1
|
Liu L, Wu H, Fu Y, Lu X, Wang X, Zhang DH, Fu B. OH Roaming as a Key Pathway in the Anti-CH 3CHOO + H 2O Reaction Yielding CH 3COOH and H 2O. J Phys Chem A 2025; 129:4364-4373. [PMID: 40340502 DOI: 10.1021/acs.jpca.5c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The reaction of anti-CH3CHOO with H2O is a crucial atmospheric process, resulting in the end products CH3COOH + H2O through the dissociation of the intermediate hydroxyethyl hydroperoxide (CH3CH(HO)OOH, HEHP). Based on an accurate full-dimensional PES, we have obtained detailed dynamics information for this reaction through quasi-classical trajectory simulations. We report two reaction mechanisms for the CH3COOH + H2O product channel: one involving a direct mechanism through the transition state and the other an intriguing OH roaming mechanism. The roaming pathway proceeds via the dissociation of HEHP into OH and the hydroxyethoxy radical (CH3CH(HO)O, HEO), where the OH radical roams near HEO and abstracts a hydrogen atom, subsequently forming H2O and CH3COOH. The presence of this roaming pathway significantly increases the yield of CH3COOH + H2O. This work provides new dynamical support for the study of the anti-CH3CHOO + H2O reaction and enriches our understanding of atmospheric chemistry.
Collapse
Affiliation(s)
- Lijie Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Hao Wu
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yanlin Fu
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoxiao Lu
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Interdisciplinary Research Center for Biology and Chemistry, Liaoning Normal University, Dalian 116029, China
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, Hefei 230088, China
| | - Dong H Zhang
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bina Fu
- State Key Laboratory of Chemical Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Zhen W, Fu G, Yang L, Wang H, Sheng L, Sun J, Zhang J. Dynamics of sterically hindered F- + i-C3H7Cl reaction: An enhancement of indirect mechanisms. J Chem Phys 2025; 162:184305. [PMID: 40353437 DOI: 10.1063/5.0258329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/24/2025] [Indexed: 05/14/2025] Open
Abstract
It is essential but difficult to monitor the underlying atomistic mechanisms for the competitive nucleophilic substitution (SN2) and base-induced elimination (E2) reactions. Especially, the dynamic characters of bulky alkyl substitution halides remain unclear due to its complexity. Here, we present direct dynamics simulations of the fluoride anion reaction with isopropyl chloride, uncovering distinct dynamical behaviors compared to its ethyl chloride counterpart. Reaction dynamics simulation capture the key trends observed in differential scattering experiment, demonstrating predominant preference for the direct E2 pathway through stripping mechanisms at 1.9 eV of collision energy. Notably, an enhancement of indirect mechanisms emerges with increasing methyl substitution (from ethyl to isopropyl chloride), even at the high collision energy where such pathways are typically suppressed. This phenomenon arises from the synergistic effects of ion-induced dipole forces and van der Waals interactions between the reactants, coupled with the alkyl substitution-induced stabilization of the entrance-channel complex, which collectively prolong the interaction timescales. This work deepens an atomistic dynamics understanding of sterically hindered systems and highlights the role of the entrance channel on the chemical dynamics.
Collapse
Affiliation(s)
- Wenqing Zhen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Gang Fu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Li Yang
- Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China
| | - Hongyi Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Li Sheng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jianmin Sun
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
| | - Jiaxu Zhang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, People's Republic of China
- Key Laboratory of Chemistry and Chemical Engineering on Heavy-Carbon Resources, School of Chemistry and Chemical Engineering, Yili Normal University, Yining 835000, People's Republic of China
| |
Collapse
|
3
|
Pataraprasitpon S, Luxford TFM, Čurík R, Kočišek J, Piekarski DG. Hydrogen Controls the Heavy Atom Roaming in Transient Negative Ion. J Am Chem Soc 2025; 147:13370-13376. [PMID: 40227002 PMCID: PMC12023026 DOI: 10.1021/jacs.4c18446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/15/2025]
Abstract
Bromine and hydrogen play unusual roles as mobile atom and dissociation dynamics moderator, respectively, during roaming in the 3-bromo-4H-1,2,4-triazole anion. The present study of the reactivity of 3-bromo-1H-1,2,4-triazole and 3-bromo-4H-1,2,4-triazole with low-energy electrons reveals the effect of the hydrogen position on the reaction dynamics. We report energy-dependent ion yields for both molecules showing significant differences. Quantum chemical calculations reveal that heavy Br atom migration is energetically more favored than H atom migration in the case of the H atom adjacent to Br. This is enabled by the energetically favorable formation of a noncovalent complex of Br- around the triazole ring. Recently, such complexes have been reported for several other biologically relevant molecules. In the present work, we demonstrate that the position of hydrogen on the ring influences the character of the lowest resonant state and, consequently, the Br- roaming and dissociation dynamics, particularly the neutral release of hydrogen bromide.
Collapse
Affiliation(s)
| | - Thomas F. M. Luxford
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Roman Čurík
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Jaroslav Kočišek
- J.
Heyrovský Institute of Physical Chemistry v.v.i., The Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czechia
| | - Dariusz G. Piekarski
- Institute
of Physical Chemistry, Polish Academy of
Sciences, 01-224 Warsaw, Poland
| |
Collapse
|
4
|
Liu Y, Liu L, Fu Y, Jiang H, Wu H, Liu Y, Lu X, Zhou X, Li H, Skodje RT, Wang X, Fu B, Dong W, Zhang DH, Yang X. Reactivity of syn-CH 3CHOO with H 2O enhanced through a roaming mechanism in the entrance channel. Nat Chem 2025:10.1038/s41557-025-01798-9. [PMID: 40240876 DOI: 10.1038/s41557-025-01798-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/07/2025] [Indexed: 04/18/2025]
Abstract
Criegee intermediates are highly reactive species that play a pivotal role in the chemistry of the atmosphere, substantially impacting global climate and air quality. They are formed through the reaction of ozone with alkenes and considerably influence the formation of hydroxyl radicals and aerosols through their unimolecular decomposition and their reaction with key atmospheric components, respectively. However, their interaction with water vapour, a major atmospheric component, remains inadequately characterized. Here, using both time-dependent laser-induced fluorescence experiments and full-dimensional dynamics calculations, we investigate the reaction of syn-CH3CHOO, a prevalent Criegee intermediate, with water vapour. Our results reveal a much higher reaction rate than previously estimated, challenging the conventional notion that unimolecular decomposition dominates syn-CH3CHOO removal. Notably, we uncover a complex mechanism involving a roaming process that enhances reactivity. Our findings necessitate a revised assessment of reactions involving syn-mono- and di-substituted Criegee intermediates with water, which are crucial for accurately estimating the OH budget derived from these intermediates.
Collapse
Affiliation(s)
- Yiqiang Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- School of Materials Science and Engineering, Anyang Institute of Technology, Anyang, China
| | - Lijie Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Haotian Jiang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yue Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaohu Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Hongwei Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rex T Skodje
- Department of Chemistry, University of Colorado, Boulder, CO, USA
| | - Xingan Wang
- Department of Chemical Physics, University of Science and Technology of China, Hefei, China
- Hefei National Laboratory, Hefei, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
| | - Wenrui Dong
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- Hefei National Laboratory, Hefei, China.
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
5
|
Wodtke A. Looking Backward and Forward. J Phys Chem A 2025; 129:2976-2987. [PMID: 40176556 DOI: 10.1021/acs.jpca.5c01324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Affiliation(s)
- Alec Wodtke
- Institute of Physical Chemistry, Georg-August University of Göttingen, 37077 Göttingen, Germany
- Department of Dynamics at Surfaces, Max Planck Institute for Multidisciplinary Natural Sciences, Göttingen 37077, Germany
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Building 232, Santa Barbara, California 93117, United States
- Institute for Chemical Sciences and Engineering (ISIC), École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
6
|
Perez Mellor AF, Bürgi T, Spezia R. Gas-phase reactivity of protonated oxazolone: Chemical dynamics simulations and graph theory-based analysis reveal the importance of ion-molecule complexes. J Chem Phys 2025; 162:114313. [PMID: 40116318 DOI: 10.1063/5.0245766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/28/2025] [Indexed: 03/23/2025] Open
Abstract
This study delves into the fragmentation mechanisms of the oxazolone form (OXA) of protonated cyclo-di-glycine using chemical dynamics simulations at multiple internal energies. While we focus our in-depth analyses on a representative total energy of 178 kcal/mol, we also performed simulations over the 127-187 kcal/mol range. This broader energy sampling reveals how the population of states evolves with increasing internal energy, enabling us to compute rate constants and then effective energy thresholds using a previously introduced three-state model [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. By transforming molecular geometries into graph representations, we systematically analyze fragmentation processes and identify key intermediates and ion-molecule complexes (IMCs) that play a crucial role in fragmentation dynamics. The study highlights the distinct isomerization landscapes of OXA, driven by IMC formation, which contrasts with the previously reported behavior of cyclic and linear forms [Perez Mellor et al., J. Chem. Phys. 155, 124103 (2021)]. The resulting fragmentation channels are characterized by their unique energetic thresholds and branching ratios and can provide a molecular explanation of what was observed experimentally. Thanks to an accurate analysis of the trajectories using our graph-theory-based tools, it was possible to point out the particular behavior of OXA fragmentation, which is different from other isomers. In particular, the important role of IMCs is shown, which has an impact on populating different isomeric structures.
Collapse
Affiliation(s)
- Ariel F Perez Mellor
- Department of Physical Chemistry University of Geneva 30, Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Thomas Bürgi
- Department of Physical Chemistry University of Geneva 30, Quai Ernest-Ansermet, 1211 Geneva 4, Geneva, Switzerland
| | - Riccardo Spezia
- Laboratoire de Chimie Théorique, Sorbonne Université and CNRS, F-75005 Paris, France
| |
Collapse
|
7
|
Bai Y, Fu YL, Qi J, Liu L, Lu X, Han YC, Zhang DH, Fu B. Exclusive roaming mechanism for the Cl + C 2H 2→C 2H + HCl bimolecular reaction. Nat Commun 2025; 16:2732. [PMID: 40108142 PMCID: PMC11923139 DOI: 10.1038/s41467-025-58121-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/11/2025] [Indexed: 03/22/2025] Open
Abstract
The conventional understanding of bimolecular reactions, which either proceed directly via well-defined transition states or pass through potential energy wells, is well-established. However, increasing attention and interest have been drawn to nontraditional reaction pathways, such as roaming mechanisms. Here, full-dimensional dynamics simulations on a machine learning-based potential energy surface reveal that the Cl + C2H2→C2H+HCl reaction is dominated by two roaming mechanisms-Cl-roaming and H-roaming-rather than direct abstraction. In Cl-roaming, a transient C2H2Cl adduct forms, allowing Cl to roam and abstract H. In H-roaming, a detached H atom migrates and abstracts Cl. These pathways account for nearly 100% of the total yield, exhibiting distinct energy and angular distributions. These findings challenge the traditional view of the bimolecular reaction with conventional transition states, emphasizing the importance of considering nontraditional pathways in reaction dynamics studies for accurate rate constant predictions and mechanistic insights.
Collapse
Affiliation(s)
- Yuyao Bai
- School of Physics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yan-Lin Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Jianjun Qi
- School of Physics, Dalian University of Technology, Dalian, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Lijie Liu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaoxiao Lu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Yong-Chang Han
- School of Physics, Dalian University of Technology, Dalian, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- University of Chinese Academy of Sciences, Beijing, China
- Hefei National Laboratory, Hefei, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Hefei National Laboratory, Hefei, China.
| |
Collapse
|
8
|
Li J, Hou S, Xie C. Characterizing the photodissociation dynamics of HPCO in the S1 band. J Chem Phys 2025; 162:074308. [PMID: 39968826 DOI: 10.1063/5.0253457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
A full-dimensional potential energy surface (PES) represented by the neural network method for the first excited state S1(1A″) of HPCO is reported for the first time. The PES was constructed based on more than 51 000 ab initio points, which were calculated at the multi-reference configuration interaction level with Davidson correction using the augmented correlation consistent polarized valence triple zeta basis set. Based on the newly constructed PES, quasi-classical trajectory calculations were carried out to study the photodissociation dynamics of HPCO at the total energy ranging from 4.0 to 5.6 eV. At low total energies, the HP + CO product is dominant, while the product H + PCO becomes increasingly favored at higher energies. Furthermore, the translational energy distributions of two products are found to be energy-dependent. Owing to the strongly repulsive PES along the HP + CO dissociation pathway, the translational energy distributions of HP + CO are dominated by relatively higher energies in contrast to H + PCO. The diatomic products HP and CO are found to possess the vibrational distributions decaying monotonically with the vibrational quantum number and relatively cold rotational state distributions, consistent with the strongly repulsive potentials toward the HP + CO channel. In addition, the vibrational distributions of HP and CO are found to be quite similar due to their close frequencies, while the rotational distributions of CO have a much more highly excited rotational degree of freedom owing to its rotational constant approximately four times smaller than that of HP.
Collapse
Affiliation(s)
- Jiayuan Li
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China
| | - Siting Hou
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China
| | - Changjian Xie
- Institute of Modern Physics, Shaanxi Key Laboratory for Theoretical Physics Frontiers, Northwest University, Xi'an, Shaanxi 710127, China
| |
Collapse
|
9
|
Pennacchio L, Liasi Z, Hillers-Bendtsen AE, Röckmann T, Mikkelsen KV, Johnson MS. Extreme Isotopic Fractionation in CO and H 2 Formed in Formaldehyde Photolysis: Theory and Experiment. J Phys Chem A 2025. [PMID: 39970264 DOI: 10.1021/acs.jpca.4c07516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Formaldehyde (HCHO) is an important intermediate in the breakdown of organic molecules in the atmosphere. It is the most abundant atmospheric carbonyl, and a major source of CO and H2 upon degradation. Isotopic analysis offers valuable insights into molecular processes, deepening our understanding of atmospheric transformations. We present a model of the isotope-dependent photolytic isotopic fractionation of formaldehyde incorporating Rice-Ramsperger-Kassel-Marcus (RRKM) analysis, validate the model with new and pre-existing experimental data, and use it to describe photolytic kinetic isotope effects (KIEs) and their pressure dependencies. RRKM theory was used to calculate decomposition rates of the S0, S1, and T1 states, using CCSD(T)/aug-cc-pVTZ, ωB97X-D/aug-cc-pVTZ, and CASPT2/aug-cc-pVTZ, respectively. We considered isotopologues HCHO, DCHO, DCDO, D13CHO, H13CHO, HCH17O, HCH18O, H13CH17O, and H13CH18O. We find that isotopic substitution notably affects the density of states, influencing rates of unimolecular decomposition and collisional energy transfer. Experimental photolysis rates ranged from j H C H O / j H C H 18 O = 1.027 ± 0.006 at 50 mbar to jHCHO/jDCDO = 1.418 ± 0.108 at 1000 mbar using a xenon lamp. The model accurately reproduced experimental pressure trends in KIEs, revealing that altitude-dependent deuterium enrichment in H2 cannot be explained by pressure effects alone and must also consider wavelength dependence.
Collapse
Affiliation(s)
- Luisa Pennacchio
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Zacharias Liasi
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | | | - Thomas Röckmann
- Institute for Marine and Atmospheric Research Utrecht (IMAU), P.O. Box 80000, Princetonplein 5, 3584 CC Utrecht, The Netherlands
| | - Kurt V Mikkelsen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| | - Matthew S Johnson
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
| |
Collapse
|
10
|
Dutta SS, Lourderaj U. Unconventional Pathways in Nitrogen-Centered S N2 Reactions: From Roundabout to Hydride Transfer. J Phys Chem A 2025; 129:1293-1300. [PMID: 39561988 DOI: 10.1021/acs.jpca.4c06805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
The mechanisms and dynamics of bimolecular nucleophilic substitution (SN2) reactions are complex and influenced by the nature of the central atom. In this study, we explore SN2 at a nitrogen center (SN2@N) by investigating the reaction of chloramine (NH2Cl) with methoxide ion (CH3O-) using ab initio classical trajectory simulations at the MP2(fc)/aug-cc-pVDZ level of theory. We observe that, in addition to the expected SN2 product formation (CH3ONH2 + Cl-), a high-energy proton-transfer pathway leading to CH3OH and NHCl- dominates, with near-quantitative agreement between simulations and experimental data. Notably, we identify a novel hydride-transfer pathway yielding NH3, H2CO, and Cl-, revealing alternative reactivity channels previously uncharacterized in nitrogen-centered SN2 reactions. Mechanistic analysis uncovers unconventional roaming-mediated and roundabout pathways alongside the traditional direct rebound and indirect mechanisms. Additionally, an umbrella inversion of the NH2 group resulting in retention of configuration in the CH3ONH2 product was observed in a fraction of trajectories.
Collapse
Affiliation(s)
- Siddharth Sankar Dutta
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| | - Upakarasamy Lourderaj
- School of Chemical Sciences, National Institute of Science Education and Research (NISER) Bhubaneswar, An OCC of Homi Bhabha National Institute, P.O. Jatni, Khurda, Odisha 752050, India
| |
Collapse
|
11
|
Ku YS, Tsai PY. Photodissociation Dynamics of Formic Acid at 230 nm: A Computational Study of the CO and CO 2 Forming Channels. J Phys Chem A 2025; 129:1068-1084. [PMID: 39817807 PMCID: PMC11789143 DOI: 10.1021/acs.jpca.4c07933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025]
Abstract
Recent photolysis experiments with formic acid suggest that the roaming mechanism is a significant CO-forming pathway at a photolysis energy of 230 nm. While previous computational studies have identified multiple dissociation pathways for CO-forming channels, the dynamic features of these pathways remain poorly understood. This study investigates the dissociation dynamics of the CO + H2O and CO2 + H2 channels in the ground state (S0) of formic acid using direct dynamics simulation and the generalized multi-center impulsive model (GMCIM) at 230 nm. Computational results summarize the characteristics of the product states from six different dissociation pathways, including two roaming pathways. A comparison of the simulated speed distribution of CO products with experimental observations shows that high-rotational CO products predominantly originate from the three-center dissociation pathway. Furthermore, while experimental results reveal a bimodal speed distribution of CO at low rotational states, our findings suggest that the OH roaming pathway contributes to the fast component of this distribution, rather than the slow component. Furthermore, another isomerization-mediated four-center pathway contributes negligibly to the experimental results. The agreement between computational results and experimental observations at 230 nm supports the previously proposed dissociation mechanism of the CO + H2O channel. For the CO2 + H2 channel, this study provides useful information for experimental identification of dissociation pathways in the future.
Collapse
Affiliation(s)
- Yi-Sin Ku
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Po-Yu Tsai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
12
|
Ngai A, Hartweg S, Asmussen JD, Bastian B, Bonanomi M, Callegari C, Danailov M, di Fraia M, Feifel R, Ganeshamandiram SD, Krishnan S, LaForge A, Landmesser F, Ltaief LB, Michelbach M, Pal N, Plekan O, Rendler N, Raimondi L, Richter F, Scognamiglio A, Sixt T, Squibb RJ, Dulitz K, Stienkemeier F, Mudrich M. [Formula: see text]-roaming dynamics in the formation of [Formula: see text] following two-photon double ionization of ethanol and aminoethanol. Sci Rep 2025; 15:3201. [PMID: 39863631 PMCID: PMC11762715 DOI: 10.1038/s41598-024-84531-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Roaming reactions involving a neutral fragment of a molecule that transiently wanders around another fragment before forming a new bond are intriguing and peculiar pathways for molecular rearrangement. Such reactions can occur for example upon double ionization of small organic molecules, and have recently sparked much scientific interest. We have studied the dynamics of the [Formula: see text]-roaming reaction leading to the formation of [Formula: see text] after two-photon double ionization of ethanol and 2-aminoethanol, using an XUV-UV pump-probe scheme. For ethanol, we find dynamics similar to previous studies employing different pump-probe schemes, indicating the independence of the observed dynamics from the method of ionization and the photon energy of the disruptive probe pulse. Surprisingly, we do not observe a kinetic isotope effect in ethanol-[Formula: see text], in contrast to previous experiments on methanol where such an effect was observed. This distinction indicates fundamental differences in the energetics of the reaction pathways as compared to the methanol molecule. The larger number of possible roaming pathways compared to methanol complicates the analysis considerably. In contrast to previous studies, we additionally analyze a broad range of dissociative ionization products, which feature distinct dynamics from that of [Formula: see text] and allow initial insight into the action of the disruptive UV-probe pulse.
Collapse
Affiliation(s)
- Aaron Ngai
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | | | - Jakob D Asmussen
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Björn Bastian
- Wilhelm-Ostwald-Institut für Physikalische und Theoretische Chemie, Universität Leipzig, Leipzig, Germany
| | - Matteo Bonanomi
- Dipartimento di Fisica, Politecnico, Milano, Italy
- Istituto di Fotonica e Nanotecnologie (CNR-IFN), Milano, Italy
| | - Carlo Callegari
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Miltcho Danailov
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Michele di Fraia
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Raimund Feifel
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | | | - Sivarama Krishnan
- Department of Physics, Indian Institute of Technology Madras, Chennai, India
| | - Aaron LaForge
- Department of Physics, University of Connecticut, Storrs, Connecticut, US
| | | | - Ltaief Ben Ltaief
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | | | - Nitish Pal
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Oksana Plekan
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Nicolas Rendler
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Lorenzo Raimondi
- Elettra - Sincrotrone Trieste S.C.p.A., Basovizza, Trieste, Italy
| | - Fabian Richter
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | | | - Tobias Sixt
- Institute of Physics, University of Freiburg, Freiburg, Germany
| | - Richard J Squibb
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Katrin Dulitz
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, 6020, Innsbruck, Austria
| | | | - Marcel Mudrich
- Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Su D, Wang Y, Sheng H, Yang Q, Pan D, Liu H, Zhang Q, Dai S, Tian Z, Lu Z, Chen L. Efficient amine-assisted CO 2 hydrogenation to methanol co-catalyzed by metallic and oxidized sites within ruthenium clusters. Nat Commun 2025; 16:590. [PMID: 39799180 PMCID: PMC11724949 DOI: 10.1038/s41467-025-55837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/26/2024] [Indexed: 01/15/2025] Open
Abstract
Amine-assisted two-step CO2 hydrogenation is an efficient route for methanol production. To maximize the overall catalytic performance, both the N-formylation of amine with CO2 (i.e., first step) and the subsequent amide hydrogenation (i.e., second step) are required to be optimized. Herein, a class of Al2O3-supported Ru catalysts, featuring multiple activated Ru species (i.e., metallic and oxidized Ru), are rationally fabricated. Density functional theory calculations suggest that metallic Ru forms are preferred for N-formylation step, whereas oxidized Ru species demonstrate enhanced amide hydrogenation activity. Thus, the optimal catalyst, containing unique Ru clusters with coexisting metallic and oxidized Ru species, efficiently synergize the conversion of CO2 into methanol with exceptional selectivity (>95%) in a one-pot two-step process. This work not only presents an advanced catalyst for CO2-based methanol production but also highlights the strategic design of catalysts with multiple active species for optimizing the catalytic performances of multistep reactions in the future.
Collapse
Affiliation(s)
- Desheng Su
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
| | - Yinming Wang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Haoyun Sheng
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, PR China
| | - Qihao Yang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Dianhui Pan
- Ningbo Hesheng New Materials Co., Ltd, Ningbo, Zhejiang, PR China
| | - Hao Liu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Qiuju Zhang
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China
- University of Chinese Academy of Sciences, Beijing, PR China
| | - Sheng Dai
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, PR China
| | - Ziqi Tian
- University of Chinese Academy of Sciences, Beijing, PR China.
- Advanced Interdisciplinary Science Research Center, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
| | - Zhiyi Lu
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| | - Liang Chen
- Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, PR China.
- University of Chinese Academy of Sciences, Beijing, PR China.
| |
Collapse
|
14
|
Baraban JH, Field RW. Double resonance spectroscopy reveals structure and dynamics near transition states. Nat Commun 2025; 16:76. [PMID: 39753554 PMCID: PMC11698887 DOI: 10.1038/s41467-024-55253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 11/28/2024] [Indexed: 01/06/2025] Open
Affiliation(s)
- Joshua H Baraban
- Department of Chemistry, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| | - Robert W Field
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Bhattacharyya S, Wang E, Borne K, Chen K, Venkatachalam AS, Lam HVS, Ziaee F, Pathak S, Khmelnitskiy A, Carnes KD, Fehrenbach CW, Ben-Itzhak I, Rudenko A, Rolles D. Delayed Dissociation and Transient Isomerization during the Ultrafast Photodissociation of the Tribromomethane Cation. J Phys Chem Lett 2024; 15:12188-12196. [PMID: 39622006 DOI: 10.1021/acs.jpclett.4c02838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
We present a time-resolved measurement of the photodissociation and photoisomerization dynamics of bromoform (CHBr3) in the mono- and di-cationic states produced by near-infrared (NIR) strong-field ionization. The dissociation process is probed by NIR-induced Coulomb explosion imaging. We find that for dissociation channels involving production of HBr and Br2 fragments, which require the formation of new bonds, the dissociation appears to be delayed with respect to the primary C-Br bond dissociation channel. Ab initio molecular dynamics simulations support the observed delay. Moreover, the simulations suggest that reaction pathways involving transient isomerization via H- and Br-migration in the CHBr3 monocation are responsible for the formation of the HBr and Br2 fragments.
Collapse
Affiliation(s)
- Surjendu Bhattacharyya
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Enliang Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kurtis Borne
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Keyu Chen
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anbu Selvam Venkatachalam
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Huynh Van Sa Lam
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Shashank Pathak
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Anton Khmelnitskiy
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Kevin D Carnes
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Charles W Fehrenbach
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Itzik Ben-Itzhak
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
16
|
Suits AG, Osborn DL. Twenty Years of Roaming Reactions. J Phys Chem A 2024; 128:10319-10321. [PMID: 39632714 DOI: 10.1021/acs.jpca.4c07149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Affiliation(s)
- Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - David L Osborn
- Combustion Research Facility, Sandia National Laboratories, Livermore, California 94550, United States
- Department of Chemical Engineering, University of California, Davis, California 95616, United States
| |
Collapse
|
17
|
Sharma P, Chowdhury PR, Jain A, Patwari GN. Machine Learned Potential Enables Molecular Dynamics Simulation to Predict the Experimental Branching Ratios in the NO Release Channel of Nitroaromatic Compounds. J Phys Chem A 2024; 128:10137-10142. [PMID: 39550764 DOI: 10.1021/acs.jpca.4c04703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
This study employs a machine learning (ML) model using the Gaussian process regression algorithm to generate potential energy surfaces (PES) from density functional theory calculations, facilitating the investigation of photodissociation dynamics of nitroaromatic compounds, resulting in NO release. The experimentally observed trends in the slow-to-fast branching ratios of the NO moiety were captured by estimating the branching ratio between the two distinct reaction pathways, viz., roaming and oxaziridine mechanisms, calculated from molecular dynamics simulations performed on a reduced two-dimensional T1 surface. The qualitative agreement between the calculated and experimental results suggests that the mechanism dictating NO release is primarily governed by the dynamics on the T1 surface.
Collapse
Affiliation(s)
- Pooja Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Prahlad Roy Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Amber Jain
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| | - G Naresh Patwari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
18
|
Hoffmann L, Toulson BW, Yang J, Saladrigas CA, Zong A, Muvva SB, Figueira Nunes JP, Reid AH, Attar AR, Luo D, Ji F, Lin MF, Fan Q, Weathersby SP, Shen X, Wang X, Wolf TJA, Neumark DM, Leone SR, Zuerch MW, Centurion M, Gessner O. UV-Induced Reaction Pathways in Bromoform Probed with Ultrafast Electron Diffraction. J Am Chem Soc 2024. [PMID: 39374484 DOI: 10.1021/jacs.4c07165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
For many chemical reactions, it remains notoriously difficult to predict and experimentally determine the rates and branching ratios between different reaction channels. This is particularly the case for reactions involving short-lived intermediates, whose observation requires ultrafast methods. The UV photochemistry of bromoform (CHBr3) is among the most intensely studied photoreactions. Yet, a detailed understanding of the chemical pathways leading to the production of atomic Br and molecular Br2 fragments has proven challenging. In particular, the role of isomerization and/or roaming and their competition with direct C-Br bond scission has been a matter of continued debate. Here, gas-phase ultrafast megaelectronvolt electron diffraction (MeV-UED) is used to directly study structural dynamics in bromoform after single 267 nm photon excitation with femtosecond temporal resolution. The results show unambiguously that isomerization contributes significantly to the early stages of the UV photochemistry of bromoform. In addition to direct C-Br bond breaking within <200 fs, formation of iso-CHBr3 (Br-CH-Br-Br) is observed on the same time scale and with an isomer lifetime of >1.1 ps. The branching ratio between direct dissociation and isomerization is determined to be 0.4 ± 0.2:0.6 ± 0.2, i.e., approximately 60% of molecules undergo isomerization within the first few hundred femtoseconds after UV excitation. The structure and time of formation of iso-CHBr3 compare favorably with the results of an ab initio molecular dynamics simulation. The lifetime and interatomic distances of the isomer are consistent with the involvement of a roaming reaction mechanism.
Collapse
Affiliation(s)
- Lars Hoffmann
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Benjamin W Toulson
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Jie Yang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Catherine A Saladrigas
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alfred Zong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Sri Bhavya Muvva
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Joao Pedro Figueira Nunes
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Alexander H Reid
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Andrew R Attar
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Duan Luo
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Fuhao Ji
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Ming-Fu Lin
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Qingyuan Fan
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Stephen P Weathersby
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xiaozhe Shen
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Xijie Wang
- SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Thomas J A Wolf
- Stanford PULSE Institute, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel M Neumark
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Stephen R Leone
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Physics, University of California, Berkeley, California 94720, United States
| | - Michael W Zuerch
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Martin Centurion
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Oliver Gessner
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
19
|
Houston PL, Qu C, Fu B, Bowman JM. Calculations of Dissociation Dynamics of CH 3OH on a Global Potential Energy Surface Reveal the Mechanism for the Formation of HCOH; Roaming Plays a Role. J Phys Chem Lett 2024; 15:9994-10000. [PMID: 39316630 DOI: 10.1021/acs.jpclett.4c02483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The experimental observation of hydroxymethylene, HCOH, following excitation of methanol at 193 nm, was reported recently (Hockey, E. K.; McLane, N.; Martí, C.; Duckett, L.; Osborn, D. L.; Dodson, L. G. Direct Observation of Gas-Phase Hydroxymethylene: Photoionization and Kinetics Resulting from Methanol Photodissociation. J. Am. Chem. Soc. 2024, 146, 14416-14421, 10.1021/jacs.4c03090). This stimulated us to investigate a dynamic mechanism for its formation using a global potential energy surface for the ground electronic state (S0) of methanol. We show via quasi-classical trajectory calculations that hydroxymethylene is indeed formed under the reasonable assumption that the initially excited state undergoes rapid internal conversion to S0. From the trajectories, fractional yields of the six major product channels are determined as a function of excitation energy, and the rate of production of each is determined from the fractions and rate of methanol disappearance. Roaming is observed in trajectories leading to the OH and CH3 products as well as in those leading to CH2OH + H and non-reactive trajectories. A "frustrated" roaming accounts for roughly 20% of the HCOH production.
Collapse
Affiliation(s)
- Paul L Houston
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
- Department of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chen Qu
- Independent Researcher, Toronto, Ontario M9B 0E3, Canada
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, People's Republic of China
| | - Joel M Bowman
- Department of Chemistry and Cherry L. Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
20
|
Guo W, Kong WY, Tantillo DJ. Revisiting a classic carbocation - DFT, coupled-cluster, and ab initio molecular dynamics computations on barbaralyl cation formation and rearrangements. Chem Sci 2024; 15:d4sc04829f. [PMID: 39268206 PMCID: PMC11385376 DOI: 10.1039/d4sc04829f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Density functional theory computations were used to model the formation and rearrangement of the barbaralyl cation (C9H+ 9). Two highly delocalized minima were located for C9H+ 9, one of C s symmetry and the other of D 3h symmetry, with the former having lower energy. Quantum chemistry-based NMR predictions affirm that the lower energy structure is the best match with experimental spectra. Partial scrambling was found to proceed through a C 2 symmetric transition structure associated with a barrier of only 2.3 kcal mol-1. The full scrambling was found to involve a C 2v symmetric transition structure associated with a 5.0 kcal mol-1 barrier. Ab initio molecular dynamics simulations initiated from the D 3h C9H+ 9 structure revealed its connection to six minima, due to the six-fold symmetry of the potential energy surface. The effects of tunneling and boron substitution on this complex reaction network were also examined.
Collapse
Affiliation(s)
- Wentao Guo
- Department of Chemistry, Univeristy of California Davis USA
| | - Wang-Yeuk Kong
- Department of Chemistry, Univeristy of California Davis USA
| | | |
Collapse
|
21
|
Curchod BFE, Orr-Ewing AJ. Perspective on Theoretical and Experimental Advances in Atmospheric Photochemistry. J Phys Chem A 2024; 128:6613-6635. [PMID: 39021090 PMCID: PMC11331530 DOI: 10.1021/acs.jpca.4c03481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/20/2024]
Abstract
Research that explores the chemistry of Earth's atmosphere is central to the current understanding of global challenges such as climate change, stratospheric ozone depletion, and poor air quality in urban areas. This research is a synergistic combination of three established domains: earth observation, for example, using satellites, and in situ field measurements; computer modeling of the atmosphere and its chemistry; and laboratory measurements of the properties and reactivity of gas-phase molecules and aerosol particles. The complexity of the interconnected chemical and photochemical reactions which determine the composition of the atmosphere challenges the capacity of laboratory studies to provide the spectroscopic, photochemical, and kinetic data required for computer models. Here, we consider whether predictions from computational chemistry using modern electronic structure theory and nonadiabatic dynamics simulations are becoming sufficiently accurate to supplement quantitative laboratory data for wavelength-dependent absorption cross-sections, photochemical quantum yields, and reaction rate coefficients. Drawing on presentations and discussions from the CECAM workshop on Theoretical and Experimental Advances in Atmospheric Photochemistry held in March 2024, we describe key concepts in the theory of photochemistry, survey the state-of-the-art in computational photochemistry methods, and compare their capabilities with modern experimental laboratory techniques. From such considerations, we offer a perspective on the scope of computational (photo)chemistry methods based on rigorous electronic structure theory to become a fourth core domain of research in atmospheric chemistry.
Collapse
|
22
|
Kharazmi A, Harrison AW, Shaw MF, Jordan MJT, Kable SH. The Effect of β-Hydrogens on the Tropospheric Photochemistry of Aldehydes: Norrish Type 1, Triple Fragmentation, and Methylketene Formation from Propanal. J Am Chem Soc 2024; 146:21308-21319. [PMID: 39073403 DOI: 10.1021/jacs.4c00877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Wavelength and pressure dependent quantum yields (ϕ, QYs) of propanal photolysis have been measured for photolysis wavelengths, λ = 300-330 nm, and buffer gases of 3-10 Torr propanal and 0-757 Torr N2. Following laser photolysis, three photochemical pathways were established, using Fourier transform infrared spectroscopy of the stable end-products. Photolysis is dominated by the Norrish Type 1 reaction, which has been reported previously, but with inconsistent quantum yields. The propanal α-hydrogen leads to a 4-center elimination of H2, as observed in CH3CHO, here leading to methylketene. The presence of hydrogen attached to the β-carbon allows a new photochemical pathway: concerted triple fragmentation into CO + H2 + C2H4 via a 5-center transition state. Neither of these channels has been reported previously. No evidence for the previously reported C2H6 + CO, C2H4 + H2CO or CH3 + CH2CHO channels, nor for phototautomerization to 1-propenol (CH3CH═CHOH) was found. Modeling of the wavelength, pressure and collision partner dependence of the QYs allows us to reconcile the previous NT1a results and make recommendations for the quantum yields of all three channels under tropospheric conditions. The general impact of β-hydrogen atoms in the photochemistry of aldehydes is to open up new pathways from cyclic transition states and to reduce the importance of other photolysis or isomerization channels.
Collapse
Affiliation(s)
- Alireza Kharazmi
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Aaron W Harrison
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Miranda F Shaw
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Meredith J T Jordan
- School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Scott H Kable
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| |
Collapse
|
23
|
Mishra D, LaForge AC, Gorman LM, Díaz-Tendero S, Martín F, Berrah N. Direct tracking of H 2 roaming reaction in real time. Nat Commun 2024; 15:6656. [PMID: 39107291 PMCID: PMC11303762 DOI: 10.1038/s41467-024-49671-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 06/14/2024] [Indexed: 08/10/2024] Open
Abstract
Roaming is an unconventional type of molecular reaction where fragments, instead of immediately dissociating, remain weakly bound due to long-range Coulombic interactions. Due to its prevalence and ability to form new molecular compounds, roaming is fundamental to photochemical reactions in small molecules. However, the neutral character of the roaming fragment and its indeterminate trajectory make it difficult to identify experimentally. Here, we introduce an approach to image roaming, utilizing intense, femtosecond IR radiation combined with Coulomb explosion imaging to directly reconstruct the momentum vector of the neutral roaming H2, a precursor toH 3 + formation, in acetonitrile, CH3CN. This technique provides a kinematically complete picture of the underlying molecular dynamics and yields an unambiguous experimental signature of roaming. We corroborate these findings with quantum chemistry calculations, resolving this unique dissociative process.
Collapse
Affiliation(s)
| | - Aaron C LaForge
- Department of Physics, University of Connecticut, Storrs, CT, 06269, USA.
| | - Lauren M Gorman
- Department of Physics, University of Connecticut, Storrs, CT, 06269, USA
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049, Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049, Madrid, Spain
| | - Nora Berrah
- Department of Physics, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|
24
|
Thawoos S, Hall GE, Suas-David N, Suits AG. Contrast and Complexity in the Low-Temperature Kinetics of CN( v = 1) with O 2 and NO: Simultaneous Kinetics and Ringdown in a Uniform Supersonic Flow. J Phys Chem A 2024; 128:5906-5924. [PMID: 38990162 DOI: 10.1021/acs.jpca.4c02737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Bimolecular rate coefficients were determined for the reaction CN(v = 1) + NO and O2 using continuous wave cavity ringdown spectroscopy in a uniform supersonic flow (UF-CRDS). The well-matched time scales for ringdown and reaction under pseudo-first-order conditions allow for the use of the SKaR method (simultaneous kinetics and ringdown) in which the full kinetic trace is obtained on each ringdown. The reactions offer an interesting contrast in that the CN(v = 1) + NO system is nonreactive and proceeds by complex-mediated vibrational relaxation, while the CN(v = 1) + O2 reaction is primarily reactive. The measured rate coefficients at 70 K are (2.49 ± 0.08) × 10-11 and (10.49 ± 0.22) × 10-11 cm3 molecule-1 s-1 for the reaction with O2 and NO, respectively. The rate for reaction with O2 is a factor 2 lower than previously reported for v = 0 in the same temperature range, a surprising result, while that for NO is consistent with extrapolation of previous high-temperature measurements to 70 K. The latter is also discussed in light of theoretical calculations and measurements of the rate constants for the association reaction in the high-pressure limit. The measurements are complicated by the presence of a metastable population of high-J CN formed by photolysis of the precursor BrCN, and a kinetic model is developed to treat the competing relaxation and reaction. It is particularly problematic for reactions at low temperatures where the rotational relaxation and reaction have similar rates, precluding a reliable determination of the rate coefficients at 30 K. Also presented are important modifications to the data acquisition and control for the instrument that have yielded considerably enhanced stability and throughput.
Collapse
Affiliation(s)
- Shameemah Thawoos
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gregory E Hall
- Chemistry Division, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Nicolas Suas-David
- Univ Rennes, CNRS, Institut de Physique de Rennes─UMR 6251, F-35000 Rennes, France
| | - Arthur G Suits
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
25
|
Krajňák V, Wiggins S. Roaming in acetaldehyde. J Chem Phys 2024; 160:244104. [PMID: 38912673 DOI: 10.1063/5.0212443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
We investigate roaming in the photodissociation of acetaldehyde (CH3CHO), providing insights into the contrasting roaming dynamics observed for this molecule compared to formaldehyde. We carry out trajectory studies for full-dimensional acetaldehyde, supplemented with an analysis of a two-degree-of-freedom restricted model and obtain evidence for two distinct roaming pathways. Trajectories exhibit roaming at both shorter (9-11.5 au) and larger (14.5-22.9 au) maximum CH3-HCO separations, characterized by differing amounts of HCO rotation. No roaming trajectories were found in the intervening gap region. The roaming dynamics near 14.5-22.9 au are well-reproduced by the restricted model and involve passage through a centrifugal barrier, analogous to formaldehyde roaming. However, the shorter-range 9-11.5 au roaming appears unique to acetaldehyde and is likely facilitated by repulsive interactions absent in the simplified models. Phase space analysis reveals that this additional roaming pathway is inaccessible in the reduced dimensionality system. The findings suggest that acetaldehyde's increased propensity for roaming compared to formaldehyde may arise from the presence of multiple distinct roaming mechanisms rather than solely the higher roaming fragment mass.
Collapse
Affiliation(s)
- Vladimír Krajňák
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, United Kingdom
| | - Stephen Wiggins
- School of Mathematics, University of Bristol, Fry Building, Woodland Road, Bristol BS8 1UG, United Kingdom
- Department of Mathematics, United States Naval Academy, Chauvenet Hall, 572C Holloway Road, Annapolis, Maryland 21402-5002, USA
| |
Collapse
|
26
|
Sabour B, Wagner RJV, Krüger BC, Kandratsenka A, Wodtke AM, Schäfer T, Park GB. Vibrationally Mode-Specific Molecular Energy Transfer to Surface Electrons in Metastable Formaldehyde Scattering from Cesium-Covered Au(111). J Phys Chem A 2024; 128:4976-4983. [PMID: 38850250 PMCID: PMC11215783 DOI: 10.1021/acs.jpca.4c02184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/10/2024]
Abstract
Nonadiabatic interaction of adsorbate nuclear motion with the continuum of electronic states is known to affect the dynamics of chemical reactions at metal surfaces. A large body of work has probed the fundamental mechanisms of such interactions for atomic and diatomic molecules at surfaces. In polyatomic molecules, the possibility of mode-specific damping of vibrational motion due to the effects of electronic friction raises the question of whether such interactions could profoundly affect the outcome of chemistry at surfaces by selectively removing energy from a particular intramolecular adsorbate mode. However, to date, there have not been any fundamental experiments demonstrating nonadiabatic electron-vibration coupling in a polyatomic molecule at a surface. In this work, we scatter excited metastable formaldehyde and formaldehyde-d2 from a low work function surface and detect ejected exoelectrons that accompany molecular relaxation. The exoelectron ejection efficiency exhibits a strong dependence on the vibrational mode that is excited: out-of-plane bending excitation (ν4) leads to significantly more exoelectrons than does CO stretching excitation (ν2). The results provide clear evidence for mode-specific energy transfer from vibration to surface electrons.
Collapse
Affiliation(s)
- Behrouz Sabour
- Department
of Chemistry and Biochemistry, Texas Tech
University, Box 41061 Lubbock, Texas 79409-1061, United States
| | - Roman J. V. Wagner
- Max-Planck-Institut
für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, Institut für physikalische Chemie, Tammanstr. 6, Göttingen 37077, Germany
| | - Bastian C. Krüger
- Max-Planck-Institut
für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, Institut für physikalische Chemie, Tammanstr. 6, Göttingen 37077, Germany
| | - Alexander Kandratsenka
- Max-Planck-Institut
für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, Institut für physikalische Chemie, Tammanstr. 6, Göttingen 37077, Germany
| | - Alec M. Wodtke
- Max-Planck-Institut
für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, Institut für physikalische Chemie, Tammanstr. 6, Göttingen 37077, Germany
- International
Center for Advanced Studies of Energy Conversion, University of Göttingen, Göttingen 37077, Germany
| | - Tim Schäfer
- Max-Planck-Institut
für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, Göttingen 37077, Germany
- Georg-August-Universität
Göttingen, Institut für physikalische Chemie, Tammanstr. 6, Göttingen 37077, Germany
| | - G. Barratt Park
- Department
of Chemistry and Biochemistry, Texas Tech
University, Box 41061 Lubbock, Texas 79409-1061, United States
- Max-Planck-Institut
für Multidisziplinäre Naturwissenschaften, Am Faßberg 11, Göttingen 37077, Germany
| |
Collapse
|
27
|
Jaddi A, Marakchi K, Zanchet A, García-Vela A. A high-level ab initio study of the photodissociation of acetaldehyde. J Chem Phys 2024; 160:224309. [PMID: 38874103 DOI: 10.1063/5.0207362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/23/2024] [Indexed: 06/15/2024] Open
Abstract
Acetaldehyde is a very relevant atmospheric species whose photodissociation has been extensively studied in the first absorption band both experimentally and theoretically. Very few works have been reported on acetaldehyde photodissociation at higher excitation energies. In this work, the photodissociation dynamics of acetaldehyde is investigated by means of high-level multireference configuration interaction ab initio calculations. Five different fragmentation pathways of acetaldehyde are explored by calculating the potential-energy curves of the ground and several excited electronic states along the corresponding dissociating bond distances. The excitation energy range covered in the study is up to 10 eV, nearly the ionization energy of acetaldehyde. We intend to rationalize the available experimental results and, in particular, to elucidate why some of the studied fragmentation pathways are experimentally observed in the different excitation energy regions and some others are not. Based on the shape of the calculated potential curves, we are able to explain the main findings of the available experiments, also suggesting possible dynamical dissociation mechanisms in the different energy regions. Thus, the reported potential curves are envisioned as a useful tool to interpret the currently available experiments as well as future ones on acetaldehyde photodissociation at excitation wavelengths in the range studied here.
Collapse
Affiliation(s)
- A Jaddi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | - K Marakchi
- Laboratory of Spectroscopy, Molecular Modeling, Materials, Nanomaterials, Water and Environment, LS3MN2E/CERNE2D, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - A Zanchet
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| | - A García-Vela
- Instituto de Física Fundamental, Consejo Superior de Investigaciones Científicas, Serrano 123, 28006 Madrid, Spain
| |
Collapse
|
28
|
Zhang D. Photochemistry of Photoinduced-Reaction Generated Bubbles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10085-10097. [PMID: 38695766 DOI: 10.1021/acs.langmuir.4c00254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
UV light can create and grow bubbles (herein referred to as PIRGBs for photoinduced-reaction generated bubbles) at liquid/solid interfaces through photoinduced reactions that produce gases. Unlike the simple experience of blowing water bubbles through a straw, in which the bubbles quickly move away from their nucleation sites, not only can a deep UV laser beam create PIRGBs in liquid acetone, but also can hold and grow them. Free bubbles could be attracted to the excitation region from millimeters away, indicating that the reactions cause radial inward flow on the liquid surface. The radial flow can be due to imbalanced surface tensions at the interfaces. Raman measurements reveal that the gases in the PIRGBs include C2H6, CO, and H2, and in liquid acetone, sp2-carbon species are detected upon the UV excitation. Time series Raman measurement discloses a photocarbonization process in which small acyclic carbon species gradually form small clusters with carbon rings and eventually produce a large piece of amorphous carbon at the top of a PIRGB in pure liquid acetone. The photocarbonization may open new avenues for development of carbonaceous materials. Using PIRGB, miniature or microscale gas production reactors can be developed for producing gases.
Collapse
Affiliation(s)
- Dianwen Zhang
- Microscopy Suite, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
29
|
Abma G, Parkes MA, Razmus WO, Zhang Y, Wyatt AS, Springate E, Chapman RT, Horke DA, Minns RS. Direct Observation of a Roaming Intermediate and Its Dynamics. J Am Chem Soc 2024; 146:12595-12600. [PMID: 38682306 PMCID: PMC11082896 DOI: 10.1021/jacs.4c01543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 05/01/2024]
Abstract
Chemical reactions are often characterized by their transition state, which defines the critical geometry the molecule must pass through to move from reactants to products. Roaming provides an alternative picture, where in a dissociation reaction, the bond breaking is frustrated and a loosely bound intermediate is formed. Following bond breaking, the two partners are seen to roam around each other at distances of several Ångstroms, forming a loosely bound, and structurally ill-defined, intermediate that can subsequently lead to reactive or unreactive collisions. Here, we present a direct and time-resolved experimental measurement of roaming. By measuring the photoelectron spectrum of UV-excited acetaldehyde with a femtosecond extreme ultraviolet pulse, we captured spectral signatures of all of the key reactive structures, including that of the roaming intermediate. This provided a direct experimental measurement of the roaming process and allowed us to identify the time scales by which the roaming intermediate is formed and removed and the electronic potential surfaces upon which roaming proceeds.
Collapse
Affiliation(s)
- Grite
L. Abma
- Institute
for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Michael A. Parkes
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, U.K.
| | - Weronika O. Razmus
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| | - Yu Zhang
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Adam S. Wyatt
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Emma Springate
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Richard T. Chapman
- Central
Laser Facility, STFC Rutherford Appleton
Laboratory, Didcot, Oxfordshire OX11 0QX, U.K.
| | - Daniel A. Horke
- Institute
for Molecules and Materials, Radboud University, Heijendaalseweg 135, Nijmegen 6525 AJ, The Netherlands
| | - Russell S. Minns
- School
of Chemistry, University of Southampton, Highfield, Southampton SO17 1BJ, U.K.
| |
Collapse
|
30
|
Li Z, Fu YL, Luo Z, Yang S, Wu Y, Wu H, Wu G, Zhang W, Fu B, Yuan K, Zhang D, Yang X. Roaming in highly excited states: The central atom elimination of triatomic molecule decomposition. Science 2024; 383:746-750. [PMID: 38359138 DOI: 10.1126/science.adn3357] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024]
Abstract
Chemical reactions are generally assumed to proceed from reactants to products along the minimum energy path (MEP). However, straying from the MEP-roaming-has been recognized as an unconventional reaction mechanism and found to occur in both the ground and first excited states. Its existence in highly excited states is however not yet established. We report a dissociation channel to produce electronically excited fragments, S(1D)+O2(a1Δg), from SO2 photodissociation in highly excited states. The results revealed two dissociation pathways: One proceeds through the MEP to produce vibrationally colder O2(a1Δg) and the other yields vibrationally hotter O2(a1Δg) by means of a roaming pathway involving an intramolecular O abstraction during reorientation motion. Such roaming dynamics may well be the rule rather than the exception for molecular photodissociation through highly excited states.
Collapse
Affiliation(s)
- Zhenxing Li
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yan-Lin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zijie Luo
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Marine Engineering College, Dalian Maritime University, Liaoning 116026, P. R. China
| | - Shuaikang Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yucheng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Weiqing Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Donghui Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
- Department of Chemistry and Center for Advanced Light Source Research, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
31
|
Kokoouline V, Alijah A, Tyuterev V. Lifetimes and decay mechanisms of isotopically substituted ozone above the dissociation threshold: matching quantum and classical dynamics. Phys Chem Chem Phys 2024; 26:4614-4628. [PMID: 38251711 DOI: 10.1039/d3cp04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Energies and lifetimes of vibrational resonances were computed for 18O-enriched isotopologue 50O3 = {16O16O18O and 16O18O16O} of the ozone molecule using hyperspherical coordinates and the method of complex absorbing potential. Various types of scattering resonances were identified, including roaming OO-O rotational states, the series corresponding to continuation of bound vibrational resonances of highly excited bending or symmetric stretching vibrational modes. Such a series become metastable above the dissociation limit. The coupling between the vibrationally excited O2 fragment and rotational roaming gives rise to Feshbach type resonances in ozone. Different paths for the formation and decay of symmetric 16O18O16O and asymmetric species 16O16O18O were also identified. The symmetry properties of the total rovibronic wave functions of the 18O-enriched isotopologues are discussed in the context of allowed dissociation channels.
Collapse
Affiliation(s)
| | - Alexander Alijah
- Groupe de Spectrometrie Moléculaire et Atmospherique, UMR CNRS 7331, University of Reims Champagne-Ardenne, Reims Cedex 2, F-51687, France
| | - Vladimir Tyuterev
- Laboratory of Molecular Quantum Mechanics and Radiative transfer, Tomsk State University, Tomsk, Russia
- Laboratory of Theoretical Spectroscopy, V.E. Zuev Institute of Atmospheric Optics, Russian Academy of Sciences, Tomsk, 634055, Russia
| |
Collapse
|
32
|
Pu M, Nielsen CDT, Senol E, Sperger T, Schoenebeck F. Post-Transition-State Dynamic Effects in the Transmetalation of Pd(II)-F to Pd(II)-CF 3. JACS AU 2024; 4:263-275. [PMID: 38274253 PMCID: PMC10806791 DOI: 10.1021/jacsau.3c00724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/27/2024]
Abstract
The observation of post-transition-state dynamic effects in the context of metal-based transformation is rare. To date, there has been no reported case of a dynamic effect for the widely employed class of palladium-mediated coupling reactions. We performed an experimental and computational study of the trifluoromethylation of Pd(II)F, which is a key step in the Pd(0)/Pd(II)-catalyzed trifluoromethylation of aryl halides or acid fluorides. Our experiments show that the cis/trans speciation of the formed Pd(II)CF3 is highly solvent- and transmetalation reagent-dependent. We employed GFN2-xTB- and B3LYP-D3-based molecular dynamics trajectory calculations (with and without explicit solvation) along with high-level QM calculations and found that depending on the medium, different transmetalation mechanisms appear to be operative. A statistically representative number of Born-Oppenheimer molecular dynamics (MD) simulations suggest that in benzene, a difluorocarbene is generated in the transmetalation with R3SiCF3, which subsequently recombines with the Pd via two distinct pathways, leading to either the cis- or trans-Pd(II)CF3. Conversely, GFN2-xTB simulations in MeCN suggest that in polar/coordinating solvents an ion-pair mechanism is dominant. A CF3 anion is initially liberated and then rebinds with the Pd(II) cation to give a cis- or trans-Pd(II). In both scenarios, a single transmetalation transition state gives rise to both cis- and trans-species directly, owing to bifurcation after the transition state. The potential subsequent cis- to trans isomerization of the Pd(II)CF3 was also studied and found to be strongly inhibited by free phosphine, which in turn was experimentally identified to be liberated through displacement by a polar/coordinating solvent from the cis-Pd(II)CF3 complex. The simulations also revealed how the variation of the Pd-coordination sphere results in divergent product selectivities.
Collapse
Affiliation(s)
- Maoping Pu
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | | | - Erdem Senol
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Theresa Sperger
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Franziska Schoenebeck
- Institute of Organic Chemistry,
RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
33
|
Robinson MS, Küpper J. Unraveling the ultrafast dynamics of thermal-energy chemical reactions. Phys Chem Chem Phys 2024; 26:1587-1601. [PMID: 38131437 DOI: 10.1039/d3cp03954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
In this perspective, we discuss how one can initiate, image, and disentangle the ultrafast elementary steps of thermal-energy chemical dynamics, building upon advances in technology and scientific insight. We propose that combinations of ultrashort mid-infrared laser pulses, controlled molecular species in the gas phase, and forefront imaging techniques allow to unravel the elementary steps of general-chemistry reaction processes in real time. We detail, for prototypical first reaction systems, experimental methods enabling these investigations, how to sufficiently prepare and promote gas-phase samples to thermal-energy reactive states with contemporary ultrashort mid-infrared laser systems, and how to image the initiated ultrafast chemical dynamics. The results of such experiments will clearly further our understanding of general-chemistry reaction dynamics.
Collapse
Affiliation(s)
- Matthew S Robinson
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany.
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
34
|
Severt T, Weckwerth E, Kaderiya B, Feizollah P, Jochim B, Borne K, Ziaee F, P KR, Carnes KD, Dantus M, Rolles D, Rudenko A, Wells E, Ben-Itzhak I. Initial-site characterization of hydrogen migration following strong-field double-ionization of ethanol. Nat Commun 2024; 15:74. [PMID: 38168047 PMCID: PMC10761976 DOI: 10.1038/s41467-023-44311-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
An essential problem in photochemistry is understanding the coupling of electronic and nuclear dynamics in molecules, which manifests in processes such as hydrogen migration. Measurements of hydrogen migration in molecules that have more than two equivalent hydrogen sites, however, produce data that is difficult to compare with calculations because the initial hydrogen site is unknown. We demonstrate that coincidence ion-imaging measurements of a few deuterium-tagged isotopologues of ethanol can determine the contribution of each initial-site composition to hydrogen-rich fragments following strong-field double ionization. These site-specific probabilities produce benchmarks for calculations and answer outstanding questions about photofragmentation of ethanol dications; e.g., establishing that the central two hydrogen atoms are 15 times more likely to abstract the hydroxyl proton than a methyl-group proton to form H[Formula: see text] and that hydrogen scrambling, involving the exchange of hydrogen between different sites, is important in H2O+ formation. The technique extends to dynamic variables and could, in principle, be applied to larger non-cyclic hydrocarbons.
Collapse
Affiliation(s)
- Travis Severt
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Eleanor Weckwerth
- Department of Physics, Augustana University, Sioux Falls, SD, 57108, USA
| | - Balram Kaderiya
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Peyman Feizollah
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Bethany Jochim
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kurtis Borne
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Farzaneh Ziaee
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Kanaka Raju P
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
- School of Quantum Technology, DIAT (DU), Pune, Maharashtra, 411025, India
| | - Kevin D Carnes
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Marcos Dantus
- Department of Chemistry, Michigan State University, East Lansing, MI, 48824, USA
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA
| | - Eric Wells
- Department of Physics, Augustana University, Sioux Falls, SD, 57108, USA.
| | - Itzik Ben-Itzhak
- J. R. Macdonald Laboratory, Physics Department, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
35
|
Klippenstein SJ, Elliott SN. OH Roaming during the Ozonolysis of α-Pinene: A New Route to Highly Oxygenated Molecules? J Phys Chem A 2023; 127:10647-10662. [PMID: 38055299 DOI: 10.1021/acs.jpca.3c05179] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The formation of low-volatility organic compounds in the ozonolysis of α-pinene, the dominant atmospheric monoterpene, provides an important route to aerosol formation. In this work, we consider a previously unexplored set of pathways for the formation of highly oxygenated molecules in α-pinene ozonolysis. Pioneering, direct experimental observations of Lester and co-workers have demonstrated a significant production of hydroxycarbonyl products in the dissociation of Criegee intermediates. Theoretical analyses indicate that this production arises from OH roaming-induced pathways during the OO fission of the vinylhydroperoxides (VHPs), which in turn come from internal H transfers in the Criegee intermediates. Ab initio kinetics computations are used here to explore the OH roaming-induced channels that arise from the ozonolysis of α-pinene. For computational reasons, the calculations consider a surrogate for α-pinene, where two spectator methyl groups are replaced with H atoms. Multireference electronic structure calculations are used to illustrate a variety of energetically accessible OH roaming pathways for the four VHPs arising from the ozonolysis of this α-pinene surrogate. Ab initio transition-state theory-based master equation calculations indicate that for the dissociation of stabilized VHPs, these OH roaming pathways are kinetically significant with a branching that generally increases from ∼20% at room temperature up to ∼70% at lower temperatures representative of the troposphere. For one of the VHPs, this branching already exceeds 60% at room temperature. For the overall ozonolysis process, these branching ratios would be greatly reduced by a limited branching to the stabilized VHP, although there would also be some modest roaming fraction for the nonthermal VHP dissociation process. The strong exothermicities of the roaming-induced isomerizations/additions and abstractions suggest new routes to fission of the cyclobutane rings. Such ring fissions would facilitate further autoxidation reactions, thereby providing a new route for producing highly oxygenated nonvolatile precursors to aerosol formation.
Collapse
Affiliation(s)
- Stephen J Klippenstein
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Sarah N Elliott
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
36
|
Wu H, Fu Y, Fu B, Zhang DH. Roaming Dynamics in Hydroxymethyl Hydroperoxide Decomposition Revealed by the Full-Dimensional Potential Energy Surface of the CH 2OO + H 2O Reaction. J Phys Chem A 2023; 127:9098-9105. [PMID: 37870501 DOI: 10.1021/acs.jpca.3c05818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The CH2OO + H2O reaction is an important atmospheric process that leads to the formation of formic acid (HCOOH) and water via the intermediate hydroxymethyl hydroperoxide (HOCH2OOH, HMHP). We investigated the intricacies of this process by employing quasiclassical trajectory calculations on an accurate, full-dimensional ab initio potential energy surface (PES). In addition to the direct mechanism via the transition state (TS), an interesting roaming mechanism was found to play the predominant role in producing H2O and HCOOH. This roaming pathway is featured as the near direct dissociation of HMHP into OH and hydroxymethoxy radical, followed by the retraction of OH and abstraction of the H atom, culminating in the formation of H2O. Due to the longer interaction time of the roaming mechanism, less product translational energy was released, but more internal energies of HCOOH were obtained, as compared with the direct TS mechanism. The enhanced yield of H2O and formic acid achieved through roaming dynamics underscores the significance of dynamics simulations based on an accurate full-dimensional PES. This work provides new insights into the dynamics of the CH2OO + H2O reaction and its implications for atmospheric chemistry.
Collapse
Affiliation(s)
- Hao Wu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanlin Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Bina Fu
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong H Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical and Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Liu R, Zhang Z, Yan L, Yang X, Zhu Y, Su P, Song H, Wang Z. The Influence of Hydrogen Bonds on the Roaming Reaction. J Phys Chem Lett 2023; 14:9351-9356. [PMID: 37820388 DOI: 10.1021/acs.jpclett.3c02133] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Roaming bypasses the conventional transition state and is a significant reaction pathway due to the unusual energy distributions of its products; however, its reaction pathway under external environmental interactions remains unclear. Herein, we report for the first time the roaming process of nitrobenzene, which is influenced by the hydrogen bonds (H-bonds) between nitro- and phenyl radicals and water molecules in the gas phase. Notably, despite the fact that the single water structure produces a higher but narrower barrier, whereas the double water structure leads to a lower but wider barrier, the roaming reaction still occurs. The underlying mechanism responsible for these influences of H-bonds is ascribed to the dramatically changed polarization and correlation interactions between the roaming radicals. The reaction rates and thermal perturbation probabilities are also remarkably influenced due to the presence of the H-bonds, by approximately 2 orders of magnitude. It is anticipated that this work will encourage the promising feasibility of introducing environmental molecules to modulate the roaming reaction.
Collapse
Affiliation(s)
- Rui Liu
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
| | - Zhiyuan Zhang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Longxiang Yan
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xinrui Yang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Yu Zhu
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- College of Physics and Electronic Engineering, Hainan Normal University, Haikou 571158, China
| | - Peifeng Su
- The State Key Laboratory of Physical Chemistry of Solid Surfaces, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Huajie Song
- Beijing Institute of Applied Physics and Computational Mathematics, Beijing 100094, China
| | - Zhigang Wang
- Key Laboratory of Material Simulation Methods & Software of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun 130023, China
| |
Collapse
|
38
|
Welsh BA, Corrigan ME, Assaf E, Nauta K, Sebastianelli P, Jordan MJT, Fittschen C, Kable SH. Photophysical oxidation of HCHO produces HO 2 radicals. Nat Chem 2023; 15:1350-1357. [PMID: 37414879 DOI: 10.1038/s41557-023-01272-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Formaldehyde, HCHO, is the highest-volume carbonyl in the atmosphere. It absorbs sunlight at wavelengths shorter than 330 nm and photolyses to form H and HCO radicals, which then react with O2 to form HO2. Here we show HCHO has an additional HO2 formation pathway. At photolysis energies below the energetic threshold for radical formation we directly detect HO2 at low pressures by cavity ring-down spectroscopy and indirectly detect HO2 at 1 bar by Fourier-transform infrared spectroscopy end-product analysis. Supported by electronic structure theory and master equation simulations, we attribute this HO2 to photophysical oxidation (PPO): photoexcited HCHO relaxes non-radiatively to the ground electronic state where the far-from-equilibrium, vibrationally activated HCHO molecules react with thermal O2. PPO is likely to be a general mechanism in tropospheric chemistry and, unlike photolysis, PPO will increase with increasing O2 pressure.
Collapse
Affiliation(s)
- Blair A Welsh
- School of Chemistry, University of New South Wales, Kensington, New South Wales, Australia
- Combustion Research Facility, Sandia National Laboratories, Livermore, CA, USA
| | - Maggie E Corrigan
- School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Emmanuel Assaf
- Université Lille, CNRS, UMR 8522, PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, Lille, France
- Chemical Sciences Laboratory, National Oceanic and Atmospheric Administration, Boulder, CO, USA
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
| | - Klaas Nauta
- School of Chemistry, University of New South Wales, Kensington, New South Wales, Australia
| | - Paolo Sebastianelli
- School of Chemistry, University of New South Wales, Kensington, New South Wales, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, New South Wales, Australia
| | - Meredith J T Jordan
- School of Chemistry, University of Sydney, Sydney, New South Wales, Australia.
| | - Christa Fittschen
- Université Lille, CNRS, UMR 8522, PC2A-Physicochimie des Processus de Combustion et de l'Atmosphère, Lille, France
| | - Scott H Kable
- School of Chemistry, University of New South Wales, Kensington, New South Wales, Australia.
| |
Collapse
|
39
|
Guan Y, Xie C, Guo H, Yarkony DR. Toward a Unified Analytical Description of Internal Conversion and Intersystem Crossing in the Photodissociation of Thioformaldehyde. I. Diabatic Singlet States. J Chem Theory Comput 2023; 19:6414-6424. [PMID: 37698839 DOI: 10.1021/acs.jctc.3c00628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The photodissociation of thioformaldehyde is an archetypal system for the study of competition between internal conversion and intersystem crossing, which involves its two singlet states (S0 and S1) and two triplet states (T1 and T2). In order to perform accurate dynamic simulations, either quantum or quasi-classical, it is essential to construct an analytical representation for all necessary electronic structure data. In this work, a diabatic potential energy matrix (DPEM), Hd, for the two singlet states (S0 and S1) is reported. The analytical form of DPEM is symmetrized and constructed to reproduce adiabatic energies, energy gradients, and derivative couplings obtained from high-level multireference configuration interaction wave functions. The Hd is fully saturated in the molecular configuration space with a trajectory-guided point sampling approach. This Hd can provide the accurate description of the photodissociation of thioformaldehyde on its singlet states and is also a necessary part for incorporating the spin-orbit couplings into a unified diabatic framework. Preliminary quasi-classical trajectory simulations show that a roaming mechanism also exists in the molecular dissociation channel of thioformaldehyde.
Collapse
Affiliation(s)
- Yafu Guan
- State Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical Computational Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, People's Republic of China
| | - Changjian Xie
- Institute of Modern Physics, Northwest University, Xi'an, Shaanxi 710069, People's Republic of China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - David R Yarkony
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
40
|
Yang Y, Ren H, Zhang M, Zhou S, Mu X, Li X, Wang Z, Deng K, Li M, Ma P, Li Z, Hao X, Li W, Chen J, Wang C, Ding D. H 2 formation via non-Born-Oppenheimer hydrogen migration in photoionized ethane. Nat Commun 2023; 14:4951. [PMID: 37587115 PMCID: PMC10432507 DOI: 10.1038/s41467-023-40628-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 08/03/2023] [Indexed: 08/18/2023] Open
Abstract
Neutral H2 formation via intramolecular hydrogen migration in hydrocarbon molecules plays a vital role in many chemical and biological processes. Here, employing cold target recoil ion momentum spectroscopy (COLTRIMS) and pump-probe technique, we find that the non-adiabatic coupling between the ground and excited ionic states of ethane through conical intersection leads to a significantly high yield of neutral H2 fragment. Based on the analysis of fingerprints that are sensitive to orbital symmetry and electronic state energies in the photoelectron momentum distributions, we tag the initial electronic population of both the ground and excited ionic states and determine the branching ratios of H2 formation channel from those two states. Incorporating theoretical simulation, we established the timescale of the H2 formation to be ~1300 fs. We provide a comprehensive characterization of H2 formation in ionic states of ethane mediated by conical intersection and reveals the significance of non-adiabatic coupling dynamics in the intramolecular hydrogen migration.
Collapse
Affiliation(s)
- Yizhang Yang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Hao Ren
- Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, China
| | - Ming Zhang
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Shengpeng Zhou
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Xiangxu Mu
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China
| | - Xiaokai Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Zhenzhen Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Ke Deng
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Mingxuan Li
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Pan Ma
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China
| | - Zheng Li
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-Optoelectronics, School of Physics, Peking University, 100871, Beijing, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, Shanxi, China.
- Peking University Yangtze Delta Institute of Optoelectronics, 226010, Nantong, Jiangsu, China.
| | - Xiaolei Hao
- Institute of Theoretical Physics and Department of Physics, State Key Laboratory of Quantum Optics and Quantum Optics Devices, Collaborative Innovation Center of Extreme Optics, Shanxi University, 030006, Taiyuan, China.
| | - Weidong Li
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, and College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
| | - Jing Chen
- Shenzhen Key Laboratory of Ultraintense Laser and Advanced Material Technology, and College of Engineering Physics, Shenzhen Technology University, 518118, Shenzhen, China
- Hefei National Research Center for Physical Sciences at the Microscale and School of Physical Sciences, Department of Modern Physics, University of Science and Technology of China, 230026, Hefei, China
| | - Chuncheng Wang
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| | - Dajun Ding
- Institute of Atomic and Molecular Physics and Jilin Provincial Key Laboratory of Applied Atomic and Molecular Spectroscopy, Jilin University, 130012, Changchun, China.
| |
Collapse
|
41
|
Guerrero-Méndez L, Lema-Saavedra A, Jiménez E, Fernández-Ramos A, Martínez-Núñez E. Gas-phase formation of glycolonitrile in the interstellar medium. Phys Chem Chem Phys 2023; 25:20988-20996. [PMID: 37503548 DOI: 10.1039/d3cp02379f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Our automated reaction discovery program, AutoMeKin, has been utilized to investigate the formation of glycolonitrile (HOCH2CN) in the gas phase under the low temperatures of the interstellar medium (ISM). The feasibility of a proposed pathway depends on the absence of barriers above the energy of reactants and the availability of the suggested precursors in the ISM. Based on these criteria, several radical-radical reactions and a radical-molecule reaction have been identified as viable formation routes in the ISM. Among the radical-radical reactions, OH + CH2CN appears to be the most relevant, considering the energy of the radicals and its ability to produce glycolonitrile in a single step. However, our analysis reveals that this reaction produces hydrogen isocyanide (HNC) and formaldehyde (CH2O), with rate coefficients ranging from (7.3-11.5) × 10-10 cm3 molecule-1 s-1 across the temperature range of 10-150 K. Furthermore, the identification of this remarkably efficient pathway for HNC elimination from glycolonitrile significantly broadens the possibilities for any radical-radical mechanism proposed in our research to be considered as a feasible pathway for the formation of HNC in the ISM. This finding is particularly interesing given the persistently unexplained overabundance of hydrogen isocyanide in the ISM. Among the radical-molecule reactions investigated, the most promising one is OH + CH2CHNH, which forms glycolonitrile and atomic hydrogen with rate coefficients in the range (0.3-6.6) × 10-10 cm3 molecule-1 s-1 within the 10-150 K temperature range. Our calculations indicate that the formation of both hydrogen isocyanide and glycolonitrile is efficient under the harsh conditions of the ISM.
Collapse
Affiliation(s)
- Luis Guerrero-Méndez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain.
| | - Anxo Lema-Saavedra
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Elena Jiménez
- Departamento de Química Física, Facultad de Ciencias y Tecnologías Químicas, Universidad de Castilla-La Mancha, Avda. Camilo José Cela 1b, 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica (ICCA), Universidad de Castilla-La Mancha, Camino de Moledores s/n, 13071, Ciudad Real, Spain
| | - Antonio Fernández-Ramos
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain.
- Centro Singular de Investigación en Química Biológica y Materiales Moleculares (CIQUS), Universidade de Santiago de Compostela, C/Jenaro de la Fuente s/n, 15782, Santiago de Compostela, Spain
| | - Emilio Martínez-Núñez
- Departamento de Química Física, Facultade de Química, Universidade de Santiago de Compostela, Avda. das Ciencias s/n 15782, Santiago de Compostela, Spain.
| |
Collapse
|
42
|
Chang Y, Ashfold MNR, Yuan K, Yang X. Exploring the vacuum ultraviolet photochemistry of astrochemically important triatomic molecules. Natl Sci Rev 2023; 10:nwad158. [PMID: 37771464 PMCID: PMC10533343 DOI: 10.1093/nsr/nwad158] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 02/08/2023] [Indexed: 09/30/2023] Open
Abstract
The recently constructed vacuum ultraviolet (VUV) free electron laser (FEL) at the Dalian Coherent Light Source (DCLS) is yielding a wealth of new and exquisitely detailed information about the photofragmentation dynamics of many small gas-phase molecules. This Review focuses particular attention on five triatomic molecules-H2O, H2S, CO2, OCS and CS2. Each shows excitation wavelength-dependent dissociation dynamics, yielding photofragments that populate a range of electronic and (in the case of diatomic fragments) vibrational and rotational quantum states, which can be characterized by different translational spectroscopy methods. The photodissociation of an isolated molecule from a well-defined initial quantum state provides a lens through which one can investigate how and why chemical reactions occur, and provides numerous opportunities for fruitful, synergistic collaborations with high-level ab initio quantum chemists. The chosen molecules, their photofragments and the subsequent chemical reaction networks to which they can contribute are all crucial in planetary atmospheres and in interstellar and circumstellar environments. The aims of this Review are 3-fold: to highlight new photochemical insights enabled by the VUV-FEL at the DCLS, notably the recently recognized central atom elimination process that is shown to contribute in all of these triatomic molecules; to highlight some of the potential implications of this rich photochemistry to our understanding of interstellar chemistry and molecular evolution within the universe; and to highlight other and future research directions in areas related to chemical reaction dynamics and astrochemistry that will be enabled by increased access to VUV-FEL sources.
Collapse
Affiliation(s)
- Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | | | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hefei National Laboratory, Hefei 230088, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Hefei National Laboratory, Hefei 230088, China
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
43
|
Wang E, Kling NG, LaForge AC, Obaid R, Pathak S, Bhattacharyya S, Meister S, Trost F, Lindenblatt H, Schoch P, Kübel M, Pfeifer T, Rudenko A, Díaz-Tendero S, Martín F, Moshammer R, Rolles D, Berrah N. Ultrafast Roaming Mechanisms in Ethanol Probed by Intense Extreme Ultraviolet Free-Electron Laser Radiation: Electron Transfer versus Proton Transfer. J Phys Chem Lett 2023; 14:4372-4380. [PMID: 37140167 DOI: 10.1021/acs.jpclett.2c03764] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Ultrafast H2+ and H3+ formation from ethanol is studied using pump-probe spectroscopy with an extreme ultraviolet (XUV) free-electron laser. The first pulse creates a dication, triggering H2 roaming that leads to H2+ and H3+ formation, which is disruptively probed by a second pulse. At photon energies of 28 and 32 eV, the ratio of H2+ to H3+ increases with time delay, while it is flat at a photon energy of 70 eV. The delay-dependent effect is ascribed to a competition between electron and proton transfer. High-level quantum chemistry calculations show a flat potential energy surface for H2 formation, indicating that the intermediate state may have a long lifetime. The ab initio molecular dynamics simulation confirms that, in addition to the direct emission, a small portion of H2 undergoes a roaming mechanism that leads to two competing pathways: electron transfer from H2 to C2H4O2+ and proton transfer from C2H4O2+ to H2.
Collapse
Affiliation(s)
- Enliang Wang
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
- Hefei National Research Center for Physical Sciences at the Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
| | - Nora G Kling
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| | - Aaron C LaForge
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| | - Razib Obaid
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| | - Shashank Pathak
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Surjendu Bhattacharyya
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Severin Meister
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Florian Trost
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Hannes Lindenblatt
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Patrizia Schoch
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Matthias Kübel
- Institute of Optics and Quantum Electronics, Friedrich Schiller University Jena, D-07743 Jena, Germany
- Helmholtz Institute Jena, Fröbelstieg 3, 07743 Jena, Germany
| | - Thomas Pfeifer
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Artem Rudenko
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Sergio Díaz-Tendero
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Institute for Advanced Research in Chemical Sciences (IAdChem), Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Fernando Martín
- Departamento de Química, Módulo 13, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Condensed Matter Physics Center (IFIMAC), Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nano), Campus de Cantoblanco, 28049 Madrid, Spain
| | - Robert Moshammer
- Max Planck Institut für Kernphysik, Saupfercheckweg 1, 69117 Heidelberg, Germany
| | - Daniel Rolles
- J. R. Macdonald Laboratory, Department of Physics, Kansas State University, Manhattan, Kansas 66506-2604, United States
| | - Nora Berrah
- Physics Department, University of Connecticut, Storrs, Connecticut 06269-3046, United States
| |
Collapse
|
44
|
Yuan Y, Tsai P. Photodissociation dynamics of acetaldehyde at 267 nm: A computational study of the
CO
‐forming channels. J CHIN CHEM SOC-TAIP 2023. [DOI: 10.1002/jccs.202300036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
45
|
He N, Huang M, Evangelista FA. CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. J Phys Chem A 2023; 127:1975-1987. [PMID: 36799901 PMCID: PMC9986868 DOI: 10.1021/acs.jpca.2c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We develop a multireference quantum embedding model to investigate a recent experimental observation of the isomerization of vibrationally excited CO molecules on a NaCl(100) surface [Science 2020, 367, 175-178]. To explore this mechanism, we built a reduced potential energy surface of CO interacting with NaCl(100) using a second-order multireference perturbation theory, modeling the adsorbate-surface interaction with our previously developed active space embedding theory (ASET). We considered an isolated CO molecule on NaCl(100) and a high-coverage CO monolayer (1/1), and for both we generated potential energy surfaces parametrized by the CO stretching, adsorption, and inversion coordinates. These surfaces are used to determine stationary points and adsorption energies and to perform a vibrational analysis of the states relevant to the inversion mechanism. We found that for near-equilibrium bond lengths, CO adsorbed in the C-down configuration is lower in energy than in the O-down configuration. Stretching of the C-O bond reverses the energetic order of these configurations, supporting the accepted isomerization mechanism. The vibrational constants obtained from these potential energy surfaces show a small (< 10 cm-1) blue- and red-shift for the C-down and O-down configurations, respectively, in agreement with experimental assignments and previous theoretical studies. Our vibrational analysis of the monolayer case suggests that the O-down configuration is energetically more stable than the C-down one beyond the 16th vibrational excited state of CO, a value slightly smaller than the one from quasi-classical trajectory simulations (22nd) and consistent with the experiment. Our analysis suggests that CO-CO interactions in the monolayer play an important role in stabilizing highly vibrationally excited states in the O-down configuration and reducing the barrier between the C-down and O-down geometries, therefore playing a crucial role in the inversion mechanism.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
46
|
Käser S, Vazquez-Salazar LI, Meuwly M, Töpfer K. Neural network potentials for chemistry: concepts, applications and prospects. DIGITAL DISCOVERY 2023; 2:28-58. [PMID: 36798879 PMCID: PMC9923808 DOI: 10.1039/d2dd00102k] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
Artificial Neural Networks (NN) are already heavily involved in methods and applications for frequent tasks in the field of computational chemistry such as representation of potential energy surfaces (PES) and spectroscopic predictions. This perspective provides an overview of the foundations of neural network-based full-dimensional potential energy surfaces, their architectures, underlying concepts, their representation and applications to chemical systems. Methods for data generation and training procedures for PES construction are discussed and means for error assessment and refinement through transfer learning are presented. A selection of recent results illustrates the latest improvements regarding accuracy of PES representations and system size limitations in dynamics simulations, but also NN application enabling direct prediction of physical results without dynamics simulations. The aim is to provide an overview for the current state-of-the-art NN approaches in computational chemistry and also to point out the current challenges in enhancing reliability and applicability of NN methods on a larger scale.
Collapse
Affiliation(s)
- Silvan Käser
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | | | - Markus Meuwly
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| | - Kai Töpfer
- Department of Chemistry, University of Basel Klingelbergstrasse 80 CH-4056 Basel Switzerland
| |
Collapse
|
47
|
A quantum-classical correspondence in the dynamics around higher order saddle points: a Bohmian perspective. Theor Chem Acc 2023. [DOI: 10.1007/s00214-023-02957-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
48
|
Campbell JS, Nauta K, Hansen CS, Kable SH. POPTARTS: A New Method to Determine Quantum Yields in a Molecular Beam. J Phys Chem A 2022; 126:9268-9275. [DOI: 10.1021/acs.jpca.2c06289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Jyoti S. Campbell
- School of Chemistry, University of New South Wales, Kensington, NSW2052, Australia
| | - Klaas Nauta
- School of Chemistry, University of New South Wales, Kensington, NSW2052, Australia
| | | | - Scott H. Kable
- School of Chemistry, University of New South Wales, Kensington, NSW2052, Australia
| |
Collapse
|
49
|
Cheng C, Singh V, Matsika S, Weinacht T. Strong Field Double Ionization of Formaldehyde Investigated Using Momentum Resolved Covariance Imaging and Trajectory Surface Hopping. J Phys Chem A 2022; 126:7399-7406. [PMID: 36178987 DOI: 10.1021/acs.jpca.2c04650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We use covariance velocity map imaging of fragment ions from the strong field double ionization of formaldehyde in conjunction with trajectory surface hopping calculations to determine the ionization yields to different singlet and triplet states of the dication. The calculated kinetic energy release for trajectories initiated on different electronic states is compared with the experimental values based on momentum resolved covariance measurements. We determine the state resolved double ionization yields as a function of laser intensity and pulse duration down to 6 fs (two optical cycles).
Collapse
Affiliation(s)
- Chuan Cheng
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York11794-3800, United States
| | - Vaibhav Singh
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Spiridoula Matsika
- Department of Chemistry, Temple University, Philadelphia, Pennsylvania19122, United States
| | - Thomas Weinacht
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York11794-3800, United States
| |
Collapse
|
50
|
Peng T, Bai Y, Qi J, Fu YL, Han YC. Comparison of the supercollisions of the deuterium atom with acetylene and ethylene. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|