1
|
Räisänen M, Kaasinen E, Jäntti M, Taira A, Siili E, Bützow R, Heikinheimo O, Pasanen A, Karhu A, Berta DG, Välimäki N, Aaltonen LA. Chromatin state origins of uterine leiomyoma. Nat Commun 2025; 16:4307. [PMID: 40341524 PMCID: PMC12062214 DOI: 10.1038/s41467-025-59646-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Aberrations in the regulatory genome play a pivotal role in population-level disease predisposition. Annotation of the regulatory regions using appropriate primary tissues - instead of cell lines affected by selection and other confounding factors - could shed new light into mechanisms underlying common conditions. We test this approach in uterine leiomyomas, highly prevalent benign neoplasms of the myometrium, by creating 15-state chromatin annotations for myometrium and uterine leiomyomas. Integration with RNA-seq, ATAC-seq, HiChIP and methylation data enables us to compare the epigenomes of myometrium and ULs with distinct driver mutations, highlighting the role of bivalent regions in the neoplastic process. Subsequently, a genome wide association study meta-analysis is performed, using three different cohorts. Disease association loci are enriched at active chromatin, especially at enhancers, and harbor tumor- and driver mutation-specific chromatin states. At SATB2 locus we show the effect of the risk genotype already in the normal tissue. Integration of genome-wide association studies and deep regulatory genomics data from the correct tissue type represents a powerful approach in understanding population-level disease predisposition.
Collapse
Affiliation(s)
- Maritta Räisänen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Maija Jäntti
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Emma Siili
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Davide G Berta
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Gualandi N, Bertozzo A, Brancolini C. ProOvErlap: Assessing feature proximity/overlap and testing statistical significance from genomic intervals. J Biol Chem 2025:110209. [PMID: 40345582 DOI: 10.1016/j.jbc.2025.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/21/2025] [Accepted: 05/02/2025] [Indexed: 05/11/2025] Open
Abstract
Feature overlap is a critical concept in bioinformatics and occurs when two genomic intervals, usually represented as BED files, are located in the same genomic regions. Instead, feature proximity refers to the spatial proximity of genomic elements. For example, promoters typically overlap or are close to the genes they regulate. Overlap and proximity are also important in epigenetic studies. Here, the overlap of regions enriched for specific epigenetic modifications or accessible chromatin can elucidate complex molecular phenotypes. Consequently, the ability to analyze and interpret feature overlap and proximity is essential for understanding the biological processes that contribute to a given phenotype. To address this need, we present a computational method capable of analyzing data represented in the BED format. This method aims to quantitatively assess the degree of proximity or overlap between genomic features and to determine the statistical significance of these events in the context of a non-parametric randomization test. The aim is to understand whether the observed state differs from what would be expected by chance. The method is designed to be easy to use, requiring only a single command line to run, allowing straightforward overlap and proximity analysis. It also provides clear visualizations and publication-quality figures. In conclusion, this study highlights the importance of feature overlap and proximity in epigenetic studies and presents a method to improve the systematic assessment and interpretation of these features. A new resource for identifying biologically significant interactions between genomic features in both healthy and disease states.
Collapse
Affiliation(s)
- Nicolò Gualandi
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| | - Alessio Bertozzo
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy
| | - Claudio Brancolini
- Department of Medicine, Università degli Studi di Udine, P.le Kolbe 4, 33100 Udine, Italy.
| |
Collapse
|
3
|
Mori M, Sakai T, Oka T, Sakurada M, Iwasaki M, Takeda J, Kanda J, Nannya Y, Ogawa S, Takaori-Kondo A, Moriyoshi K, Kawabata H. Acute myeloid leukaemia with SRSF2 and BRAF mutations preceded by histiocytic proliferation in the bone marrow. Br J Haematol 2025; 206:1508-1512. [PMID: 40001285 DOI: 10.1111/bjh.20028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Affiliation(s)
- Minako Mori
- Department of Hematology, NHO Kyoto Medical Center, Kyoto, Japan
| | - Tomomi Sakai
- Department of Hematology, NHO Kyoto Medical Center, Kyoto, Japan
| | - Tomomi Oka
- Department of Hematology, NHO Kyoto Medical Center, Kyoto, Japan
| | - Maki Sakurada
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto Iwasaki
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - June Takeda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Junya Kanda
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuhito Nannya
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Hematopoietic Disease Control, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akifumi Takaori-Kondo
- Department of Hematology and Oncology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koki Moriyoshi
- Department of Diagnostic Pathology, NHO Kyoto Medical Center, Kyoto, Japan
| | - Hiroshi Kawabata
- Department of Hematology, NHO Kyoto Medical Center, Kyoto, Japan
| |
Collapse
|
4
|
Komorowski AS, Coon V JS, Anton M, Zuberi A, Sotos O, Bulun SE, Yin P. Stearoyl-coenzyme A desaturase enhances cell survival in human uterine leiomyoma. F&S SCIENCE 2025; 6:202-212. [PMID: 40019411 DOI: 10.1016/j.xfss.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/14/2025] [Accepted: 01/24/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Stearoyl-CoA desaturase (SCD1) is an enzyme that catalyzes the conversion of saturated delta-9 fatty acids to monounsaturated fatty acids. SCD1 is highly expressed in various cancers and facilitates cancer cell survival, tumor growth, and metastasis. This study aimed to assess SCD1 expression and function in uterine leiomyoma and matched myometrial tissue and evaluate the impact of SCD1 inhibition on leiomyoma cell viability and apoptosis. DESIGN Gene set enrichment analysis was performed to determine whether lipid metabolism pathways are dysregulated in leiomyoma. To assess the function of SCD1, primary leiomyoma and myometrial cells, as well as a CRISPR-engineered leiomyoma-relevant MED12 mutant human uterine smooth muscle (UtSM) cell line, were treated with SCD1 small interfering RNA or a small molecule inhibitor of SCD1, CAY10566. Cell viability and apoptosis assays, real-time quantitative polymerase chain reaction, and immunoblot analyses were performed to evaluate cell function in response to treatment. SUBJECTS Leiomyoma and myometrial tissues were obtained from premenopausal individuals designated female at birth (n = 30) undergoing myomectomy or hysterectomy. EXPOSURE SCD1 inhibition by small interfering RNA and CAY10566 treatment. MAIN OUTCOME MEASURES Messenger RNA (mRNA) and protein levels and cell viability and apoptosis. RESULTS Gene set enrichment analysis revealed that the cholesterol homeostasis pathway was significantly different in leiomyoma vs. adjacent myometrial tissues. Among the genes in this pathway, SCD1 mRNA levels were found to be significantly higher in leiomyoma than in matched myometrium. SCD1 inhibition by small interfering RNA or CAY10566 decreased antiapoptotic BCL2 mRNA and protein levels and cell viability in primary leiomyoma but not myometrial cells. SCD1 protein levels were significantly higher in the mutant MED12 UtSM cell line than in the wild-type MED12 UtSM cell line. CAY10566 treatment specifically decreased cell viability and increased apoptosis in mutant MED12 UtSM cells, with increased protein levels of cleaved caspase 3, cleaved PARP, and DDIT3 in mutant MED12 UtSM but not in wild-type MED12 UtSM cells. CONCLUSION SCD1, an enzyme involved in lipid homeostasis, may play an important role in promoting leiomyoma growth and represents a novel target for the treatment of leiomyoma.
Collapse
Affiliation(s)
- Allison S Komorowski
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Melania Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Olivia Sotos
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, Illinois.
| |
Collapse
|
5
|
Nummi P, Cajuso T, Norri T, Taira A, Kuisma H, Välimäki N, Lepistö A, Renkonen-Sinisalo L, Koskensalo S, Seppälä TT, Ristimäki A, Tahkola K, Mattila A, Böhm J, Mecklin JP, Siili E, Pasanen A, Heikinheimo O, Bützow R, Karhu A, Burns KH, Palin K, Aaltonen LA. Structural features of somatic and germline retrotransposition events in humans. Mob DNA 2025; 16:20. [PMID: 40264183 PMCID: PMC12016303 DOI: 10.1186/s13100-025-00357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/08/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Transposons are DNA sequences able to move or copy themselves to other genomic locations leading to insertional mutagenesis. Although transposon-derived sequences account for half of the human genome, most elements are no longer transposition competent. Moreover, transposons are normally repressed through epigenetic silencing in healthy adult tissues but become derepressed in several human cancers, with high activity detected in colorectal cancer. Their impact on non-malignant and malignant tissue as well as the differences between somatic and germline retrotransposition remain poorly understood. With new sequencing technologies, including long read sequencing, we can access intricacies of retrotransposition, such as insertion sequence details and nested repeats, that have been previously challenging to characterize. RESULTS In this study, we investigate somatic and germline retrotransposition by analyzing long read sequencing from 56 colorectal cancers and 112 uterine leiomyomas. We identified 1495 somatic insertions in colorectal samples, while striking lack of insertions was detected in uterine leiomyomas. Our findings highlight differences between somatic and germline events, such as transposon type distribution, insertion length, and target site preference. Leveraging long-read sequencing, we provide an in-depth analysis of the twin-priming phenomenon, detecting it across transposable element types that remain active in humans, including Alus. Additionally, we detect an abundance of germline transposons in repetitive DNA, along with a relationship between replication timing and insertion target site. CONCLUSIONS Our study reveals a stark contrast in somatic transposon activity between colorectal cancers and uterine leiomyomas, and highlights differences between somatic and germline transposition. This suggests potentially different conditions in malignant and non-malignant tissues, as well as in germline and somatic tissues, which could be involved in the transposition process. Long-read sequencing provided important insights into transposon behavior, allowing detailed examination of structural features such as twin priming and nested elements.
Collapse
Affiliation(s)
- Päivi Nummi
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Tatiana Cajuso
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, 00014, Helsinki, Finland
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
| | - Tuukka Norri
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- Department of Computer Science, University of Helsinki, Helsinki, 00014, Finland
| | - Aurora Taira
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Heli Kuisma
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Niko Välimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Anna Lepistö
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Laura Renkonen-Sinisalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Selja Koskensalo
- Department of Gastrointestinal Surgery, Helsinki University Central Hospital, University of Helsinki, Helsinki, 00290, Finland
| | - Toni T Seppälä
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Faculty of Medicine and Health Technology, University of Tampere and TAYS Cancer Centre, Tampere, 33100, Finland
- Department of Gastroenterology and Alimentary Tract Surgery, Tampere University Hospital, Tampere, 33520, Finland
- Abdominal Center, Helsinki University Hospital, Helsinki University, Helsinki, 00290, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| | - Ari Ristimäki
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Kyösti Tahkola
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Anne Mattila
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jan Böhm
- Department of Surgery, Wellbeing Services County of Central Finland / Hospital Nova of Central Finland, Jyväskylä, 40620, Finland
| | - Jukka-Pekka Mecklin
- Department of Science, Well Being Services County of Central Finland, Jyväskylä, 40620, Finland
- Department of Health Sciences, Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, 40014, Finland
| | - Emma Siili
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Annukka Pasanen
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Ralf Bützow
- Department of Pathology, HUS Diagnostic Center, Helsinki University Hospital and University of Helsinki, Helsinki, 00290, Finland
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, 00290, Finland
| | - Auli Karhu
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
| | - Kathleen H Burns
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA
- Department of Pathology, Mass General Brigham and Harvard Medical School, Boston, MA, 02115, USA
| | - Kimmo Palin
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland.
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland.
| | - Lauri A Aaltonen
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, 00014, Finland
- Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, 00014, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, 00290, Finland
| |
Collapse
|
6
|
Henry J, Berrandou T, Brewster LM, Bouatia-Naji N. Blood Pressure, Cardiometabolic Traits, and Cardiovascular Events in Women With Uterine Fibroids: A Genetic Correlation and Mendelian Randomization Study. J Am Heart Assoc 2025; 14:e036697. [PMID: 40207525 DOI: 10.1161/jaha.124.036697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 01/27/2025] [Indexed: 04/11/2025]
Abstract
BACKGROUND Uterine fibroids (UFs) are understudied uterus neoplasms, mainly affecting women of reproductive age and often leading to hysterectomy. Clinical series suggest impaired cardiometabolic features in UFs. We investigated potential genetic links between blood pressure (BP), several cardiometabolic traits, and UFs. METHODS AND RESULTS We used summary statistics of genome-wide association studies for UFs and 18 traits related to BP, obesity, lipids, and main vascular diseases. We applied linkage disequilibrium score regression to estimate genetic correlations and Genome-Wide Complex Trait Analysis-multitrait-based conditional and joint analysis to perform adjusted correlations. Univariate and bidirectional Mendelian randomization verified potential causal associations with UFs. We found UFs to significantly correlate with systolic BP (genetic correlation coefficient [rg]=0.08, P=8.7×10-5) and diastolic BP (rg=0.12, P=8.2×10-8), including after adjustment for body mass index. UFs also positively corelated with body mass index (rg=0.11, P=4.1×10-4), waist-to-hip ratio (rg=0.09, P=7.3×10-3), type 2 diabetes (rg=0.15, P=1.9×10-5), and triglycerides (rg=0.17, P=7.6×10-7). We identified a negative correlation with sex hormone-binding globulin (rg=-0.16, P=3×10-4), a marker of bioavailability of sex steroids. No evidence for shared genetic basis with vascular diseases was observed, except with migraine (rg=0.08, P=5.8×10-7). Mendelian randomization analyses confirmed higher body mass index to increase UF risk (beta-per-kg/m2=0.033, P=6.1×10-5), as did waist-to-hip ratio (beta-per-unit=0.193, P=3.3×10-5) and triglycerides (bet-per-mmol/L=0.163, P=1.9×10-5). Higher sex hormone-binding globulin decreased UF risk (beta-per-nmol/L=0.005, P=2.5×10-3). No causal effect was found for BP. CONCLUSIONS Our study shows that UFs share substantial genetic basis with traits related to BP, obesity, diabetes, and migraine, a predominantly female vascular disease. We provide Mendelian randomization-based evidence for central obesity, visceral fat traits, and sex-steroid bioavailability as relevant risk factors for UFs.
Collapse
Affiliation(s)
| | - Takiy Berrandou
- Université Paris Cité, Inserm, PARCC Paris France
- Quantitative Genetics and Genomics (QGG) Aarhus University Aarhus Denmark
| | | | | |
Collapse
|
7
|
Iizuka T, Zuberi A, Wei H, Coon V JS, Anton ML, Buyukcelebi K, Adli M, Bulun SE, Yin P. Therapeutic targeting of the tryptophan-kynurenine-aryl hydrocarbon receptor pathway with apigenin in MED12-mutant leiomyoma cells. Cancer Gene Ther 2025; 32:393-402. [PMID: 40025195 DOI: 10.1038/s41417-025-00881-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Approximately 77.4% of uterine leiomyomas carry MED12 gene mutations (mut-MED12), which are specifically associated with strikingly upregulated expression and activity of the tryptophan 2,3-dioxygenase (TDO2) enzyme, leading to increased conversion of tryptophan to kynureine. Kynurenine increases leiomyoma cell survival by activating the aryl hydrocarbon receptor (AHR). We used a leiomyoma-relevant model, in which a MED12 Gly44 mutation was knocked in by CRISPR in a human uterine myometrial smooth muscle (UtSM) cell line, in addition to primary leiomyoma cells from 26 patients to ascertain the mechanisms responsible for therapeutic effects of apigenin, a natural compound. Apigenin treatment significantly decreased cell viability, inhibited cell cycle progression, and induced apoptosis preferentially in mut-MED12 versus wild-type primary leiomyoma and UtSM cells. Apigenin not only blocked AHR action but also decreased TDO2 expression and kynurenine production, preferentially in mut-MED12 cells. Apigenin did not alter TDO2 enzyme activity. TNF and IL-1β, cytokines upregulated in leiomyoma, strikingly induced TDO2 expression levels via activating the NF-κB and JNK pathways, which were abolished by apigenin. Apigenin or a TDO2 inhibitor decreased UtSM cell viability induced by TNF/IL-1β. We provide proof-of-principle evidence that apigenin is a potential therapeutic agent for mut-MED12 leiomyomas.
Collapse
Affiliation(s)
- Takashi Iizuka
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Azna Zuberi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Helen Wei
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - John S Coon V
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Melania Lidia Anton
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Kadir Buyukcelebi
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Ping Yin
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
8
|
Goad J, Rajkovic A. Uterine fibroids at single-cell resolution: unveiling cellular heterogeneity to improve understanding of pathogenesis and guide future therapies. Am J Obstet Gynecol 2025; 232:S124-S134. [PMID: 40253076 DOI: 10.1016/j.ajog.2024.08.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 07/16/2024] [Accepted: 08/16/2024] [Indexed: 04/21/2025]
Abstract
Uterine leiomyomas or fibroids are benign tumors of the myometrium that affect approximately 70% of reproductive-age women. Fibroids continue to be the leading cause of hysterectomy, resulting in substantial healthcare costs. Genetic complexity and lack of cellular and molecular understanding of fibroids have posed considerable challenges to developing noninvasive treatment options. Over the years, research efforts have intensified to unravel the genetic and cellular diversities within fibroids to deepen our understanding of their origins and progression. Studies using immunostaining and flow cytometry have revealed cellular heterogeneity within these tumors. A correlation has been observed between genetic mutations in fibroids and their size, which is influenced by cellular composition, proliferation rates, and extracellular matrix accumulation. Fibroids with mediator complex subunit 12 (MED12) mutation are composed of smooth muscle cells and fibroblasts equally. In contrast, the fibroids with high-mobility group AT-hook 2 (HMGA2) translocation are 90% composed of smooth muscle cells. More recently, single-cell RNA sequencing in the myometrium and MED12 mutation carrying fibroids has identified further heterogeneity in smooth muscle cells and fibroblast cells, identifying 3 different smooth muscle cell populations and fibroblast cell populations. Although both myometrium and fibroids have similar cellular composition, these cells differs in their transcriptomic profile and have specialized roles, underscoring the complex cellular landscape contributing to fibroid pathogenesis. Furthermore, not all smooth muscle cells in MED12-mutant fibroid carry the MED12 mutation, suggesting that MED12-mutant fibroids might not be monoclonal in nature. This review describes the intricacies of fibroid biology revealed by single-cell RNA sequencing. These advances have identified new cellular targets for potential therapies, provided insights into treatment resistance, and laid the groundwork for more personalized approaches to fibroid management. As we continue to unravel the cellular and molecular complexity of fibroids, we anticipate that this knowledge will translate into more effective and less invasive treatments, ultimately improving outcomes for the millions of women affected by this condition.
Collapse
Affiliation(s)
- Jyoti Goad
- Department of Pathology, University of California San Francisco, San Francisco, CA
| | - Aleksandar Rajkovic
- Department of Pathology, University of California San Francisco, San Francisco, CA; Division of Reproductive Endocrinology and Infertility, Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA; Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Francisco, San Francisco, CA.
| |
Collapse
|
9
|
Odintsov I, Papke DJ, George S, Padera RF, Hornick JL, Siegmund SE. Genomic Profiling of Cardiac Angiosarcoma Reveals Novel Targetable KDR Variants, Recurrent MED12 Mutations, and a High Burden of Germline POT1 Alterations. Clin Cancer Res 2025; 31:1091-1102. [PMID: 39820259 DOI: 10.1158/1078-0432.ccr-24-3277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/04/2024] [Accepted: 01/14/2025] [Indexed: 01/19/2025]
Abstract
PURPOSE Cardiac angiosarcoma is a rare, aggressive malignancy with limited treatment options. Both sporadic and familial cases occur, with recent links to germline POT1 mutations. The genomic landscape of this disease is poorly understood. EXPERIMENTAL DESIGN We conducted comprehensive genomic profiling of cardiac angiosarcoma to assess the burden of germline predisposition and identify other recurrent genomic alterations of clinical significance. RESULTS Six patients were female, and four were male. The median age at presentation was 40 years (range, 21-69 years). All cases with available follow-up exhibited an aggressive clinical course (6/8 patients died of disease). KDR alterations, including novel structural variants, were found in 9/11 cases at a rate significantly higher than that in noncardiac angiosarcomas. POT1 mutations were present in 45.5% of cardiac angiosarcoma cases. In three of five POT1-mutant cases, the germline status was confirmed through testing of normal tissue, and in one additional case, the germline status was inferred with high probability through allele frequency analysis. Additionally, we identified novel recurrent MED12 exon 2 mutations in POT1 wild-type cardiac angiosarcoma, suggesting an alternative path to cardiac angiosarcoma oncogenesis. CONCLUSIONS Cardiac angiosarcoma demonstrates a unique genetic profile, distinct from noncardiac angiosarcoma. This study highlights the role of germline POT1 burden on cardiac angiosarcoma development and demonstrates recurrent MED12 alterations for the first time. The reported KDR variants provide a potential avenue for the treatment of this aggressive disease. Given the prevalence of germline POT1 mutations reported in this study, germline genetic testing should be considered in patients diagnosed with cardiac angiosarcoma.
Collapse
Affiliation(s)
- Igor Odintsov
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Suzanne George
- Sarcoma Division, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Robert F Padera
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason L Hornick
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Stephanie E Siegmund
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
10
|
Khadka S, Lukas B, Sun CX, Muralimanoharan S, Shanmugasundaram K, Khosh A, Barron L, Schenken C, Stansbury N, Schenken R, Firestein R, Dai Y, Boyer TG. Mediator kinase inhibition drives myometrial stem cell differentiation and the uterine fibroid phenotype through super-enhancer reprogramming. J Mol Med (Berl) 2025; 103:311-326. [PMID: 39904883 PMCID: PMC11880082 DOI: 10.1007/s00109-025-02517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor-initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions. Biochemically, UF driver mutations in MED12 disrupt CDK8/19 kinase activity in Mediator, but how Mediator kinase disruption triggers MM SC transformation remains unknown. Here, we show that pharmacologic inhibition of CDK8/19 in MM SCs removes a barrier to myogenic differentiation down an altered pathway characterized by molecular phenotypes characteristic of UFs, including oncogenic growth and extracellular matrix (ECM) production. These perturbations appear to be induced by transcriptomic changes, arising in part through epigenomic alteration and super-enhancer reprogramming, that broadly recapitulate those found in MED12-mutant UFs. Altogether, these findings provide new insights concerning the biological role of CDK8/19 in MM SC biology and UF formation. KEY MESSAGES: Mediator kinase inhibition in myometrial stem cells (MM SCs) induces spontaneous differentiation. Transcriptional changes upon Mediator kinase inhibition recapitulate those of MED12 mutant uterine fibroids (UFs). Such transcriptional changes are partially mediated by super-enhancer reprogramming. Mediator kinase functions to enforce cell states and its loss induces cellular plasticity.
Collapse
Affiliation(s)
- Subash Khadka
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Brandon Lukas
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Claire Xin Sun
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | | | | | - Azad Khosh
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Lindsey Barron
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Claire Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Nicholas Stansbury
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Robert Schenken
- Department of Obstetrics and Gynecology, UT Health San Antonio, San Antonio, TX, USA
| | - Ron Firestein
- Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC, Australia
| | - Yang Dai
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL, USA
| | - Thomas G Boyer
- Department of Molecular Medicine, UT Health San Antonio, San Antonio, TX, USA.
| |
Collapse
|
11
|
Jokinen V, Taira A, Kolterud Å, Ahlgren I, Palin K, Katainen R, Räisänen M, Kaasinen E, Ilves S, Raitila A, Kopp Kallner H, Siili E, Bützow R, Heikinheimo O, Pasanen A, Karhu A, Välimäki N, Aaltonen LA. Activation of FGFR genes by genetic and epigenetic alterations in uterine leiomyomas. BJC REPORTS 2025; 3:9. [PMID: 40016412 PMCID: PMC11868550 DOI: 10.1038/s44276-025-00127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/15/2025] [Accepted: 02/08/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Fibroblast growth factor 1-4 (FGFR1-4) are well-known oncogenic drivers in many cancer types. Here, we studied the role of FGFRs in uterine leiomyoma (UL) that is a benign neoplasm arising from the myometrium and the most common tumour in women. Although ULs can be classified to molecular subtypes based on genetic drivers, potential secondary drivers are not well characterised. METHODS We performed mutation analysis of RNA-sequencing data of ULs, followed by screening of FGFR alterations in our Finnish (n = 2677) and Swedish (n = 372) UL collections, utilising Sanger-, next-generation and Nanopore sequencing and SNP array data. The role of FGFR genes in UL predisposition was examined by GWAS. RESULTS We identified FGFR activation in a subset of ULs on both genetic and epigenetic levels. In addition to single-nucleotide mutations in FGFR1/2, we detected an FGFR2-ERC1 fusion gene, FGFR1 gains and hypomethylation of regulatory regions of FGFR2/3. FGFR alterations were enriched in molecularly similar HMGA2, HMGA1 and PLAG1 UL subtypes. We also unveil a UL predisposing variant upstream of FGFR4 associated with increased expression in both normal myometrium and ULs. CONCLUSIONS Our results establish the role of FGFR signalling in the genesis of UL.
Collapse
Affiliation(s)
- Vilja Jokinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Aurora Taira
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Åsa Kolterud
- Department of Medicine Huddinge, Division of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Isa Ahlgren
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Kimmo Palin
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Riku Katainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Maritta Räisänen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Eevi Kaasinen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Sini Ilves
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Anniina Raitila
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Helena Kopp Kallner
- Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
- Department of Obstetrics and Gynecology, Danderyd Hospital, Stockholm, Sweden
| | - Emma Siili
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Ralf Bützow
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Oskari Heikinheimo
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Annukka Pasanen
- Department of Pathology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Auli Karhu
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland.
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland.
- Department of Medicine Huddinge, Division of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
12
|
Kn S, Shetty SS, Shetty P. Lipid-laden uterus: Investigating uterine fibroids and lipid association. Pathol Res Pract 2025; 266:155772. [PMID: 39709872 DOI: 10.1016/j.prp.2024.155772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/24/2024]
Abstract
Uterine Fibroids (UF) are the most common (about 70 % cases) benign gynecological smooth muscle tumors of the uterus in women of reproductive age, characterized by abnormal cholesterol, lipoproteins, and triglyceride levels, and are a major public health concern. Despite its high prevalence, this condition remains complex and poorly understood. These tumors are hormone-dependent and hormones and lipid levels are inversely related. This review delves into the existing literature and critically evaluates studies that explore the potential relationship between lipids in the pathogenesis of uterine fibroids. This review concludes by critically appraising the research gaps in the involvement of lipids and signaling pathways in the pathogenesis of uterine fibroids and future directions for investigating this intriguing biological connection. By elucidating the potential link between uterine fibroids and lipids, this review paves the way for an improved understanding of fibroid pathogenesis, personalized risk assessment, and novel lipid-lowering therapeutic strategies.
Collapse
Affiliation(s)
- Sandeepa Kn
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India
| | - Shilpa S Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Central Research Laboratory, Cellomics, Lipidomics and Molecular Genetics Division, India.
| | - Prasannakumar Shetty
- Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), Department of obstetrics and gynecology, India; Nitte (Deemed To Be University), KS Hegde Medical Academy (KSHEMA), KSHEMA IVF Fertility & Reproductive Medicine Centre India, India
| |
Collapse
|
13
|
van der Weyden L, Del Castillo Velasco-Herrera M, Cheema S, Wong K, Boccacino JM, Offord V, Droop A, Jones DRA, Vermes I, Anderson E, Hardy C, de Saint Aubain N, Ferguson PM, Clarke EL, Merchant W, Mogler C, Frew D, Harms PW, Monteagudo C, Billings SD, Arends MJ, Ferreira I, Brenn T, Adams DJ. Comprehensive mutational profiling identifies new driver events in cutaneous leiomyosarcoma. Br J Dermatol 2025; 192:335-343. [PMID: 39392932 PMCID: PMC11758588 DOI: 10.1093/bjd/ljae386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/30/2024] [Accepted: 09/30/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Cutaneous leiomyosarcoma (cLMS) is a rare soft-tissue neoplasm, showing smooth muscle differentiation, that arises from the mesenchymal cells of the dermis. To date, genetic investigation of these tumours has involved studies with small sample sizes and limited analyses that identified recurrent somatic mutations in RB1 and TP53, copy number gain of MYOCD and IGF1R, and copy number loss of PTEN. OBJECTIVES To better understand the molecular pathogenesis of cLMS, we comprehensively explored the mutational landscape of these rare tumours to identify candidate driver events. METHODS In this retrospective, multi-institutional study, we performed whole-exome sequencing and RNA sequencing in 38 cases of cLMS. RESULTS TP53 and RB1 were identified as significantly mutated and thus represent validated driver genes of cLMS. COSMIC mutational signatures SBS7a/b and DBS1 were recurrent; thus, ultraviolet light exposure may be an aetiological factor driving cLMS. Analysis of significantly recurrent somatic copy number alterations, which represent candidate driver events, found focal (< 10 Mb) deletions encompassing TP53 and KDM6B, and amplifications encompassing ZMYM2, MYOCD, MAP2K4 and NCOR1. A larger (24 Mb) recurrent deletion encompassing CYLD was also identified as significant. Significantly recurrent broad copy number alterations, involving at least half of a chromosome arm, included deletions of 6p/q, 10p/q, 11q, 12q, 13q and 16p/q, and amplification of 15q. Notably PTEN is located on 10q, RB1 on 13q and IGFR1 on 15q. Fusion gene analysis identified recurrent CRTC1/CRTC3::MAML2 fusions, as well as many novel fusions in individual samples. CONCLUSIONS Our analysis of the largest number of cases of cLMS to date highlights the importance of large cohort sizes and exploration beyond small targeted gene panels when performing molecular analyses, as it allowed a comprehensive exploration of the mutational landscape of these tumours and identification of novel candidate driver events. It also uniquely afforded the opportunity to compare the molecular phenotype of cLMS with LMS of other tissue types, such as uterine and soft-tissue LMS. Given that molecular profiling has resulted in the development of novel targeted treatment approaches for uterine and soft-tissue LMS, our study now allows the same opportunities to become available for patients with cLMS.
Collapse
Affiliation(s)
| | | | - Saamin Cheema
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Kim Wong
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Victoria Offord
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - David R A Jones
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Ian Vermes
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | | | - Claire Hardy
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Nicolas de Saint Aubain
- Department of Pathology, Institut Jules Bordet, Université Libre de Bruxelles, Brussels, Belgium
| | - Peter M Ferguson
- Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Melanoma Institute Australia, The University of Sydney, Sydney, NSW, Australia
| | - Emily L Clarke
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
- Division of Pathology and Data Analytics, University of Leeds, Leeds, UK
| | - William Merchant
- Department of Histopathology, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Carolin Mogler
- Institute of Pathology, School of Medicine and Health, Technical University Munich, Munich, Germany
| | - Derek Frew
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Paul W Harms
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - Carlos Monteagudo
- Department of Pathology, University Clinic Hospital, Valencia – INCLIVA Biomedical Research Institute, Valencia, Spain
- Department of Pathology, University of Valencia, Valencia, Spain
| | - Steven D Billings
- Department of Pathology, Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Mark J Arends
- University of Edinburgh, Division of Pathology, Centre for Comparative Pathology, CRUK Edinburgh Centre, Institute of Genetics and Cancer, Western General Hospital, Edinburgh, UK
| | - Ingrid Ferreira
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Thomas Brenn
- Departments of Pathology and Dermatology, University of Michigan, Ann Arbor, MI, USA
| | - David J Adams
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
14
|
Szczepanski JM, Chapel DB, Huang T, Pham T, Mannan R, Mehra R, Sciallis AP, Tomlins S, Skala SL, Udager AM. The Morphologic and Molecular Heterogeneity of Fumarate Hydratase-deficient Leiomyomas: Integrative Molecular Profiling of Uterine Smooth Muscle Tumors With Histologic Feature Correlation. Int J Gynecol Pathol 2025:00004347-990000000-00224. [PMID: 39869100 DOI: 10.1097/pgp.0000000000001101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The morphologic features of uterine smooth muscle tumors (USMTs) are subject to interobserver variability and are complicated by consideration of features of fumarate hydratase deficiency (FHd) and other morphologic subtypes, with difficult cases occasionally diagnosed as smooth muscle tumor of uncertain malignant potential (STUMP). We compare immunohistochemical findings and detailed morphologic analysis of 45 USMTs by 4 fellowship-trained gynecologic pathologists with comprehensive molecular analysis, focusing on FHd leiomyomas (n=15), compared to a variety of other USMTs with overlapping morphologic features, including 9 STUMPs, 8 usual-type leiomyomas (ULM), 11 apoplectic leiomyomas, and 2 leiomyomas with bizarre nuclei (LMBN). FHd leiomyomas, defined by immunohistochemical (IHC) loss of FH and/or 2SC accumulation, showed FH mutations and/or FH copy loss in all cases, with concurrent TP53 mutations in 2 tumors. Severe and/or symplastic-type cytologic atypia was seen more often in FHd leiomyomas with only FH copy loss (6/8, and 2/2 with concurrent TP53 mutations) compared to those with FH mutations (2/7) and typically showed increased genomic instability. This subset of FHd tumors often showed morphologic overlap with STUMPs and LMBN, but all cases of FHd tumors showed 2SC accumulation and/or FH loss by IHC. In conclusion, we highlight the importance of investigating USMTs with severe and/or symplastic-type cytologic atypia with FH and 2SC IHC, as many of these tumors are FH-deficient via focal deep deletion (2-copy loss) of the FH locus. In addition, we report the presence of concurrent TP53 mutations in FHd tumors with more severe cytologic atypia; further data about clinical outcomes for these tumors are needed.
Collapse
Affiliation(s)
| | | | | | | | - Rahul Mannan
- Departments of Pathology
- Michigan Center for Translational Pathology
| | - Rohit Mehra
- Departments of Pathology
- Michigan Center for Translational Pathology
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | | | | | - Stephanie L Skala
- Departments of Pathology
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| | - Aaron M Udager
- Departments of Pathology
- Michigan Center for Translational Pathology
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI
| |
Collapse
|
15
|
Albitar L, Al-Chatty E, Ahmad F. Detection of exon2-MED12 mutations in uterine leiomyomas from Syrian patients. Sci Rep 2025; 15:452. [PMID: 39747270 PMCID: PMC11697450 DOI: 10.1038/s41598-024-84439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025] Open
Abstract
Uterine leiomyomas (uLMs) are the most prevalent benign tumors of the female reproductive system. MED12 is one of the mediator complex subunits that has been implicated in uLMs pathogenesis. Somatic mutations in exon2-MED12 have been found in ~ 70% of uLMs. In this study, we investigated the status of exon2-MED12 in uLMs from Syrian patients. Sixteen leiomyomas from nine patients were assessed. Genomic DNA was isolated from tumors and exon2-MED12 was amplified by PCR and sequenced. Three specimens showed in frame point mutations consisted of missense substitutions in codon 44 (c.130). A novel insertion in codon 35 (c.103insG) was detected in one of the mutated cases and is expected to cause a frameshift in translation and an altered or truncated product. Some of the wild-type uLMs were collected from the same uteri that revealed mutations, which emphasizes the individuality of the uLM lesions and highlights the complexity of uLMs pathogenesis. The study is the first report from Syria on the topic and the second from the Arab world. It indicates genetic heterogeneity and independent clonal origin of the somatic mutations in exon2-MED12. In wild-type uLMs where exon2-MED12 mutations are absent, other players are in place and should be investigated.
Collapse
Affiliation(s)
- Lina Albitar
- Department of Pathology, Faculty of Medicine, Damascus University, Damascus, Syria.
| | - Eyad Al-Chatty
- Department of Pathology, Faculty of Medicine, Damascus University, Damascus, Syria
- Department of Pathology, National University Hospital, Damascus, Syria
- Department of Pathology, Al-Mouwasat University Hospital, Damascus, Syria
| | - Fariz Ahmad
- Department of Pathology, Faculty of Medicine, Damascus University, Damascus, Syria
- Department of Pathology, Al-Biruni University Hospital, Harasta, Syria
| |
Collapse
|
16
|
Yang Q, Falahati A, Khosh A, Vafaei S, Al-Hendy A. Targeting Bromodomain-Containing Protein 9 in Human Uterine Fibroid Cells. Reprod Sci 2025; 32:103-115. [PMID: 38858328 DOI: 10.1007/s43032-024-01608-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/27/2024] [Indexed: 06/12/2024]
Abstract
Bromodomain (BRD)-containing proteins are evolutionarily conserved protein-protein interaction modules involved in many biological processes. BRDs selectively recognize and bind to acetylated lysine residues, particularly in histones, and thereby have a crucial role in the regulation of gene expression. BRD protein dysfunction has been linked to many diseases, including tumorigenesis. Previously, we reported the critical role of BRD-containing protein 9 (BRD9) in the pathogenesis of UFs. The present study aimed to extend our previous finding and further understand the role of the BRD9 in UFs. Our studies demonstrated that targeted inhibition of BRD9 with its potent inhibitor TP-472 inhibited the pathogenesis of UF through increased apoptosis and proliferation arrest and decreased extracellular matrix deposition in UF cells. High-throughput transcriptomic analysis further and extensively demonstrated that targeted inhibition of BRD9 by TP-472 impacted the biological pathways, including cell cycle progression, inflammatory response, E2F targets, ECM deposition, and m6A reprogramming. Compared with the previous study, we identified common enriched pathways induced by two BRD9 inhibitors, I-BRD9 and TP-472. Taken together, our studies further revealed the critical role of BRD9 in UF cells. We characterized the link between BRD9 and other vital pathways, as well as the connection between epigenetic and epitranscriptome involved in UF progression. Targeted inhibition of BRD proteins might provide a non-hormonal treatment strategy for this most common benign tumor in women of reproductive age.
Collapse
Affiliation(s)
- Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| | - Ali Falahati
- DNA GTx LAB, Dubai Healthcare City, Dubai, 505262, UAE
| | - Azad Khosh
- Department of Molecular Medicine, Institute of Biotechnology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Somayeh Vafaei
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| |
Collapse
|
17
|
Sakai T, Sato S, Tamehisa T, Takasaki H, Kajimura T, Tamura I, Sugino N. Establishment of a 3D spheroid culture system to evaluate the responsiveness of uterine leiomyoma cells to female hormones. Reprod Med Biol 2025; 24:e12627. [PMID: 39845479 PMCID: PMC11751880 DOI: 10.1002/rmb2.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025] Open
Abstract
Purpose Uterine leiomyomas (ULMs) are classified into those with and without MED12 mutations (MED12m(+) and MED12m(-), respectively). This study was undertaken to establish a culture system to evaluate the effect of female hormones on the growth of ULM cells in each ULM subtype. Methods ULM cells isolated from MED12m(+) or MED12m(-) tissues were cultured in a monolayer for 7 days with four hormone treatments: estrogen (E) and progesterone (P) (E + P), E only (E), P only (P), and medium only (CTRL). They were also cultured in a 3D spheroid culture system with the above four treatments and a fifth treatment: E + P + selective progesterone receptor modulator (E + P + SPRM). The hormonal effects were evaluated based on cell number, spheroid size, and histology. Results In the monolayer cultures, female hormones did not cause the proliferation of ULM cells of either subtype. In the spheroid cultures, spheroid sizes for both subtypes were significantly larger with the E + P and P treatments than with the CTRL and E treatments and were comparable in the E and E + P + SPRM treatments. Histological staining showed that collagen fibers were present only in the spheroids of the P-treated groups of MED12m(+). Conclusion We established a 3D spheroid culture system to evaluate the effects of female hormones on ULM cells.
Collapse
Affiliation(s)
- Takahiro Sakai
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Shun Sato
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Tetsuro Tamehisa
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Hitomi Takasaki
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Takuya Kajimura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Isao Tamura
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| | - Norihiro Sugino
- Department of Obstetrics and GynecologyYamaguchi University Graduate School of MedicineUbeJapan
| |
Collapse
|
18
|
Khadka S, Lukas B, Sun CX, Muralimanoharan S, Shanmugasundaram K, Khosh A, Schenken C, Stansbury N, Schenken R, Firestein R, Dai Y, Boyer T. Mediator kinase inhibition drives myometrial stem cell differentiation and the uterine fibroid phenotype through super-enhancer reprogramming. RESEARCH SQUARE 2024:rs.3.rs-5125876. [PMID: 39764110 PMCID: PMC11702794 DOI: 10.21203/rs.3.rs-5125876/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
Uterine fibroids (UFs) are the most common non-cutaneous tumors in women worldwide. UFs arise from genetic alterations in myometrial stem cells (MM SCs) that trigger their transformation into tumor initiating cells (UF SCs). Mutations in the RNA polymerase II Mediator subunit MED12 are dominant drivers of UFs, accounting for 70% of these clinically significant lesions. Biochemically, UF driver mutations in MED12 disrupt CDK8/19 kinase activity in Mediator, but how Mediator kinase disruption triggers MM SC transformation remains unknown. Here, we show that pharmacologic inhibition of CDK8/19 in MM SCs removes a barrier to myogenic differentiation down an altered pathway characterized by molecular phenotypes characteristic of UFs, including oncogenic growth and extracellular matrix (ECM) production. These perturbations appear to be induced by transcriptomic changes, arising in part through epigenomic alteration and super-enhancer reprogramming, that broadly recapitulate those found in MED12-mutant UFs. Altogether these findings provide new insights concerning the biological role of CDK8/19 in MM SC biology and UF formation.
Collapse
Affiliation(s)
- Subash Khadka
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | | | | | | | | | - Azad Khosh
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | - Claire Schenken
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | - Nicholas Stansbury
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | - Robert Schenken
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| | | | | | - Thomas Boyer
- UT Health San Antonio: The University of Texas Health Science Center at San Antonio
| |
Collapse
|
19
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. Development 2024; 151:dev203111. [PMID: 39531377 PMCID: PMC11634032 DOI: 10.1242/dev.203111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024]
Abstract
The Mediator complex plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising CDK8, Cyclin C (CycC), Med12 and Med13, serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes associated with mutations in CKM subunits, but the underlying mechanisms have remained unclear. Using Drosophila as a model, we generated transgenic strains to deplete individually or simultaneously the four CKM subunits in all possible combinations, uncovering unique phenotypes in the eyes and wings. Depletion of CDK8-CycC enhanced E2F1 target gene expression and promoted cell-cycle progression, whereas Med12-Med13 depletion had no significant impact on these processes. Instead, depleting Med12-Med13 altered the expression of ribosomal protein genes and fibrillarin, and reduced nascent protein synthesis, indicating a severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. These findings reveal distinct in vivo roles for CKM subunits, with Med12-Med13 disruption having a more pronounced effect on ribosome biogenesis and protein synthesis than CDK8-CycC loss.
Collapse
Affiliation(s)
- Xiao Li
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Mengmeng Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yue Xing
- Department of Pathology and Lab Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Ye Niu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Tzu-Hao Liu
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jasmine L. Sun
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Yanwu Liu
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
| | - Rajitha-Udakara-Sampath Hemba-Waduge
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| | - Jun-Yuan Ji
- Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University Health Science Center, College Station, TX 77843, USA
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Louisiana Cancer Research Center, 1700 Tulane Avenue, New Orleans, LA 70112, USA
| |
Collapse
|
20
|
Saini P, Holmes AG, Wei JJ, Parker JB, Chakravarti D. Engineered uterine primary myometrial cells with high-mobility group AT-hook 2 overexpression display a leiomyoma-like transcriptional and epigenomic phenotype. F&S SCIENCE 2024; 5:352-368. [PMID: 39074663 PMCID: PMC11588529 DOI: 10.1016/j.xfss.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 07/31/2024]
Abstract
OBJECTIVE To determine if engineered high-mobility group AT-hook 2 (HMGA2) overexpressing uterine primary myometrial cells recapitulate the transcriptional and epigenomic features of HMGA2-subtype leiomyomas. DESIGN Isolated primary, "normal" myometrial cells from three patients were engineered to overexpress HMGA2 to determine how HMGA2 establishes transcriptomic and epigenomic features of HMGA2-overexpressing leiomyoma. SETTING Academic research laboratory. PATIENT(S) Primary myometrial cells were isolated from normal myometrium obtained from three patients undergoing hysterectomy. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) Determined genome-wide transcriptomic and epigenomic features of engineered HMGA2-overexpressing uterine primary myometrial cells. RESULT(S) Engineered HMGA2-V5-overexpressing primary myometrial cells approximated the HMGA2 expression level observed in HMGA2-overexpression subtype leiomyoma. High-mobility group AT-hook 2-V5 expression resulted in differential expression of 1,612 genes (false discovery rate [FDR] < 0.05) that were found to be enriched in pathways associated with leiomyoma formation, including extracellular matrix organization. Comparative gene expression analysis between HMGA2-V5 engineered primary cells and HMGA2-overexpression subtype leiomyoma revealed significant overlap of differentially expressed genes. Mechanistically, HMGA2-V5 overexpression resulted in 41,323 regions with differential H3K27ac deposition (FDR < 0.05) and 205,605 regions of altered chromatin accessibility (FDR < 0.05). Transcription factor binding site analysis implicated the AP-1 family of transcription factors. CONCLUSION(S) High-mobility group AT-hook 2 overexpression induces leiomyoma-like transcriptomic and epigenomic modulations in myometrial cells.
Collapse
Affiliation(s)
- Priyanka Saini
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Austin G. Holmes
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jian-Jun Wei
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - J. Brandon Parker
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Debabrata Chakravarti
- Division of Reproductive Sciences in Medicine, Department of Obstetrics and Gynecology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
21
|
Paul EN, Carpenter TJ, Pavliscak LA, Bennett AZ, Ochoa-Bernal MA, Fazleabas AT, Teixeira JM. HMGA2 overexpression induces plasticity in myometrial cells and a transcriptomic profile more similar to that of uterine fibroids. F&S SCIENCE 2024; 5:369-378. [PMID: 39025326 PMCID: PMC11588543 DOI: 10.1016/j.xfss.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVE To study the possible role for HMGA2 overexpression in differentiated myometrial cells and its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. DESIGN Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted, and ribonucleic acid from HMGA2hi and control cells as well as fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for ribonucleic acid sequencing. SETTING University research laboratory. PATIENT(S) Women who underwent hysterectomy for symptomatic uterine fibroids or other gynecological conditions. INTERVENTION(S) Not applicable. MAIN OUTCOME MEASURE(S) In vitro stem cell-like properties from myometrial cell lines. Ribonucleic acid sequencing and collagen production of HMGA2-overexpressing primary leiomyoma tissue and cell lines. RESULT(S) HMGA2hi cells had enhanced self-renewal capacity, decreased proliferation, and a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibited a stem cell-like signature and shared transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways were observed in both HMGA2hi cells and HMGA2F. CONCLUSION(S) Our findings show that HMGA2 overexpression may drive myometrial cells to dedifferentiate into a more plastic phenotype and provide evidence for an alternative mechanism for fibroid etiology, suggesting that fibroids arise not only from a mutated stem cell but also from a mutated differentiated myometrial cell.
Collapse
Affiliation(s)
- Emmanuel N Paul
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Tyler J Carpenter
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Laura A Pavliscak
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Abigail Z Bennett
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Maria Ariadna Ochoa-Bernal
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Asgerally T Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan
| | - Jose M Teixeira
- Department of Obstetrics, Gynecology and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, Michigan.
| |
Collapse
|
22
|
Chao TC, Chen SF, Kim HJ, Tang HC, Tseng HC, Xu A, Palao L, Khadka S, Li T, Huang MF, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator regulated by its dissociable kinase module. Mol Cell 2024; 84:3932-3949.e10. [PMID: 39321804 PMCID: PMC11832219 DOI: 10.1016/j.molcel.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 01/05/2024] [Accepted: 09/03/2024] [Indexed: 09/27/2024]
Abstract
The eukaryotic transcriptional Mediator comprises a large core (cMED) and a dissociable CDK8 kinase module (CKM). cMED recruits RNA polymerase II (RNA Pol II) and promotes pre-initiation complex formation in a manner repressed by the CKM through mechanisms presently unknown. Herein, we report cryoelectron microscopy structures of the complete human Mediator and its CKM. The CKM binds to multiple regions on cMED through both MED12 and MED13, including a large intrinsically disordered region (IDR) in the latter. MED12 and MED13 together anchor the CKM to the cMED hook, positioning CDK8 downstream and proximal to the transcription start site. Notably, the MED13 IDR obstructs the recruitment of RNA Pol II/MED26 onto cMED by direct occlusion of their respective binding sites, leading to functional repression of cMED-dependent transcription. Combined with biochemical and functional analyses, these structures provide a conserved mechanistic framework to explain the basis for CKM-mediated repression of cMED function.
Collapse
Affiliation(s)
- Ti-Chun Chao
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shin-Fu Chen
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hee Jong Kim
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hui-Chi Tang
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Hsiang-Ching Tseng
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - An Xu
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Leon Palao
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Subash Khadka
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Tao Li
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mo-Fan Huang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Dung-Fang Lee
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA; Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA; Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kenji Murakami
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Thomas G Boyer
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Kuang-Lei Tsai
- Department of Biochemistry and Molecular Biology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA; MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA.
| |
Collapse
|
23
|
Guo X, Okuka M, Short B, Ozmen A, Gunay NS, Rymer J, Un B, Guzeloglu-Kayisli O, Rutherford TJ, Kayisli U, Anderson ML. Spatially restricted ecto-5'-nucleotidase expression promotes the growth of uterine leiomyomas by modulating Akt activity. FASEB J 2024; 38:e70084. [PMID: 39354726 DOI: 10.1096/fj.202401432r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/15/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024]
Abstract
Found in as many as 80% of women, uterine leiomyomas are a frequent cause of abnormal uterine bleeding, pelvic pain, and infertility. Despite their significant clinical impact, the mechanisms responsible for driving leiomyoma growth remain poorly understood. After obtaining IRB permission, expression of ecto-5'-nucleotidase (NT5E, CD73) was assessed in matched specimens of myometrium and leiomyoma by real-time qPCR, Western blot, and immunohistochemistry (IHC). Adenosine concentrations were measured by enzyme-linked assay. Primary cultures were used to assess the impact of adenosine and/or adenosine receptor agonists on proliferation, apoptosis, and patterns of intracellular signaling in vitro. When compared to matched specimens of healthy myometrium, uterine leiomyomas were characterized by reduced CD73 expression. Largely limited to thin-walled vascular structures and the pseudocapsule of leiomyomas despite diffuse myometrial distribution. Restricted intra-tumoral CD73 expression was accompanied by decreased levels of intra-tumoral adenosine. In vitro, incubation of primary leiomyoma cultures with adenosine or its hydrolysis-resistant analog 2-chloro-adenosine (2-CL-AD) inhibited proliferation, induced apoptosis, and reduced proportion of myocytes in S- and G2-M phases of the cell cycle. Decreased proliferation was accompanied by reduced expression of phospho-Akt, phospho-Cdk2-Tyr15, and phospho-Histone H3. Enforced expression of the A2B adenosine receptor (ADORA2B) and ADORA2B-selective agonists similarly suppressed proliferation and inhibited Akt phosphorylation. Collectively, these observations broadly implicate CD73 and reduced extracellular concentrations of adenosine as key regulators of leiomyoma growth and potentially identify novel strategies for clinically managing these common tumors.
Collapse
Affiliation(s)
- Xiaofang Guo
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Maja Okuka
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | | | - Asli Ozmen
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Nihan Semerci Gunay
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Jake Rymer
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Burak Un
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Ozlem Guzeloglu-Kayisli
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Thomas J Rutherford
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Tampa General Cancer Institute, Tampa, Florida, USA
| | - Umit Kayisli
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Matthew L Anderson
- Department of Obstetrics & Gynecology, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
- Tampa General Cancer Institute, Tampa, Florida, USA
| |
Collapse
|
24
|
Strong A, March ME, Cardinale CJ, Liu Y, Battig MR, Finoti LS, Matsuoka LS, Watson D, Sridhar S, Jarrett JF, Cannon I, Li D, Bhoj E, Zackai EH, Rand EB, Wenger T, Lerman BB, Shikany A, Weaver KN, Hakonarson H. Novel insights into the phenotypic spectrum and pathogenesis of Hardikar syndrome. Genet Med 2024; 26:101222. [PMID: 39045790 PMCID: PMC11456378 DOI: 10.1016/j.gim.2024.101222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE Hardikar syndrome (HS, MIM #301068) is a female-specific multiple congenital anomaly syndrome characterized by retinopathy, orofacial clefting, aortic coarctation, biliary dysgenesis, genitourinary malformations, and intestinal malrotation. We previously showed that heterozygous nonsense and frameshift variants in MED12 cause HS. The phenotypic spectrum of disease and the mechanism by which MED12 variants cause disease is unknown. We aim to expand the phenotypic and molecular landscape of HS and elucidate the mechanism by which MED12 variants cause disease. METHODS We clinically assembled and molecularly characterized a cohort of 11 previously unreported individuals with HS. Additionally, we studied the effect of MED12 deficiency on ciliary biology, hedgehog, and yes-associated protein (YAP) signaling; pathways implicated in diseases with phenotypic overlap with HS. RESULTS We report novel phenotypes associated with HS, including cardiomyopathy, arrhythmia, and vascular anomalies, and expand the molecular landscape of HS to include splice site variants. We additionally demonstrate that MED12 deficiency causes decreased cell ciliation, and impairs hedgehog and YAP signaling. CONCLUSION Our data support updating HS standard-of-care to include regular cardiac imaging, arrhythmia screening, and vascular imaging. We further propose that dysregulation of ciliogenesis and YAP and hedgehog signaling contributes to the pathogenesis of HS.
Collapse
Affiliation(s)
- Alanna Strong
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA.
| | - Michael E March
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | | | - Yichuan Liu
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Mark R Battig
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Livia Sertori Finoti
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Leticia S Matsuoka
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Deborah Watson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Sindura Sridhar
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - James F Jarrett
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - India Cannon
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Dong Li
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Elizabeth Bhoj
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elaine H Zackai
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Elizabeth B Rand
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Gastroenterology and Hepatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Tara Wenger
- Division of Genetic Medicine, University of Washington, Seattle, WA
| | - Bruce B Lerman
- Department of Medicine, Division of Cardiology, Greenberg Institute for Cardiac Electrophysiology, Cornell University Medical Center, New York, NY
| | - Amy Shikany
- Division of Cardiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH
| | - K Nicole Weaver
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Hakon Hakonarson
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA; Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA; Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA.
| |
Collapse
|
25
|
Äyräväinen A, Vahteristo M, Khamaiseh S, Heikkinen T, Ahvenainen T, Härkki P, Vahteristo P. Quality of life after myomectomy according to the surgical approach and MED12 mutation status. Eur J Obstet Gynecol Reprod Biol 2024; 301:142-146. [PMID: 39137592 DOI: 10.1016/j.ejogrb.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 08/15/2024]
Abstract
OBJECTIVE Molecular status of uterine leiomyomas has been shown to affect both tumor characteristics and treatment response. Mutations in mediator complex subunit 12 (MED12), the most prevalent alterations in leiomyomas, are associated with tumor size and number of leiomyomas. Myomectomy can be performed by laparoscopy or by open abdominal surgery, depending on the size and number of leiomyomas removed. The aim of this study was to examine the association between MED12 mutation status and surgical approach of myomectomy. We also evaluated myomectomy patients' quality of life after laparoscopic or abdominal surgery and according to the MED12 mutation status. STUDY DESIGN The prospective cohort study included 104 women who underwent laparoscopic or abdominal myomectomy at the Helsinki University Hospital during 2015-2019. Patients filled in the validated Uterine Fibroid Symptom and Quality of Life (UFS-QOL) questionnaire before the operation and 6 and 12 months after the operation. Medical records were reviewed to collect clinical data. Leiomyoma tissue samples were collected and screened for MED12 mutations. RESULTS Patients undergoing abdominal myomectomy had larger and more numerous leiomyomas compared to patients with laparoscopic myomectomy (10 cm vs 7.4 cm, p < 0.001 and 3 vs 1 leiomyomas, p < 0.001, respectively). A mean change of over 20 points was seen in UFS-QOL scores at 6 months after both laparoscopic and abdominal myomectomy (p < 0.001). MED12 mutations were detected in 178/242 (74 %) of leiomyomas. Of the patients, 45/97 (46 %) had only MED12 positive leiomyomas, while 39/97 (40 %) had only MED12 wild type leiomyomas. The number of leiomyomas removed was higher among patients with MED12 positive leiomyomas than in patients with MED12 wild type tumors (p < 0.001). Laparoscopic approach was equally common in both groups (62 % and 64 %), and there was no statistically significant difference in the UFS-QOL scores. CONCLUSION Both laparoscopic and abdominal myomectomy significantly improved the quality of life. While MED12 mutations were related with multiple leiomyomas and therefore potentially generated a greater leiomyoma burden, they were not associated with the surgical approach. Pre- and postoperative quality of life was comparable between patients regardless of MED12 status.
Collapse
Affiliation(s)
- Anna Äyräväinen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maija Vahteristo
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Sara Khamaiseh
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Tuomas Heikkinen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Terhi Ahvenainen
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Päivi Härkki
- Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Pia Vahteristo
- Applied Tumor Genomics Research Program and Department of Medical and Clinical Genetics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
26
|
McWilliams MM, Koohestani F, Jefferson WN, Gunewardena S, Shivashankar K, Wertenberger RA, Williams CJ, Kumar TR, Chennathukuzhi VM. Estrogen receptor alpha mediated repression of PRICKLE1 destabilizes REST and promotes uterine fibroid pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612036. [PMID: 39314474 PMCID: PMC11419101 DOI: 10.1101/2024.09.09.612036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Uterine fibroids (leiomyomas), benign tumors of the myometrial smooth muscle layer, are present in over 75% of women, often causing severe pain, menorrhagia and reproductive dysfunction. The molecular pathogenesis of fibroids is poorly understood. We previously showed that the loss of REST (RE-1 Silencing Transcription factor), a tumor suppressor, in fibroids leads to activation of PI3K/AKT-mTOR pathway. We report here a critical link between estrogen receptor alpha (ERα) and the loss of REST, via PRICKLE1. PRICKLE1 expression is markedly lower in leiomyomas, and the suppression of PRICKLE1 significantly down regulates REST protein levels. Conversely, overexpression of PRICKLE1 resulted in the restoration of REST in cultured primary leiomyoma smooth muscle cells (LSMCs). Crucially, mice exposed neonatally to environmental estrogens, proven risk factors for fibroids, expressed lower levels of PRICKLE1 and REST in the myometrium. Using mice that lack either endogenous estrogen (Lhb -/- mice) or ERα (Esr1 -/- mice), we demonstrate that Prickle1 expression in the myometrium is suppressed by estrogen through ERα. Enhancer of zeste homolog 2 (EZH2) is known to participate in the repression of specific ERα target genes. Uterine leiomyomas express increased levels of EZH2 that inversely correlate with the expression of PRICKLE1. Using chromatin immunoprecipitation, we provide evidence for association of EZH2 with the PRICKLE1 promoter and for hypermethylation of H3K27 within the regulatory region of PRICKLE1 in leiomyomas. Additionally, siRNA mediated knockdown of EZH2 leads to restoration of PRICKLE1 in LSMCs. Collectively, our results identify a novel link between estrogen exposure and PRICKLE1/REST-regulated tumorigenic pathways in leiomyomas.
Collapse
Affiliation(s)
- Michelle M McWilliams
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Faezeh Koohestani
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Wendy N Jefferson
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - Sumedha Gunewardena
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Kavya Shivashankar
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Riley A Wertenberger
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| | - Carmen J Williams
- Reproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC
| | - T Rajendra Kumar
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, CO 80045
| | - Vargheese M Chennathukuzhi
- Department of Cell Biology and Physiology, Center for Reproductive Sciences, Institute for Reproduction and Developmental Sciences, University of Kansas Medical Center, Kansas City, KS
| |
Collapse
|
27
|
Li Y, Asif H, Feng Y, Kim JJ, Wei JJ. Somatic MED12 Mutations in Myometrial Cells. Cells 2024; 13:1432. [PMID: 39273004 PMCID: PMC11394142 DOI: 10.3390/cells13171432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Over 70% of leiomyoma (LM) harbor MED12 mutations, primarily in exon 2 at c.130-131 (GG). Myometrial cells are the cell origin of leiomyoma, but the MED12 mutation status in non-neoplastic myometrial cells is unknown. In this study, we investigated the mutation burden of MED12 in myometrium. As traditional Sanger or even NGS sequencing may not be able to detect MED12 mutations that are lower than 0.1% in the testing sample, we used duplex deep sequencing analysis (DDS) to overcome this limitation. Tumor-free myometria (confirmed by pathology evaluation) were dissected, and genomic DNA from MED12 exon 2 (test) and TP53 exon 5 (control) were captured by customer-designed probe sets, followed by DDS. Notably, DDS demonstrated that myometrial cells harbored a high frequency of mutations in MED12 exon 2 and predominantly in code c.130-131. In contrast, the baseline mutations in other coding sequences of MED12 exon 2 as well as in the TP53 mutation hotspot, c.477-488 were comparably low in myometrial cells. This is the first report demonstrating a non-random accumulation of MED12 mutations at c.130-131 sites in non-neoplastic myometrial cells which provide molecular evidence of early somatic mutation events in myometrial cells. This early mutation may contribute to the cell origin for uterine LM development in women of reproductive age.
Collapse
Affiliation(s)
- Yinuo Li
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (Y.L.); (Y.F.)
| | - Huma Asif
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| | - Yue Feng
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (Y.L.); (Y.F.)
| | - Julie J. Kim
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University, Chicago, IL 60611, USA; (Y.L.); (Y.F.)
- Department of Obstetrics and Gynecology, Northwestern University, Chicago, IL 60611, USA;
| |
Collapse
|
28
|
Ciebiera M, Kociuba J, Ali M, Madueke-Laveaux OS, Yang Q, Bączkowska M, Włodarczyk M, Żeber-Lubecka N, Zarychta E, Corachán A, Alkhrait S, Somayeh V, Malasevskaia I, Łoziński T, Laudański P, Spaczynski R, Jakiel G, Al-Hendy A. Uterine fibroids: current research on novel drug targets and innovative therapeutic strategies. Expert Opin Ther Targets 2024; 28:669-687. [PMID: 39136530 DOI: 10.1080/14728222.2024.2390094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/05/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Uterine fibroids, the most common nonmalignant tumors affecting the female genital tract, are a significant medical challenge. This article focuses on the most recent studies that attempted to identify novel non-hormonal therapeutic targets and strategies in UF therapy. AREAS COVERED This review covers the analysis of the pharmacological and biological mechanisms of the action of natural substances and the role of the microbiome in reference to UFs. This study aimed to determine the potential role of these compounds in UF prevention and therapy. EXPERT OPINION While there are numerous approaches for treating UFs, available drug therapies for disease control have not been optimized yet. This review highlights the biological potential of vitamin D, EGCG and other natural compounds, as well as the microbiome, as promising alternatives in UF management and prevention. Although these substances have been quite well analyzed in this area, we still recommend conducting further studies, particularly randomized ones, in the field of therapy with these compounds or probiotics. Alternatively, as the quality of data continues to improve, we propose the consideration of their integration into clinical practice, in alignment with the patient's preferences and consent.
Collapse
Affiliation(s)
- Michal Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
| | - Jakub Kociuba
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
- Warsaw Institute of Women's Health, Warsaw, Poland
| | - Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Monika Bączkowska
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Marta Włodarczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Center of Postgraduate Medical Education, Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Elżbieta Zarychta
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ana Corachán
- Department of Pediatrics, Obstetrics and Gynecology, University of Valencia, Valencia, Spain
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | - Vafaei Somayeh
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| | | | - Tomasz Łoziński
- Development and Research Center of Non-Invasive Therapies, Pro-Familia Hospital, Rzeszow, Poland
- Department of Obstetrics and Gynecology, Pro-Familia Hospital, Rzeszow, Poland
- Department of Gynecology and Obstetrics, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Piotr Laudański
- Department of Obstetrics, Gynecology and Gynecological Oncology, Medical University of Warsaw, Warsaw, Poland
- Women's Health Research Institute, Calisia University, Kalisz, Poland
- OVIklinika Infertility Center, Warsaw, Poland
| | - Robert Spaczynski
- Center for Gynecology, Obstetrics and Infertility Treatment, Poznan, Poland
- Collegium Medicum, University of Zielona Gora, Zielona Gora, Poland
| | - Grzegorz Jakiel
- First Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, Poland
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
29
|
Chen SF, Chao TC, Kim HJ, Tang HC, Khadka S, Li T, Lee DF, Murakami K, Boyer TG, Tsai KL. Structural basis of the human transcriptional Mediator complex modulated by its dissociable Kinase module. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601608. [PMID: 39005267 PMCID: PMC11244988 DOI: 10.1101/2024.07.01.601608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The eukaryotic Mediator, comprising a large Core (cMED) and a dissociable CDK8 kinase module (CKM), regulates RNA Polymerase II (Pol II)-dependent transcription. cMED recruits Pol II and promotes pre-initiation complex (PIC) formation in a manner inhibited by the CKM, which is also implicated in post-initiation control of gene expression. Herein we report cryo-electron microscopy structures of the human complete Mediator and its CKM, which explains the basis for CKM inhibition of cMED-activated transcription. The CKM binds to cMED through an intrinsically disordered region (IDR) in MED13 and HEAT repeats in MED12. The CKM inhibits transcription by allocating its MED13 IDR to occlude binding of Pol II and MED26 to cMED and further obstructing cMED-PIC assembly through steric hindrance with TFIIH and the +1 nucleosome. Notably, MED12 binds to the cMED Hook, positioning CDK8 downstream of the transcription start site, which sheds new light on its stimulatory function in post-initiation events.
Collapse
|
30
|
Dolmans MM, Petraglia F, Catherino WH, Donnez J. Pathogenesis of uterine fibroids: current understanding and future directions. Fertil Steril 2024; 122:6-11. [PMID: 38453042 DOI: 10.1016/j.fertnstert.2024.02.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/29/2024] [Indexed: 03/09/2024]
Abstract
Fibroids are benign uterine tumors characterized by the proliferation of uterine smooth muscle cells, embedded in an abundant extracellular matrix. Their prevalence is estimated to be >50% in women aged >45 years. Fibroids represent a considerable health burden. It is time to acquire a deeper mechanistic understanding of uterine fibroid-related etiology and pathogenesis, which may help pinpoint new strategies and an individualized approach. There is a need to gather prospective data and conduct studies to compare alternative approaches and assess long-term outcomes with respect to quality of life, recurrence of symptoms (bleeding and bulk symptoms), fertility, and even complications The goal of this review was to evaluate the widely accepted pathogenesis and identify risks factors and future directions for clinical and basic research into fibroids.
Collapse
Affiliation(s)
- Marie-Madeleine Dolmans
- Pôle de Recherche en Gynécologie, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain (UCL), Brussels, Belgium; Gynecology Department, Cliniques Universitaires Saint-Luc, Brussels, Belgium.
| | - Felice Petraglia
- Obstetrics and Gynecology, Department of Maternal-Infancy, Careggi University Hospital Florence, Florence, Italy; Department of Experimental, Clinical and Biomedical Sciences, University of Florence, Florence, Italy
| | - William H Catherino
- Department of Gynecologic Surgery and Obstetrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Jacques Donnez
- Université Catholique de Louvain, Brussels, Belgium; Society for Research into Infertility (SRI), Brussels, Belgium
| |
Collapse
|
31
|
George JW, Cancino RA, Griffin Miller JL, Qiu F, Lin Q, Rowley MJ, Chennathukuzhi VM, Davis JS. Characterization of m6A Modifiers and RNA Modifications in Uterine Fibroids. Endocrinology 2024; 165:bqae074. [PMID: 38946397 PMCID: PMC11222979 DOI: 10.1210/endocr/bqae074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 06/07/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
Uterine leiomyoma or fibroids are prevalent noncancerous tumors of the uterine muscle layer, yet their origin and development remain poorly understood. We analyzed RNA expression profiles of 15 epigenetic mediators in uterine fibroids compared to myometrium using publicly available RNA sequencing (RNA-seq) data. To validate our findings, we performed RT-qPCR on a separate cohort of uterine fibroids targeting these modifiers confirming our RNA-seq data. We then examined protein profiles of key N6-methyladenosine (m6A) modifiers in fibroids and their matched myometrium, showing no significant differences in concordance with our RNA expression profiles. To determine RNA modification abundance, mRNA and small RNA from fibroids and matched myometrium were analyzed by ultra-high performance liquid chromatography-mass spectrometry identifying prevalent m6A and 11 other known modifiers. However, no aberrant expression in fibroids was detected. We then mined a previously published dataset and identified differential expression of m6A modifiers that were specific to fibroid genetic subtype. Our analysis also identified m6A consensus motifs on genes previously identified to be dysregulated in uterine fibroids. Overall, using state-of-the-art mass spectrometry, RNA expression, and protein profiles, we characterized and identified differentially expressed m6A modifiers in relation to driver mutations. Despite the use of several different approaches, we identified limited differential expression of RNA modifiers and associated modifications in uterine fibroids. However, considering the highly heterogenous genomic and cellular nature of fibroids, and the possible contribution of single molecule m6A modifications to fibroid pathology, there is a need for greater in-depth characterization of m6A marks and modifiers in a larger and diverse patient cohort.
Collapse
Affiliation(s)
- Jitu W George
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| | - Rosa A Cancino
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jennifer L Griffin Miller
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fang Qiu
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Qishan Lin
- RNA Epitranscriptomics and Proteomics Resource, Department of Chemistry, University at Albany, Albany, NY 12222, USA
| | - M Jordan Rowley
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Varghese M Chennathukuzhi
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John S Davis
- Olson Center for Women's Health, Department of Obstetrics and Gynecology, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Veterans Affairs Nebraska Western Iowa Health Care System, Omaha, NE 68105, USA
| |
Collapse
|
32
|
Krishnan M, Narice B, Cheong YC, Lumsden MA, Daniels JP, Hickey M, Gupta JK, Metwally M. Surgery and minimally invasive treatments for uterine fibroids. Cochrane Database Syst Rev 2024; 6:CD015650. [PMID: 39804114 PMCID: PMC11152210 DOI: 10.1002/14651858.cd015650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
OBJECTIVES This is a protocol for a Cochrane Review (intervention). The objectives are as follows: To assess the effects of surgery and minimally invasive treatments for uterine fibroids.
Collapse
Affiliation(s)
- Monica Krishnan
- The Jessop Wing and Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK
| | - Brenda Narice
- The Jessop Wing and Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK
- Reproductive Medicine Department, University of Sheffield, Sheffield, UK
| | - Ying C Cheong
- Human Development and Health Academic Unit, Faculty of Medicine, University of Southampton, Southampton, UK
| | - M A Lumsden
- Developmental Medicine, Reproductive & Maternal Medicine, University of Glasgow, Glasgow, UK
| | - Jane P Daniels
- Nottingham Clinical Trials Unit, University of Nottingham, Nottingham, UK
| | - Martha Hickey
- Department of Obstetrics, Gynaecology and Newborn Health, The Royal Women's Hospital, Victoria, Australia
| | - Janesh K Gupta
- Department of Obstetrics and Gynaecology, Birmingham Women's and Children's Hospital, Birmingham, UK
| | - Mostafa Metwally
- The Jessop Wing and Royal Hallamshire Hospital, Sheffield Teaching Hospitals, Sheffield, UK
- Reproductive Medicine Department, University of Sheffield, Sheffield, UK
| |
Collapse
|
33
|
Dundr P, Machado-Lopez A, Mas A, Věcková Z, Mára M, Richtárová A, Matěj R, Stružinská I, Kendall Bártů M, Němejcová K, Dvořák J, Hojný J. Uterine leiomyoma with RAD51B::NUDT3 fusion: a report of 2 cases. Virchows Arch 2024; 484:1015-1022. [PMID: 37466765 PMCID: PMC11186871 DOI: 10.1007/s00428-023-03603-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
Three main uterine leiomyoma molecular subtypes include tumors with MED12 mutation, molecular aberrations leading to HMGA2 overexpression, and biallelic loss of FH. These aberrations are mutually exclusive and can be found in approximately 80-90% of uterine leiomyoma, in which they seem to be a driver event. Approximately 10% of uterine leiomyoma, however, does not belong to any of these categories. Uterine leiomyoma with HMGA2 overexpression is the most common subtype in cellular and second most common category of usual leiomyoma. In some of these tumors, rearrangement of HMGA2 gene is present. The most common fusion partner of HMGA2 gene is RAD51B. Limited data suggests that RAD51B fusions with other genes may be present in uterine leiomyoma. In our study, we described two cases of uterine leiomyoma with RAD51B::NUDT3 fusion, which occur in one case of usual and one case of highly cellular leiomyoma. In both cases, no other driver molecular aberrations were found. The results of our study showed that RAD51::NUDT3 fusion can occur in both usual and cellular leiomyoma. RAD51B may be a fusion partner of multiple genes other than HMGA2 and HMGA1. In these cases, RAD51B fusion seems to be mutually exclusive with other driver aberrations defining molecular leiomyoma subtypes. RAD51B::NUDT3 fusion should be added to the spectrum of fusions which may occur in uterine leiomyoma, which can be of value especially in cellular leiomyoma in the context of differential diagnosis against endometrial stromal tumors.
Collapse
Affiliation(s)
- Pavel Dundr
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic.
| | - Alba Machado-Lopez
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Aymara Mas
- Carlos Simon Foundation, INCLIVA Health Research Institute, 46010, Valencia, Spain
| | - Zuzana Věcková
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Michal Mára
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Adéla Richtárová
- Department of Obstetrics and Gynecology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Radoslav Matěj
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
- Department of Pathology, Charles University, 3rd Faculty of Medicine, University Hospital Kralovske Vinohrady, Prague, Czech Republic
- Department of Pathology and Molecular Medicine, Third Faculty of Medicine, Charles University, Thomayer University Hospital, Prague, Czech Republic
| | - Ivana Stružinská
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Michaela Kendall Bártů
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Kristýna Němejcová
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Jiří Dvořák
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| | - Jan Hojný
- Department of Pathology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Studničkova 2, 128 00, Prague 2, Czech Republic
| |
Collapse
|
34
|
Olson SL, Akbar RJ, Gorniak A, Fuhr LI, Borahay MA. Hypoxia in uterine fibroids: role in pathobiology and therapeutic opportunities. OXYGEN (BASEL, SWITZERLAND) 2024; 4:236-252. [PMID: 38957794 PMCID: PMC11218552 DOI: 10.3390/oxygen4020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Uterine fibroids are the most common tumors in females affecting up to 70% of women world-wide, yet targeted therapeutic options are limited. Oxidative stress has recently surfaced as a key driver of fibroid pathogenesis and provides insights into hypoxia-induced cell transformation, extracellular matrix pathophysiology, hypoxic cell signaling cascades, and uterine biology. Hypoxia drives fibroid tumorigenesis through (1) promoting myometrial stem cell proliferation, (2) causing DNA damage propelling transformation of stem cells to tumor initiating cells, and (3) driving excess extracellular matrix (ECM) production. Common fibroid-associated DNA mutations include MED12 mutations, HMGA2 overexpression, and Fumarate hydratase loss of function. Evidence suggests an interaction between hypoxia signaling and these mutations. Fibroid development and growth are promoted by hypoxia-triggered cell signaling via various pathways including HIF-1, TGFβ, and Wnt/β-catenin. Fibroid-associated hypoxia persists due to antioxidant imbalance, ECM accumulation, and growth beyond adequate vascular supply. Current clinically available fibroid treatments do not take advantage of hypoxia-targeting therapies. Growing pre-clinical and clinical studies identify ROS inhibitors, anti-HIF-1 agents, Wnt/β-catenin inhibition, and TGFβ cascade inhibitors as agents that may reduce fibroid development and growth through targeting hypoxia.
Collapse
Affiliation(s)
- Sydney L. Olson
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | | | - Adrianna Gorniak
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Laura I. Fuhr
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| | - Mostafa A. Borahay
- Department of Gynecology & Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205 USA
| |
Collapse
|
35
|
Paul EN, Carpenter TJ, Pavliscak LA, Bennett AZ, Ochoa-Bernal MA, Fazleabas AT, Teixeira JM. Unraveling the Molecular Landscape of Uterine Fibroids, Insights into HMGA2 and Stem Cell Involvement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591351. [PMID: 38712187 PMCID: PMC11071509 DOI: 10.1101/2024.04.26.591351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Uterine fibroids are prevalent benign tumors in women that exhibit considerable heterogeneity in clinical presentation and molecular characteristics, necessitating a deeper understanding of their etiology and pathogenesis. HMGA2 overexpression has been associated with fibroid development, yet its precise role remains elusive. Mutations in fibroids are mutually exclusive and largely clonal, suggesting that tumors originate from a single mutant cell. We explored a possible role for HMGA2 overexpression in differentiated myometrial cells, hypothesizing its potential to induce a stem cell-like or dedifferentiating phenotype and drive fibroid development. Myometrial cells were immortalized and transduced with an HMGA2 lentivirus to produce HMGA2hi cells. In vitro stem cell assays were conducted and RNA from HMGA2hi and control cells and fibroid-free myometrial and HMGA2 fibroid (HMGA2F) tissues were submitted for RNA-sequencing. HMGA2hi cells have enhanced self-renewal capacity, decreased proliferation, and have a greater ability to differentiate into other mesenchymal cell types. HMGA2hi cells exhibit a stem cell-like signature and share transcriptomic similarities with HMGA2F. Moreover, dysregulated extracellular matrix pathways are observed in both HMGA2hi cells and HMGA2F. Our findings suggest that HMGA2 overexpression drives myometrial cells to dedifferentiate into a more plastic phenotype and underscore a pivotal role for HMGA2 in fibroid pathogenesis.
Collapse
|
36
|
Li X, Liu M, Xing Y, Niu Y, Liu TH, Sun JL, Liu Y, Hemba-Waduge RUS, Ji JY. Distinct effects of CDK8 module subunits on cellular growth and proliferation in Drosophila. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.30.591924. [PMID: 38746212 PMCID: PMC11092604 DOI: 10.1101/2024.04.30.591924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The Mediator complex, composed of about 30 conserved subunits, plays a pivotal role in facilitating RNA polymerase II-dependent transcription in eukaryotes. Within this complex, the CDK8 kinase module (CKM), comprising Med12, Med13, CDK8, and CycC (Cyclin C), serves as a dissociable subcomplex that modulates the activity of the small Mediator complex. Genetic studies in Drosophila have revealed distinct phenotypes of CDK8-CycC and Med12-Med13 mutations, yet the underlying mechanism has remained unknown. Here, using Drosophila as a model organism, we show that depleting CDK8-CycC enhances E2F1 target gene expression and promotes cell-cycle progression. Conversely, depletion of Med12-Med13 affects the expression of ribosomal protein genes and fibrillarin, indicating a more severe reduction in ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Moreover, we found that the stability of CDK8 and CycC relies on Med12 and Med13, with a mutually interdependent relationship between Med12 and Med13. Furthermore, CycC stability depends on the other three CKM subunits. These findings reveal distinct roles for CKM subunits in vivo , with Med12-Med13 disruption exerting a more pronounced impact on ribosome biogenesis and cellular growth compared to the loss of CDK8-CycC. Significance The CDK8 kinase module (CKM), comprising CDK8, CycC, Med12, and Med13, is essential in the Mediator complex for RNA polymerase II-dependent transcription in eukaryotes. While expected to function jointly, CKM subunit mutations result in distinct phenotypes in Drosophila . This study investigates the mechanisms driving these differing effects. Our analysis reveals the role of Med12-Med13 pair in regulating ribosomal biogenesis and cellular growth, contrasting with the involvement of CDK8-CycC in E2F1-dependent cell-cycle progression. Additionally, an asymmetric interdependence in the stability of CDK8-CycC and Med12-Med13 was observed. CKM mutations or overexpression are associated with cancers and cardiovascular diseases. Our findings underscore the distinct impacts of CKM mutations on cellular growth and proliferation, advancing our understanding of their diverse consequences in vivo .
Collapse
|
37
|
Kiesler ZG, Hunter MI, Balboula AZ, Patterson AL. Periostin's role in uterine leiomyoma development: a mini-review on the potential periostin poses as a pharmacological intervention for uterine leiomyoma. Arch Gynecol Obstet 2024; 309:1825-1831. [PMID: 38441600 DOI: 10.1007/s00404-024-07435-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/14/2024] [Indexed: 04/16/2024]
Abstract
Uterine leiomyomas, also known as fibroids or myomas, occur in an estimated 70-80% of reproductive aged women. Many experience debilitating symptoms including pelvic pain, abnormal uterine bleeding (AUB), dyspareunia, dysmenorrhea, and infertility. Current treatment options are limited in preserving fertility, with many opting for sterilizing hysterectomy as a form of treatment. Currently, surgical interventions include hysterectomy, myomectomy, and uterine artery embolization in addition to endometrial ablation to control AUB. Non-surgical hormonal interventions, including GnRH agonists, are connotated with negative side effects and are unacceptable for women desiring fertility. Periostin, a regulatory extra cellular matrix (ECM) protein, has been found to be expressed in various gynecological diseases including leiomyomas. We previously determined that periostin over-expression in immortalized myometrial cells led to the development of a leiomyoma-like cellular phenotype. Periostin is induced by TGF-β, signals through the PI3K/AKT pathway, induces collagen production, and mediates wound repair and fibrosis, all of which are implicated in leiomyoma pathology. Periostin has been linked to other gynecological diseases including ovarian cancer and endometriosis and is being investigated as pharmacological target for treating ovarian cancer, post-surgical scarring, and numerous other fibrotic conditions. In this review, we provide discussion linking pathological inflammation and wound repair, with a TGF-β-periostin-collagen signaling in the pathogenesis of leiomyomas, and ultimately the potential of periostin as a druggable target to treat leiomyomas.
Collapse
Affiliation(s)
- Zahra G Kiesler
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Mark I Hunter
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA
| | - Ahmed Z Balboula
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Amanda L Patterson
- Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
- Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, 65211, USA.
| |
Collapse
|
38
|
Ramaiyer MS, Saad E, Kurt I, Borahay MA. Genetic Mechanisms Driving Uterine Leiomyoma Pathobiology, Epidemiology, and Treatment. Genes (Basel) 2024; 15:558. [PMID: 38790186 PMCID: PMC11121260 DOI: 10.3390/genes15050558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Uterine leiomyomas (ULs) are the most common benign tumor of the uterus. They can be associated with symptoms including abnormal uterine bleeding, pelvic pain, urinary frequency, and pregnancy complications. Despite the high prevalence of UL, its underlying pathophysiology mechanisms have historically been poorly understood. Several mechanisms of pathogenesis have been suggested, implicating various genes, growth factors, cytokines, chemokines, and microRNA aberrations. The purpose of this study is to summarize the current research on the relationship of genetics with UL. Specifically, we performed a literature review of published studies to identify how genetic aberrations drive pathophysiology, epidemiology, and therapeutic approaches of UL. With regards to pathophysiology, research has identified MED12 mutations, HMGA2 overexpression, fumarate hydratase deficiency, and cytogenetic abnormalities as contributors to the development of UL. Additionally, epigenetic modifications, such as histone acetylation and DNA methylation, have been identified as contributing to UL tumorigenesis. Specifically, UL stem cells have been found to contain a unique DNA methylation pattern compared to more differentiated UL cells, suggesting that DNA methylation has a role in tumorigenesis. On a population level, genome-wide association studies (GWASs) and epidemiologic analyses have identified 23 genetic loci associated with younger age at menarche and UL growth. Additionally, various GWASs have investigated genetic loci as potential drivers of racial disparities in UL incidence. For example, decreased expression of Cytohesin 4 in African Americans has been associated with increased UL risk. Recent studies have investigated various therapeutic options, including ten-eleven translocation proteins mediating DNA methylation, adenovirus vectors for drug delivery, and "suicide gene therapy" to induce apoptosis. Overall, improved understanding of the genetic and epigenetic drivers of UL on an individual and population level can propel the discovery of novel therapeutic options.
Collapse
Affiliation(s)
| | - Eslam Saad
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| | - Irem Kurt
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
- Faculty of Medicine, Selcuk University, 42000 Konya, Turkey
| | - Mostafa A. Borahay
- Department of Gynecology and Obstetrics, Johns Hopkins University, 720 Rutland Ave, Baltimore, MD 21205, USA; (E.S.); (I.K.)
| |
Collapse
|
39
|
Chen Z, Ji J, Yung E, Martin SE, Walia S. Uterine Leiomyosarcoma With Osteoclast-like Giant Cells: Report of 2 Cases and Review of Literature. Int J Gynecol Pathol 2024; 43:182-189. [PMID: 37406452 DOI: 10.1097/pgp.0000000000000965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Leiomyosarcoma (LMS) with osteoclast-like giant cells (OLGCs) is a rare entity with only 18 reported cases thus far. It is not known whether these OLGCs are a reactive or malignant component of LMS. Herein we describe the clinical, histologic, and molecular characteristics of 2 cases of LMS with OLGCs and perform a brief literature review. In 2 of our cases, the OLGCs, marked with CD68, had a low proliferation index with Ki67 and did not show diffuse positivity for smooth muscle markers by immunohistochemistry. By next-generation sequencing, one case harbored a clinically significant TP53 mutation, which has been reported in a significant subset of conventional LMSs. In this case, based on immunohistochemistry, OLGCs showed different molecular alterations as compared with LMS. Although we did not show a distinct immunophenotype or molecular profile for LMS with OLGCs, this study provides additional data on this rare entity.
Collapse
|
40
|
Vilos GA, Vilos AG, Burbank F. Bipedalism and the dawn of uterine fibroids. Hum Reprod 2024; 39:454-463. [PMID: 38300232 DOI: 10.1093/humrep/deae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/03/2024] [Indexed: 02/02/2024] Open
Abstract
The high prevalence and burden of uterine fibroids in women raises questions about the origin of these benign growths. Here, we propose that fibroids should be understood in the context of human evolution, specifically the advent of bipedal locomotion in the hominin lineage. Over the ≥7 million years since our arboreal ancestors left their trees, skeletal adaptations ensued, affecting the pelvis, limbs, hands, and feet. By 3.2 million years ago, our ancestors were fully bipedal. A key evolutionary advantage of bipedalism was the freedom to use hands to carry and prepare food and create and use tools which, in turn, led to further evolutionary changes such as brain enlargement (encephalization), including a dramatic increase in the size of the neocortex. Pelvic realignment resulted in narrowing and transformation of the birth canal from a simple cylinder to a convoluted structure with misaligned pelvic inlet, mid-pelvis, and pelvic outlet planes. Neonatal head circumference has increased, greatly complicating parturition in early and modern humans, up to and including our own species. To overcome the so-called obstetric dilemma provoked by bipedal locomotion and encephalization, various compensatory adaptations have occurred affecting human neonatal development. These include adaptations limiting neonatal size, namely altricial birth (delivery of infants at an early neurodevelopmental stage, relative to other primates) and mid-gestation skeletal growth deceleration. Another key adaptation was hyperplasia of the myometrium, specifically the neomyometrium (the outer two-thirds of the myometrium, corresponding to 90% of the uterine musculature), allowing the uterus to more forcefully push the baby through the pelvis during a lengthy parturition. We propose that this hyperplasia of smooth muscle tissue set the stage for highly prevalent uterine fibroids. These fibroids are therefore a consequence of the obstetric dilemma and, ultimately, of the evolution of bipedalism in our hominin ancestors.
Collapse
Affiliation(s)
- George A Vilos
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Angelos G Vilos
- Department of Obstetrics and Gynecology, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Fred Burbank
- Salt Creek International Women's Health Foundation, San Clemente, CA, USA
| |
Collapse
|
41
|
Tamehisa T, Sato S, Sakai T, Maekawa R, Tanabe M, Ito K, Sugino N. Establishment of Noninvasive Prediction Models for the Diagnosis of Uterine Leiomyoma Subtypes. Obstet Gynecol 2024; 143:358-365. [PMID: 38061038 DOI: 10.1097/aog.0000000000005475] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/31/2023] [Indexed: 02/17/2024]
Abstract
OBJECTIVE To establish prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using magnetic resonance imaging (MRI) data. METHODS This is a prospective observational study. Ninety uterine leiomyoma samples were obtained from 51 patients who underwent surgery for uterine leiomyomas. Seventy-one samples (49 mediator complex subunit 12 [ MED12 ] mutation-positive and 22 MED12 mutation-negative leiomyomas) were assigned to the primary data set to establish prediction models. Nineteen samples (13 MED12 mutation-positive and 6 MED12 mutation-negative leiomyomas) were assigned to the unknown testing data set to validate the prediction model utility. The tumor signal intensity was quantified by seven MRI sequences (T2-weighted imaging, apparent diffusion coefficient, magnetic resonance elastography, T1 mapping, magnetization transfer contrast, T2* blood oxygenation level dependent, and arterial spin labeling) that can estimate the collagen and water contents of uterine leiomyomas. After surgery, the MED12 mutations were genotyped. These results were used to establish prediction models based on machine learning by applying support vector classification and logistic regression for the diagnosis of uterine leiomyoma subtypes. The performance of the prediction models was evaluated by cross-validation within the primary data set and then finally evaluated by external validation using the unknown testing data set. RESULTS The signal intensities of five MRI sequences (T2-weighted imaging, apparent diffusion coefficient, T1 mapping, magnetization transfer contrast, and T2* blood oxygenation level dependent) differed significantly between the subtypes. In cross-validation within the primary data set, both machine learning models (support vector classification and logistic regression) based on the five MRI sequences were highly predictive of the subtypes (area under the curve [AUC] 0.974 and 0.988, respectively). External validation with the unknown testing data set confirmed that both models were able to predict the subtypes for all samples (AUC 1.000, 100.0% accuracy). Our prediction models with T2-weighted imaging alone also showed high accuracy to discriminate the uterine leiomyoma subtypes. CONCLUSION We established noninvasive prediction models for the diagnosis of the subtypes of uterine leiomyomas by machine learning using MRI data.
Collapse
Affiliation(s)
- Tetsuro Tamehisa
- Department of Obstetrics and Gynecology and the Department of Radiology, Yamaguchi University Graduate School of Medicine, Ube, Japan
| | | | | | | | | | | | | |
Collapse
|
42
|
Szucio W, Bernaczyk P, Ponikwicka-Tyszko D, Milewska G, Pawelczyk A, Wołczyński S, Rahman NA. Progesterone signaling in uterine leiomyoma biology: Implications for potential targeted therapy. Adv Med Sci 2024; 69:21-28. [PMID: 38278085 DOI: 10.1016/j.advms.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/19/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024]
Abstract
Uterine leiomyomas (ULs) are the most common benign smooth muscle cell steroid-dependent tumors that occur in women of reproductive age. Progesterone (P4) is a major hormone that promotes the ULs development and growth. P4 action in ULs is mediated mainly by its nuclear progesterone receptors (PGRs), although rapid non-genomic responses have also been observed. Data on the membrane progesterone receptors (mPRs) regulated signaling pathways in ULs in the available literature is still very limited. One of the essential characteristics of ULs is the excessive production of extracellular matrix (ECM). P4 has been shown to stimulate ECM production and collagen synthesis in ULs. Recent research demonstrated that, despite their benign nature, ULs may present with abnormal vasculature. P4 has been shown to regulate angiogenesis in ULs through the upregulation of vascular endothelial growth factor (VEGF) and by controlling the secretion of permeability factors. This review summarizes the key findings regarding the role of PGRs and mPRs in ULs, especially highlighting the potential ECM and angiogenesis modulation by P4. An increased understanding of this mechanistic role of nuclear and specifically mPRs in the biology of P4-modulated ECM and angiogenesis in the growth of ULs could turn out to be fundamental for developing effective targeted therapies for ULs.
Collapse
Affiliation(s)
- Weronika Szucio
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Piotr Bernaczyk
- Department of Medical Pathomorphology, Medical University of Bialystok, Bialystok, Poland
| | - Donata Ponikwicka-Tyszko
- Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland; Institute of Biomedicine, University of Turku, Turku, Finland
| | - Gabriela Milewska
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland
| | - Adam Pawelczyk
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, Szczecin, Poland
| | - Sławomir Wołczyński
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Department of Biology and Pathology of Human Reproduction, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Nafis A Rahman
- Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Bialystok, Poland; Institute of Biomedicine, University of Turku, Turku, Finland.
| |
Collapse
|
43
|
Velez Edwards DR, Edwards TL. The Future of Prediction Modeling in Clinical Practice for Obstetrics and Gynecology. Obstet Gynecol 2024; 143:355-357. [PMID: 38359434 DOI: 10.1097/aog.0000000000005516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Affiliation(s)
- Digna R Velez Edwards
- Digna R. Velez Edwards is from the Department of Obstetrics and Gynecology, and Todd L. Edwards is from the Division of Epidemiology, Department of Medicine, at Vanderbilt University Medical Center, Nashville, Tennessee;
| | | |
Collapse
|
44
|
Denu RA, Dann AM, Keung EZ, Nakazawa MS, Nassif Haddad EF. The Future of Targeted Therapy for Leiomyosarcoma. Cancers (Basel) 2024; 16:938. [PMID: 38473300 PMCID: PMC10930698 DOI: 10.3390/cancers16050938] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Leiomyosarcoma (LMS) is an aggressive subtype of soft tissue sarcoma that arises from smooth muscle cells, most commonly in the uterus and retroperitoneum. LMS is a heterogeneous disease with diverse clinical and molecular characteristics that have yet to be fully understood. Molecular profiling has uncovered possible targets amenable to treatment, though this has yet to translate into approved targeted therapies in LMS. This review will explore historic and recent findings from molecular profiling, highlight promising avenues of current investigation, and suggest possible future strategies to move toward the goal of molecularly matched treatment of LMS. We focus on targeting the DNA damage response, the macrophage-rich micro-environment, the PI3K/mTOR pathway, epigenetic regulators, and telomere biology.
Collapse
Affiliation(s)
- Ryan A. Denu
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Amanda M. Dann
- Division of Surgical Oncology, Department of Surgery, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Emily Z. Keung
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Michael S. Nakazawa
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Elise F. Nassif Haddad
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
45
|
Laganà AS, Romano A, Vanhie A, Bafort C, Götte M, Aaltonen LA, Mas A, De Bruyn C, Van den Bosch T, Coosemans A, Guerriero S, Haimovich S, Tanos V, Bongers M, Barra F, Al-Hendy A, Chiantera V, Leone Roberti Maggiore U. Management of Uterine Fibroids and Sarcomas: The Palermo Position Paper. Gynecol Obstet Invest 2024; 89:73-86. [PMID: 38382486 DOI: 10.1159/000537730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
BACKGROUND Uterine fibroids are benign monoclonal tumors originating from the smooth muscle cells of the myometrium, constituting the most prevalent pathology within the female genital tract. Uterine sarcomas, although rare, still represent a diagnostic challenge and should be managed in centers with adequate expertise in gynecological oncology. OBJECTIVES This article is aimed to summarize and discuss cutting-edge elements about the diagnosis and management of uterine fibroids and sarcomas. METHODS This paper is a report of the lectures presented in an expert meeting about uterine fibroids and sarcomas held in Palermo in February 2023. OUTCOME Overall, the combination of novel molecular pathways may help combine biomarkers and expert ultrasound for the differential diagnosis of uterine fibroids and sarcomas. On the one hand, molecular and cellular maps of uterine fibroids and matched myometrium may enhance our understanding of tumor development compared to histologic analysis and whole tissue transcriptomics, and support the development of minimally invasive treatment strategies; on the other hand, ultrasound imaging allows in most of the cases a proper mapping the fibroids and to differentiate between benign and malignant lesions, which need appropriate management. CONCLUSIONS AND OUTLOOK The choice of uterine fibroid management, including pharmacological approaches, surgical treatment, or other strategies, such as high-intensity focused ultrasound (HIFU), should be carefully considered, taking into account the characteristics of the patient and reproductive prognosis.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Unit of Obstetrics and Gynecology, "Paolo Giaccone" Hospital, Palermo, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
| | - Andrea Romano
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Arne Vanhie
- Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration - Woman and Child, KU Leuven, Leuven, Belgium
| | - Celine Bafort
- Department of Obstetrics and Gynaecology, Leuven University Fertility Center, University Hospitals Leuven, Leuven, Belgium
- Department of Development and Regeneration - Woman and Child, KU Leuven, Leuven, Belgium
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Munster, Germany
| | - Lauri A Aaltonen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Applied Tumor Genomics Research Program, Research Programs Unit, University of Helsinki, Helsinki, Finland
- iCAN Digital Precision Cancer Medicine Flagship, University of Helsinki, Helsinki, Finland
| | - Aymara Mas
- Carlos Simon Foundation - INCLIVA Health Research Institute, Valencia, Spain
| | - Christine De Bruyn
- Department of Development and Regeneration - Woman and Child, KU Leuven, Leuven, Belgium
- Department Obstetrics and Gynaecology, University Hospital Antwerp, Edegem, Belgium
| | - Thierry Van den Bosch
- Department of Development and Regeneration - Woman and Child, KU Leuven, Leuven, Belgium
- Department of Obstetrics and Gynecology, University Hospital Leuven, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Stefano Guerriero
- Centro Integrato di Procreazione Medicalmente Assistita (PMA) e Diagnostica Ostetrico-Ginecologica, Azienda Ospedaliero Universitaria-Policlinico Duilio Casula, Monserrato, Italy
- Department of Surgical Sciences, University of Cagliari, Cagliari, Italy
| | - Sergio Haimovich
- Department of Obstetrics and Gynecology, Laniado University Hospital, Netanya, Israel
- Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Vasilios Tanos
- Department of Obstetrics and Gynecology, Aretaeio Hospital, Nicosia, Cyprus
- Department of Basic and Clinical Sciences, University of Nicosia Medical School, Nicosia, Cyprus
| | - Marlies Bongers
- Department of Obstetrics and Gynecology, GROW-School for Oncology and Reproduction, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Obstetrics and Gynecology, Máxima Medical Centre, Veldhoven, The Netherlands
| | - Fabio Barra
- Unit of Obstetrics and Gynecology, P.O. "Ospedale del Tigullio" - ASL4, Metropolitan Area of Genoa, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, Chicago, USA
- Department of Surgery, University of Illinois at Chicago, Chicago, USA
| | - Vito Chiantera
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Palermo, Italy
- Unit of Gynecologic Oncology, National Cancer Institute - IRCCS - Fondazione "G. Pascale", Naples, Italy
| | | |
Collapse
|
46
|
Buyukcelebi K, Duval AJ, Abdula F, Elkafas H, Seker-Polat F, Adli M. Integrating leiomyoma genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types. Nat Commun 2024; 15:1169. [PMID: 38326302 PMCID: PMC10850163 DOI: 10.1038/s41467-024-45382-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Uterine fibroids (UF), that can disrupt normal uterine function and cause significant physical and psychological health problems, are observed in nearly 70% of women of reproductive age. Although heritable genetics is a significant risk factor, specific genetic variations and gene targets causally associated with UF are poorly understood. Here, we performed a meta-analysis on existing fibroid genome-wide association studies (GWAS) and integrated the identified risk loci and potentially causal single nucleotide polymorphisms (SNPs) with epigenomics, transcriptomics, 3D chromatin organization from diverse cell types as well as primary UF patient's samples. This integrative analysis identifies 24 UF-associated risk loci that potentially target 394 genes, of which 168 are differentially expressed in UF tumors. Critically, integrating this data with single-cell gene expression data from UF patients reveales the causal cell types with aberrant expression of these target genes. Lastly, CRISPR-based epigenetic repression (dCas9-KRAB) or activation (dCas9-p300) in a UF disease-relevant cell type further refines and narrows down the potential gene targets. Our findings and the methodological approach indicate the effectiveness of integrating multi-omics data with locus-specific epigenetic editing approaches for identifying gene- and celt type-targets of disease-relevant risk loci.
Collapse
Affiliation(s)
- Kadir Buyukcelebi
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Alexander J Duval
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fatih Abdula
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Hoda Elkafas
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Fidan Seker-Polat
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Mazhar Adli
- Department of Obstetrics and Gynecology, Robert Lurie Comprehensive Cancer Center, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA.
| |
Collapse
|
47
|
Amendola ILS, Spann M, Segars J, Singh B. The Mediator Complex Subunit 12 (MED-12) Gene and Uterine Fibroids: a Systematic Review. Reprod Sci 2024; 31:291-308. [PMID: 37516697 DOI: 10.1007/s43032-023-01297-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/09/2023] [Indexed: 07/31/2023]
Abstract
Uterine leiomyomas are the most common tumor of reproductive-age women worldwide. Although benign, uterine fibroids cause significant morbidity and adversely impact the quality of life for affected women. Somatic mutations in the exon 2 of the mediator complex subunit 12 (MED-12) gene represent the most common single gene mutation associated with uterine leiomyomas. The objective of this review was to evaluate the current role of MED-12 mutation in the pathophysiology of uterine fibroids, to assess the prevalence of MED-12 mutation among different populations, and to identify the most common subtypes of MED-12 mutations found in uterine fibroids. A comprehensive search was conducted using Pubmed, Embase, Scopus, and the Web of Science. English-language publications that evaluated MED-12 mutation and uterine fibroids in humans, whether experimental or clinical, were considered. We identified 380 studies, of which 23 were included, comprising 1353 patients and 1872 fibroid tumors. Of the total number of tumors analyzed, 1045 (55.8%) harbored a MED-12 mutation. Among the 23 studies included, the frequency of MED-12 mutation varied from 31.1 to 80% in fibroid samples. The most common type of MED-12 mutation was a heterozygous missense mutation affecting codon 44 of exon 2, specifically the nucleotide 131. Studies reported that MED-12 mutation acts by increasing levels of AKT and disrupting the cyclin C-CDK8/19 kinase activity. The overall average prevalence of MED-12 mutation in uterine fibroids was found to be 55.8% across the global population, though the frequency varied greatly among different countries.
Collapse
Affiliation(s)
- Isabela Landsteiner Sampaio Amendola
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Marcus Spann
- Informationist Services, Welch Medical Library, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - James Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross Research Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Chuang TD, Ton N, Rysling S, Boos D, Khorram O. The Effect of Race/Ethnicity and MED12 Mutation on the Expression of Long Non-Coding RNAs in Uterine Leiomyoma and Myometrium. Int J Mol Sci 2024; 25:1307. [PMID: 38279317 PMCID: PMC10816284 DOI: 10.3390/ijms25021307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
The objective of this study was to elucidate the expression of long non-coding RNA (lncRNA) in leiomyomas (Lyo) and paired myometrium (Myo) and explore the impact of race and MED12 mutation. Fold change analysis (Lyo/paired Myo) indicated the expression of 63 lncRNAs was significantly altered in the mutated group but not in the non-mutated Lyo. Additionally, 65 lncRNAs exhibited an over 1.5-fold change in the Black but not the White group. Fifteen differentially expressed lncRNAs identified with next-generation sequencing underwent qRT-PCR confirmation. Compared with Myo, the expression of TPTEP1, PART1, RPS10P7, MSC-AS1, SNHG12, CA3-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was significantly higher, while the expression of ZEB2-AS1, LINC00957, and LINC01186 was significantly lower. Comparison of normal Myo with diseased Myo showed significant differences in the expression of several lncRNAs. Analysis based on race and Lyo MED12 mutation status indicated a significantly higher expression of RPS10P7, SNHG12, LINC01449, LINC02433, and LINC02624 in Lyo from Black patients. The expression of TPTEP1, PART1, RPS10P7, MSC-AS1, LINC00337, LINC00536, LINC01436, LINC01449, LINC02433, and LINC02624 was higher, while LINC01186 was significantly lower in the MED12-mutated group. These results indicate that Lyo are characterized by aberrant lncRNA expression, which is further impacted by race and Lyo MED12 mutation status.
Collapse
Affiliation(s)
- Tsai-Der Chuang
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Nhu Ton
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Shawn Rysling
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Drake Boos
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
| | - Omid Khorram
- Department of Obstetrics and Gynecology, Harbor-UCLA Medical Center, Torrance, CA 90502, USA;
- The Lundquist Institute for Biomedical Innovation, Torrance, CA 90502, USA; (N.T.); (S.R.); (D.B.)
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at University of California, Los Angeles, CA 90024, USA
| |
Collapse
|
49
|
Pandey V, Jain P, Chatterjee S, Rani A, Tripathi A, Dubey PK. Variants in exon 2 of MED12 gene causes uterine leiomyoma's through over-expression of MMP-9 of ECM pathway. Mutat Res 2024; 828:111839. [PMID: 38041927 DOI: 10.1016/j.mrfmmm.2023.111839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 10/09/2023] [Accepted: 10/31/2023] [Indexed: 12/04/2023]
Abstract
AIMS To study the impact of Mediator complex subunit 12 (MED12) gene variants on the encoded protein's function and pathogenic relevance for genesis of uterine leiomyoma's (ULs). METHODS Mutational analysis in exon-2 of MED12 gene was performed by PCR amplification and DNA sequencing in 89 clinically diagnosed ULs tissues. Pathogenicity prediction of variation was performed by computational analysis. The functional effects of missense variation were done by quantity RT-PCR and western blot analysis. RESULT(S) Out of 89 samples, 40 (44.94%) had missense variation in 14 different CDS position of exon-2 of MED12 gene. Out of 40 missense variation, codon 44 had 25 (62.5%) looking as a hotspot region for mutation for ULs, because CDS position c130 and c131present at codon 44 that have necleotide change G>A, T, C at c130 and c131 have necleotide change G>A and C. We also find somenovel somatic mutations oncodon 36 (T > C), 38 (G>T) of exon-2 and 88 (G>C) of intron-2. No mutations were detected in uterine myometrium samples. Our computational analysis suggests that change in Med12c .131 G>A leads to single substitution of amino acid [Glycine (G) to Aspartate (D)] which has a pathogenic and lethal impact and may cause instability of MED12 protein. Further, analysis of extracellular matrix (ECM) component (MMP-2 & 9, COL4A2 and α-SMA) mRNA and protein expression levels in the set of ULs having MED12 mutation showed significantly higher expression of MMP-9 and α-SMA. CONCLUSION(S) The findings of present study suggest that missense variation in codon 44 of MED12 gene lead to the genesis of leiomyoma's through over-expression of MMP-9 of ECM pathway which could be therapeutically targeted for non-surgical management of ULs.
Collapse
Affiliation(s)
- Vivek Pandey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Priyanka Jain
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University, Noida 201313, Uttar Pradesh, India
| | - Souradip Chatterjee
- Department of Molecular and Human Genetics, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anjali Rani
- Department of Obstetrics and Gynecology, Institute of Medical Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Anima Tripathi
- MMV, Zoology Section, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| | - Pawan K Dubey
- Centre for Genetic Disorders, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India.
| |
Collapse
|
50
|
Ali M, Ciebiera M, Wlodarczyk M, Alkhrait S, Maajid E, Yang Q, Hsia SM, Al-Hendy A. Current and Emerging Treatment Options for Uterine Fibroids. Drugs 2023; 83:1649-1675. [PMID: 37922098 DOI: 10.1007/s40265-023-01958-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/05/2023]
Abstract
Uterine fibroids are the most common benign neoplasm of the female reproductive tract in reproductive age women. Their prevalence is age dependent and can be detected in up to 80% of women by the age of 50 years. Patients affected by uterine fibroids may experience a significant physical, emotional, social, and financial toll as well as losses in their quality of life. Unfortunately, curative hysterectomy abolishes future pregnancy potential, while uterine-sparing surgical and radiologic alternatives are variously associated with reduced long-term reproductive function and/or high tumor recurrence rates. Recently, pharmacological treatment against uterine fibroids have been widely considered by patients to limit uterine fibroid-associated symptoms such as heavy menstrual bleeding. This hormonal therapy seemed effective through blocking the stimulatory effects of gonadal steroid hormones on uterine fibroid growth. However, they are contraindicated in women actively pursuing pregnancy and otherwise effective only during use, which is limited because of long-term safety and other concerns. Accordingly, there is an urgent unmet need for safe, durable, and fertility-compatible non-surgical treatment options for uterine fibroids. In this review article, we cover the current pharmacological treatments for uterine fibroids including their comparable efficacy and side effects as well as emerging safe natural compounds with promising anti-uterine fibroid effects.
Collapse
Affiliation(s)
- Mohamed Ali
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
- Clinical Pharmacy Department, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt
| | - Michał Ciebiera
- Second Department of Obstetrics and Gynecology, Center of Postgraduate Medical Education, Warsaw, 00-189, Poland
| | - Marta Wlodarczyk
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1B, Warsaw, 02-097, Poland
- Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Samar Alkhrait
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Elise Maajid
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Qiwei Yang
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA
| | - Shih-Min Hsia
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, 11031, Taiwan
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, University of Chicago, 5841 S. Maryland Ave, Chicago, IL, 60637, USA.
| |
Collapse
|