1
|
Orsucci D, Vista M, Santorelli FM. Conversational AI in neurogenetics. The example of FUS gene. J Neurol Sci 2025; 473:123511. [PMID: 40267658 DOI: 10.1016/j.jns.2025.123511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 04/15/2025] [Indexed: 04/25/2025]
Affiliation(s)
- Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy.
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy
| | | |
Collapse
|
2
|
Key J, Almaguer-Mederos LE, Kandi AR, Sen NE, Gispert S, Köpf G, Meierhofer D, Auburger G. ATXN2L primarily interacts with NUFIP2, the absence of ATXN2L results in NUFIP2 depletion, and the ATXN2-polyQ expansion triggers NUFIP2 accumulation. Neurobiol Dis 2025; 209:106903. [PMID: 40220918 DOI: 10.1016/j.nbd.2025.106903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/04/2025] [Accepted: 04/04/2025] [Indexed: 04/14/2025] Open
Abstract
The cytoplasmic Ataxin-2 (ATXN2) protein associates with TDP-43 in stress granules (SG) where RNA quality control occurs. Mutations in this pathway underlie Spinocerebellar Ataxia type 2 (SCA2) and Amyotrophic Lateral Sclerosis. In contrast, Ataxin-2-like (ATXN2L) is predominantly perinuclear, more abundant, and essential for embryonic life. Its sequestration into ATXN2 aggregates may contribute to disease. In this study, we utilized two approaches to clarify the roles of ATXN2L. First, we identified interactors through co-immunoprecipitation in both wild-type and ATXN2L-null murine embryonic fibroblasts. Second, we assessed the proteome profile effects using mass spectrometry in these cells. Additionally, we examined the accumulation of ATXN2L interactors in the SCA2 mouse model, Atxn2-CAG100-KnockIn (KIN). We observed that RNA-binding proteins, including PABPN1, NUFIP2, MCRIP2, RBMS1, LARP1, PTBP1, FMR1, RPS20, FUBP3, MBNL2, ZMAT3, SFPQ, CSDE1, HNRNPK, and HNRNPDL, exhibit a stronger association with ATXN2L compared to established interactors like ATXN2, PABPC1, LSM12, and G3BP2. Additionally, ATXN2L interacted with components of the actin complex, such as SYNE2, LMOD1, ACTA2, FYB, and GOLGA3. We noted that oxidative stress increased HNRNPK but decreased SYNE2 association, which likely reflects the relocalization of SG. Proteome profiling revealed that NUFIP2 and SYNE2 are depleted in ATXN2L-null fibroblasts. Furthermore, NUFIP2 homodimers and SYNE1 accumulate during the ATXN2 aggregation process in KIN 14-month-old spinal cord tissues. The functions of ATXN2L and its interactors are therefore critical in RNA granule trafficking and surveillance, particularly for the maintenance of differentiated neurons.
Collapse
Affiliation(s)
- Jana Key
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Luis-Enrique Almaguer-Mederos
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Arvind Reddy Kandi
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Nesli-Ece Sen
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Suzana Gispert
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - Gabriele Köpf
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Ihnestraße 63-73, 14195 Berlin, Germany
| | - Georg Auburger
- Goethe University Frankfurt, University Hospital, Clinic of Neurology, Experimental Neurology, Heinrich- Hoffmann-Str. 7, 60528 Frankfurt am Main, Germany; Institute for Clinical Neuroanatomy, Dr. Senckenberg Anatomy, Fachbereich Medizin, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
3
|
Yang W, Luo Z, Tang X, Guo J, Chen X, Dong Y, Sun YM, Fan D, Xu K, Chen Y, Zhang M. Protein Structure-based FUS Mutational Subtypes Are Associated With Protein Mislocalization in Amyotrophic Lateral Sclerosis Patients. Mol Neurobiol 2025:10.1007/s12035-025-05085-z. [PMID: 40413303 DOI: 10.1007/s12035-025-05085-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 05/16/2025] [Indexed: 05/27/2025]
Abstract
The mislocalization of RNA-binding proteins (RBPs) from nucleus to cytoplasm and the formation of aggregates are hallmarks of neurodegeneration. Amyotrophic lateral sclerosis (ALS) disease-causing mutations in the fused in sarcoma (FUS) gene, encoding an RNA-binding protein, cluster at the C-terminal proline/tyrosine-nuclear localization signal (PY-NLS) domain, which is crucial for mediating nucleus-cytoplasm translocation by binding to Transportin-1. However, the mechanisms underlying heterogeneous protein mislocalization and age at onset (AAO) of ALS cases carrying FUS PY-NLS mutations remain unclear. Here, we screened FUS mutations in 416 ALS patients, and identified 12 patients carrying four FUS mutations at the p.R521 locus of PY-NLS domain (p.R521P, p.R521C, p.R521G, p.R521H), exhibiting highly variable AAO (20-56 years). AlphaFold-2 predicted protein structures classified FUS p.R521 mutants into alpha-helix containing (p.R521C, p.R521H) and alpha-helix disrupted (p.R521P, p.R521G) subgroups. Isothermal titration calorimetry experiment showed that the FUS alpha-helix disrupted subgroup had a reduced binding affinity with transportin-1, which is essential for mediating the nucleus-cytoplasm translocation. Furthermore, immunofluorescence in HEK-293 T and SH-SY5Y cells revealed more protein mislocalization in the FUS alpha-helix disrupted subgroup compared to the alpha-helix containing subgroup. FUS mislocalization status is also significantly associated with ALS AAO. Finally, the alpha-helix structure based FUS-ALS subgroups exhibited significantly different AAO (P = 0.036) in our cohort, but not in a Chinese cohort including published dataset. In summary, we showed highly diverse phenotypes in ALS patients with FUS R521 mutants, and implicated a link between genetic mutation related C-terminal structure with the status of FUS protein mislocalization.
Collapse
Affiliation(s)
- Wanli Yang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200090, China
- The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Luo
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Center for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Xuelin Tang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200090, China
- The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jingyan Guo
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200090, China
- The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, 200090, China
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xi Chen
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Center for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China
| | - Yi Dong
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Yi-Min Sun
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Dongsheng Fan
- Department of Neurology, Peking University Third Hospital, Beijing, China
- Beijing Municipal Key Laboratory of Biomarker and Translational Research in Neurodegenerative Diseases, Beijing, China
| | - Ke Xu
- Shanghai Key Laboratory of Anaesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence, Clinical Research Center for Anaesthesiology and Perioperative Medicine, Department of Anaesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200434, China.
| | - Yan Chen
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China.
| | - Ming Zhang
- Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Centre), Clinical Center for Brain and Spinal Cord Research, School of Medicine, Tongji University, Shanghai, 200090, China.
- The First Rehabilitation Hospital of Shanghai, School of Medicine, Tongji University, Shanghai, 200090, China.
- State Key Laboratory of Cardiology and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China.
- Institute for Advanced Study, Tongji University, Shanghai, China.
| |
Collapse
|
4
|
Scialò C, Zhong W, Jagannath S, Wilkins O, Caredio D, Hruska-Plochan M, Lurati F, Peter M, De Cecco E, Celauro L, Aguzzi A, Legname G, Fratta P, Polymenidou M. Seeded aggregation of TDP-43 induces its loss of function and reveals early pathological signatures. Neuron 2025; 113:1614-1628.e11. [PMID: 40157355 DOI: 10.1016/j.neuron.2025.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/24/2024] [Accepted: 03/03/2025] [Indexed: 04/01/2025]
Abstract
Neurodegeneration in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) results from both gain of toxicity and loss of normal function of the RNA-binding protein TDP-43, but their mechanistic connection remains unclear. Increasing evidence suggests that TDP-43 aggregates act as self-templating seeds, propagating pathology through the central nervous system via a prion-like cascade. We developed a robust TDP-43-seeding platform for quantitative assessment of TDP-43 aggregate uptake, cell-to-cell spreading, and loss of function within living cells, while they progress toward pathology. We show that both patient-derived and recombinant TDP-43 pathological aggregates were abundantly internalized by human neuron-like cells, efficiently recruited endogenous TDP-43, and formed cytoplasmic inclusions reminiscent of ALS/FTD pathology. Combining a fluorescent reporter of TDP-43 function with RNA sequencing and proteomics, we demonstrated aberrant cryptic splicing and a loss-of-function profile resulting from TDP-43-templated aggregation. Our data highlight known and novel pathological signatures in the context of seed-induced TDP-43 loss of function.
Collapse
Affiliation(s)
- Carlo Scialò
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Weijia Zhong
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Somanath Jagannath
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Oscar Wilkins
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK; The Francis Crick Institute, London, UK
| | - Davide Caredio
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | | | - Flavio Lurati
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Martina Peter
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Elena De Cecco
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Adriano Aguzzi
- Institute of Neuropathology, University of Zurich, Zurich, Switzerland
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, UCL, London, UK; The Francis Crick Institute, London, UK
| | | |
Collapse
|
5
|
Antonakoudis A, Kyriakoudi SA, Chatzi D, Dermitzakis I, Gargani S, Meditskou S, Manthou ME, Theotokis P. Genetic Basis of Motor Neuron Diseases: Insights, Clinical Management, and Future Directions. Int J Mol Sci 2025; 26:4904. [PMID: 40430041 PMCID: PMC12112488 DOI: 10.3390/ijms26104904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2025] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025] Open
Abstract
Motor neuron diseases (MNDs) are a heterogeneous group of neurodegenerative disorders characterized by the progressive loss of motor neurons, resulting in debilitating physical decline. Advances in genetics have revolutionized the understanding of MNDs, elucidating critical genes such as SOD1, TARDBP, FUS, and C9orf72, which are implicated in their pathogenesis. Despite these breakthroughs, significant gaps persist in understanding the interplay between genetic and environmental factors, the role of rare variants, and epigenetic contributions. This review synthesizes current knowledge on the genetic landscape of MNDs, highlights challenges in linking genotype to phenotype, and discusses the promise of precision medicine approaches. Emphasis is placed on emerging strategies, such as gene therapy and targeted molecular interventions, offering hope for personalized treatments. Addressing these challenges is imperative to harness the full potential of genomics for improving outcomes in MNDs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (A.A.); (S.A.K.); (D.C.); (I.D.); (S.G.); (S.M.); (M.E.M.)
| |
Collapse
|
6
|
Uechi H, Sridharan S, Nijssen J, Bilstein J, Iglesias-Artola JM, Kishigami S, Casablancas-Antras V, Poser I, Martinez EJ, Boczek E, Wagner M, Tomschke N, de Jesus Domingues AM, Pal A, Doeleman T, Kour S, Anderson EN, Stein F, Lee HO, Zhang X, Fritsch AW, Jahnel M, Fürsch J, Murthy AC, Alberti S, Bickle M, Fawzi NL, Nadler A, David DC, Pandey UB, Hermann A, Stengel F, Davis BG, Baldwin AJ, Savitski MM, Hyman AA, Wheeler RJ. Small-molecule dissolution of stress granules by redox modulation benefits ALS models. Nat Chem Biol 2025:10.1038/s41589-025-01893-5. [PMID: 40369342 DOI: 10.1038/s41589-025-01893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/26/2025] [Indexed: 05/16/2025]
Abstract
Neurodegenerative diseases, such as amyotrophic lateral sclerosis, are often associated with mutations in stress granule proteins. Aberrant stress granule condensate formation is associated with disease, making it a potential target for pharmacological intervention. Here, we identified lipoamide, a small molecule that specifically prevents cytoplasmic condensation of stress granule proteins. Thermal proteome profiling showed that lipoamide stabilizes intrinsically disordered domain-containing proteins, including SRSF1 and SFPQ, which are stress granule proteins necessary for lipoamide activity. SFPQ has redox-state-specific condensate dissolving behavior, which is modulated by the redox-active lipoamide dithiolane ring. In animals, lipoamide ameliorates aging-associated aggregation of a stress granule reporter protein, improves neuronal morphology and recovers motor defects caused by amyotrophic lateral sclerosis-associated FUS and TDP-43 mutants. Thus, lipoamide is a well-tolerated small-molecule modulator of stress granule condensation, and dissection of its molecular mechanism identified a cellular pathway for redox regulation of stress granule formation.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Sindhuja Sridharan
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Jik Nijssen
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Jessica Bilstein
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Satoshi Kishigami
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Virginia Casablancas-Antras
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Ina Poser
- Dewpoint Therapeutics, Dresden, Germany
| | | | | | | | - Nadine Tomschke
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - António M de Jesus Domingues
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Dewpoint Therapeutics, Dresden, Germany
| | - Arun Pal
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Dresden High Magnetic Field Laboratory (HLD), Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Thom Doeleman
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
| | - Sukhleen Kour
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Eric Nathaniel Anderson
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Hyun O Lee
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Xiaojie Zhang
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- iHuman Institute, School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Anatol W Fritsch
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Marcus Jahnel
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Biotechnology Center (BIOTEC), CMCB, TU Dresden, Dresden, Germany
| | - Julius Fürsch
- University of Konstanz, Department of Biology, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Anastasia C Murthy
- Graduate Program in Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - Simon Alberti
- Biotechnology Center (BIOTEC), CMCB, TU Dresden, Dresden, Germany
| | - Marc Bickle
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
- Institute for Translational Bioengineering, pRED, Roche, Basel, Switzerland
| | - Nicolas L Fawzi
- Department of Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Della C David
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
- Babraham Institute, Cambridge, UK
| | - Udai B Pandey
- Division of Child Neurology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Andreas Hermann
- Department of Neurology, Technische Universität Dresden, Dresden, Germany
- Center for Regenerative Therapies TU Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, Rostock, Germany
- Translational Neurodegeneration Section 'Albrecht Kossel', Department of Neurology, University Medical Center Rostock, Rostock, Germany
- Deutsches Zentrum für Neurodegenerative (DZNE) Rostock/Greifswald, Rostock, Germany
| | - Florian Stengel
- University of Konstanz, Department of Biology, Konstanz, Germany
- Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Benjamin G Davis
- Department of Chemistry, University of Oxford, Oxford, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Andrew J Baldwin
- Department of Chemistry, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Richard J Wheeler
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Ashworth Laboratories, Edinburgh, UK.
- Peter Medawar Building for Pathogen Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Varshney V, Gabble BC, Bishoyi AK, Varma P, Qahtan SA, Kashyap A, Panigrahi R, Nathiya D, Chauhan AS. Exploring Exosome-Based Approaches for Early Diagnosis and Treatment of Neurodegenerative Diseases. Mol Neurobiol 2025:10.1007/s12035-025-05026-w. [PMID: 40347374 DOI: 10.1007/s12035-025-05026-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/02/2025] [Indexed: 05/12/2025]
Abstract
Neurodegenerative diseases (NDs), like Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and Amyotrophic Lateral Sclerosis (ALS), present an increasingly significant global health burden, primarily due to the lack of effective early diagnostic tools and treatments. Exosomes-nano-sized extracellular vesicles secreted by nearly all cell types-have emerged as promising candidates for both biomarkers and therapeutic agents in NDs. This review examines the biogenesis, molecular composition, and diverse functions of exosomes in NDs. Exosomes play a crucial role in mediating intercellular communication. They are capable of reflecting the biochemical state of their parent cells and have the ability to cross the blood-brain barrier (BBB). In doing so, they facilitate the propagation of pathological proteins, such as amyloid-beta (Aβ), tau, and alpha-synuclein (α-syn), while also enabling the targeted delivery of neuroprotective compounds. Recent advancements in exosome isolation and engineering have opened up new possibilities for diagnostic and therapeutic strategies. These range from the discovery of non-invasive biomarkers to innovative approaches in gene therapy and drug delivery systems. However, challenges related to standardization, safety, and long-term effects must be addressed before exosomes can be translated into clinical applications. This review highlights both the promising potential and the obstacles that must be overcome to leverage exosomes in the treatment of NDs and the transformation of personalized medicine.
Collapse
Affiliation(s)
- Vibhav Varshney
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Baneen C Gabble
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq.
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq.
| | - Ashok Kumar Bishoyi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, India
| | - Pooja Varma
- Department of Psychology, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Sarraa Ahmad Qahtan
- Department of Anesthesia Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, 140401, Punjab, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha O Anusandhan Deemed to Be University, Bhubaneswar, Odisha, 751003, India
| | - Deepak Nathiya
- Department of Pharmacy Practice, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Ashish Singh Chauhan
- Division of Research and Innovation, Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| |
Collapse
|
8
|
Weiss A, Gilbert JW, Rivera Flores IV, Belgrad J, Ferguson C, Dogan EO, Wightman N, Mocarski K, Echeverria D, Harkins AL, Summers A, Bramato B, McHugh N, Furgal R, Yamada N, Cooper D, Monopoli K, Godinho BMDC, Hassler MR, Yamada K, Greer P, Henninger N, Brown RH, Khvorova A. RNAi-mediated silencing of SOD1 profoundly extends survival and functional outcomes in ALS mice. Mol Ther 2025:S1525-0016(25)00380-6. [PMID: 40349108 DOI: 10.1016/j.ymthe.2025.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 04/11/2025] [Accepted: 05/06/2025] [Indexed: 05/14/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative condition, with 20% of familial and 2%-3% of sporadic cases linked to mutations in the cytosolic superoxide dismutase (SOD1) gene. Mutant SOD1 protein is toxic to motor neurons, making SOD1 gene suppression a promising approach, supported by preclinical data and the 2023 Federal Drug Administration (FDA) approval of the GapmeR ASO targeting SOD1, tofersen. Despite the approval of an ASO and the optimism it brings to the field, the pharmacodynamics and pharmacokinetics of therapeutic SOD1 modulation can be improved. Here, we developed a chemically stabilized divalent siRNA scaffold (di-siRNA) that effectively suppresses SOD1 expression in vitro and in vivo. With optimized chemical modification, it achieves remarkable CNS tissue permeation and SOD1 silencing in vivo. Administered intraventricularly, di-siRNASOD1 extended survival in SOD1-G93A ALS mice, increasing survival beyond that previously seen in these mice by ASO modalities, slowed disease progression according to the standard ALS preclinical endpoints, and attenuated ALS neuropathology. These properties offer an improved therapeutic strategy for SOD1-mediated ALS and may extend to other dominantly inherited neurological disorders.
Collapse
Affiliation(s)
- Alexandra Weiss
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - James W Gilbert
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | | | - Jillian Belgrad
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Chantal Ferguson
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Elif O Dogan
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Wightman
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kit Mocarski
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ashley L Harkins
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Genetic & Cellular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Raymond Furgal
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nozomi Yamada
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Kathryn Monopoli
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Bruno M D C Godinho
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Matthew R Hassler
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Ken Yamada
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Paul Greer
- Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nils Henninger
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA; Department of Psychiatry, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Robert H Brown
- Department of Neurology, UMass Chan Medical School, Worcester, MA 01605, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, UMass Chan Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
9
|
Malik T, Sidisky JM, Jones S, Winters A, Hocking B, Rotay J, Huhulea EN, Moran S, Connors B, Babcock DT. Synaptic defects in adult drosophila motor neurons in a model of amyotrophic lateral sclerosis. Hum Mol Genet 2025:ddaf068. [PMID: 40327885 DOI: 10.1093/hmg/ddaf068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/26/2025] [Accepted: 04/23/2025] [Indexed: 05/08/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease that primarily affects motor neurons in the brain and spinal cord. Like other neurodegenerative diseases, defects in synaptic integrity are among the earliest hallmarks of ALS. However, the specific impairments to synaptic integrity remain unclear. To better understand synaptic defects in ALS, we expressed either wild-type or mutant Fused in Sarcoma (FUS), an RNA binding protein that is often mis-localized in ALS, in adult motor neurons. Using optogenetic stimulation of the motor neurons innervating the Ventral Abdominal Muscles (VAMs), we found that expression of mutant FUS disrupted the functional integrity of these synapses. This functional deficit was followed by disruption of synaptic gross morphology, localization of pre- and post-synaptic proteins, and cytoskeleton integrity. We found similar synaptic defects using the motor neurons innervating the Dorsal Longitudinal Muscles (DLMs), where expression of mutant FUS resulted in a progressive loss of flight ability along with disruption of active zone distribution. Our findings uncover defects in synaptic function that precede changes in synaptic structure, suggesting that synaptic function is more sensitive to this ALS model. Highlighting the earliest synaptic defects in this disease model should help to identify strategies for preventing later stages of disease progression.
Collapse
Affiliation(s)
- Tulika Malik
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Jessica M Sidisky
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Sam Jones
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Alexander Winters
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Brandon Hocking
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Jocelyn Rotay
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Ellen N Huhulea
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Sara Moran
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Bali Connors
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| | - Daniel T Babcock
- Department of Biological Sciences, Lehigh University, 111 Research Drive, Bethlehem PA, 18045 United States
| |
Collapse
|
10
|
Kitaoka Y, Uchihashi T, Kawata S, Nishiura A, Yamamoto T, Hiraoka SI, Yokota Y, Isomura ET, Kogo M, Tanaka S, Spigelman I, Seki S. Role and Potential of Artificial Intelligence in Biomarker Discovery and Development of Treatment Strategies for Amyotrophic Lateral Sclerosis. Int J Mol Sci 2025; 26:4346. [PMID: 40362582 PMCID: PMC12072360 DOI: 10.3390/ijms26094346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/24/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025] Open
Abstract
Neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS), present significant challenges owing to their complex pathologies and a lack of curative treatments. Early detection and reliable biomarkers are critical but remain elusive. Artificial intelligence (AI) has emerged as a transformative tool, enabling advancements in biomarker discovery, diagnostic accuracy, and therapeutic development. From optimizing clinical-trial designs to leveraging omics and neuroimaging data, AI facilitates understanding of disease and treatment innovation. Notably, technologies such as AlphaFold and deep learning models have revolutionized proteomics and neuroimaging, offering unprecedented insights into ALS pathophysiology. This review highlights the intersection of AI and ALS, exploring the current state of progress and future therapeutic prospects.
Collapse
Affiliation(s)
- Yoshihiro Kitaoka
- Laboratory of Neuropharmacology, Section of Biosystems and Function, School of Dentistry, University California, Los Angeles, 714 Tiverton, Los Angeles, CA 90095, USA
| | - Toshihiro Uchihashi
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - So Kawata
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Akira Nishiura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Toru Yamamoto
- Division of Dental Anesthesiology, Faculty of Dentistry, Graduate School of Medicine and Dental Sciences, Niigata University, Niigata 951-8514, Japan
| | - Shin-ichiro Hiraoka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Yusuke Yokota
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Emiko Tanaka Isomura
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Mikihiko Kogo
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Susumu Tanaka
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| | - Igor Spigelman
- Laboratory of Neuropharmacology, Section of Biosystems and Function, School of Dentistry, University California, Los Angeles, 714 Tiverton, Los Angeles, CA 90095, USA
| | - Soju Seki
- Department of Oral and Maxillofacial Surgery, Graduate School of Dentistry, The University of Osaka, Yamadaoka, Suita 565-0871, Japan
| |
Collapse
|
11
|
Vizziello M, Dellarole IL, Ciullini A, Pascuzzo R, Lombardo A, Bellandi F, Celauro L, Battipaglia C, Ciusani E, Rizzo A, Catania M, Devigili G, Della Seta SA, Margiotta V, Consonni M, Faltracco V, Tiraboschi P, Riva N, Portaleone SMS, Zanusso G, Legname G, Lauria G, Dalla Bella E, Moda F. TDP-43 seeding activity in the olfactory mucosa of patients with amyotrophic lateral sclerosis. Mol Neurodegener 2025; 20:49. [PMID: 40287755 PMCID: PMC12034174 DOI: 10.1186/s13024-025-00833-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND In recent years, the seed amplification assay (SAA) has enabled the identification of pathological TDP-43 in the cerebrospinal fluid (CSF) and olfactory mucosa (OM) of patients with genetic forms of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Here, we investigated the seeding activity of TDP-43 in OM samples collected from patients with sporadic ALS. METHODS OM samples were collected from patients with (a) sporadic motor neuron diseases (MND), including spinal ALS (n = 35), bulbar ALS (n = 18), primary lateral sclerosis (n = 10), and facial onset sensory and motor neuronopathy (n = 2); (b) genetic MND, including carriers of C9orf72exp (n = 6), TARDBP (n = 4), SQSTM1 (n = 3), C9orf72exp + SQSTM1 (n = 1), OPTN (n = 1), GLE1 (n = 1), FUS (n = 1) and SOD1 (n = 4) mutations; (c) other neurodegenerative disorders (OND), including Alzheimer's disease (n = 3), dementia with Lewy bodies (n = 8) and multiple system atrophy (n = 6); and (d) control subjects (n = 22). All samples were subjected to SAA analysis for TDP-43 (TDP-43_SAA). Plasmatic levels of TDP-43 and neurofilament-light chain (NfL) were also assessed in a selected number of patients. RESULTS TDP-43_SAA was positive in 29/65 patients with sporadic MND, 9/21 patients with genetic MND, 6/17 OND patients and 3/22 controls. Surprisingly, one presymptomatic individual also tested positive. As expected, OM of genetic non-TDP-43-related MND tested negative. Interestingly, fluorescence values from non-MND samples that tested positive were consistently and significantly lower than those obtained with sporadic and genetic MND. Furthermore, among TDP-43-positive samples, the lag phase observed in MND patients was significantly longer than that in non-MND patients. Plasma TDP-43 levels were significantly higher in sporadic MND patients compared to controls and decreased as the disease progressed. Similarly, plasma NfL levels were higher in both sporadic and genetic MND patients and positively correlated with disease progression rate (ΔFS). No significant correlations were detected between TDP-43_SAA findings and the biological, clinical, or neuropsychological parameters considered. CONCLUSIONS The OM of a subset of patients with sporadic MND can trigger seeding activity for TDP-43, as previously observed in genetic MND. Thus, TDP-43_SAA analysis of OM can improve the clinical characterization of ALS across different phenotypes and enhance our understanding of these diseases. Finally, plasma TDP-43 could serve as a potential biomarker for monitoring disease progression. However, further research is needed to confirm and expand these findings.
Collapse
Affiliation(s)
- Maria Vizziello
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Linda Dellarole
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Arianna Ciullini
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Riccardo Pascuzzo
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Annalisa Lombardo
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Floriana Bellandi
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Luigi Celauro
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Claudia Battipaglia
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Emilio Ciusani
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ambra Rizzo
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marcella Catania
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Grazia Devigili
- Unit of Neurology 1 - Parkinson and Movement Disorders, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | | | - Valentina Margiotta
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Monica Consonni
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Faltracco
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Unit of Neurology 5 - Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Nilo Riva
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Maria Silvia Portaleone
- Department of Health Sciences, Otolaryngology Unit, ASST Santi Paolo E Carlo Hospital, Università Degli Studi Di Milano, Milan, Italy
| | - Gianluigi Zanusso
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Giuseppe Legname
- Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore Di Studi Avanzati (SISSA), Trieste, Italy
| | - Giuseppe Lauria
- Scientific Directorate, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Eleonora Dalla Bella
- Unit of Neurology 3 - Neuroalgology and Motor Neuron Disease Centre, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Unit of Laboratory Medicine, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
12
|
Ji J, Xu K, Wang W, Chen C. Probing the Formation and Liquid-to-Solid Transition of FUS Condensates via the Lifetimes of Fluorescent Proteins. J Phys Chem Lett 2025; 16:3553-3561. [PMID: 40164149 PMCID: PMC11998925 DOI: 10.1021/acs.jpclett.5c00262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/20/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
Liquid-liquid phase separation (LLPS) of biomolecules is a fundamental cellular process that is essential for maintaining homeostasis and facilitating biochemical activities. On the other hand, aberrant phase separation alters condensate fluidity and causes a transition from liquid-like condensates to solid-like condensates, which may lead to the formation of the pathological aggregations often observed in neurodegenerative diseases. Condensate fluidity is usually assessed by the fluorescence recovery after photobleaching. Here, we reveal that the fluorescence lifetimes of several fluorescent proteins are sensitive to LLPS and the liquid-to-solid transition. Furthermore, we identify several key residues that regulate the sensitivity of fluorescence lifetimes toward phase separation. Thus, we apply fluorescence lifetime imaging microscopy (FLIM) to visualize LLPS and the liquid-to-solid transition in living cells, demonstrating that FLIM is a nondestructive method for tracking changes in condensate fluidity in real time.
Collapse
Affiliation(s)
- Jinyao Ji
- State
Key Laboratory of Membrane Biology, Beijing Frontier Research Center
for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kui Xu
- State
Key Laboratory of Membrane Biology, Beijing Frontier Research Center
for Biological Structures, Tsinghua-Peking Joint Center for Life Sciences,
School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wenjuan Wang
- School
of Life Sciences, Technology Center for Protein Sciences, Tsinghua University, Beijing 100084, China
| | - Chunlai Chen
- State
Key Laboratory of Membrane Biology, Beijing Frontier Research Center
for Biological Structure, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
13
|
Gao G, Sumrall ER, Walter NG. Nanoscale domains govern local diffusion and aging within FUS condensates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.04.01.587651. [PMID: 40291709 PMCID: PMC12026405 DOI: 10.1101/2024.04.01.587651] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Biomolecular condensates regulate cellular physiology by sequestering and processing RNAs and proteins, yet how these processes are locally tuned within condensates remains unclear. Moreover, in neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), condensates undergo liquid-to-solid phase transitions, but capturing early intermediates in this process has been challenging. Here, we present a surface multi-tethering approach to achieve intra-condensate single-molecule tracking of fluorescently labeled RNA and protein molecules within liquid-like condensates. Using RNA-binding protein Fused in Sarcoma (FUS) as a model for condensates implicated in ALS, we discover that RNA and protein diffusion is confined within distinct nanometer-scale domains, or nanodomains, which exhibit unique connectivity and chemical environments. During condensate aging, these nanodomains reposition, facilitating FUS fibrilization at the condensate surface, a transition enhanced by FDA-approved ALS drugs. Our findings demonstrate that nanodomain formation governs condensate function by modulating biomolecule sequestration and percolation, offering insights into condensate aging and disease-related transitions.
Collapse
|
14
|
Carroll E, Scaber J, Huber KVM, Brennan PE, Thompson AG, Turner MR, Talbot K. Drug repurposing in amyotrophic lateral sclerosis (ALS). Expert Opin Drug Discov 2025; 20:447-464. [PMID: 40029669 PMCID: PMC11974926 DOI: 10.1080/17460441.2025.2474661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/06/2025] [Accepted: 02/26/2025] [Indexed: 03/05/2025]
Abstract
INTRODUCTION Identifying treatments that can alter the natural history of amyotrophic lateral sclerosis (ALS) is challenging. For years, drug discovery in ALS has relied upon traditional approaches with limited success. Drug repurposing, where clinically approved drugs are reevaluated for other indications, offers an alternative strategy that overcomes some of the challenges associated with de novo drug discovery. AREAS COVERED In this review, the authors discuss the challenge of drug discovery in ALS and examine the potential of drug repurposing for the identification of new effective treatments. The authors consider a range of approaches, from screening in experimental models to computational approaches, and outline some general principles for preclinical and clinical research to help bridge the translational gap. Literature was reviewed from original publications, press releases and clinical trials. EXPERT OPINION Despite remaining challenges, drug repurposing offers the opportunity to improve therapeutic options for ALS patients. Nevertheless, stringent preclinical research will be necessary to identify the most promising compounds together with innovative experimental medicine studies to bridge the translational gap. The authors further highlight the importance of combining expertise across academia, industry and wider stakeholders, which will be key in the successful delivery of repurposed therapies to the clinic.
Collapse
Affiliation(s)
- Emily Carroll
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Jakub Scaber
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Kilian V. M. Huber
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Paul E. Brennan
- Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | - Martin R. Turner
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| |
Collapse
|
15
|
Nakaya T. Release of FUS into the extracellular space is regulated by its amino-terminal prion-like domain. FEBS Lett 2025; 599:1046-1054. [PMID: 39737526 DOI: 10.1002/1873-3468.15086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/01/2025]
Abstract
Fused in sarcoma (FUS) is a causative factor of amyotrophic lateral sclerosis (ALS) and is believed to propagate pathologically by transmission from cell to cell. However, the mechanism underlying FUS release from cells, which is a critical step for the propagation system, remains poorly understood. This study conducted an analysis of the release of human and mouse FUS from neurons, revealing that human FUS is significantly released into the media compared to its mouse counterpart. Further study using chimeric FUS proteins identified the amino-terminal region of human FUS as essential for its release. These findings indicate that human FUS is released directly from neurons and underscore the novel functional role of its amino-terminal region in this process.
Collapse
Affiliation(s)
- Tadashi Nakaya
- School of Pharmacy at Fukuoka, International University of Health and Welfare, Fukuoka, Japan
| |
Collapse
|
16
|
Askarova A, Yaa RM, Marzi SJ, Nott A. Genetic risk for neurodegenerative conditions is linked to disease-specific microglial pathways. PLoS Genet 2025; 21:e1011407. [PMID: 40202986 PMCID: PMC12017514 DOI: 10.1371/journal.pgen.1011407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 04/23/2025] [Accepted: 03/24/2025] [Indexed: 04/11/2025] Open
Abstract
Genome-wide association studies have identified thousands of common variants associated with an increased risk of neurodegenerative disorders. However, the noncoding localization of these variants has made the assignment of target genes for brain cell types challenging. Genomic approaches that infer chromosomal 3D architecture can link noncoding risk variants and distal gene regulatory elements such as enhancers to gene promoters. By using enhancer-to-promoter interactome maps for human microglia, neurons, and oligodendrocytes, we identified cell-type-specific enrichment of genetic heritability for brain disorders through stratified linkage disequilibrium score regression. Our analysis suggests that genetic heritability for multiple neurodegenerative disorders is enriched at microglial chromatin contact sites, while schizophrenia heritability is predominantly enriched at chromatin contact sites in neurons followed by oligodendrocytes. Through Hi-C coupled multimarker analysis of genomic annotation (H-MAGMA), we identified disease risk genes for Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and schizophrenia. We found that disease-risk genes were overrepresented in microglia compared to other brain cell types across neurodegenerative conditions and within neurons for schizophrenia. Notably, the microglial risk genes and pathways identified were largely specific to each disease. Our findings reinforce microglia as an important, genetically informed cell type for therapeutic interventions in neurodegenerative conditions and highlight potentially targetable disease-relevant pathways.
Collapse
Affiliation(s)
- Aydan Askarova
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Reuben M. Yaa
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, United Kingdom
| | - Sarah J. Marzi
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, United Kingdom
- United Kingdom Dementia Research Institute, King’s College London, London, United Kingdom
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, London, United Kingdom
- United Kingdom Dementia Research Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
17
|
Hiew JY, Lim YS, Liu H, Ng CS. Integrated transcriptomic profiling reveals a STING-mediated Type II Interferon signature in SOD1-mutant amyotrophic lateral sclerosis models. Commun Biol 2025; 8:347. [PMID: 40025162 PMCID: PMC11873215 DOI: 10.1038/s42003-025-07790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Inflammation is a hallmark of amyotrophic lateral sclerosis (ALS), particularly in cases with SOD1 mutations. Using integrative transcriptomics, we analyzed gene expression changes in mouse models throughout progression, human induced-pluripotent stem cells (hiPSCs), and post-mortem spinal cord tissue from ALS patients. We identified a conserved upregulation of interferon (IFN) genes and IFN-stimulating genes (ISGs) in both mouse models and human ALS, with a predominance Type I IFNs (IFN-α/β) in mice and Type II IFNs (IFN-γ) in humans. In mouse models, we observed robust and sustained upregulation of Type I and II ISGs, including ATF3, beginning at disease onset stage and persisting throughout disease progression. Single-cell transcriptomics further pinpointed vascular endothelial cells as a major source of ISGs. Furthermore, we found that the STING-TBK1 axis is essential for the induction of Type II ISGs in ALS, as its deletion impaired their expression. Our study uncovers a conserved ISGs signature across ALS models and patients, highlighting the potential role of innate immune activation in ALS pathogenesis. These findings suggest that ISGs may serve as potential biomarkers and therapeutic targets for ALS.
Collapse
Affiliation(s)
- Jen Young Hiew
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Selangor, Malaysia
| | - Yi Shan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Selangor, Malaysia
| | - Huitao Liu
- School of Biological Engineering, College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Chen Seng Ng
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Selangor, Malaysia.
| |
Collapse
|
18
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2025; 82:111-129. [PMID: 39056295 PMCID: PMC11762371 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
19
|
Zhong R, Dionela DL, Kim NH, Harris EN, Geisler JG, Wei‐LaPierre L. Micro-Doses of DNP Preserve Motor and Muscle Function with a Period of Functional Recovery in Amyotrophic Lateral Sclerosis Mice. Ann Neurol 2025; 97:542-557. [PMID: 39552508 PMCID: PMC11831883 DOI: 10.1002/ana.27140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/28/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
OBJECTIVE Mitochondrial dysfunction is one of the earliest pathological events observed in amyotrophic lateral sclerosis (ALS). The aim of this study is to evaluate the therapeutic efficacy of 2,4-dinitrophenol (DNP), a mild mitochondrial uncoupler, in an ALS mouse model to provide preclinical proof-of-concept evidence of using DNP as a potential therapeutic drug for ALS. METHODS hSOD1G93A mice were treated with 0.5-1.0 mg/kg DNP through daily oral gavage from presymptomatic stage or disease onset until 18 weeks old. Longitudinal behavioral studies were performed weekly or biweekly from 6 to 18 weeks old. In situ muscle contraction measurements in extensor digitorum longus muscles were conducted to evaluate the preservation of contractile force and motor unit numbers in hSOD1G93A mice following DNP treatment. Muscle innervation and inflammatory markers were assessed using immunostaining. Extent of protein oxidation and activation of Akt pathway were also examined. RESULTS DNP delayed disease onset; improved motor coordination and muscle performance in vivo; preserved muscle contractile function, neuromuscular junction morphology, and muscle innervation; and reduced inflammation and protein oxidation at 18 weeks old in hSOD1G93A mice. Strikingly, symptomatic hSOD1G93A mice exhibited a period of recovery in running ability at 20 cm/s several weeks after 2,4-dinitrophenol treatment started at disease onset, offering the first observation in disease phenotype reversal using a small molecule. INTERPRETATION Our results strongly support that micro-dose DNP may be used as a potential novel treatment for ALS patients, with a possibility for recovery, when used at optimal doses and time of intervention. ANN NEUROL 2025;97:542-557.
Collapse
Affiliation(s)
- Renjia Zhong
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNY
- Department of Emergency Medicinethe First Affiliated Hospital of China Medical UniversityShenyangChina
| | - Demi L.A. Dionela
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
| | - Nina Haeyeon Kim
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
| | - Erin N. Harris
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
| | | | - Lan Wei‐LaPierre
- Department of Applied Physiology and Kinesiology, College of Health and Human PerformanceUniversity of FloridaGainesvilleFL
- Department of Pharmacology and Physiology, School of Medicine and DentistryUniversity of RochesterRochesterNY
- Myology InstituteUniversity of FloridaGainesvilleFL
| |
Collapse
|
20
|
Chatterjee S, Maity A, Bahadur RP. Conformational switches in human RNA binding proteins involved in neurodegeneration. Biochim Biophys Acta Gen Subj 2025; 1869:130760. [PMID: 39798673 DOI: 10.1016/j.bbagen.2025.130760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/15/2025]
Abstract
Conformational switching in RNA binding proteins (RBPs) is crucial for regulation of RNA processing and transport. Dysregulation or mutations in RBPs and broad RNA processing abnormalities are related to many human diseases including neurodegenerative disorders. Here, we review the role of protein-RNA conformational switches in RBP-RNA complexes. RBP-RNA complexes exhibit wide range of conformational switching depending on the RNA molecule and its ability to induce conformational changes in its partner RBP. We categorize the conformational switches into three groups: rigid body, semi-flexible and full flexible. We also investigate conformational switches in large cellular assemblies including ribosome, spliceosome and RISC complexes. In addition, the role of intrinsic disorder in RBP-RNA conformational switches is discussed. We have also discussed the effect of different disease-causing mutations on conformational switching of proteins associated with neurodegenerative diseases. We believe that this study will enhance our understanding on the role of protein-RNA conformational switches. Furthermore, the availability of a large number of atomic structures of RBP-RNA complexes in near future would facilitate to create a complete repertoire of human RBP-RNA conformational switches.
Collapse
Affiliation(s)
- Sonali Chatterjee
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Atanu Maity
- Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Ranjit Prasad Bahadur
- Computational Structural Biology Laboratory, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India; Bioinformatics Centre, Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
21
|
Stella R, Bertoli A, Lopreiato R, Peggion C. A Twist in Yeast: New Perspectives for Studying TDP-43 Proteinopathies in S. cerevisiae. J Fungi (Basel) 2025; 11:188. [PMID: 40137226 PMCID: PMC11943067 DOI: 10.3390/jof11030188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/20/2025] [Accepted: 02/24/2025] [Indexed: 03/27/2025] Open
Abstract
TAR DNA-binding protein 43 kDa (TDP-43) proteinopathies are a group of neurodegenerative diseases (NDs) characterized by the abnormal accumulation of the TDP-43 protein in neurons and glial cells. These proteinopathies are associated with several NDs, including amyotrophic lateral sclerosis, frontotemporal lobar degeneration, and some forms of Alzheimer's disease. Yeast models have proven valuable in ND research due to their simplicity, genetic tractability, and the conservation of many cellular processes shared with higher eukaryotes. For several decades, Saccharomyces cerevisiae has been used as a model organism to study the behavior and toxicity of TDP-43, facilitating the identification of genes and pathways that either exacerbate or mitigate its toxic effects. This review will discuss evidence showing that yeast models of TDP-43 exhibit defects in proteostasis, mitochondrial function, autophagy, and RNA metabolism, which are key features of TDP-43-related NDs. Additionally, we will explore how modulating proteins involved in these processes reduce TDP-43 toxicity, aiding in restoring normal TDP-43 function or preventing its pathological aggregation. These findings highlight potential therapeutic targets for the treatment of TDP-43-related diseases.
Collapse
Affiliation(s)
- Roberto Stella
- Laboratorio Farmaci Veterinari e Ricerca, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
- Neuroscience Institute, Consiglio Nazionale Delle Ricerche, 35131 Padova, Italy
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Raffaele Lopreiato
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (A.B.); (R.L.)
| | - Caterina Peggion
- Department of Biology, University of Padova, 35131 Padova, Italy
| |
Collapse
|
22
|
Yang P, Shuai W, Wang X, Hu X, Zhao M, Wang A, Wu Y, Ouyang L, Wang G. Mitophagy in Neurodegenerative Diseases: Mechanisms of Action and the Advances of Drug Discovery. J Med Chem 2025; 68:3970-3994. [PMID: 39908485 DOI: 10.1021/acs.jmedchem.4c01779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Neurodegenerative diseases (NDDs), such as Parkinson's disease (PD) and Alzheimer's disease (AD), are devastating brain diseases and are incurable at the moment. Increasing evidence indicates that NDDs are associated with mitochondrial dysfunction. Mitophagy removes defective or redundant mitochondria to maintain cell homeostasis, whereas deficient mitophagy accelerates the accumulation of damaged mitochondria to mediate the pathologies of NDDs. Therefore, targeting mitophagy has become a valuable therapeutic pathway for the treatment of NDDs. Several mitophagy modulators have been shown to ameliorate neurodegeneration in PD and AD. However, it remains to be further investigated for other NDDs. Here, we describe the mechanism and key signaling pathway of mitophagy and summarize the roles of defective mitophagy on the pathogenesis of NDDs. Further, we underline the development advances of mitophagy modulators for PD and AD therapy, discuss the therapeutic challenges and limitations of the existing modulators, and provide guidelines for mitophagy mechanism exploration and drug design.
Collapse
Affiliation(s)
- Panpan Yang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Wen Shuai
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xin Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Xiuying Hu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Aoxue Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Yongya Wu
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Liang Ouyang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| | - Guan Wang
- Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu 610041, China
| |
Collapse
|
23
|
Ruffo P, Traynor BJ, Conforti FL. Advancements in genetic research and RNA therapy strategies for amyotrophic lateral sclerosis (ALS): current progress and future prospects. J Neurol 2025; 272:233. [PMID: 40009238 PMCID: PMC11865122 DOI: 10.1007/s00415-025-12975-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/27/2025]
Abstract
This review explores the intricate landscape of neurodegenerative disease research, focusing on Amyotrophic Lateral Sclerosis (ALS) and the intersection of genetics and RNA biology to investigate the causative pathogenetic basis of this fatal disease. ALS is a severe neurodegenerative disease characterized by the progressive loss of motor neurons, leading to muscle weakness and paralysis. Despite significant research advances, the exact cause of ALS remains largely unknown. Thanks to the application of next-generation sequencing (NGS) approaches, it was possible to highlight the fundamental role of rare variants with large effect sizes and involvement of portions of non-coding RNA, providing valuable information on risk prediction, diagnosis, and treatment of age-related diseases, such as ALS. Genetic research has provided valuable insights into the pathophysiology of ALS, leading to the development of targeted therapies such as antisense oligonucleotides (ASOs). Regulatory agencies in several countries are evaluating the commercialization of Qalsody (Tofersen) for SOD1-associated ALS, highlighting the potential of gene-targeted therapies. Furthermore, the emerging significance of microRNAs (miRNAs) and long RNAs are of great interest. MiRNAs have emerged as promising biomarkers for diagnosing ALS and monitoring disease progression. Understanding the role of lncRNAs in the pathogenesis of ALS opens new avenues for therapeutic intervention. However, challenges remain in delivering RNA-based therapeutics to the central nervous system. Advances in genetic screening and personalized medicine hold promise for improving the management of ALS. Ongoing clinical trials use genomic approaches for patient stratification and drug targeting. Further research into the role of non-coding RNAs in the pathogenesis of ALS and their potential as therapeutic targets is crucial to the development of effective treatments for this devastating disease.
Collapse
Affiliation(s)
- Paola Ruffo
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy.
| | - Bryan J Traynor
- Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Rende, Italy
| |
Collapse
|
24
|
Gregorich ZR, Guo W. Alternative splicing factors and cardiac disease: more than just missplicing? RNA (NEW YORK, N.Y.) 2025; 31:300-306. [PMID: 39773891 PMCID: PMC11874993 DOI: 10.1261/rna.080332.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025]
Abstract
Alternative splicing (AS) is the process wherein the exons from a single gene are joined in different combinations to produce nonidentical, albeit related, RNA transcripts. This process is important for the development and physiological function of many organs and is particularly important in the heart. Notably, AS has been implicated in cardiac disease and failure, and a growing number of genetic variants in AS factors have been identified in association with cardiac malformation and/or disease. With the field poised to interrogate how these variants affect cardiac development and disease, an understandable point of emphasis will undoubtedly be on downstream target gene missplicing. In this Perspective article, we would like to encourage consideration not only of the potential for novel disease mechanisms, but also for contributions from disruption of the ever-expanding list of nonsplicing functions ascribed to many AS factors. We discuss the emergence of a novel cardiac disease mechanism based on pathogenic RNA granules and speculate on the generality of such a mechanism among localization-disrupting AS factor genetic variants. We also highlight emerging nonsplicing functions attributed to several AS factors with cardiac disease-associated genetic variants in the hopes of pointing to avenues for exploration of mechanisms that may contribute to disease alongside target gene missplicing.
Collapse
Affiliation(s)
- Zachery R Gregorich
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Wei Guo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
25
|
Singh S, Khan S, Khan S, Ansari O, Malhotra N, Shukla SK, Narang J. Muscle Matters: Transforming Amyotrophic Lateral Sclerosis Diagnostics with Next-Gen Biosensors and Smart Detection. ACS Chem Neurosci 2025; 16:563-587. [PMID: 39910731 DOI: 10.1021/acschemneuro.4c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disorder that primarily targets the motor system, causing patients' speech and swallowing ability to rapidly deteriorate. Although ALS is usually classified into familial and sporadic forms, diagnosing it can be extremely difficult due to the absence of definitive biomarkers, often resulting in delays in diagnosis. Current diagnostic practices rely heavily on clinical assessments that indicate damage to both upper motor neurons (UMNs) and lower motor neurons (LMNs). This includes comprehensive physical examinations, electromyography (EMG) to assess neuromuscular function, and the exclusion of other similar conditions such as cervical spondylotic myelopathy, multifocal motor neuropathy, and Kennedy's disease through appropriate diagnostic procedures. The urgent need for specific biomarkers is critical for timely diagnosis and therapeutic advancements in ALS management. While many recent developments in research have not yet translated into direct patient benefits, the recognition of ALS as a complex disease is beginning to influence clinical practice significantly. Optimal management strategies emphasize on symptom control and improving the quality of life for patients within a holistic healthcare framework. This review provides a comprehensive overview of ALS, delving into its pathophysiology, clinical symptoms, and the latest advancements in detection methods that utilize traditional approaches, innovative biosensors, and smart diagnostic technologies. It discusses various treatment options available for ALS while exploring future developments that may enhance patient screening and improve clinical outcomes. By integrating assessments into the underlying mechanisms of the disease with cutting-edge diagnostic approaches, this review aims to contribute meaningfully to ongoing efforts to optimize ALS management and therapeutic strategies, ultimately improving patient care and outcomes.
Collapse
Affiliation(s)
- Saumitra Singh
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Sameer Khan
- Department of Biochemistry, Jamia Hamdard, New Delhi 110062, India
| | - Shina Khan
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Osheen Ansari
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| | - Nitesh Malhotra
- Department of Physiotherapy, School of Allied Health Science, Manav Rachna International Institute of Research and Studies, Faridabad 121004, India
| | - Sudheesh K Shukla
- Centre for Nanoscience and Nano bioelectronics, School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Jagriti Narang
- Department of Biotechnology, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
26
|
Aubrey LD, Radford SE. How is the Amyloid Fold Built? Polymorphism and the Microscopic Mechanisms of Fibril Assembly. J Mol Biol 2025:169008. [PMID: 39954780 DOI: 10.1016/j.jmb.2025.169008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
For a given protein sequence, many, up to sometimes hundreds of different amyloid fibril folds, can be formed in vitro. Yet, fibrils extracted from, or found in, human tissue, usually at the end of a long disease process, are often structurally homogeneous. Through monitoring of amyloid assembly reactions in vitro, the scientific community has gained a detailed understanding of the kinetic mechanisms of fibril assembly and the rates at which the different processes involved occur. However, how this kinetic information relates to the structural changes as a protein transforms from its initial, native structure to the canonical cross-β structure of amyloid remain obscure. While cryoEM has yielded a plethora of high-resolution information that portray a vast variety of fibril structures, there remains little knowledge of how and why each particular structure resulted. Recent work has demonstrated that fibril structures can change over an assembly time course, despite the different fibril types having similar thermodynamic stability. This points to kinetic control of the fibrils formed, with structures that initiate or elongate faster becoming the dominant products of assembly. Annotating kinetic assembly mechanisms alongside structural analysis of the fibrils formed is required to truly understand the molecular mechanisms of amyloid formation. However, this is a complicated task. In this review, we discuss how embracing this challenge could open new frontiers in amyloid research and new opportunities for therapy.
Collapse
Affiliation(s)
- Liam D Aubrey
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Sheena E Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Science, University of Leeds, Leeds LS2 9JT, United Kingdom.
| |
Collapse
|
27
|
Moens TG, Da Cruz S, Neumann M, Shelkovnikova TA, Shneider NA, Van Den Bosch L. Amyotrophic lateral sclerosis caused by FUS mutations: advances with broad implications. Lancet Neurol 2025; 24:166-178. [PMID: 39862884 DOI: 10.1016/s1474-4422(24)00517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/25/2024] [Accepted: 12/11/2024] [Indexed: 01/27/2025]
Abstract
Autosomal dominant mutations in the gene encoding the DNA and RNA binding protein FUS are a cause of amyotrophic lateral sclerosis (ALS), and about 0·3-0·9% of patients with ALS are FUS mutation carriers. FUS-mutation-associated ALS (FUS-ALS) is characterised by early onset and rapid progression, compared with other forms of ALS. However, different pathogenic mutations in FUS can result in markedly different age at symptom onset and rate of disease progression. Most FUS mutations disrupt its nuclear localisation, leading to its cytoplasmic accumulation in the CNS. FUS also forms inclusions in around 5% of patients with the related neurodegenerative condition frontotemporal dementia. However, there are key differences between the two diseases at the genetic and neuropathological level, which suggest distinct pathogenic processes. Experimental models have uncovered potential pathogenic mechanisms in FUS-ALS and informed therapeutic strategies that are currently in development, including the silencing of FUS expression using an intrathecally administered antisense oligonucleotide.
Collapse
Affiliation(s)
- Thomas G Moens
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium; CRUK Scotland Institute, Glasgow, UK
| | - Sandrine Da Cruz
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurophysiology in Neurodegenerative Disorders, Center for Brain & Disease Research, VIB, Leuven, Belgium
| | - Manuela Neumann
- German Center for Neurodegenerative Diseases, Tübingen, Germany; Department of Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute (SITraN), University of Sheffield, Sheffield, UK
| | - Neil A Shneider
- Department of Neurology, Center for Motor Neuron Biology and Disease and Eleanor and Lou Gehrig ALS Center, Columbia University, New York, NY, USA
| | - Ludo Van Den Bosch
- Department of Neurosciences, and Leuven Brain Institute, University of Leuven, Leuven, Belgium; Laboratory of Neurobiology, Center for Brain & Disease Research, VIB, Leuven, Belgium.
| |
Collapse
|
28
|
Yeganeh Markid T, Pourahmadiyan A, Hamzeh S, Sharifi-Bonab M, Asadi MR, Jalaiei A, Rezazadeh M, Ghafouri-Fard S. A special focus on polyadenylation and alternative polyadenylation in neurodegenerative diseases: A systematic review. J Neurochem 2025; 169:e16255. [PMID: 39556113 DOI: 10.1111/jnc.16255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/19/2024]
Abstract
Neurodegenerative diseases (NDDs) are one of the prevailing conditions characterized by progressive neuronal loss. Polyadenylation (PA) and alternative polyadenylation (APA) are the two main post-transcriptional events that regulate neuronal gene expression and protein production. This systematic review analyzed the available literature on the role of PA and APA in NDDs, with an emphasis on their contributions to disease development. A comprehensive literature search was performed using the PubMed, Scopus, Cochrane, Google Scholar, Embase, Web of Science, and ProQuest databases. The search strategy was developed based on the framework introduced by Arksey and O'Malley and supplemented by the inclusion and exclusion criteria. The study selection was performed by two independent reviewers. Extraction and data organization were performed in accordance with the predefined variables. Subsequently, quantitative and qualitative analyses were performed. Forty-seven studies were included, related to a variety of NDDs, namely Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis. Disease induction was performed using different models, including human tissues, animal models, and cultured cells. Most investigations were related to PA, although some were related to APA or both. Amyloid precursor protein (APP), Tau, SNCA, and STMN2 were the major genes identified; most of the altered PA patterns were related to mRNA stability and translation efficiency. This review particularly underscores the key roles of PA and APA in the pathogenesis of NDDs through their mechanisms that contribute to gene expression dysregulation, protein aggregation, and neuronal dysfunction. Insights into these mechanisms may lead to new therapeutic strategies focused on the modulation of PA and APA activities. Further research is required to investigate the translational potential of targeting these pathways for NDD treatment.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azam Pourahmadiyan
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Soroosh Hamzeh
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mirmohsen Sharifi-Bonab
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohamad Reza Asadi
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Abbas Jalaiei
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Li Y, Sun S. RNA dysregulation in neurodegenerative diseases. EMBO J 2025; 44:613-638. [PMID: 39789319 PMCID: PMC11790913 DOI: 10.1038/s44318-024-00352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/12/2025] Open
Abstract
Dysregulation of RNA processing has in recent years emerged as a significant contributor to neurodegeneration. The diverse mechanisms and molecular functions underlying RNA processing underscore the essential role of RNA regulation in maintaining neuronal health and function. RNA molecules are bound by RNA-binding proteins (RBPs), and interactions between RNAs and RBPs are commonly affected in neurodegeneration. In this review, we highlight recent progress in understanding dysregulated RNA-processing pathways and the causes of RBP dysfunction across various neurodegenerative diseases. We discuss both established and emerging mechanisms of RNA-mediated neuropathogenesis in this rapidly evolving field. Furthermore, we explore the development of potential RNA-targeting therapeutic approaches for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yini Li
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Shuying Sun
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Departments of Neuroscience, Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
30
|
Hegde AN, Timm LE, Sivley CJ, Ramiyaramcharankarthic S, Lowrimore OJ, Hendrix BJ, Grozdanov TG, Anderson WJ. Ubiquitin-Proteasome-Mediated Protein Degradation and Disorders of the Central Nervous System. Int J Mol Sci 2025; 26:966. [PMID: 39940735 PMCID: PMC11817509 DOI: 10.3390/ijms26030966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 02/16/2025] Open
Abstract
Ubiquitin-proteasome-mediated proteolysis post-translationally regulates the amounts of many proteins that are critical for the normal physiology of the central nervous system. Research carried out over the last several years has revealed a role for components of the ubiquitin-proteasome pathway (UPP) in many neurodegenerative diseases such as Parkinson's disease and Huntington's disease. Studies have also shown a role for the UPP in mental disorders such as schizophrenia and autism. Even though dysregulation of protein degradation by the UPP is a contributory factor to the pathology underlying many nervous system disorders, the association between the components of the UPP and these diseases is far from simple. In this review, we discuss the connections between the UPP and some of the major mental disorders and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ashok N. Hegde
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA; (L.E.T.); (C.J.S.); (S.R.); (O.J.L.); (B.J.H.); (T.G.G.); (W.J.A.)
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ou K, Jia Q, Li D, Li S, Li XJ, Yin P. Application of antisense oligonucleotide drugs in amyotrophic lateral sclerosis and Huntington's disease. Transl Neurodegener 2025; 14:4. [PMID: 39838446 PMCID: PMC11748355 DOI: 10.1186/s40035-025-00466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) are diverse in clinical presentation and are caused by complex and multiple factors, including genetic mutations and environmental factors. Numerous therapeutic approaches have been developed based on the genetic causes and potential mechanisms of ALS and HD. Currently, available treatments for various neurodegenerative diseases can alleviate symptoms but do not provide a definitive cure. Gene therapy, which aims to modify or express specific proteins for neuroprotection or correction, is considered a powerful tool in managing neurodegenerative conditions. To date, antisense oligonucleotide (ASO) drugs targeting the pathological genes associated with ALS and HD have shown promising results in numerous animal studies and several clinical trials. This review provides a comprehensive overview of the development, mechanisms of action, limitations, and clinical applications of ASO drugs in neurodegenerative diseases, with a specific focus on ALS and HD therapeutic strategies.
Collapse
Affiliation(s)
- Kaili Ou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Qingqing Jia
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Dandan Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Shihua Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China
| | - Xiao-Jiang Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| | - Peng Yin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Guangdong Key Laboratory of Non-Human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
32
|
Wijegunawardana D, Nayak A, Vishal SS, Venkatesh N, Gopal PP. Ataxin-2 polyglutamine expansions aberrantly sequester TDP-43 ribonucleoprotein condensates disrupting mRNA transport and local translation in neurons. Dev Cell 2025; 60:253-269.e5. [PMID: 39419034 PMCID: PMC12063900 DOI: 10.1016/j.devcel.2024.09.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/10/2024] [Accepted: 09/19/2024] [Indexed: 10/19/2024]
Abstract
Altered RNA metabolism and misregulation of transactive response DNA-binding protein of 43 kDa (TDP-43), an essential RNA-binding protein (RBP), define amyotrophic lateral sclerosis (ALS). Intermediate-length polyglutamine (polyQ) expansions of Ataxin-2, a like-Sm (LSm) RBP, are associated with increased risk for ALS, but the underlying biological mechanisms remain unknown. Here, we studied the spatiotemporal dynamics and mRNA regulatory functions of TDP-43 and Ataxin-2 ribonucleoprotein (RNP) condensates in rodent (rat) primary cortical neurons and mouse motor neuron axons in vivo. We report that Ataxin-2 polyQ expansions aberrantly sequester TDP-43 within RNP condensates and disrupt both its motility along the axon and liquid-like properties. We provide evidence that Ataxin-2 governs motility and translation of neuronal RNP condensates and that Ataxin-2 polyQ expansions fundamentally perturb spatial localization of mRNA and suppress local translation. Overall, our results support a model in which Ataxin-2 polyQ expansions disrupt stability, localization, and/or translation of critical axonal and cytoskeletal mRNAs, particularly important for motor neuron integrity.
Collapse
Affiliation(s)
- Denethi Wijegunawardana
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Asima Nayak
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Sonali S Vishal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA
| | - Neha Venkatesh
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Pallavi P Gopal
- Department of Pathology, Yale School of Medicine, New Haven, CT 06510, USA; Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
33
|
Setsu S, Morimoto S, Nakamura S, Ozawa F, Utami KH, Nishiyama A, Suzuki N, Aoki M, Takeshita Y, Tomari Y, Okano H. Swift induction of human spinal lower motor neurons and robust ALS cell screening via single-cell imaging. Stem Cell Reports 2025; 20:102377. [PMID: 39706179 PMCID: PMC11784480 DOI: 10.1016/j.stemcr.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 11/13/2024] [Accepted: 11/18/2024] [Indexed: 12/23/2024] Open
Abstract
This study introduces a novel method for rapidly and efficiently inducing human spinal lower motor neurons (LMNs) from induced pluripotent stem cells (iPSCs) to eventually elucidate the pathomechanisms of amyotrophic lateral sclerosis (ALS) and facilitate drug screening. Previous methods were limited by low induction efficiency, poor LMN purity, or labor-intensive induction and evaluation processes. Our protocol overcomes these challenges, achieving around 80% induction efficiency within just two weeks by combining a small molecule-based approach with transcription factor transduction. Moreover, to exclude non-LMN cells from the analysis, we utilized time-lapse microscopy and machine learning to analyze the morphology and viability of iPSC-derived LMNs on a single-cell basis, establishing an effective pathophysiological evaluation system. This rapid, efficient, and streamlined protocol, along with our single-cell-based evaluation method, enables large-scale analysis and drug screening using iPSC-derived motor neurons.
Collapse
Affiliation(s)
- Selena Setsu
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Satoru Morimoto
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan.
| | - Shiho Nakamura
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Fumiko Ozawa
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Kagistia Hana Utami
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan
| | - Ayumi Nishiyama
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Naoki Suzuki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; Department of Rehabilitation Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | - Yukio Takeshita
- Department of Neurology and Clinical Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 753-8511, Japan; Department of Neurotherapeutics, Yamaguchi University Graduate School of Medicine, Yamaguchi 753-8511, Japan
| | - Yukihide Tomari
- Laboratory of RNA Function, Institute for Quantitative Biosciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hideyuki Okano
- Keio University Regenerative Medicine Research Center, Kanagawa 210-0821, Japan; Division of Neurodegenerative Disease Research, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Tokyo 173-0015, Japan.
| |
Collapse
|
34
|
Jiang S, Xu R. The Current Potential Pathogenesis of Amyotrophic Lateral Sclerosis. Mol Neurobiol 2025; 62:221-232. [PMID: 38829511 DOI: 10.1007/s12035-024-04269-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 05/23/2024] [Indexed: 06/05/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease mainly characterized by the accumulation of ubiquitinated proteins in the affected motor neurons. At present, the accurate pathogenesis of ALS remains unclear and there are still no effective treatment measures for ALS. The potential pathogenesis of ALS mainly includes the misfolding of some pathogenic proteins, the genetic variation, mitochondrial dysfunction, autophagy disorders, neuroinflammation, the misregulation of RNA, the altered axonal transport, and gut microbial dysbiosis. Exploring the pathogenesis of ALS is a critical step in searching for the effective therapeutic approaches. The current studies suggested that the genetic variation, gut microbial dysbiosis, the activation of glial cells, and the transportation disorder of extracellular vesicles may play some important roles in the pathogenesis of ALS. This review conducts a systematic review of these current potential promising topics closely related to the pathogenesis of ALS; it aims to provide some new evidences and clues for searching the novel treatment measures of ALS.
Collapse
Affiliation(s)
- Shishi Jiang
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Center South University, Jiangxi Hospital. No. 152 of Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China
- Medical College of Nanchang University, Nanchang, 330006, China
| | - Renshi Xu
- Department of Neurology, Jiangxi Provincial People's Hospital, Clinical College of Nanchang Medical College, First Affiliated Hospital of Nanchang Medical College, National Regional Center for Neurological Diseases, Xiangya Hospital of Center South University, Jiangxi Hospital. No. 152 of Aiguo Road, Donghu District, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
35
|
Wei Z, Iyer MR, Zhao B, Deng J, Mitchell CS. Artificial Intelligence-Assisted Comparative Analysis of the Overlapping Molecular Pathophysiology of Alzheimer's Disease, Amyotrophic Lateral Sclerosis, and Frontotemporal Dementia. Int J Mol Sci 2024; 25:13450. [PMID: 39769215 PMCID: PMC11678588 DOI: 10.3390/ijms252413450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/27/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025] Open
Abstract
The overlapping molecular pathophysiology of Alzheimer's Disease (AD), Amyotrophic Lateral Sclerosis (ALS), and Frontotemporal Dementia (FTD) was analyzed using relationships from a knowledge graph of 33+ million biomedical journal articles. The unsupervised learning rank aggregation algorithm from SemNet 2.0 compared the most important amino acid, peptide, and protein (AAPP) nodes connected to AD, ALS, or FTD. FTD shared 99.9% of its nodes with ALS and AD; AD shared 64.2% of its nodes with FTD and ALS; and ALS shared 68.3% of its nodes with AD and FTD. The results were validated and mapped to functional biological processes using supervised human supervision and an external large language model. The overall percentages of mapped intersecting biological processes were as follows: inflammation and immune response, 19%; synapse and neurotransmission, 19%; cell cycle, 15%; protein aggregation, 12%; membrane regulation, 11%; stress response and regulation, 9%; and gene regulation, 4%. Once normalized for node count, biological mappings for cell cycle regulation and stress response were more prominent in the intersection of AD and FTD. Protein aggregation, gene regulation, and energetics were more prominent in the intersection of ALS and FTD. Synapse and neurotransmission, membrane regulation, and inflammation and immune response were greater at the intersection of AD and ALS. Given the extensive molecular pathophysiology overlap, small differences in regulation, genetic, or environmental factors likely shape the underlying expressed disease phenotype. The results help prioritize testable hypotheses for future clinical or experimental research.
Collapse
Affiliation(s)
- Zihan Wei
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Meghna R. Iyer
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Benjamin Zhao
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jennifer Deng
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Cassie S. Mitchell
- Laboratory for Pathology Dynamics, Department of Biomedical Engineering, Georgia Institute of Technology & Emory University School of Medicine, Atlanta, GA 30322, USA
- Center for Machine Learning at Georgia Tech, Atlanta, GA 30332, USA
| |
Collapse
|
36
|
Xu X, Rebane AA, Roset Julia L, Rosowski KA, Dufresne ER, Stellacci F. Amino acids modulate liquid-liquid phase separation in vitro and in vivo by regulating protein-protein interactions. Proc Natl Acad Sci U S A 2024; 121:e2407633121. [PMID: 39642205 DOI: 10.1073/pnas.2407633121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 10/24/2024] [Indexed: 12/08/2024] Open
Abstract
Liquid-liquid phase separation (LLPS) is an intracellular process widely used by cells for many key biological functions. It occurs in complex and crowded environments, where amino acids (AAs) are vital components. We have found that AAs render the net interaction between proteins more repulsive. Here, we find that some AAs efficiently suppress LLPS in test tubes (in vitro). We then screen all the proteinogenic AAs and find that three specific AAs, including proline, glutamine, and glycine, significantly suppressed the formation of stress granules (SGs) in U2OS and HeLa cell lines (in vivo) irrespective of stress types. We also observe the effect in primary fibroblast cells, a viable cell model for neurodegenerative disorders. Kinetic studies by live-cell microscopy show that the presence of AAs not only slows down the formation but also decreases the saturating number and prevents the coalescence of SGs. We finally use sedimentation-diffusion equilibrium analytical ultracentrifuge (SE-AUC) to demonstrate that the suppression effects of AAs on LLPS may be due to their modulation in protein-protein and RNA-RNA interactions. Overall, this study reveals an underappreciated role of cellular AAs, which may find biomedical applications, especially in treating SG-associated diseases.
Collapse
Affiliation(s)
- Xufeng Xu
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Aleksander A Rebane
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
- Life Molecules and Materials Lab, Programs in Chemistry and Physics, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Laura Roset Julia
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Kathryn A Rosowski
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
| | - Eric R Dufresne
- Laboratory of Soft and Living Materials, Department of Materials, ETH Zurich, Zurich 8093, Switzerland
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY 14853
- Department of Physics, Cornell University, Ithaca, NY 14853
| | - Francesco Stellacci
- Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
37
|
Devarakonda SS, Basha S, Pithakumar A, L B T, Mukunda DC, Rodrigues J, K A, Biswas S, Pai AR, Belurkar S, Mahato KK. Molecular mechanisms of neurofilament alterations and its application in assessing neurodegenerative disorders. Ageing Res Rev 2024; 102:102566. [PMID: 39481763 DOI: 10.1016/j.arr.2024.102566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/04/2024] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Neurofilaments are intermediate filaments present in neurons. These provide structural support and maintain the size and shape of the neurons. Dysregulation, mutation, and aggregation of neurofilaments raise the levels of these proteins in the blood and cerebrospinal fluid (CSF), which are characteristic features of axonal damage and certain rare neurological diseases, such as Giant Axonal Neuropathy and Charcot-Mare-Tooth disease. Understanding the structure, dynamics, and function of neurofilaments has been greatly enhanced by a diverse range of biochemical and preclinical investigations conducted over more than four decades. Recently, there has been a resurgence of interest in post-translational modifications of neurofilaments, such as phosphorylation, aggregation, mutation, oxidation, etc. Over the past twenty years, several rare disorders have been studied from structural alterations of neurofilaments. These disorders are monitored by fluid biomarkers such as neurofilament light chains. Currently, there are many tools, such as Enzyme-Linked Immunosorbent Assay, Electrochemiluminescence Assay, Single-Molecule Array, Western/immunoblotting, etc., in use to assess the neurofilament proteins in Blood and CSF. However, all these techniques utilize expensive, non-specific, or antibody-based methods, which make them unsuitable for routine screening of neurodegenerative disorders. This provides room to search for newer sensitive, cost-effective, point-of-care tools for rapid screening of the disease. For a long time, the molecular mechanisms of neurofilaments have been poorly understood due to insufficient research attempts, and a deeper understanding of them remains elusive. Therefore, this review aims to highlight the available literature on molecular mechanisms of neurofilaments and the function of neurofilaments in axonal transport, axonal conduction, axonal growth, and neurofilament aggregation, respectively. Further, this review discusses the role of neurofilaments as potential biomarkers for the identification of several neurodegenerative diseases in clinical laboratory practice.
Collapse
Affiliation(s)
| | - Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Anjana Pithakumar
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Thoshna L B
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Ameera K
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Shimul Biswas
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Sushma Belurkar
- Department of Pathology, Kasturba Medical College-Manipal, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal - 576104, Karnataka, India.
| |
Collapse
|
38
|
Kodavati M, Maloji Rao VH, Mitra J, Hegde ML. Selective Inhibition of Cytosolic PARylation via PARG99: A Targeted Approach for Mitigating FUS-associated Neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625276. [PMID: 39651224 PMCID: PMC11623568 DOI: 10.1101/2024.11.25.625276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS) are characterized by complex etiologies, often involving disruptions in functions of RNA/DNA binding proteins (RDBPs) such as FUS and TDP-43. The cytosolic mislocalization and aggregation of these proteins are linked to accumulation of unresolved stress granules (SGs), which exacerbate the disease progression. Poly-ADP-ribose polymerase (PARP)-mediated PARylation plays a critical role in this pathological cascade, making it a potential target for intervention. However, conventional PARP inhibitors are limited by their detrimental effects on DNA repair pathways, which are already compromised in ALS. To address this limitation, we investigated a strategy focused on targeting the cytosolic compartment by expressing the cytosol-specific, natural PAR- glycohydrolase (PARG) isoform, PARG99. Using ALS patient derived FUS mutant induced pluripotent cells (iPSCs) and differentiated neurons, we observed elevated levels of FUS in insoluble fractions in mutant cells compared to mutation-corrected isogenic lines. The insoluble FUS as well as TDP-43 levels increased further in sodium arsenite-treated or oxidatively stressed cells, correlating with accumulation of unresolved SGs. Notably, both PARG99 and PARP inhibitors reduced SG formation and insoluble FUS levels, however, PARG99 treated cells exhibited significantly lower DNA damage markers and improved viability under oxidative and arsenite stress. This study highlights the potential of PARG99 as a cytosol-specific intervention to mitigate FUS-associated toxicity while preserving critical nuclear DNA repair mechanisms, offering a promising strategy for addressing the underlying pathology of ALS and potentially other SG-associated neurodegenerative diseases.
Collapse
|
39
|
Zimyanin V, Dash BP, Großmann D, Simolka T, Glaß H, Verma R, Khatri V, Deppmann C, Zunder E, Redemann S, Hermann A. Axonal transcriptome reveals upregulation of PLK1 as a protective mechanism in response to increased DNA damage in FUS P525L spinal motor neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.20.624439. [PMID: 39605661 PMCID: PMC11601502 DOI: 10.1101/2024.11.20.624439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Mutations in the gene FUSED IN SARCOMA ( FUS ) are among the most frequently occurring genetic forms of amyotrophic lateral sclerosis (ALS). Early pathogenesis of FUS -ALS involves impaired DNA damage response and axonal degeneration. However, it is still poorly understood how these gene mutations lead to selective spinal motor neuron (MN) degeneration and how nuclear and axonal phenotypes are linked. To specifically address this, we applied a compartment specific RNA-sequencing approach using microfluidic chambers to generate axonal as well as somatodendritic compartment-specific profiles from isogenic induced pluripotent stem cells (iPSCs)-derived MNs. We demonstrate high purity of axonal and soma fractions and show that the axonal transcriptome is unique and distinct from that of somas including significantly fewer number of transcripts. Functional enrichment analysis revealed that differentially expressed genes (DEGs) in axons were mainly enriched in key pathways like RNA metabolism and DNA damage, complementing our knowledge of early phenotypes in ALS pathogenesis and known functions of FUS. In addition, we demonstrate a strong enrichment for cell cycle associated genes including significant upregulation of polo-like kinase 1 (PLK1) in FUS P525L mutant MNs. PLK1 was increased upon DNA damage induction and PLK1 inhibition further increased the number of DNA damage foci in etoposide-treated cells, an effect that was diminished in case of FUS mutant MNs. In contrast, inhibition of PLK1 increased late apoptotic or necrosis-induced neuronal cell death in mutant neurons. Taken together, our findings provide insights into compartment-specific transcriptomics in human FUS -ALS MNs and we propose that specific upregulation of PLK1 might represent an early event in the pathogenesis of ALS, possibly modulating DNA damage response and other associated pathways.
Collapse
|
40
|
Luan T, Li Q, Huang Z, Feng Y, Xu D, Zhou Y, Hu Y, Wang T. Axonopathy Underlying Amyotrophic Lateral Sclerosis: Unraveling Complex Pathways and Therapeutic Insights. Neurosci Bull 2024; 40:1789-1810. [PMID: 39097850 PMCID: PMC11607281 DOI: 10.1007/s12264-024-01267-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/08/2024] [Indexed: 08/05/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex neurodegenerative disorder characterized by progressive axonopathy, jointly leading to the dying back of the motor neuron, disrupting both nerve signaling and motor control. In this review, we highlight the roles of axonopathy in ALS progression, driven by the interplay of multiple factors including defective trafficking machinery, protein aggregation, and mitochondrial dysfunction. Dysfunctional intracellular transport, caused by disruptions in microtubules, molecular motors, and adaptors, has been identified as a key contributor to disease progression. Aberrant protein aggregation involving TDP-43, FUS, SOD1, and dipeptide repeat proteins further amplifies neuronal toxicity. Mitochondrial defects lead to ATP depletion, oxidative stress, and Ca2+ imbalance, which are regarded as key factors underlying the loss of neuromuscular junctions and axonopathy. Mitigating these defects through interventions including neurotrophic treatments offers therapeutic potential. Collaborative research efforts aim to unravel ALS complexities, opening avenues for holistic interventions that target diverse pathological mechanisms.
Collapse
Affiliation(s)
- Tongshu Luan
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Qing Li
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhi Huang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yu Feng
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Duo Xu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yujie Zhou
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Yiqing Hu
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Tong Wang
- The Brain Center, School of Life Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
41
|
Yu L, Wu N, Choi O, Nguyen KD. Inhibition of glycolytic reprogramming suppresses innate immune-mediated inflammation in experimental amyotrophic lateral sclerosis. Inflamm Res 2024; 73:1847-1857. [PMID: 39167140 DOI: 10.1007/s00011-024-01935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/18/2024] [Accepted: 08/13/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Innate immune activation has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, metabolic pathways that govern this bioenergetically demanding process in ALS remains elusive. Here we investigated whether and how immunometabolic transformation of innate immune cells contributes to disease progression in an experimental model of this neurodegenerative disease. METHODS We utilized multidimensional flow cytometry and integrative metabolomics to characterize the immunometabolic phenotype of circulating and spinal cord innate immune cells in the B6SJL-Tg(SOD1*G93A)1Gur/J model of ALS (SOD1-G93A) at various disease stages (before vs. after the onset of motor dysfunction). Behavioral and survival analyses were also conducted to determine the impact of an energy-regulating compound on innate immune cell metabolism, inflammation, and disease development. RESULTS Temporally coordinated accumulation of circulating inflammatory Ly6C + monocytes and spinal cord F4/80 + CD45hi infiltrates precedes the onset of motor dysfunction in SOD1-G93A mice. Subsequent metabolomic analysis reveals that this phenomenon is accompanied by glycolytic reprogramming of spinal cord inflammatory CD11b + cells, comprising both resident F4/80 + CD45low microglia and F4/80 + CD45hi infiltrates. Furthermore, pharmacologic inhibition of glycolysis by ZLN005, a small molecule activator of Ppargc1a, restrains inflammatory glycolytic activation of spinal cord CD11b + cells, enhances motor function, and prolongs survival in SOD1-G93A mice. CONCLUSIONS These observations suggest that modulation of inflammatory glycolytic reprogramming of innate immune cells may represent a promising therapeutic approach in ALS.
Collapse
Affiliation(s)
- Lewis Yu
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Nancy Wu
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Okmi Choi
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | - Khoa Dinh Nguyen
- Department of Pathology, Stanford University, Palo Alto, CA, USA.
- Program in Immunology, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
42
|
Schmeing S, Hart P'. Challenges in Therapeutically Targeting the RNA-Recognition Motif. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1877. [PMID: 39668490 PMCID: PMC11638515 DOI: 10.1002/wrna.1877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
The RNA recognition motif (RRM) is the most common RNA binding domain found in the human proteome. RRM domains provide RNA-binding proteins with sequence specific RNA recognition allowing them to participate in RNA-centric processes such as mRNA maturation, translation initiation, splicing, and RNA degradation. They are drivers of various diseases through overexpression or mutation, making them attractive therapeutic targets and addressing these proteins through their RRM domains with chemical compounds is gaining ever more attention. However, it is still very challenging to find selective and potent RNA-competitors due to the small size of the domain and high structural conservation of its RNA binding interface. Despite these challenges, a selection of compounds has been reported for several RRM containing proteins, but often with limited biophysical evidence and low selectivity. A solution to selectively targeting RRM domains might be through avoiding the RNA-binding surface altogether, but rather look for composite pockets formed with other proteins or for protein-protein interaction sites that regulate the target's activity but are less conserved. Alternative modalities, such as oligonucleotides, peptides, and molecular glues, are exciting new approaches to address these challenging targets and achieve the goal of therapeutic intervention at the RNA regulatory level.
Collapse
Affiliation(s)
- Stefan Schmeing
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| | - Peter 't Hart
- Chemical Genomics Centre of the Max Planck SocietyMax Planck Institute of Molecular PhysiologyDortmundGermany
| |
Collapse
|
43
|
Paubel A, Marouillat S, Dangoumau A, Maurel C, Haouari S, Blasco H, Corcia P, Laumonnier F, Andres CR, Vourc’h P. Dynamic Expression of Genes Encoding Ubiquitin Conjugating Enzymes (E2s) During Neuronal Differentiation and Maturation: Implications for Neurodevelopmental Disorders and Neurodegenerative Diseases. Genes (Basel) 2024; 15:1381. [PMID: 39596581 PMCID: PMC11593721 DOI: 10.3390/genes15111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Background: The ubiquitination process plays a crucial role in neuronal differentiation and function. Numerous studies have focused on the expression and functions of E3 ligases during these different stages, far fewer on E2 conjugating enzymes. In mice, as in humans, these E2s belong to 17 conjugating enzyme families. Objectives: We analyzed by real-time PCR the expression dynamics of all known E2 genes during an in vitro differentiation of mouse hippocampal neuronal cultures, and after, we analyzed their stimulation with N-methyl-D-aspartate (NMDA). Results: We found that 36 of the 38 E2 genes were expressed in hippocampal neurons. Many were up-regulated during neuritogenesis and/or synaptogenesis stages, such as Ube2h, Ube2b, and Aktip. Rapid and delayed responses to NMDA stimulation were associated with the increased expression of several E2 genes, such as Ube2i, the SUMO-conjugating E2 enzyme. We also observed similar expression profiles within the same E2 gene family, consistent with the presence of similar transcription factor binding sites in their respective promoter sequences. Conclusions: Our study indicates that specific expression profiles of E2 genes are correlated with changes in neuronal differentiation and activity. A better understanding of the regulation and function of E2s is needed to better understand the role played by the ubiquitination process in physiological mechanisms and pathophysiological alterations involved in neurodevelopmental or neurodegenerative diseases.
Collapse
Affiliation(s)
- Agathe Paubel
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Sylviane Marouillat
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Audrey Dangoumau
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Cindy Maurel
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Shanez Haouari
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Hélène Blasco
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37032 Tours, France
| | - Philippe Corcia
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Neurologie, Centre SLA, CHU de Tours, 37032 Tours, France
| | - Frédéric Laumonnier
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
| | - Christian R. Andres
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37032 Tours, France
| | - Patrick Vourc’h
- Université de Tours, INSERM, Imaging Brain & Neuropsychiatry iBraiN U1253, 37044 Tours, France; (A.P.); (A.D.); (C.M.); (S.H.); (H.B.); (P.C.); (F.L.); (C.R.A.)
- Service de Biochimie et Biologie Moléculaire, CHU de Tours, 37032 Tours, France
| |
Collapse
|
44
|
Velasquez E, Savchenko E, Marmolejo-Martínez-Artesero S, Challuau D, Aebi A, Pomeshchik Y, Lamas NJ, Vihinen M, Rezeli M, Schneider B, Raoul C, Roybon L. TNFα prevents FGF4-mediated rescue of astrocyte dysfunction and reactivity in human ALS models. Neurobiol Dis 2024; 201:106687. [PMID: 39362568 DOI: 10.1016/j.nbd.2024.106687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024] Open
Abstract
Astrocytes play a crucial role in the onset and progression of amyotrophic lateral sclerosis (ALS), a fatal disorder marked by the degeneration of motor neurons (MNs) in the central nervous system. Although astrocytes in ALS are known to be toxic to MNs, the pathological changes leading to their neurotoxic phenotype remain poorly understood. In this study, we generated human astrocytes from induced pluripotent stem cells (iPSCs) carrying the ALS-associated A4V mutation in superoxide dismutase 1 (SOD1) to examine early cellular pathways and network changes. Proteomic analysis revealed that ALS astrocytes are both dysfunctional and reactive compared to control astrocytes. We identified significant alterations in the levels of proteins linked to ALS pathology and the innate immune cGAS-STING pathway. Furthermore, we found that ALS astrocyte reactivity differs from that of control astrocytes treated with tumor necrosis factor alpha (TNFα), a key cytokine in inflammatory reactions. We then evaluated the potential of fibroblast growth factor (FGF) 2, 4, 16, and 18 to reverse ALS astrocyte phenotype. Among these, FGF4 successfully reversed ALS astrocyte dysfunction and reactivity in vitro. When delivered to the spinal cord of the SOD1G93A mouse model of ALS, FGF4 lowered astrocyte reactivity. However, this was not sufficient to protect MNs from cell death. Further analysis indicated that TNFα abrogated the reactivity reduction achieved by FGF4, suggesting that complete rescue of the ALS phenotype by FGF4 is hindered by ongoing complex neuroinflammatory processes in vivo. In summary, our data demonstrate that astrocytes generated from ALS iPSCs are inherently dysfunctional and exhibit an immune reactive phenotype. Effectively targeting astrocyte dysfunction and reactivity in vivo may help mitigate ALS and prevent MN death.
Collapse
Affiliation(s)
- Erika Velasquez
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Ekaterina Savchenko
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | | | | | - Aline Aebi
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland.
| | - Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden.
| | - Nuno Jorge Lamas
- Anatomic Pathology Service, Pathology Department, Centro Hospitalar e Universitário do Porto, Largo Professor Abel Salazar, 4099-001 Porto, Portugal; Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, University of Minho, 4710-057 Braga, Portugal.
| | - Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, 22184 Lund, Sweden..
| | - Melinda Rezeli
- Department of Biomedical Engineering, Lund University, Lund, Sweden; BioMS - Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, Lund, Sweden.
| | - Bernard Schneider
- Bertarelli Platform for Gene Therapy, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland; Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Cedric Raoul
- INM, Univ Montpellier, INSERM, 34091, Montpellier, France.
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modelling, Department of Experimental Medical Science, BMC D10, Lund University, 22184 Lund, Sweden; Strategic Research Area MultiPark, Lund University, Lund SE-221 84, Sweden; Lund Stem Cell Center, Lund University, Lund SE-221 84, Sweden; Department of Neurodegenerative Science, the MiND program, Van Andel Institute, Grand Rapids, 49503, MI, USA.
| |
Collapse
|
45
|
Hazell G, McCallion E, Ahlskog N, Sutton ER, Okoh M, Shaqoura EIH, Hoolachan JM, Scaife T, Iqbal S, Bhomra A, Kordala AJ, Scamps F, Raoul C, Wood MJA, Bowerman M. Exercise, disease state and sex influence the beneficial effects of Fn14-depletion on survival and muscle pathology in the SOD1 G93A amyotrophic lateral sclerosis (ALS) mouse model. Skelet Muscle 2024; 14:23. [PMID: 39396990 PMCID: PMC11472643 DOI: 10.1186/s13395-024-00356-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Amyotrophic lateral sclerosis (ALS) is a devastating and incurable neurodegenerative disease. Accumulating evidence strongly suggests that intrinsic muscle defects exist and contribute to disease progression, including imbalances in whole-body metabolic homeostasis. We have previously reported that tumour necrosis factor (TNF)-like weak inducer of apoptosis (TWEAK) and fibroblast growth factor inducible 14 (Fn14) are significantly upregulated in skeletal muscle of the SOD1G93A ALS mouse model. While antagonising TWEAK did not impact survival, we did observe positive effects in skeletal muscle. Given that Fn14 has been proposed as the main effector of the TWEAK/Fn14 activity and that Fn14 can act independently from TWEAK in muscle, we suggest that manipulating Fn14 instead of TWEAK in the SOD1G93A ALS mice could lead to differential and potentially improved benefits. METHODS We thus investigated the contribution of Fn14 to disease phenotypes in the SOD1G93A ALS mice. To do so, Fn14 knockout mice (Fn14-/-) were crossed onto the SOD1G93A background to generate SOD1G93A;Fn14-/- mice. Investigations were performed on both unexercised and exercised (rotarod and/or grid test) animals (wild type (WT), Fn14-/-, SOD1G93A and SOD1G93A;Fn14-/-). RESULTS Here, we firstly confirm that the TWEAK/Fn14 pathway is dysregulated in skeletal muscle of SOD1G93A mice. We then show that Fn14-depleted SOD1G93A mice display increased lifespan, myofiber size, neuromuscular junction endplate area as well as altered expression of known molecular effectors of the TWEAK/Fn14 pathway, without an impact on motor function. Importantly, we also observe a complex interaction between exercise (rotarod and grid test), genotype, disease state and sex that influences the overall effects of Fn14 deletion on survival, expression of known molecular effectors of the TWEAK/Fn14 pathway, expression of myosin heavy chain isoforms and myofiber size. CONCLUSIONS Our study provides further insights on the different roles of the TWEAK/Fn14 pathway in pathological skeletal muscle and how they can be influenced by age, disease, sex and exercise. This is particularly relevant in the ALS field, where combinatorial therapies that include exercise regimens are currently being explored. As such, a better understanding and consideration of the interactions between treatments, muscle metabolism, sex and exercise will be of importance in future studies.
Collapse
Affiliation(s)
- Gareth Hazell
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Eve McCallion
- School of Medicine, Keele University, Staffordshire, UK
| | - Nina Ahlskog
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Emma R Sutton
- School of Medicine, Keele University, Staffordshire, UK
| | - Magnus Okoh
- School of Medicine, Keele University, Staffordshire, UK
| | | | | | - Taylor Scaife
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Sara Iqbal
- School of Life Sciences, Keele University, Staffordshire, UK
| | - Amarjit Bhomra
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Anna J Kordala
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | | | - Cedric Raoul
- INM, Univ Montpellier, INSERM, Montpellier, France
- ALS Reference Center, Univ Montpellier, CHU Montpellier, Montpellier, France
| | - Matthew J A Wood
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
- Department of Paediatrics, University of Oxford, Oxford, UK
| | - Melissa Bowerman
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK.
- School of Medicine, Keele University, Staffordshire, UK.
- Wolfson Centre for Inherited Neuromuscular Disease, RJAH Orthopaedic Hospital, Oswestry, UK.
| |
Collapse
|
46
|
Chung CS, Kou Y, Shemtov SJ, Verheijen BM, Flores I, Love K, Del Dosso A, Thorwald MA, Liu Y, Hicks D, Sun Y, Toney RG, Carrillo L, Nguyen MM, Biao H, Jin Y, Jauregui AM, Quiroz JD, Head E, Moore DL, Simpson S, Thomas KW, Coba MP, Li Z, Benayoun BA, Rosenthal JJC, Kennedy SR, Quadrato G, Gout JF, Chen L, Vermulst M. Transcript errors generate amyloid-like proteins in huwman cells. Nat Commun 2024; 15:8676. [PMID: 39375347 PMCID: PMC11458900 DOI: 10.1038/s41467-024-52886-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
Aging is characterized by the accumulation of proteins that display amyloid-like behavior. However, the molecular mechanisms by which these proteins arise remain unclear. Here, we demonstrate that amyloid-like proteins are produced in a variety of human cell types, including stem cells, brain organoids and fully differentiated neurons by mistakes that occur in messenger RNA molecules. Some of these mistakes generate mutant proteins already known to cause disease, while others generate proteins that have not been observed before. Moreover, we show that these mistakes increase when cells are exposed to DNA damage, a major hallmark of human aging. When taken together, these experiments suggest a mechanistic link between the normal aging process and age-related diseases.
Collapse
Affiliation(s)
- Claire S Chung
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yi Kou
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Sarah J Shemtov
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Bert M Verheijen
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Ilse Flores
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Kayla Love
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Ashley Del Dosso
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Max A Thorwald
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yuchen Liu
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Daniel Hicks
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Yingwo Sun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Renaldo G Toney
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Lucy Carrillo
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | - Megan M Nguyen
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Huang Biao
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Yuxin Jin
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | | | | | - Elizabeth Head
- University of California Irvine, Department of Pathology and Laboratory Medicine, Irvine, USA
| | - Darcie L Moore
- University of Wisconsin, Department of Neuroscience, Madison, USA
| | - Stephen Simpson
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Kelley W Thomas
- University of New Hampshire, Department of Molecular, Cellular, & Biomedical Sciences, Durham, USA
| | - Marcelo P Coba
- University of Southern California, Keck School of Medicine, Los Angeles, USA
| | - Zhongwei Li
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Bérénice A Benayoun
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA
| | | | - Scott R Kennedy
- University of Washington, Department of Pathology and Laboratory Medicine, Seattle, USA
| | - Giorgia Quadrato
- University of Southern California, Eli and Edythe Broad CIRM Center for Regenerative Medicine and Stem Cell Research, Los Angeles, USA
| | - Jean-Francois Gout
- Mississippi State University, Department of Biology, Mississippi State, USA
| | - Lin Chen
- University of Southern California, Molecular and Cellular Biology Department, Los Angeles, USA
| | - Marc Vermulst
- University of Southern California, Leonard Davis School of Gerontology, Los Angeles, USA.
| |
Collapse
|
47
|
Thumbadoo KM, Dieriks BV, Murray HC, Swanson MEV, Yoo JH, Mehrabi NF, Turner C, Dragunow M, Faull RLM, Curtis MA, Siddique T, Shaw CE, Newell KL, Henden L, Williams KL, Nicholson GA, Scotter EL. Hippocampal aggregation signatures of pathogenic UBQLN2 in amyotrophic lateral sclerosis and frontotemporal dementia. Brain 2024; 147:3547-3561. [PMID: 38703371 PMCID: PMC11449146 DOI: 10.1093/brain/awae140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 03/03/2024] [Accepted: 03/07/2024] [Indexed: 05/06/2024] Open
Abstract
Pathogenic variants in the UBQLN2 gene cause X-linked dominant amyotrophic lateral sclerosis and/or frontotemporal dementia characterized by ubiquilin 2 aggregates in neurons of the motor cortex, hippocampus and spinal cord. However, ubiquilin 2 neuropathology is also seen in sporadic and familial amyotrophic lateral sclerosis and/or frontotemporal dementia cases not caused by UBQLN2 pathogenic variants, particularly C9orf72-linked cases. This makes the mechanistic role of mutant ubiquilin 2 protein and the value of ubiquilin 2 pathology for predicting genotype unclear. Here we examine a cohort of 44 genotypically diverse amyotrophic lateral sclerosis cases with or without frontotemporal dementia, including eight cases with UBQLN2 variants [resulting in p.S222G, p.P497H, p.P506S, p.T487I (two cases) and p.P497L (three cases)]. Using multiplexed (five-label) fluorescent immunohistochemistry, we mapped the co-localization of ubiquilin 2 with phosphorylated TDP-43, dipeptide repeat aggregates and p62 in the hippocampus of controls (n = 6), or amyotrophic lateral sclerosis with or without frontotemporal dementia in sporadic (n = 20), unknown familial (n = 3), SOD1-linked (n = 1), FUS-linked (n = 1), C9orf72-linked (n = 5) and UBQLN2-linked (n = 8) cases. We differentiate between (i) ubiquilin 2 aggregation together with phosphorylated TDP-43 or dipeptide repeat proteins; and (ii) ubiquilin 2 self-aggregation promoted by UBQLN2 pathogenic variants that cause amyotrophic lateral sclerosis and/or frontotemporal dementia. Overall, we describe a hippocampal protein aggregation signature that fully distinguishes mutant from wild-type ubiquilin 2 in amyotrophic lateral sclerosis with or without frontotemporal dementia, whereby mutant ubiquilin 2 is more prone than wild-type to aggregate independently of driving factors. This neuropathological signature can be used to assess the pathogenicity of UBQLN2 gene variants and to understand the mechanisms of UBQLN2-linked disease.
Collapse
Affiliation(s)
- Kyrah M Thumbadoo
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| | - Birger V Dieriks
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Helen C Murray
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Molly E V Swanson
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Ji Hun Yoo
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Nasim F Mehrabi
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Clinton Turner
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomical Pathology, LabPlus, Auckland City Hospital, Auckland 1010, New Zealand
| | - Michael Dragunow
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland 1010, New Zealand
| | - Richard L M Faull
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Maurice A Curtis
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- Department of Anatomy and Medical Imaging, University of Auckland, Auckland 1010, New Zealand
| | - Teepu Siddique
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Christopher E Shaw
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
- UK Dementia Research Institute Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London SE5 8AF, UK
| | - Kathy L Newell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Lyndal Henden
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Kelly L Williams
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Garth A Nicholson
- Macquarie University Motor Neuron Disease Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- Northcott Neuroscience Laboratory, Australian and New Zealand Army Corps (ANZAC) Research Institute, Concord, New South Wales 2139, Australia
- Faculty of Medicine, University of Sydney, Sydney, New South Wales 2050, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Concord, New South Wales 2139, Australia
| | - Emma L Scotter
- School of Biological Sciences, University of Auckland, Auckland 1010, New Zealand
- Centre for Brain Research, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
48
|
Nijs M, Van Damme P. The genetics of amyotrophic lateral sclerosis. Curr Opin Neurol 2024; 37:560-569. [PMID: 38967083 PMCID: PMC11377058 DOI: 10.1097/wco.0000000000001294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
PURPOSE OF REVIEW Amyotrophic lateral sclerosis (ALS) has a strong genetic basis, but the genetic landscape of ALS appears to be complex. The purpose of this article is to review recent developments in the genetics of ALS. RECENT FINDINGS Large-scale genetic studies have uncovered more than 40 genes contributing to ALS susceptibility. Both rare variants with variable effect size and more common variants with small effect size have been identified. The most common ALS genes are C9orf72 , SOD1 , TARDBP and FUS . Some of the causative genes of ALS are shared with frontotemporal dementia, confirming the molecular link between both diseases. Access to diagnostic gene testing for ALS has to improve, as effective gene silencing therapies for some genetic subtypes of ALS are emerging, but there is no consensus about which genes to test for. SUMMARY Our knowledge about the genetic basis of ALS has improved and the first effective gene silencing therapies for specific genetic subtypes of ALS are underway. These therapeutic advances underline the need for better access to gene testing for people with ALS. Further research is needed to further map the genetic heterogeneity of ALS and to establish the best strategy for gene testing in a clinical setting.
Collapse
Affiliation(s)
- Melissa Nijs
- Laboratory of Neurobiology, Department of Neuroscience, Leuven Brain Institute, University of Leuven (KU Leuven)
| | - Philip Van Damme
- Laboratory of Neurobiology, Department of Neuroscience, Leuven Brain Institute, University of Leuven (KU Leuven)
- Neurology Department, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
49
|
Lescouzères L, Patten SA. Promising animal models for amyotrophic lateral sclerosis drug discovery: a comprehensive update. Expert Opin Drug Discov 2024; 19:1213-1233. [PMID: 39115327 DOI: 10.1080/17460441.2024.2387791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/30/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive loss of motor neurons. Several animal models have been generated to understand ALS pathogenesis. They have provided valuable insight into disease mechanisms and the development of therapeutic strategies. AREAS COVERED In this review, the authors provide a concise overview of simple genetic model organisms, including C. elegans, Drosophila, zebrafish, and mouse genetic models that have been generated to study ALS. They emphasize the benefits of each model and their application in translational research for discovering new chemicals, gene therapy approaches, and antibody-based strategies for treating ALS. EXPERT OPINION Significant progress is being made in identifying new therapeutic targets for ALS. This progress is being enabled by promising animal models of the disease using increasingly effective genetic and pharmacological strategies. There are still challenges to be overcome in order to achieve improved success rates for translating drugs from animal models to clinics for treating ALS. Several promising future directions include the establishment of novel preclinical protocol standards, as well as the combination of animal models with human induced pluripotent stem cells (iPSCs).
Collapse
Affiliation(s)
- Léa Lescouzères
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Canada
| | - Shunmoogum A Patten
- INRS - Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
- Departement de Neurosciences, Université de Montréal, Montreal, Canada
| |
Collapse
|
50
|
Kaul M, Mukherjee D, Weiner HL, Cox LM. Gut microbiota immune cross-talk in amyotrophic lateral sclerosis. Neurotherapeutics 2024; 21:e00469. [PMID: 39510899 PMCID: PMC11585889 DOI: 10.1016/j.neurot.2024.e00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 10/04/2024] [Indexed: 11/15/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease characterized by the loss of motor neurons. While there has been significant progress in defining the genetic contributions to ALS, greater than 90 % of cases are sporadic, which suggests an environmental component. The gut microbiota is altered in ALS and is an ecological factor that contributes to disease by modulating immunologic, metabolic, and neuronal signaling. Depleting the microbiome worsens disease in the SOD1 ALS animal model, while it ameliorates disease in the C9orf72 model of ALS, indicating critical subtype-specific interactions. Furthermore, administering beneficial microbiota or microbial metabolites can slow disease progression in animal models. This review discusses the current state of microbiome research in ALS, including interactions with different ALS subtypes, evidence in animal models and human studies, key immunologic and metabolomic mediators, and a path toward microbiome-based therapies for ALS.
Collapse
Affiliation(s)
- Megha Kaul
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Debanjan Mukherjee
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham & Women's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|