, we used iPSC-derived vascular smooth muscle cells from healthy donors of both sexes to identify sex-based proteomic differences and their possible effects on cardiovascular pathophysiology. Our analysis confirmed that differentiated cells have a proteomic profile more similar to healthy primary aortic smooth muscle than iPSCs. We also identified sex-based differences in iPSC- derived vascular smooth muscle in pathways related to ATP binding, glycogen metabolic process, and cadherin binding as well as multiple proteins relevant to cardiovascular pathophysiology and disease. Additionally, we explored the role of autosomal and sex chromosomes in protein regulation, identifying that proteins on autosomal chromosomes also show sex-based regulation that may affect the protein expression of proteins from autosomal chromosomes. This work supports the biological relevance of iPSC-derived vascular smooth muscle cells as a model for disease, and further exploration of the pathways identified here can lead to the discovery of sex-specific pharmacological targets for cardiovascular disease. Significance In this work, we have differentiated 4 male and 4 female iPSC lines into vascular smooth muscle cells, giving us the ability to identify statistically-significant sex-specific proteomic markers that are relevant to cardiovascular disease risk (such as PCK2, MTOR, IGFBP2, PTGR2, and SULTE1).
Collapse
|
5
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. Toxicol Sci 2024; 198:273-287. [PMID: 38310357 PMCID: PMC10964748 DOI: 10.1093/toxsci/kfae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024] Open
Abstract
Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated-including bisphenol S (BPS) and bisphenol F (BPF)-without a comprehensive understanding of their toxicological profile. Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging. Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures decreased the depolarization spike amplitude, and shortened the field potential, action potential duration, and calcium transient duration (E2 ≥ BPA ≥ BPF ≫ BPS). Cardiomyocyte physiology was largely undisturbed by BPS. BPA-induced effects were exaggerated when coadministered with an L-type calcium channel (LTCC) antagonist or E2, and reduced when coadministered with an LTCC agonist or an estrogen receptor alpha antagonist. E2-induced effects were not exaggerated by coadministration with an LTCC antagonist. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
Affiliation(s)
- Blake L Cooper
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Shatha Salameh
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| | - Nikki Gillum Posnack
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Children’s National Heart Institute, Children’s National Hospital, Washington, District of Columbia 20010, USA
- Department of Pharmacology & Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
- Department of Pediatrics, School of Medicine & Health Sciences, The George Washington University, Washington, District of Columbia 20052, USA
| |
Collapse
|
6
|
Bening C, Genser B, Keller D, Müller-Altrock S, Radakovic D, Penov K, Hassan M, Aleksic I, Leyh R, Madrahimov N. Impact of estradiol, testosterone and their ratio on left and right auricular myofilament function in male and female patients undergoing coronary artery bypass grafting. BMC Cardiovasc Disord 2023; 23:538. [PMID: 37925416 PMCID: PMC10625250 DOI: 10.1186/s12872-023-03582-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/26/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The impact of sex hormones on right and left auricular contractile apparatus function is largely unknown. We evaluated the impact of sex hormones on left and right heart contractility at the level of myocardial filaments harvested from left and right auricles during elective coronary artery bypass surgery. METHODS 150 patients (132 male; 18 female) were enrolled. Preoperative testosterone and estradiol levels were measured with Immunoassay. Calcium induced force measurements were performed with left- and right auricular myofilaments in a skinned fiber model. Correlation analysis was used for comparison of force values and levels of sex hormones and their ratio. RESULTS Low testosterone was associated with higher top force values in right-sided myofilaments but not in left-sided myofilaments for both sexes (p = 0.000 in males, p = 0.001 in females). Low estradiol levels were associated with higher top force values in right-sided myofilaments (p 0.000) in females and only borderline significantly associated with higher top force values in males (p 0.056). In females, low estradiol levels correlated with higher top force values in left sided myofilaments (p 0.000). In males, higher Estradiol/Testosterone ratio (E/T ratio) was only associated with higher top force values from right auricular myofilaments (p 0.04) In contrast, in females higher E/T ratio was associated with lower right auricular myofilament top force values (p 0.03) and higher top force values in left-sided myofilaments (p 0.000). CONCLUSIONS This study shows that patients' comorbidities influence left and right sided contractility and may blur results concerning influence of sex hormones if not eliminated. A sex hormone dependent influence is obvious with different effects on the left and right ventricle. The E/T ratio and its impact on myofilament top force showed divergent results between genders, and may partially explain gender differences in patients with cardiovascular disease.
Collapse
Affiliation(s)
- C Bening
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany.
| | - B Genser
- Medical Faculty Mannheim, Center for Preventive Medicine, Heidelberg University, Digital Health Baden-Württemberg (CPD-BW), Heidelberg , Germany
| | - D Keller
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - S Müller-Altrock
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - D Radakovic
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - K Penov
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - M Hassan
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - I Aleksic
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - R Leyh
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| | - N Madrahimov
- Department of Thoracic and Cardiovascular Surgery, University Hospital Wuerzburg Zentrum Operative Medizin, Oberduerrbacherstr. 6, 97080, Wuerzburg, Germany
| |
Collapse
|
7
|
Cooper BL, Salameh S, Posnack NG. Comparative cardiotoxicity assessment of bisphenol chemicals and estradiol using human induced pluripotent stem cell-derived cardiomyocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557564. [PMID: 37745451 PMCID: PMC10515916 DOI: 10.1101/2023.09.13.557564] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Bisphenol A (BPA) is commonly used to manufacture consumer and medical-grade plastics. Due to health concerns, BPA substitutes are being incorporated - including bisphenol S (BPS) and bisphenol F (BPF) - without a comprehensive understanding of their toxicological profile. Objective Previous studies suggest that bisphenol chemicals perturb cardiac electrophysiology in a manner that is similar to 17β-estradiol (E2). We aimed to compare the effects of E2 with BPA, BPF, and BPS using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CM). Methods Cardiac parameters were evaluated using microelectrode array (MEA) technology and live-cell fluorescent imaging at baseline and in response to chemical exposure (0.001-100 μM). Results Cardiac metrics remained relatively stable after exposure to nanomolar concentrations (1-1,000 nM) of E2, BPA, BPF, or BPS. At higher micromolar concentrations, chemical exposures resulted in a decrease in the depolarizing spike amplitude, shorter field potential and action potential duration, shorter calcium transient duration, and decrease in hiPSC-CM contractility (E2 > BPA > BPF >> BPS). Cardiomyocyte physiology was largely undisturbed by BPS exposure. BPA-induced effects were exaggerated when co-administered with an L-type calcium channel antagonist (verapamil) or E2 - and reduced when co-administered with an L-type calcium channel agonist (Bay K8644) or an estrogen receptor alpha antagonist (MPP). E2-induced effects generally mirrored those of BPA, but were not exaggerated by co-administration with an L-type calcium channel antagonist. Discussion Collectively across multiple cardiac endpoints, E2 was the most potent and BPS was the least potent disruptor of hiPSC-CM function. Although the observed cardiac effects of E2 and BPA were similar, a few distinct differences suggest that these chemicals may act (in part) through different mechanisms. hiPSC-CM are a useful model for screening cardiotoxic chemicals, nevertheless, the described in vitro findings should be validated using a more complex ex vivo and/or in vivo model.
Collapse
|
8
|
Subbamanda YD, Bhargava A. Intercommunication between Voltage-Gated Calcium Channels and Estrogen Receptor/Estrogen Signaling: Insights into Physiological and Pathological Conditions. Cells 2022; 11:cells11233850. [PMID: 36497108 PMCID: PMC9739980 DOI: 10.3390/cells11233850] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Voltage-gated calcium channels (VGCCs) and estrogen receptors are important cellular proteins that have been shown to interact with each other across varied cells and tissues. Estrogen hormone, the ligand for estrogen receptors, can also exert its effects independent of estrogen receptors that collectively constitute non-genomic mechanisms. Here, we provide insights into the VGCC regulation by estrogen and the possible mechanisms involved therein across several cell types. Notably, most of the interaction is described in neuronal and cardiovascular tissues given the importance of VGCCs in these electrically excitable tissues. We describe the modulation of various VGCCs by estrogen known so far in physiological conditions and pathological conditions. We observed that in most in vitro studies higher concentrations of estrogen were used while a handful of in vivo studies used meager concentrations resulting in inhibition or upregulation of VGCCs, respectively. There is a need for more relevant physiological assays to study the regulation of VGCCs by estrogen. Additionally, other interacting receptors and partners need to be identified that may be involved in exerting estrogen receptor-independent effects of estrogen.
Collapse
|
9
|
Prajapati C, Koivumäki J, Pekkanen-Mattila M, Aalto-Setälä K. Sex differences in heart: from basics to clinics. Eur J Med Res 2022; 27:241. [PMID: 36352432 PMCID: PMC9647968 DOI: 10.1186/s40001-022-00880-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 10/24/2022] [Indexed: 11/11/2022] Open
Abstract
Sex differences exist in the structure and function of human heart. The patterns of ventricular repolarization in normal electrocardiograms (ECG) differ in men and women: men ECG pattern displays higher T-wave amplitude and increased ST angle. Generally, women have longer QT duration because of reduced repolarization reserve, and thus, women are more susceptible for the occurrence of torsades de pointes associated with drugs prolonging ventricular repolarization. Sex differences are also observed in the prevalence, penetrance and symptom severity, and also in the prognosis of cardiovascular disease. Generally, women live longer, have less clinical symptoms of cardiac diseases, and later onset of symptoms than men. Sex hormones also play an important role in regulating ventricular repolarization, suggesting that hormones directly influence various cellular functions and adrenergic regulation. From the clinical perspective, sex-based differences in heart physiology are widely recognized, but in daily practice, cardiac diseases are often underdiagnosed and untreated in the women. The underlying mechanisms of sex differences are, however, poorly understood. Here, we summarize sex-dependent differences in normal cardiac physiology, role of sex hormones, and differences in drug responses. Furthermore, we also discuss the importance of human induced pluripotent stem cell-derived cardiomyocytes in further understanding the mechanism of differences in women and men.
Collapse
Affiliation(s)
- Chandra Prajapati
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Jussi Koivumäki
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Mari Pekkanen-Mattila
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
| | - Katriina Aalto-Setälä
- Faculty of Medicine and Health Technology, Tampere University, Arvo Ylpön Katu 34, 33520 Tampere, Finland
- Heart Center, Tampere University Hospital, Ensitie 4, 33520 Tampere, Finland
| |
Collapse
|
10
|
Birnbaum F, Eguchi A, Pardon G, Chang ACY, Blau HM. Tamoxifen treatment ameliorates contractile dysfunction of Duchenne muscular dystrophy stem cell-derived cardiomyocytes on bioengineered substrates. NPJ Regen Med 2022; 7:19. [PMID: 35304486 PMCID: PMC8933505 DOI: 10.1038/s41536-022-00214-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/15/2022] [Indexed: 02/06/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a progressive genetic myopathy that leads to heart failure from dilated cardiomyopathy by early adulthood. Recent evidence suggests that tamoxifen, a selective estrogen receptor modulator widely used to treat breast cancer, ameliorates DMD cardiomyopathy. However, the mechanism of action of 4-hydroxytamoxifen, the active metabolite of tamoxifen, on cardiomyocyte function remains unclear. To examine the effects of chronic 4-hydroxytamoxifen treatment, we used state-of-the-art human-induced pluripotent stem cell-derived cardiomyocytes (iPSC-CMs) and a bioengineered platform to model DMD. We assessed the beating rate and beating velocity of iPSC-CMs in monolayers and as single cells on micropatterns that promote a physiological cardiomyocyte morphology. We found that 4-hydroxytamoxifen treatment of DMD iPSC-CMs decreased beating rate, increased beating velocity, and ameliorated calcium-handling deficits, leading to prolonged viability. Our study highlights the utility of a bioengineered iPSC-CM platform for drug testing and underscores the potential of repurposing tamoxifen as a therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Foster Birnbaum
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Asuka Eguchi
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gaspard Pardon
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Alex C Y Chang
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA. .,Department of Cardiology and Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Helen M Blau
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA. .,Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
11
|
Lu LJW, Chen NW, Nayeem F, Nagamani M, Anderson KE. Soy isoflavones interact with calcium and contribute to blood pressure homeostasis in women: a randomized, double-blind, placebo controlled trial. Eur J Nutr 2020; 59:2369-2381. [PMID: 31535213 PMCID: PMC7416691 DOI: 10.1007/s00394-019-02085-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 08/28/2019] [Indexed: 01/31/2023]
Abstract
BACKGROUND Estrogens and calcium regulate vascular health but caused adverse cardiovascular events in randomized trials. OBJECTIVES Whether phytoestrogenic soy isoflavones modulate the physiological effects of calcium on blood pressure was explored. DESIGN A double-blind, randomized study assigned 99 premenopausal women to 136.6 mg isoflavones (as aglycone equivalents) and 98 to placebo for 5 days per week for up to 2 years. Blood pressure, serum calcium and urinary excretion of daidzein (DE) and genistein (GE) were measured repeatedly before and during treatment. RESULTS Isoflavones did not affect blood pressure per intake dose assignment (i.e. intention-to-treat, n = 197), but significantly affected blood pressure per measured urinary excretion of isoflavones (i.e. per protocol analysis, n = 166). Isoflavones inversely moderated calcium effects on systolic blood pressure (SBP) (interaction term β-estimates: - 3.1 for DE, - 12.86 for GE, all P < 0.05), and decreased diastolic blood pressure (DBP) (β-estimates: - 0.84 for DE, - 2.82 for GE, all P < 0.05) after controlling for calcium. The net intervention effects between the maximum and no isoflavone excretion were - 17.7 and + 13.8 mmHg changes of SBP, respectively, at serum calcium of 10.61 and 8.0 mg/dL, and about 2.6 mmHg decrease of DBP. CONCLUSIONS Moderation by isoflavones of the physiological effect of calcium tends to normalize SBP, and this effect is most significant when calcium concentrations are at the upper and lower limits of the physiological norm. Isoflavones decrease DBP independent of calcium levels. Further studies are needed to assess the impact of this novel micronutrient effect on blood pressure homeostasis and cardiovascular health. TRIAL REGISTRATION www.clinicaltrials.gov identifier: NCT00204490.
Collapse
Affiliation(s)
- Lee-Jane W Lu
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA.
| | - Nai-Wei Chen
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA
| | - Fatima Nayeem
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA
| | - Manubai Nagamani
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX, 77555, USA
- Houston Bay Area Fertility Center, Webster, TX, 77598, USA
| | - Karl E Anderson
- Department of Preventive Medicine and Community Health, The University of Texas Medical Branch, 700 Harborside Dr., Galveston, TX, 77555-1109, USA.
| |
Collapse
|
12
|
Whitcomb V, Wauson E, Christian D, Clayton S, Giles J, Tran QK. Regulation of beta adrenoceptor-mediated myocardial contraction and calcium dynamics by the G protein-coupled estrogen receptor 1. Biochem Pharmacol 2019; 171:113727. [PMID: 31759979 DOI: 10.1016/j.bcp.2019.113727] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
Abstract
The G protein-coupled estrogen receptor 1 (GPER) produces cardioprotective effects. However, the underlying mechanisms are not well understood. We aimed to investigate the role of GPER in β adrenoceptor-mediated cardiac contraction and myocardial signaling. In anesthetized animals, intrajugular administration of isoproterenol produces a rapid and sustained rise in left ventricular pressure (LVP) and increases ectopic contractions. Administration of the GPER agonist G-1 during the plateau phase of isoproterenol-induced LVP increase rapidly restores LVP to baseline levels and reduces the frequency of ectopic contractions. In freshly isolated cardiomyocytes, isoproterenol potentiates electrically induced peak currents of L-type Ca2+ channels (LTCC) and increases the potential sensitivity of their inactivation. Coadministration of G-1 prevents isoproterenol-induced potentiation of peak LTCC currents and makes channels more sensitive to being inactivated compared to isoproterenol alone. Isoproterenol treatment of cardiomyocytes without electrical stimulation triggers slow-rising Ca2+ signals that are inhibited by the β1AR antagonist metoprolol but not by β2AR antagonist ICI-118551. G-1 pretreatment dose-dependently suppresses isoproterenol-induced total Ca2+ signals and the amplitude and frequency of the intrinsic Ca2+ oscillatory deflections. Pretreatment with the GPER antagonist G-36 produces opposite effects, dose-dependently increasing these signals. ISO promotes robust phosphorylation of Cav1.2 channels at Ser1928. G-1 pretreatment inhibits isoproterenol-stimulated phosphorylation of Cav1.2 at Ser1928, while G-36 pretreatment enhances this signal. Our data indicate that GPER functions as an intrinsic component of β1AR signaling to moderate myocardial Ca2+ dynamics and contraction.
Collapse
Affiliation(s)
- Victoria Whitcomb
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Eric Wauson
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Daniel Christian
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Sarah Clayton
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Jennifer Giles
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States
| | - Quang-Kim Tran
- Department of Physiology and Pharmacology, Des Moines University Osteopathic Medical Center, 3200 Grand Avenue, Des Moines, IA 50312, United States.
| |
Collapse
|
13
|
Groban L, Tran QK, Ferrario CM, Sun X, Cheng CP, Kitzman DW, Wang H, Lindsey SH. Female Heart Health: Is GPER the Missing Link? Front Endocrinol (Lausanne) 2019; 10:919. [PMID: 31993020 PMCID: PMC6970950 DOI: 10.3389/fendo.2019.00919] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
The G Protein-Coupled Estrogen Receptor (GPER) is a novel membrane-bound receptor that mediates non-genomic actions of the primary female sex hormone 17β-estradiol. Studies over the past two decades have elucidated the beneficial actions of this receptor in a number of cardiometabolic diseases. This review will focus specifically on the cardiac actions of GPER, since this receptor is expressed in cardiomyocytes as well as other cells within the heart and most likely contributes to estrogen-induced cardioprotection. Studies outlining the impact of GPER on diastolic function, mitochondrial function, left ventricular stiffness, calcium dynamics, cardiac inflammation, and aortic distensibility are discussed. In addition, recent data using genetic mouse models with global or cardiomyocyte-specific GPER gene deletion are highlighted. Since estrogen loss due to menopause in combination with chronological aging contributes to unique aspects of cardiac dysfunction in women, this receptor may provide novel therapeutic effects. While clinical studies are still required to fully understand the potential for pharmacological targeting of this receptor in postmenopausal women, this review will summarize the evidence gathered thus far on its likely beneficial effects.
Collapse
Affiliation(s)
- Leanne Groban
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
- *Correspondence: Leanne Groban
| | - Quang-Kim Tran
- Department of Physiology & Pharmacology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, United States
| | - Carlos M. Ferrario
- Department of Surgery, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Physiology-Pharmacology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xuming Sun
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Che Ping Cheng
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Dalane W. Kitzman
- Department of Internal Medicine, Cardiovascular Medicine Section, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Hao Wang
- Department of Anesthesiology, Wake Forest School of Medicine, Winston Salem, NC, United States
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Sarah H. Lindsey
- Department of Pharmacology, Tulane University, New Orleans, LA, United States
| |
Collapse
|
14
|
Bernasochi GB, Boon WC, Delbridge LMD, Bell JR. The myocardium and sex steroid hormone influences. CURRENT OPINION IN PHYSIOLOGY 2018. [DOI: 10.1016/j.cophys.2018.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Hoang JD, Vaseghi M. A novel mechanism for regulation of cardiac Ca 2+ current by estradiol: cAMP-ing out at the basal epicardium. Heart Rhythm 2018; 15:750-751. [PMID: 29382545 DOI: 10.1016/j.hrthm.2018.01.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Indexed: 10/18/2022]
Affiliation(s)
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, Los Angeles, California.
| |
Collapse
|
16
|
Katsi V, Georgiopoulos G, Marketou M, Oikonomou D, Parthenakis F, Makris T, Nihoyannopoulos P, Vardas P, Tousoulis D. Atrial fibrillation in pregnancy: a growing challenge. Curr Med Res Opin 2017; 33:1497-1504. [PMID: 28498066 DOI: 10.1080/03007995.2017.1330257] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/18/2017] [Accepted: 05/08/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Atrial fibrillation (AF) constitutes a relatively infrequent pregnancy complication, which may be a therapeutic Gordian knot. Indeed, sparse data exist regarding the prevalence, prognosis, and management of AF during pregnancy. In general, AF occurs as a benign, self-limited arrhythmia, but occasionally may have severe hemodynamic consequences in pregnant patients suffering from heart failure, congenital heart disease, or other comorbidities. Extra-cardiac causes of AF should always be meticulously excluded. REVIEW Treatment decisions are difficult, since medications may cross the placental barrier and potentially affect fetal growth and organogenesis, or even result in fetal bradyarrhythmias. Treatment goals are not differentiated in comparison to those regarding AF occurring in the general population. Still, while maternal treatment is prioritized, issues regarding fetal health must deliberately be considered. Consequently, hemodynamic instability is to be promptly treated with synchronized electrical cardioversion. In contrast, in stable patients, pharmacologic cardioversion, under appropriate antithrombotic regimen, should be attempted. Selection of appropriate antithrombotic therapy, including novel oral anticoagulants, imposes further difficulties on therapeutic decision-making. Further clinical trials are warranted in order to assess the pathophysiology and prognosis of AF in pregnancy and ameliorate the evidence-based therapeutic strategy in this specific group of the population.
Collapse
Affiliation(s)
- Vasiliki Katsi
- a First Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| | - Georgios Georgiopoulos
- a First Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| | - Maria Marketou
- b Cardiology Department , Heraklion University Hospital , Crete , Greece
| | - Dimitrios Oikonomou
- a First Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| | | | - Thomas Makris
- c Cardiology Department , Helena Venizelou Hospital , Athens , Greece
| | - Petros Nihoyannopoulos
- a First Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| | - P Vardas
- b Cardiology Department , Heraklion University Hospital , Crete , Greece
| | - Dimitris Tousoulis
- a First Department of Cardiology , Hippokration Hospital, University of Athens , Athens , Greece
| |
Collapse
|
17
|
Hormones and sex differences: changes in cardiac electrophysiology with pregnancy. Clin Sci (Lond) 2017; 130:747-59. [PMID: 27128800 DOI: 10.1042/cs20150710] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 02/01/2016] [Indexed: 11/17/2022]
Abstract
Disruption of cardiac electrical activity resulting in palpitations and syncope is often an early symptom of pregnancy. Pregnancy is a time of dramatic and dynamic physiological and hormonal changes during which numerous demands are placed on the heart. These changes result in electrical remodelling which can be detected as changes in the electrocardiogram (ECG). This gestational remodelling is a very under-researched area. There are no systematic large studies powered to determine changes in the ECG from pre-pregnancy, through gestation, and into the postpartum period. The large variability between patients and the dynamic nature of pregnancy hampers interpretation of smaller studies, but some facts are consistent. Gestational cardiac hypertrophy and a physical shift of the heart contribute to changes in the ECG. There are also electrical changes such as an increased heart rate and lengthening of the QT interval. There is an increased susceptibility to arrhythmias during pregnancy and the postpartum period. Some changes in the ECG are clearly the result of changes in ion channel expression and behaviour, but little is known about the ionic basis for this electrical remodelling. Most information comes from animal models, and implicates changes in the delayed-rectifier channels. However, it is likely that there are additional roles for sodium channels as well as changes in calcium homoeostasis. The changes in the electrical profile of the heart during pregnancy and the postpartum period have clear implications for the safety of pregnant women, but the field remains relatively undeveloped.
Collapse
|
18
|
Regitz-Zagrosek V, Kararigas G. Mechanistic Pathways of Sex Differences in Cardiovascular Disease. Physiol Rev 2017; 97:1-37. [PMID: 27807199 DOI: 10.1152/physrev.00021.2015] [Citation(s) in RCA: 474] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Major differences between men and women exist in epidemiology, manifestation, pathophysiology, treatment, and outcome of cardiovascular diseases (CVD), such as coronary artery disease, pressure overload, hypertension, cardiomyopathy, and heart failure. Corresponding sex differences have been studied in a number of animal models, and mechanistic investigations have been undertaken to analyze the observed sex differences. We summarize the biological mechanisms of sex differences in CVD focusing on three main areas, i.e., genetic mechanisms, epigenetic mechanisms, as well as sex hormones and their receptors. We discuss relevant subtypes of sex hormone receptors, as well as genomic and nongenomic, activational and organizational effects of sex hormones. We describe the interaction of sex hormones with intracellular signaling relevant for cardiovascular cells and the cardiovascular system. Sex, sex hormones, and their receptors may affect a number of cellular processes by their synergistic action on multiple targets. We discuss in detail sex differences in organelle function and in biological processes. We conclude that there is a need for a more detailed understanding of sex differences and their underlying mechanisms, which holds the potential to design new drugs that target sex-specific cardiovascular mechanisms and affect phenotypes. The comparison of both sexes may lead to the identification of protective or maladaptive mechanisms in one sex that could serve as a novel therapeutic target in one sex or in both.
Collapse
Affiliation(s)
- Vera Regitz-Zagrosek
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Georgios Kararigas
- Institute of Gender in Medicine & Center for Cardiovascular Research, Charite University Hospital, and DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| |
Collapse
|
19
|
Rosano GMC, Spoletini I, Vitale C. Cardiovascular disease in women, is it different to men? The role of sex hormones. Climacteric 2017; 20:125-128. [DOI: 10.1080/13697137.2017.1291780] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- G. M. C. Rosano
- Department of Cardiovascular and Cell Science Research, St George's Hospital, London, UK
| | - I. Spoletini
- Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| | - C. Vitale
- Department of Medical Sciences, IRCCS San Raffaele Pisana, Rome, Italy
| |
Collapse
|
20
|
Avula UMR, Noonavath M, Wan E. Gender Differences in Atrial Fibrillation. GENDER AND THE GENOME 2017. [DOI: 10.1089/gg.2016.0002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Uma Mahesh R. Avula
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| | - Meghana Noonavath
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| | - Elaine Wan
- Department of Medicine, Division of Cardiology, Columbia University, New York, New York
| |
Collapse
|
21
|
Avula U, Noonavath M, Wan E. Review Article: Gender Differences in Atrial Fibrillation. GENDER AND THE GENOME 2017. [DOI: 10.1177/247028971700100101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Lissin LW, Oka R, Lakshmi S, Cooke JP. Isoflavones improve vascular reactivity in post-menopausal women with hypercholesterolemia. Vasc Med 2016; 9:26-30. [PMID: 15230485 DOI: 10.1191/1358863x04vm531oa] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This randomized clinical trial was designed to assess the effects of dietary isoflavones on vascular reactivity, lipid levels, and markers of inflammation in post-menopausal women. Epidemiological studies have revealed that populations consuming large amounts of soy protein have lower cardiovascular morbidity and mortality. The benefits of soy protein may be due to its hypolipidemic effects; its anti-oxidant properties; its high content of L-arginine; and=or or its phytoestrogen content. Two putative mediators of the effects of soy protein are the isoflavones genistein and daidzein. Forty post-menopausal, hypercholesterolemic women who did not take estrogen replacement therapy were recruited for this study of isoflavone supplementation. Baseline flow-mediated vasodilation and response to nitroglycerin were measured, along with urinary isoflavone and nitrite=nitrate levels and serum lipids. After 6 weeks of 90 mg of isoflavones daily versus placebo, women receiving isoflavones demonstrated improved responsiveness to nitroglycerin, an assessment of endothelium-independent vasodilation, with an effect size (percentage points change from baseline) of 7.2 1.9 versus 1.2 1.3; p = 0.01. There was a trend towards improvement of flow-mediated vasodilation, which is an endothelium-dependent response (effect size: 3.4 2.0% versus -0.6 1.7%; p = 0.12). Lipid levels were unchanged after isoflavone treatment. In conclusion, dietary isoflavones may have cardiovascular benefit in the form of improved vascular reactivity, but not by lowering cholesterol, for women who do not take estrogen replacement therapy.
Collapse
|
23
|
Nuclear translocation of the cardiac L-type calcium channel C-terminus is regulated by sex and 17β-estradiol. J Mol Cell Cardiol 2016; 97:226-34. [DOI: 10.1016/j.yjmcc.2016.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 05/03/2016] [Accepted: 06/02/2016] [Indexed: 12/17/2022]
|
24
|
Wittnich C, Wallen J, Belanger M. The Role of 17β-Estradiol in Myocardial Hypertrophy in Females in the Presence and Absence of Hypertension. Cardiovasc Drugs Ther 2016; 29:347-53. [PMID: 26109517 DOI: 10.1007/s10557-015-6603-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
PURPOSE There are gender-differences in the development of cardiac hypertrophy, which appear to be related, in part, to sex hormones. This report gives an overview of this relationship and reports on original data assessing how varying levels of plasma 17β-estradiol determine relative heart size, in vivo function, in hypertensive versus normotensive rats. METHODS Female spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto (WKY) rats were either surgically neutered or sham operated at 21 days of age. A subgroup of neutered females received 17β-estradiol replacement. At 6 months, in vivo heart function was measured, the heart/body weight ratio (mg/g) was assessed as a measure of hypertrophy and correlated with plasma 17β-estradiol. RESULTS There was a significant positive relationship between plasma 17β-estradiol and heart/body weight ratio in both WKY (R = 0.509, P = 0.011) and SHR females (R = 0.359, P = 0.032). Interestingly, the slope of this relationship was 2-fold steeper in the WKY females, suggesting a blunted effect in the SHR, whose hearts also had 35 % lower ERβ content. With increasing plasma estradiol levels, WKY females showed improved LV function while SHR females showed impaired LV relaxation. CONCLUSIONS Plasma estradiol modulates relative heart mass in both normotensive and hypertensive female rats. With any increase in plasma 17β-estradiol, hypertensive females show a blunted response compared with the normotensive females, which may be related to a reduced estrogen receptor expression in the presence of hypertension. In contrast to normotensive females, hypertensive females showed impaired function with increases in plasma 17β-estradiol.
Collapse
Affiliation(s)
- Carin Wittnich
- From the Departments of Physiology (J.W., C.W., M.B) and Surgery (C.W.) and The Cardiovascular Sciences Collaborative Program (W.J.W., C.W.), University of Toronto, 1 King's College Circle, Medical Sciences Bldg. Room 7256, Toronto, Ontario, Canada, M5S 1A8,
| | | | | |
Collapse
|
25
|
TOMPKINS CHRISTINEM, KUTYIFA VALENTINA, ARSHAD AYSHA, MCNITT SCOTT, POLONSKY BRONISLAVA, WANG PAULJ, MOSS ARTHURJ, ZAREBA WOJCIECH. Sex Differences in Device Therapies for Ventricular Arrhythmias or Death in the Multicenter Automatic Defibrillator Implantation Trial With Cardiac Resynchronization Therapy (MADIT-CRT) Trial. J Cardiovasc Electrophysiol 2015; 26:862-871. [DOI: 10.1111/jce.12701] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 04/24/2015] [Accepted: 04/27/2015] [Indexed: 11/26/2022]
Affiliation(s)
| | - VALENTINA KUTYIFA
- Heart Research Follow-Up Program; University of Rochester Medical Center; Rochester New York USA
| | - AYSHA ARSHAD
- Valley Health System; Columbia University; New York USA
| | - SCOTT MCNITT
- Heart Research Follow-Up Program; University of Rochester Medical Center; Rochester New York USA
| | - BRONISLAVA POLONSKY
- Heart Research Follow-Up Program; University of Rochester Medical Center; Rochester New York USA
| | - PAUL J. WANG
- Stanford University of Medicine; Palo Alto California USA
| | - ARTHUR J. MOSS
- Heart Research Follow-Up Program; University of Rochester Medical Center; Rochester New York USA
| | - WOJCIECH ZAREBA
- Heart Research Follow-Up Program; University of Rochester Medical Center; Rochester New York USA
| |
Collapse
|
26
|
Abstract
OBJECTIVE Sex hormone status has been demonstrated to play a role in the regulation of ion channel activity. We previously demonstrated increased L-type Ca channel current (ICa) in the coronary smooth muscle cells (SMCs) of male swine compared with female swine. In male swine, endogenous testosterone increases ICa in SMCs by enhanced expression of the pore-forming α1 subunit Cav1.2. Conversely, the role of sex hormones in female swine has not previously been investigated. Therefore, the purpose of the current study was to determine the effect of ovariectomy (OVX) on L-type Ca channel activity and expression in female Yucatan miniature swine. METHODS Sexually mature female swine were obtained from a breeder and either left intact (intact female [IF]; n = 5) or ovariectomized (n = 6). RESULTS Sensitivity to depolarization-induced contractions was increased by OVX. Accordingly, mean (SEM) ICa was enhanced in the OVX group (-9.5 [0.6] pA/pF) compared with the IF group (-4.5 [0.3] pA/pF), although L-type Ca channel α1 subunit (Cav1.2; α1c) messenger RNA (mRNA) and protein expressions were unchanged.Among the L-type Ca channel β subunits, β1 (188 [31]) and β2a (561 [79]) had higher mRNA expression levels (target/18S) than β3 (9 [1]) and β4 (2 [0.1]). Although β2a, β3, and β4 mRNA and protein expressions were not different between groups, protein expression of the β1 subunit (Cavβ1) was decreased in the OVX group compared with the IF group. CONCLUSIONS Endogenous female hormones inhibit L-type Ca channel activity in coronary SMCs potentially via the up-regulation of Cavβ1 subunit expression.
Collapse
|
27
|
Efficacy of female rat models in translational cardiovascular aging research. J Aging Res 2014; 2014:153127. [PMID: 25610649 PMCID: PMC4294461 DOI: 10.1155/2014/153127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 12/05/2014] [Accepted: 12/05/2014] [Indexed: 01/11/2023] Open
Abstract
Cardiovascular disease is the leading cause of death in women in the United States. Aging is a primary risk factor for the development of cardiovascular disease as well as cardiovascular-related morbidity and mortality. Aging is a universal process that all humans undergo; however, research in aging is limited by cost and time constraints. Therefore, most research in aging has been done in primates and rodents; however it is unknown how well the effects of aging in rat models translate into humans. To compound the complication of aging gender has also been indicated as a risk factor for various cardiovascular diseases. This review addresses the systemic pathophysiology of the cardiovascular system associated with aging and gender for aging research with regard to the applicability of rat derived data for translational application to human aging.
Collapse
|
28
|
Ito J. [Steroid hormones' genomic and non-genomic actions on cardiac voltage-gated calcium channels]. Nihon Yakurigaku Zasshi 2014; 144:206-210. [PMID: 25381888 DOI: 10.1254/fpj.144.206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
|
29
|
Prabhavathi K, Selvi K, Poornima K, Sarvanan A. Role of biological sex in normal cardiac function and in its disease outcome - a review. J Clin Diagn Res 2014; 8:BE01-4. [PMID: 25302188 PMCID: PMC4190707 DOI: 10.7860/jcdr/2014/9635.4771] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
Biological sex plays an important role in normal cardiac physiology as well as in the heart's response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this is progressively lost when comparing postmenopausal women with age matched men. Animal model of cardiac disease mirror what is seen in humans. Sex hormones contribute significantly to sex based difference in cardiac functioning and in its disease outcome. Estrogen is considered to be cardioprotective, whereas testosterone is detrimental to heart function.
Collapse
Affiliation(s)
- K. Prabhavathi
- Assistant Professor, Department of Pathology, SRM Medical College and Research Center, Chennai, Tamil Nadu, India
| | - K.Tamarai Selvi
- Professor, Department of Physiology, SRM Medical College and Research Center, Chennai, Tamil Nadu, India
| | - K.N. Poornima
- Tutor, Department of Physiology, SRM Medical College and Research Center, Chennai, Tamil Nadu, India
| | - A. Sarvanan
- Professor, Department of Physiology, SRM Medical College and Research Center, Chennai, Tamil Nadu, India
| |
Collapse
|
30
|
Nio AQX, Stöhr EJ, Shave R. The female human heart at rest and during exercise: A review. Eur J Sport Sci 2014; 15:286-95. [DOI: 10.1080/17461391.2014.936323] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
31
|
Posnack NG, Jaimes R, Asfour H, Swift LM, Wengrowski AM, Sarvazyan N, Kay MW. Bisphenol A exposure and cardiac electrical conduction in excised rat hearts. ENVIRONMENTAL HEALTH PERSPECTIVES 2014; 122:384-90. [PMID: 24487307 PMCID: PMC3984226 DOI: 10.1289/ehp.1206157] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/29/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is used to produce polycarbonate plastics and epoxy resins that are widely used in everyday products, such as food and beverage containers, toys, and medical devices. Human biomonitoring studies have suggested that a large proportion of the population may be exposed to BPA. Recent epidemiological studies have reported correlations between increased urinary BPA concentrations and cardiovascular disease, yet the direct effects of BPA on the heart are unknown. OBJECTIVES The goal of our study was to measure the effect of BPA (0.1-100 μM) on cardiac impulse propagation ex vivo using excised whole hearts from adult female rats. METHODS We measured atrial and ventricular activation times during sinus and paced rhythms using epicardial electrodes and optical mapping of transmembrane potential in excised rat hearts exposed to BPA via perfusate media. Atrioventricular activation intervals and epicardial conduction velocities were computed using recorded activation times. RESULTS Cardiac BPA exposure resulted in prolonged PR segment and decreased epicardial conduction velocity (0.1-100 μM BPA), prolonged action potential duration (1-100 μM BPA), and delayed atrioventricular conduction (10-100 μM BPA). These effects were observed after acute exposure (≤ 15 min), underscoring the potential detrimental effects of continuous BPA exposure. The highest BPA concentration used (100 μM) resulted in prolonged QRS intervals and dropped ventricular beats, and eventually resulted in complete heart block. CONCLUSIONS Our results show that acute BPA exposure slowed electrical conduction in excised hearts from female rats. These findings emphasize the importance of examining BPA's effect on heart electrophysiology and determining whether chronic in vivo exposure can cause or exacerbate conduction abnormalities in patients with preexisting heart conditions and in other high-risk populations.
Collapse
|
32
|
Sex differences in mechanisms of cardiac excitation-contraction coupling. Pflugers Arch 2013; 465:747-63. [PMID: 23417603 PMCID: PMC3651827 DOI: 10.1007/s00424-013-1233-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 01/29/2013] [Accepted: 01/30/2013] [Indexed: 11/25/2022]
Abstract
The incidence and expression of cardiovascular diseases differs between the sexes. This is not surprising, as cardiac physiology differs between men and women. Clinical and basic science investigations have shown important sex differences in cardiac structure and function. The pervasiveness of sex differences suggests that such differences must be fundamental, likely operating at a cellular level. Indeed, studies have shown that isolated ventricular myocytes from female animals have smaller and slower contractions and underlying calcium transients compared to males. Recent evidence suggests that this arises from sex differences in components of the cardiac excitation–contraction coupling pathway, the sequence of events linking myocyte depolarization to calcium release from the sarcoplasmic reticulum and subsequent contraction. The concept that sex hormones may regulate intracellular calcium at the level of the cardiomyocyte is important, as levels of these hormones decline in both men and women as the incidence of cardiovascular disease rises. This review focuses on the impact of sex on cardiac contraction, in particular at the cellular level, and highlights specific components of the excitation–contraction coupling pathway that differ between the sexes. Understanding sex hormone regulation of calcium homeostasis in the heart may reveal new avenues for therapeutic strategies to treat cardiac dysfunction and cardiovascular diseases.
Collapse
|
33
|
Deutschmann A, Hans M, Meyer R, Häberlein H, Swandulla D. Bisphenol A inhibits voltage-activated Ca(2+) channels in vitro: mechanisms and structural requirements. Mol Pharmacol 2013; 83:501-11. [PMID: 23197648 DOI: 10.1124/mol.112.081372] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Bisphenol A (BPA), a high volume production chemical compound attracts growing attention as a health-relevant xenobiotic in humans. It can directly bind to hormone receptors, enzymes, and ion channels to become biologically active. In this study we show that BPA acts as a potent blocker of voltage-activated Ca(2+) channels. We determined the mechanisms of block and the structural elements of BPA essential for its action. Macroscopic Ba(2+) / Ca(2+) currents through native L-, N-, P/Q-, T-type Ca(2+) channels in rat endocrine GH(3) cells, mouse dorsal root ganglion neurons or cardiac myocytes, and recombinant human R-type Ca(2+) channels expressed in human embryonic kidney (HEK) 293 cells were rapidly and reversibly inhibited by BPA with similar potency (EC(50) values: 26-35 μM). Pharmacological and biophysical analysis of R-type Ca(2+) channels revealed that BPA interacts with the extracellular part of the channel protein. Its action does not require intracellular signaling pathways, is neither voltage- nor use-dependent, and does not affect channel gating. This indicates that BPA interacts with the channel in its resting state by directly binding to an external site outside the pore-forming region. Structure-effect analyses of various phenolic and bisphenolic compounds revealed that 1) a double-alkylated (R-C(CH(3))(2)-R, R-C(CH(3))(CH(2)CH(3))-R), or double-trifluoromethylated sp(3)-hybridized carbon atom between the two aromatic rings and 2) the two aromatic moieties in angulated orientation are optimal for BPA's effectiveness. Since BPA highly pollutes the environment and is incorporated into the human organism, our data may provide a basis for future studies relevant for human health and development.
Collapse
|
34
|
Mahmoodzadeh S, Fliegner D, Dworatzek E. Sex differences in animal models for cardiovascular diseases and the role of estrogen. Handb Exp Pharmacol 2013:23-48. [PMID: 23027444 DOI: 10.1007/978-3-642-30726-3_2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical findings show sex differences in the manifestation of a number of cardiovascular diseases (CVD). However, the underlying molecular mechanisms are incompletely understood. Multiple animal models suggest sex differences in the manifestation of CVD, and provide strong experimental evidence that different major pathways are regulated in a sex-specific manner. In most animal studies females display a lower mortality, less severe hypertrophy, and better preserved cardiac function compared with male counterparts. The data support the hypothesis that female sex and/or the sex hormone estrogen (17β-estradiol; E2) may contribute to the sexual dimorphism in the heart and to a better outcome of cardiac diseases in females. To improve our understanding of the sex-based molecular and cellular mechanisms of CVD and to develop new therapeutic strategies, the use of appropriate animal models is essential. This review highlights recent findings from animal models relevant for studying the mechanisms of sexual dimorphisms in the healthy and diseased heart, focusing on physiological hypertrophy (exercise), pathological hypertrophy (volume and pressure overload induced hypertrophy), and heart failure (myocardial infarction). Furthermore, the potential effects of E2 in these models will be discussed.
Collapse
|
35
|
|
36
|
Rawat DK, Hecker P, Watanabe M, Chettimada S, Levy RJ, Okada T, Edwards JG, Gupte SA. Glucose-6-phosphate dehydrogenase and NADPH redox regulates cardiac myocyte L-type calcium channel activity and myocardial contractile function. PLoS One 2012; 7:e45365. [PMID: 23071515 PMCID: PMC3465299 DOI: 10.1371/journal.pone.0045365] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 08/21/2012] [Indexed: 11/27/2022] Open
Abstract
We recently demonstrated that a 17-ketosteroid, epiandrosterone, attenuates L-type Ca2+ currents (ICa-L) in cardiac myocytes and inhibits myocardial contractility. Because 17-ketosteroids are known to inhibit glucose-6-phosphate dehydrogenase (G6PD), the rate-limiting enzyme in the pentose phosphate pathway, and to reduce intracellular NADPH levels, we hypothesized that inhibition of G6PD could be a novel signaling mechanism which inhibit ICa-L and, therefore, cardiac contractile function. We tested this idea by examining myocardial function in isolated hearts and Ca2+ channel activity in isolated cardiac myocytes. Myocardial function was tested in Langendorff perfused hearts and ICa-L were recorded in the whole-cell patch configuration by applying double pulses from a holding potential of −80 mV and then normalized to the peak amplitudes of control currents. 6-Aminonicotinamide, a competitive inhibitor of G6PD, increased pCO2 and decreased pH. Additionally, 6-aminonicotinamide inhibited G6PD activity, reduced NADPH levels, attenuated peak ICa-L amplitudes, and decreased left ventricular developed pressure and ±dp/dt. Finally, dialyzing NADPH into cells from the patch pipette solution attenuated the suppression of ICa-L by 6-aminonicotinamide. Likewise, in G6PD-deficient mice, G6PD insufficiency in the heart decreased GSH-to-GSSG ratio, superoxide, cholesterol and acetyl CoA. In these mice, M-mode echocardiographic findings showed increased diastolic volume and end-diastolic diameter without changes in the fraction shortening. Taken together, these findings suggest that inhibiting G6PD activity and reducing NADPH levels alters metabolism and leads to inhibition of L-type Ca2+ channel activity. Notably, this pathway may be involved in modulating myocardial contractility under physiological and pathophysiological conditions during which the pentose phosphate pathway-derived NADPH redox is modulated (e.g., ischemia-reperfusion and heart failure).
Collapse
Affiliation(s)
- Dhwajbahadur K Rawat
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Kulpa J, Chinnappareddy N, Pyle WG. Rapid changes in cardiac myofilament function following the acute activation of estrogen receptor-alpha. PLoS One 2012; 7:e41076. [PMID: 22859967 PMCID: PMC3408454 DOI: 10.1371/journal.pone.0041076] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 06/21/2012] [Indexed: 11/19/2022] Open
Abstract
Estrogens have well-recognized and complex cardiovascular effects, including altering myocardial contractility through changes in myofilament function. The presence of multiple estrogen receptor (ER) isoforms in the heart may explain some discrepant findings about the cardiac effects of estrogens. Most studies examining the impact of estrogens on the heart have focused on chronic changes in estrogen levels, and have not investigated rapid, non-genomic pathways. The first objective of this study was to determine how acute activation of ERα impacts cardiac myofilaments. Nongenomic myocardial estrogen signaling is associated with the activation of a variety of signaling pathways. p38 MAPK has been implicated in acute ER signaling in the heart, and is known to affect myofilament function. Thus, the second objective of this study was to determine if acute ERα activation mediates its myofilament effects through p38 MAPK recruitment. Hearts from female C57Bl/6 mice were perfused with the ERα agonist PPT and myofilaments isolated. Activation of ERα depressed actomyosin MgATPase activity and decreased myofilament calcium sensitivity. Inhibition of p38 MAPK attenuated the myofilament effects of ERα activation. ERα stimulation did not affect global myofilament protein phosphorylation, but troponin I phosphorylation at the putative PKA phosphorylation sites was decreased. Changes in myofilament activation did not translate into alterations in whole heart function. The present study provides evidence supporting rapid, non-genomic changes in cardiac myofilament function following acute ERα stimulation mediated by the p38 MAPK pathway.
Collapse
Affiliation(s)
- Justyna Kulpa
- Cardiovascular Research Group, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Nirmala Chinnappareddy
- Cardiovascular Research Group, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - W. Glen Pyle
- Cardiovascular Research Group, Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Biophysics Interdepartmental Group, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
38
|
Belcher SM, Chen Y, Yan S, Wang HS. Rapid estrogen receptor-mediated mechanisms determine the sexually dimorphic sensitivity of ventricular myocytes to 17β-estradiol and the environmental endocrine disruptor bisphenol A. Endocrinology 2012; 153:712-20. [PMID: 22166976 PMCID: PMC3275382 DOI: 10.1210/en.2011-1772] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Previously we showed that 17β-estradiol (E(2)) and/or the xenoestrogen bisphenol A (BPA) alter ventricular myocyte Ca(2+) handing, resulting in increased cardiac arrhythmias in a female-specific manner. In the present study, the roles of estrogen receptors (ER) in mediating the rapid contractile and arrhythmogenic effects of estrogens were examined. Contractility was used as an index to assess the impact of E(2) or BPA on Ca(2+) handling in rodent ventricular myocytes. The concentration-response curve for the stimulatory effects of BPA and E(2) on female myocyte was inverted-U shaped. Detectable effects for each compound were observed at 10(-12) M, and the most efficacious concentrations for each were at 10(-9) M. Sensitivity to E(2) and BPA was not observed in male myocytes and was abolished in myocytes from ovariectomized females. Analysis using protein-conjugated E(2) suggests that these rapid actions are induced by membrane-associated receptors. Analysis using selective ER agonists and antagonists and a genetic ERβ knockout mouse model showed that ERα and ERβ have opposing actions in myocytes and that the balance between ERβ and ERα signaling is the prime regulator of the sex-specific sensitivity toward estrogens. The response of female myocytes to E(2) and BPA is dominated by the stimulatory ERβ-mediated signaling, and the absence of BPA and E(2) responsiveness in males is due to a counterbalancing-suppressive action of ERα. We conclude that the sex-specific sensitivity of myocytes to estrogens and the rapid arrhythmogenic effects of BPA and estradiol in the female heart are regulated by the balance between ERα and ERβ signaling.
Collapse
Affiliation(s)
- Scott M Belcher
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45267-0575, USA
| | | | | | | |
Collapse
|
39
|
Fares E, Parks RJ, MacDonald JK, Egar JM, Howlett SE. Ovariectomy enhances SR Ca2+ release and increases Ca2+ spark amplitudes in isolated ventricular myocytes. J Mol Cell Cardiol 2012; 52:32-42. [DOI: 10.1016/j.yjmcc.2011.09.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/18/2011] [Accepted: 09/02/2011] [Indexed: 11/24/2022]
|
40
|
Yan S, Chen Y, Dong M, Song W, Belcher SM, Wang HS. Bisphenol A and 17β-estradiol promote arrhythmia in the female heart via alteration of calcium handling. PLoS One 2011; 6:e25455. [PMID: 21980463 PMCID: PMC3181279 DOI: 10.1371/journal.pone.0025455] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Accepted: 09/05/2011] [Indexed: 12/25/2022] Open
Abstract
Background There is wide-spread human exposure to bisphenol A (BPA), a ubiquitous estrogenic endocrine disruptor that has been implicated as having potentially harmful effects on human heart health. Higher urine BPA concentrations have been shown to be associated with cardiovascular diseases in humans. However, neither the nature nor the mechanism(s) of BPA action on the heart are understood. Methodology/Principal Findings The rapid (<7 min) effects of BPA and 17β-estradiol (E2) in the heart and ventricular myocytes from rodents were investigated in the present study. In isolated ventricular myocytes from young adult females, but not males, physiological concentrations of BPA or E2 (10−9 M) rapidly induced arrhythmogenic triggered activities. The effects of BPA were particularly pronounced when combined with estradiol. Under conditions of catecholamine stimulation, E2 and BPA promoted ventricular arrhythmias in female, but not male, hearts. The cellular mechanism of the female-specific pro-arrhythmic effects of BPA and E2 were investigated. Exposure to E2 and/or BPA rapidly altered myocyte Ca2+ handling; in particular, estrogens markedly increased sarcoplasmic reticulum (SR) Ca2+ leak, and increased SR Ca2+ load. Ryanodine (10−7 M) inhibition of SR Ca2+ leak suppressed estrogen-induced triggered activities. The rapid response of female myocytes to estrogens was abolished in an estrogen receptor (ER) β knockout mouse model. Conclusions/Significance Physiologically-relevant concentrations of BPA and E2 promote arrhythmias in a female-specific manner in rat hearts; the pro-arrhythmic actions of estrogens are mediated by ERβ-signaling through alterations of myocyte Ca2+ handling, particularly increases in SR Ca2+ leak. Our study provides the first experimental evidence suggesting that exposure to estrogenic endocrine disrupting chemicals and the unique sensitivity of female hearts to estrogens may play a role in arrhythmogenesis in the female heart.
Collapse
Affiliation(s)
- Sujuan Yan
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yamei Chen
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Min Dong
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Weizhong Song
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Scott M. Belcher
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Hong-Sheng Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
41
|
Wagner M, Moritz A, Volk T. Interaction of gonadal steroids and the glucocorticoid corticosterone in the regulation of the L-type Ca(2+) current in rat left ventricular cardiomyocytes. Acta Physiol (Oxf) 2011; 202:629-40. [PMID: 21477069 DOI: 10.1111/j.1748-1716.2011.02303.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AIM Gonadal steroids as well as glucocorticoids have been shown to regulate the cardiac L-type Ca(2+) current (I(CaL) ). Herein, we compare the effects of the gonadal steroids testosterone and 17β-estradiol with the glucocorticoid corticosterone on I(CaL) , and investigate the interaction between the gonadal steroids and corticosterone. METHODS Myocytes were isolated from the left ventricular free wall of female and male Wistar rats and investigated using the ruptured-patch whole-cell patch-clamp technique. RESULTS In myocytes isolated from female rats, 24 h incubation with 100 nm testosterone led to a 33% increase in I(CaL) compared with control (-8.8 ± 0.5 pA pF(-1) , n = 25 vs. -6.6 ± 0.4 pA pF(-1) , n = 26, P < 0.01, V(Pip) = 0 mV). Incubation with 1 μm corticosterone resulted in a 79% increase in I(CaL) (-11.8 ± 0.7 pA pF(-1) , n = 29, P < 0.001). However, the combination of testosterone and corticosterone did not have any additional effect compared with corticosterone alone (-11.7 ± 0.6 pA pF(-1) , n = 25, ns). In cardiomyocytes from male rats, I(CaL) was not affected by testosterone, whereas the effect of corticosterone was preserved (P < 0.05). 24 h incubation with 17β-estradiol increased I(CaL) by 32% from -7.6 ± 0.5 pA pF(-1) (n = 15) to 10.0 ± 0.9 pA pF(-1) (n = 15, P < 0.05). 17β-estradiol did not exert an additional effect upon co-incubation with corticosterone and did not have an effect on I(CaL) in cardiomyocytes from female rats. Higher concentrations of the gonadal steroids did not result in increased effects. CONCLUSION When compared with corticosterone, the in vitro effects of the gonadal steroids are small. However, under conditions in which I(CaL) is not fully activated by glucocorticoids, gonadal steroids may significantly contribute to I(CaL) regulation.
Collapse
Affiliation(s)
- M Wagner
- Institut für Zelluläre und Molekulare Physiologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany.
| | | | | |
Collapse
|
42
|
Paigel AS, Ribeiro Junior RF, Fernandes AA, Targueta GP, Vassallo DV, Stefanon I. Myocardial contractility is preserved early but reduced late after ovariectomy in young female rats. Reprod Biol Endocrinol 2011; 9:54. [PMID: 21513549 PMCID: PMC3107166 DOI: 10.1186/1477-7827-9-54] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Accepted: 04/23/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Ovarian sex hormones (OSHs) are implicated in cardiovascular function. It has been shown that OSHs play an important role in the long term regulation of cardiac sarcoplasmic reticulum (SR) function and contractility, although early effects of OSHs deprivation on myocardial contractility have not yet been determined. This study evaluated the early and late effects of OSHs deficiency on left ventricular contractility in rats after ovariectomy. METHODS Young female Wistar rats were divided into 3 groups (n=9-15): sham operated (Sham), ovariectomized (Ovx) and Ovx treated with estradiol (1 mg/kg, i.m., once a week) (Ovx+E2). After 7, 15, 30 and 60 days post Ovx, left ventricle papillary muscle was mounted for isometric tension recordings. The inotropic response to Ca2+ (0.62 to 3.75 mM) and isoproterenol (Iso 10-8 to 10-2 M) and contractility changes in response to rate changes (0.25 to 3 Hz) were assessed. Protein expression of SR Ca2+-ATPase (SERCA2a) and phospholamban (PLB) in the heart was also examined. RESULTS The positive inotropic response to Ca2+ and Iso at 7, 15, and 30 days after Ovx was preserved. However, at 60 days, the Ovx group had decreased myocardial contractility which was subsequently restored with E2 replacement. The reduction in SERCA2a and increase in PLB expression observed at 60 days after Ovx were restored with E2 replacement. CONCLUSION This study demonstrated that myocardial contractility and expression of key Ca2+ handling proteins were preserved in the early phase and reduced at long-term during OSHs deprivation.
Collapse
Affiliation(s)
- Altemar S Paigel
- Federal University of Espirito Santo, Department of Physiological Sciences, Vitória, ES, Brazil
| | | | - Aurelia A Fernandes
- Federal University of Espirito Santo, Department of Physiological Sciences, Vitória, ES, Brazil
| | - Gabriel P Targueta
- Federal University of Espirito Santo, Department of Physiological Sciences, Vitória, ES, Brazil
| | - Dalton V Vassallo
- Federal University of Espirito Santo, Department of Physiological Sciences, Vitória, ES, Brazil
| | - Ivanita Stefanon
- Federal University of Espirito Santo, Department of Physiological Sciences, Vitória, ES, Brazil
| |
Collapse
|
43
|
Duzenli MA, Ozdemir K, Sokmen A, Gezginc K, Soylu A, Celik C, Altunkeser BB, Tokac M. The effects of hormone replacement therapy on myocardial performance in early postmenopausal women. Climacteric 2010; 13:157-70. [PMID: 19672733 DOI: 10.3109/13697130902929567] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVES The results of the studies in which the effect of hormone replacement therapy (HRT) on cardiac function have been evaluated are rather disputable. In these studies, cardiac function was evaluated with conventional echocardiographic methods. This study was planned in order to investigate the effects of HRT on myocardial velocities and myocardial performance index (MPI) in healthy early postmenopausal women. METHOD In a prospective, controlled study, 60 healthy postmenopausal women were assigned to two groups (32 in the HRT group and 28 in the control group). After conventional echocardiographic parameters were measured, tissue Doppler echocardiography recordings were obtained from the mitral and tricuspid annulus. Systolic myocardial velocity (Sm), early and late diastolic myocardial velocities (Em and Am) and time intervals were measured and MPI was calculated. Then the symptom-limited exercise stress test using the Bruce protocol was performed. After 3 and 6 months of HRT (oral 0.625 mg conjugated estrogen + 2.5 mg medroxyprogesterone acetate/day), the same examinations were repeated. The effects of HRT on myocardial velocities, MPI and exercise time were evaluated at the 3rd and 6th months. RESULTS The parameters of the control group remained statistically unchanged during the study. HRT did not have any effect on segmental and mean left ventricular (LV) Sm or right ventricular (RV) Sm. However, LV Em/Am and RV Em/Am ratios significantly increased at the 6th month of HRT, and LV and RV MPI values were observed to decrease significantly as compared to basal values. Additionally, a significant increase was observed in exercise duration and metabolic equivalent values after 3 months of HRT, and this increase continued at the 6th month as well. The favorable changes in all parameters in the HRT group were significantly different from those of the control group. CONCLUSION Data obtained in this study suggest that HRT is not only effective for treating menopausal complaints but also increases cardiovascular performance by improving especially diastolic functions in early postmenopausal women.
Collapse
Affiliation(s)
- M A Duzenli
- Department of Cardiology, Selcuk University, Konya, Turkey
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Biological sex plays an important role in normal cardiac physiology as well as in the heart's response to cardiac disease. Women generally have better cardiac function and survival than do men in the face of cardiac disease; however, this sex difference is lost when comparing postmenopausal women with age-matched men. Animal models of cardiac disease mirror what is seen in humans. Sex steroid hormones contribute significantly to sex-based differences in cardiac disease outcomes. Estrogen is generally considered to be cardioprotective, whereas testosterone is thought to be detrimental to heart function. Environmental estrogen-like molecules, such as phytoestrogens, can also affect cardiac physiology in both a positive and a negative manner.
Collapse
Affiliation(s)
- Elizabeth D Luczak
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
45
|
Deschamps AM, Murphy E. Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol 2009; 297:H1806-13. [PMID: 19717735 DOI: 10.1152/ajpheart.00283.2009] [Citation(s) in RCA: 196] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Premenopausal females have a lower incidence of cardiovascular disease than their male counterparts, but the mechanism is unclear. Estrogen has been thought to signal through two nuclear receptors: estrogen receptor-alpha or estrogen receptor-beta; however, a third, membrane-bound receptor G protein-coupled estrogen receptor (GPER), has been identified and shown to bind estrogen with high affinity. To date, there is little information on GPER in the heart and no study has looked at the effect of GPER activation during myocardial ischemia-reperfusion (I/R). Therefore, the goal of this study was to determine whether activation of GPER is cardioprotective in rats. A highly specific GPER agonist, G-1, was administered to Sprague-Dawley (200-350 g) rat hearts 10 min before 20 min of ischemic followed by 120 min of reperfusion using a Langendorff model. Similar levels of GPER were found in both male and female rat hearts. With administration of 110 nM of G-1, postischemic contractile dysfunction was significantly reduced compared with untreated controls (43.8 + or - 4.3% vs. 26.9 + or - 2.1% of preischemic rate pressure product; P < 0.05). Additionally, infarct size was reduced in the G-1-treated animals when compared with control (18.8 + or - 2.7% vs. 32.4 + or - 2.1%; P < 0.05). These observations were demonstrated in both male and intact female rat hearts. Through Western blot analysis, it was demonstrated that G-1 induces the activation of both Akt and ERK1/2. Furthermore, the protection afforded by G-1 was blocked by coadministration of a phosphatidylinositol 3-kinase (PI3K) inhibitor (wortmannin, 100 nM). Taken together, the data show that G-1 activation of GPER improves functional recovery and reduces infarct size in isolated rat hearts following I/R through a PI3K-dependent, gender-independent mechanism.
Collapse
Affiliation(s)
- Anne M Deschamps
- National Institutes of Health, National Heart, Lung, and Blood Institute, Translational Medicine Branch, Laboratory of Cardiac Physiology, Bethesda, MD 20892, USA
| | | |
Collapse
|
46
|
Finking G, Hess B, Hanke H. The value of phytoestrogens as a possible therapeutic option in postmenopausal women with coronary heart disease. J OBSTET GYNAECOL 2009; 19:455-9. [PMID: 15512363 DOI: 10.1080/01443619964184] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Large epidemiological studies have proved that the risk of coronary heart disease in postmenopausal women can be decreased by oestrogen replacement therapy. The effect is triggered by metabolic processes in the liver (decrease of LDL-cholesterol, increase of HDL-cholesterol) as well as by direct impact on the arterial wall (anti-oxidation, relaxation, anti-proliferation). The therapeutical usage of oestrogens is limited by an increased incidence of breast and endometrial cancer. Cyclic application of progestogens virtually eliminates the risk. Unfortunately, progestogens may antagonise the atheroprotective effect of oestrogens. Structurally modified oestrogens as well as selective oestrogen receptor modulators were investigated in clinical trials. They might provide the desired atheroprotective effects of oestrogen without negative side effects on the mammary gland or the endometrium. In this respect isoflavones also known as phytoestrogens, were analysed. They are widespread and occur naturally in many plants, especially in soy products. Cell culture and animal experiments as well as clinical studies revealed that phytoestrogens such as genistein and daidzein act atheroprotectively in the same way as oestrogen. Effects on the mammary gland or the endometrium could not be detected, but positive side effects on the bone metabolism and the decrease of certain types of cancer could be observed. In total, the therapeutical application of phytoestrogens in postmenopausal women seems to be of real and great benefit. We conclude that in women the risk of death from coronary heart disease increases after the onset of menopause. Recently discovered properties of phyto-oestrogens seem to be of great benefit as they do not seem to have any side effects on the mammary gland and the endometrium which are limiting factors for oestrogen replacement therapy.
Collapse
Affiliation(s)
- G Finking
- Division of Cardiology, University of Ulm, Germany.
| | | | | |
Collapse
|
47
|
|
48
|
Mak S. Intracoronary 17 β-Estradiol and the Inotropic Response to Dobutamine in Postmenopausal Women. J Womens Health (Larchmt) 2008; 17:1499-503. [DOI: 10.1089/jwh.2007.0768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Susanna Mak
- Clinical Cardiovascular Research Laboratory, Mount Sinai Hospital, and Division of Cardiology, Department of Medicine, University of Toronto, Ontario, Canada
| |
Collapse
|
49
|
Ullrich ND, Krust A, Collins P, MacLeod KT. Genomic deletion of estrogen receptors ERalpha and ERbeta does not alter estrogen-mediated inhibition of Ca2+ influx and contraction in murine cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 294:H2421-7. [PMID: 18441199 DOI: 10.1152/ajpheart.01225.2007] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Estrogens modify contraction of vascular smooth muscle and cardiomyocytes, but suggestions that they confer protective effects on the cardiovascular system remain controversial. The negative inotropic effects of estrogens are a consequence of L-type Ca2+ channel inhibition, but the underlying mechanisms remain elusive. We tested the hypothesis that membrane-associated estrogen receptors (ER)-alpha and -beta are involved. We measured the effect of estrogens on Ca2+ current (ICaL) in isolated ventricular cardiomyocytes of wild-type (WT), ERalpha knockout (ERalphaKO), and ERbetaKO mice using the whole cell patch-clamp technique at 37 degrees C. No differences in current densities or inactivation profiles of ICaL were found under control conditions in WT, ERalphaKO, and ERbetaKO cardiomyocytes, suggesting that absence of either ER has no effect on functional properties of ICaL. In all groups, application of raloxifene (2 microM) or 17alpha- or 17beta-estradiol (50 microM) reduced ICaL (P < 0.001). Raloxifene decreased ICaL by 44 +/- 9% (mean +/- SE) in WT (n = 5), 34 +/- 5% in ERalphaKO (n = 5), and 30 +/- 5% in ERbetaKO mice (n = 8). 17alpha-Estradiol reduced ICaL by 41 +/- 10% in WT (n = 4), 34 +/- 12% in ERalphaKO (n = 7), and 38 +/- 8% in ERbetaKO mice (n = 7). 17beta-Estradiol inhibited ICaL by 31 +/- 4% in WT (n = 4), 28 +/- 6% in ERalphaKO (n = 3), and 42 +/- 3% in ERbetaKO mice (n = 5). Decreases in cell shortening occurred in parallel with these findings. Our results suggest that inhibition of ICaL and the decrease in contraction by estrogens do not depend on ERalpha or ERbeta.
Collapse
Affiliation(s)
- Nina D Ullrich
- Imperial College London, Cardiac Medicine, National Heart and Lung Institute, London, United Kingdom
| | | | | | | |
Collapse
|
50
|
Lafayette SSL, Vladimirova I, Garcez-do-Carmo L, Monteforte PT, Caricati Neto A, Jurkiewicz A. Evidence for the participation of calcium in non-genomic relaxations induced by androgenic steroids in rat vas deferens. Br J Pharmacol 2008; 153:1242-50. [PMID: 18264125 DOI: 10.1038/bjp.2008.18] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Androgens cause non-genomic relaxation in several smooth muscle preparations. However, such an effect has not been investigated in rat vas deferens yet. Our purpose was to study the effect of testosterone and derivatives in this tissue. EXPERIMENTAL APPROACH The influence of androgens was tested on contraction and translocation of intracellular Ca(2+) induced by KCl in rat vas deferens in vitro. KEY RESULTS The testosterone derivative 5alpha-dihydrotestosterone produced a rapid and reversible concentration-dependent relaxation of KCl-induced contractions. Other androgens were also effective, showing the following rank order of potency: androsterone >5beta-dihydrotestosterone >androstenedione >5alpha-dihydrotestosterone >testosterone. Calcium-induced contractions were also inhibited (about 45%) by 5alpha-dihydrotestosterone (30 microM). Moreover 5alpha-dihydrotestosterone blocked the increase of intracellular Ca(2+) induced by KCl, measured by the fluorescent dye fura-2. Relaxation to 5alpha-dihydrotestosterone was resistant to the K(+) channel antagonists glibenclamide, 4-aminopyridine and charybdotoxin. It was not affected by removal of epithelium or by L-NNA (300 microM), an inhibitor of nitric oxide biosynthesis, nor by selective inhibitors of soluble guanylate cyclase, ODQ or LY 83583, indicating that nitrergic or cGMP mediated mechanisms were not involved. The androgen-induced relaxation was also not blocked by the protein synthesis inhibitor cycloheximide (300 microM) or by the classical androgen receptor flutamide (up to 100 microM), corroborating that the effect is non-genomic. CONCLUSIONS AND IMPLICATIONS Testosterone derivatives caused relaxation of the rat vas deferens, that did not involve epithelial tissue, K(+) channels, or nitric oxide-dependent mechanisms, but was related to a partial blockade of Ca(2+) influx.
Collapse
Affiliation(s)
- S S L Lafayette
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|