1
|
Zhu W, Yang L, Han X, Tan M, Zou S, Li X, Huang W, Zeng X, Wang D. Origin, pathogenicity, and transmissibility of a human isolated influenza A(H10N3) virus from China. Emerg Microbes Infect 2025; 14:2432364. [PMID: 39601280 PMCID: PMC11632946 DOI: 10.1080/22221751.2024.2432364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 09/14/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024]
Abstract
Subtype H10 viruses are known to infect humans in Africa, Oceania, and Asia. In 2021, 2022, and recently in April 2024, a novel H10N3 subtype avian influenza virus was found cause human infection with severe pneumonia. Herein, we comprehensively studied the phylogenetic evolution and biological characteristics of the newly emerged influenza A(H10N3) virus. We found that the human isolated H10N3 virus was generated in early 2019 in domestic poultry. The viruses bound to salic acid α2, 3 receptors, indicating their insufficient ability to infect humans. Although a low pathogenic avian influenza virus, the human isolated H10N3 virus exhibited robust pathogenicity in both BALB/c and C57BL/6 mice, with MLD50 1000 times higher than a homologous environmental isolate. The human isolated H10N3 also showed respiratory droplet transmissibility in ferrets. Considering the continuous circulation in avian populations and repeated transmission to humans, strengthened surveillance of H10 subtype viruses in poultry should be put into effect.
Collapse
Affiliation(s)
- Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xue Han
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Min Tan
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Shumei Zou
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiyan Li
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Xiaoxu Zeng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), NHC Key Laboratory of Medical Virology and Viral Diseases, National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Disease, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Neumann G, Eisfeld AJ, Kawaoka Y. Viral factors underlying the pandemic potential of influenza viruses. Microbiol Mol Biol Rev 2025:e0006624. [PMID: 40340558 DOI: 10.1128/mmbr.00066-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025] Open
Abstract
SUMMARYOver the past 25 years, there has been an increasing number of mammalian (including human) infections caused by avian influenza A viruses that resulted in mild to severe illnesses. These viruses typically did not spread between mammals through aerosols in nature or in experimental settings. However, recently, this has changed, with several avian influenza A viruses exhibiting aerosol transmissibility among mammals, indicating that these viruses may pose a greater pandemic risk. In this review, we examine the current situation and discuss the mutations that may be necessary for avian influenza A viruses to efficiently replicate in mammals and transmit among them via aerosols.
Collapse
Affiliation(s)
- Gabriele Neumann
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, Influenza Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Virology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- The University of Tokyo Pandemic Preparedness, Infection and Advanced research center (UTOPIA), University of Tokyo, Tokyo, Japan
- The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo, Japan
| |
Collapse
|
3
|
Li L, Chen R, Yan Z, Cai Q, Guan Y, Zhu H. Experimental Infection of Rats with Influenza A Viruses: Implications for Murine Rodents in Influenza A Virus Ecology. Viruses 2025; 17:495. [PMID: 40284938 PMCID: PMC12030792 DOI: 10.3390/v17040495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/25/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Rattus norvegicus (brown rat), a widely distributed rodent and common biomedical model, is a known reservoir for many zoonotic pathogens but has not been traditionally recognized as a host for influenza A virus (IAV). To evaluate their susceptibility, we intranasally inoculated Sprague-Dawley rats with various IAV subtypes, including H5Nx, H7N9, H9N2, H10N8 and the 2009 pandemic H1N1. All strains productively infected the rats, inducing seroconversion without overt clinical signs. While replication efficiency varied, all viruses caused significant lung injury with a preferential tropism for the upper respiratory tract. Investigation of receptor distribution revealed a predominance of α2,3-linked sialic acid (SA) in the nasal turbinates and trachea, whereas α2,6-linked SA was more abundant in the lungs. Notably, both receptor types coexisted throughout the respiratory tract, aligning with the observed tissue-specific replication patterns and broad viral infectivity. These findings demonstrate that rats are permissive hosts for multiple IAV subtypes, challenging their exclusion from IAV ecology. The asymptomatic yet pathogenic nature of infection, combined with the global synanthropy of rats, underscores their potential role as cryptic reservoirs in viral maintenance and transmission. This study highlights the need for expanded surveillance of rodents in influenza ecology to mitigate zoonotic risks.
Collapse
Affiliation(s)
- Long Li
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Rirong Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Zhigang Yan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Qinglong Cai
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Laboratory for International Collaboration in Virology and Emerging Infectious Diseases (Key Laboratory of Ministry of Education), Joint Institute of Virology (Shantou University-The University of Hong Kong), Shantou University Medical College, Shantou University, Shantou 515063, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Yamaji R, Zhang W, Kamata A, Adlhoch C, Swayne DE, Pereyaslov D, Wang D, Neumann G, Pavade G, Barr IG, Peiris M, Webby RJ, Fouchier RAM, Von Dobschütz S, Fabrizio T, Shu Y, Samaan M. Pandemic risk characterisation of zoonotic influenza A viruses using the Tool for Influenza Pandemic Risk Assessment (TIPRA). THE LANCET. MICROBE 2025; 6:100973. [PMID: 39396528 PMCID: PMC11876097 DOI: 10.1016/j.lanmic.2024.100973] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 08/09/2024] [Indexed: 10/15/2024]
Abstract
A systematic risk assessment approach is essential for evaluating the relative risk of influenza A viruses (IAVs) with pandemic potential. To achieve this, the Tool for Influenza Pandemic Risk Assessment (TIPRA) was developed under the Global Influenza Programme of WHO. Since its release in 2016 and update in 2020, TIPRA has been used to assess the pandemic risk of 11 zoonotic IAVs across ten evaluation rounds. Notably, A(H7N9), A(H9N2), and A(H5) clade 2.3.4.4 viruses were re-evaluated owing to changes in epidemiological characteristics or virus properties. A(H7N9) viruses had the highest relative risk at the time of assessment, highlighting the importance of continuous monitoring and reassessment as changes in epidemiological trends within animal and human populations can alter risk profiles. The knowledge gaps identified throughout the ten risk assessments should help to guide the efficient use of resources for future research, including surveillance. The TIPRA tool reflects the One Health approach and has proven crucial for closely monitoring virus dynamics in both human and non-human populations to enhance preparedness for potential IAV pandemics.
Collapse
Affiliation(s)
- Reina Yamaji
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Wenqing Zhang
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Akiko Kamata
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy
| | - Cornelia Adlhoch
- European Centre for Disease Prevention and Control, Solna, Sweden
| | | | - Dmitriy Pereyaslov
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, China CDC, Changping District, Beijing, China
| | - Gabriele Neumann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, Victorian Infectious Diseases Reference Laboratory, Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Malik Peiris
- School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Richard J Webby
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Ron A M Fouchier
- Department of Viroscience, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Sophie Von Dobschütz
- The Food and Agriculture Organization of the UN (FAO), Rome, Italy; Emerging Diseases and Zoonoses Unit, Department for Epidemic and Pandemic Preparedness and Prevention, World Health Organization, Geneva, Switzerland
| | - Thomas Fabrizio
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, USA
| | - Yuelong Shu
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Magdi Samaan
- Global Influenza Programme, Epidemic and Pandemic Preparedness and Prevention, WHO Emergency Programme, World Health Organization, Geneva, Switzerland.
| |
Collapse
|
5
|
Daidoji T, Sadakane H, Garan K, Kawashita N, Arai Y, Watanabe Y, Nakaya T. The host tropism of current zoonotic H7N9 viruses depends mainly on an acid-labile hemagglutinin with a single amino acid mutation in the stalk region. PLoS Pathog 2024; 20:e1012427. [PMID: 39436936 PMCID: PMC11495601 DOI: 10.1371/journal.ppat.1012427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 07/15/2024] [Indexed: 10/25/2024] Open
Abstract
The incidence of human infection by zoonotic avian influenza viruses, especially H5N1 and H7N9 viruses, has increased. Current zoonotic H7N9 avian influenza viruses (identified since 2013) emerged during reassortment of viruses belonging to different subtypes. Despite analyses of their genetic background, we do not know why current H7N9 viruses are zoonotic. Therefore, there is a need to identify the factor(s) responsible for the extended host tropism that enables these viruses to infect humans as well as birds. To identify H7N9-specific amino acids that confer zoonotic properties on H7N9 viruses, we performed multiple alignment of the hemagglutinin (HA) amino acid sequences of A/Shanghai/1/2013 (H7N9) and A/duck/Zhejiang/12/2011(H7N3) (a putative, non- or less zoonotic HA donor to the zoonotic H7N9 virus). We also analyze the function of an H7N9 HA-specific amino acid with respect to HA acid stability, and evaluated the effect of acid stability on viral infectivity and virulence in a mouse model. HA2-116D, preserved in current zoonotic H7N9 viruses, was crucial for loss of HA acid stability. The acid-labile HA protein in H7 viruses played an important role in infection of human airway epithelial cells; HA2-116D contributed to infection and replication of H7 viruses. Finally, HA2-116D served as a H7 virulence factor in mice. These results suggest that acid-labile HA harboring HA2-116D confers zoonotic characteristics on H7N9 virus and that future novel zoonotic avian viruses could emerge from non-zoonotic H7 viruses via acquisition of mutations that remove HA acid stability.
Collapse
Affiliation(s)
- Tomo Daidoji
- Department of Pathobiology, School of Veterinary Medicine, Rakuno Gakuen University, Hokkaido, Japan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroki Sadakane
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kotaro Garan
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | | | - Yasuha Arai
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yohei Watanabe
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Takaaki Nakaya
- Department of Infectious Diseases, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Guo X, Zhou Y, Yan H, An Q, Liang C, Liu L, Qian J. Molecular Markers and Mechanisms of Influenza A Virus Cross-Species Transmission and New Host Adaptation. Viruses 2024; 16:883. [PMID: 38932174 PMCID: PMC11209369 DOI: 10.3390/v16060883] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Influenza A viruses continue to be a serious health risk to people and result in a large-scale socio-economic loss. Avian influenza viruses typically do not replicate efficiently in mammals, but through the accumulation of mutations or genetic reassortment, they can overcome interspecies barriers, adapt to new hosts, and spread among them. Zoonotic influenza A viruses sporadically infect humans and exhibit limited human-to-human transmission. However, further adaptation of these viruses to humans may result in airborne transmissible viruses with pandemic potential. Therefore, we are beginning to understand genetic changes and mechanisms that may influence interspecific adaptation, cross-species transmission, and the pandemic potential of influenza A viruses. We also discuss the genetic and phenotypic traits associated with the airborne transmission of influenza A viruses in order to provide theoretical guidance for the surveillance of new strains with pandemic potential and the prevention of pandemics.
Collapse
Affiliation(s)
- Xinyi Guo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
| | - Yang Zhou
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Huijun Yan
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
| | - Qing An
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin 150040, China;
| | - Chudan Liang
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; (H.Y.); (C.L.)
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
| | - Linna Liu
- Guangzhou Eighth People’s Hospital, Guangzhou Medical University, Guangzhou 510440, China
| | - Jun Qian
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China;
- Guangdong Provincial Highly Pathogenic Microorganism Science Data Center, Guangzhou 510080, China
- Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Shenzhen 518107, China
| |
Collapse
|
7
|
Halwe NJ, Hamberger L, Sehl-Ewert J, Mache C, Schön J, Ulrich L, Calvelage S, Tönnies M, Fuchs J, Bandawane P, Loganathan M, Abbad A, Carreño JM, Bermúdez-González MC, Simon V, Kandeil A, El-Shesheny R, Ali MA, Kayali G, Budt M, Hippenstiel S, Hocke AC, Krammer F, Wolff T, Schwemmle M, Ciminski K, Hoffmann D, Beer M. Bat-borne H9N2 influenza virus evades MxA restriction and exhibits efficient replication and transmission in ferrets. Nat Commun 2024; 15:3450. [PMID: 38664395 PMCID: PMC11045726 DOI: 10.1038/s41467-024-47455-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Influenza A viruses (IAVs) of subtype H9N2 have reached an endemic stage in poultry farms in the Middle East and Asia. As a result, human infections with avian H9N2 viruses have been increasingly reported. In 2017, an H9N2 virus was isolated for the first time from Egyptian fruit bats (Rousettus aegyptiacus). Phylogenetic analyses revealed that bat H9N2 is descended from a common ancestor dating back centuries ago. However, the H9 and N2 sequences appear to be genetically similar to current avian IAVs, suggesting recent reassortment events. These observations raise the question of the zoonotic potential of the mammal-adapted bat H9N2. Here, we investigate the infection and transmission potential of bat H9N2 in vitro and in vivo, the ability to overcome the antiviral activity of the human MxA protein, and the presence of N2-specific cross-reactive antibodies in human sera. We show that bat H9N2 has high replication and transmission potential in ferrets, efficiently infects human lung explant cultures, and is able to evade antiviral inhibition by MxA in transgenic B6 mice. Together with its low antigenic similarity to the N2 of seasonal human strains, bat H9N2 fulfils key criteria for pre-pandemic IAVs.
Collapse
Affiliation(s)
- Nico Joel Halwe
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Lea Hamberger
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Julia Sehl-Ewert
- Department of Experimental Animal Facilities and Biorisk Management, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Christin Mache
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Jacob Schön
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Lorenz Ulrich
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Sten Calvelage
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany
| | - Mario Tönnies
- HELIOS Clinic Emil von Behring, Department of Pneumology and Department of Thoracic Surgery, Chest Hospital Heckeshorn, Berlin, Germany
| | - Jonas Fuchs
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Pooja Bandawane
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Madhumathi Loganathan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anass Abbad
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria C Bermúdez-González
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Viviana Simon
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ahmed Kandeil
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Rabeh El-Shesheny
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Mohamed A Ali
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
| | - Ghazi Kayali
- Center of Scientific Excellence for Influenza Virus, Institute of Environmental Research and Climate Changes, National Research Centre, Giza, Egypt
- Human Link DMCC, Dubai, United Arab Emirates
| | - Matthias Budt
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Stefan Hippenstiel
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Andreas C Hocke
- Department of Infectious Diseases and Respiratory Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Berlin, Germany
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thorsten Wolff
- Unit 17, Influenza and Other Respiratory Viruses, Robert Koch-Institut, Seestraße 10, 13353, Berlin, Germany
| | - Martin Schwemmle
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Kevin Ciminski
- Institute of Virology, Medical Center-University of Freiburg, 79104, Freiburg, Germany.
- Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany.
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, 17493, Greifswald, Insel Riems, Germany.
| |
Collapse
|
8
|
Onkhonova G, Gudymo A, Kosenko M, Marchenko V, Ryzhikov A. Quantitative measurement of influenza virus transmission in animal model: an overview of current state. Biophys Rev 2023; 15:1359-1366. [PMID: 37975001 PMCID: PMC10643727 DOI: 10.1007/s12551-023-01113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/10/2023] [Indexed: 11/19/2023] Open
Abstract
Influenza virus transmission is a crucial factor in understanding the spread of the virus within populations and developing effective control strategies. Studying the transmission patterns of influenza virus allows for better risk assessment and prediction of disease outbreaks. By monitoring the spread of the virus and identifying high-risk populations and geographic areas, it is possible to allocate resources more effectively, implement timely interventions, and provide targeted healthcare interventions to diminish the burden of influenza virus on vulnerable populations. Theoretical models of virus transmission are used to study and simulate of influenza virus spread within populations. These models aim to capture the complex dynamics of transmission, including factors such as population size, contact patterns, infectiousness, and susceptibility. Animal models serve as valuable tools for studying the dynamics of influenza virus transmission. This article presents a brief overview of existing research on the qualitative and quantitative study of influenza virus transmission in animal models. We discuss the methodologies employed, key insights gained from these studies, and their relevance.
Collapse
Affiliation(s)
- Galina Onkhonova
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Andrei Gudymo
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Maksim Kosenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Vasiliy Marchenko
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| | - Alexander Ryzhikov
- Federal Budgetary Research Institution State Research Center of Virology and Biotechnology “Vector” Rospotrebnadzor, Koltsovo, 630559 Russia
| |
Collapse
|
9
|
Chen T, Kong D, Hu X, Gao Y, Lin S, Liao M, Fan H. Influenza H7N9 Virus Hemagglutinin with T169A Mutation Possesses Enhanced Thermostability and Provides Effective Immune Protection against Lethal H7N9 Virus Challenge in Chickens. Vaccines (Basel) 2023; 11:1318. [PMID: 37631886 PMCID: PMC10460070 DOI: 10.3390/vaccines11081318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023] Open
Abstract
H7N9 avian influenza virus (AIV) has caused huge losses in the poultry industry and impacted human public health security, and still poses a potential threat. Currently, immune prevention and control of avian influenza relies on traditional inactivated vaccines; however, they have some limitations and genetically engineered avian influenza subunit vaccines may be potential candidate vaccines. In this study, a T169A mutation in the HA protein derived from H7N9 AIV A/Chicken/Guangdong/16876 (H7N9-16876) was generated using the baculovirus expression system (BVES). The results showed that the mutant (HAm) had significantly increased thermostability compared with the wild-type HA protein (HA-WT). Importantly, immunizing chickens with HAm combined with ISA 71VG elicited higher cross-reactive hemagglutination inhibition (HI) antibody responses and cytokine (IFN-γ and IL-4) secretion. After a lethal challenge with heterologous H7N9 AIV, the vaccine conferred chickens with 100% (10/10) clinical protection and effectively inhibited viral shedding, with 90% (9/10) of the chickens showing no virus shedding. The thermostability of HAm may represent an advantage in practical vaccine manufacture and application. In general, the HAm generated in this study represents a promising subunit vaccine candidate for the prevention and control of H7N9 avian influenza.
Collapse
Affiliation(s)
- Taoran Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Dexin Kong
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Xiaolong Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Yinze Gao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Shaorong Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Ming Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| | - Huiying Fan
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou 510642, China
- Key Laboratory of Animal Vaccine Development, Ministry of Agriculture, Guangzhou 510642, China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou 510642, China
| |
Collapse
|
10
|
Chen P, Jin Z, Peng L, Zheng Z, Cheung YM, Guan J, Chen L, Huang Y, Fan X, Zhang Z, Shi D, Xie J, Chen R, Xiao B, Yip CH, Smith DK, Hong W, Liu Y, Li L, Wang J, Holmes EC, Lam TTY, Zhu H, Guan Y. Characterization of an Emergent Chicken H3N8 Influenza Virus in Southern China: a Potential Threat to Public Health. J Virol 2023; 97:e0043423. [PMID: 37289052 PMCID: PMC10308888 DOI: 10.1128/jvi.00434-23] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/08/2023] [Indexed: 06/09/2023] Open
Abstract
Although influenza A viruses of several subtypes have occasionally infected humans, to date only those of the H1, H2, and H3 subtypes have led to pandemics and become established in humans. The detection of two human infections by avian H3N8 viruses in April and May of 2022 raised pandemic concerns. Recent studies have shown the H3N8 viruses were introduced into humans from poultry, although their genesis, prevalence, and transmissibility in mammals have not been fully elucidated. Findings generated from our systematic influenza surveillance showed that this H3N8 influenza virus was first detected in chickens in July 2021 and then disseminated and became established in chickens over wider regions of China. Phylogenetic analyses revealed that the H3 HA and N8 NA were derived from avian viruses prevalent in domestic ducks in the Guangxi-Guangdong region, while all internal genes were from enzootic poultry H9N2 viruses. The novel H3N8 viruses form independent lineages in the glycoprotein gene trees, but their internal genes are mixed with those of H9N2 viruses, indicating continuous gene exchange among these viruses. Experimental infection of ferrets with three chicken H3N8 viruses showed transmission through direct contact and inefficient transmission by airborne exposure. Examination of contemporary human sera detected only very limited antibody cross-reaction to these viruses. The continuing evolution of these viruses in poultry could pose an ongoing pandemic threat. IMPORTANCE A novel H3N8 virus with demonstrated zoonotic potential has emerged and disseminated in chickens in China. It was generated by reassortment between avian H3 and N8 virus(es) and long-term enzootic H9N2 viruses present in southern China. This H3N8 virus has maintained independent H3 and N8 gene lineages but continues to exchange internal genes with other H9N2 viruses to form novel variants. Our experimental studies showed that these H3N8 viruses were transmissible in ferrets, and serological data suggest that the human population lacks effective immunological protection against it. With its wide geographical distribution and continuing evolution in chickens, other spillovers to humans can be expected and might lead to more efficient transmission in humans.
Collapse
Affiliation(s)
- Peiwen Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Ziying Jin
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Liuxia Peng
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Zuoyi Zheng
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Yiu-Man Cheung
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Jing Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Liming Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Yiteng Huang
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- The First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Xiaohui Fan
- Department of Microbiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Zengfeng Zhang
- Department of Microbiology, Guangxi Medical University, Nanning, Guangxi, China
| | - Dongmei Shi
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Jin Xie
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Rirong Chen
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Boheng Xiao
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Chun Hung Yip
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - David K. Smith
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Wenshan Hong
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
| | - Yongmei Liu
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lifeng Li
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Jia Wang
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
| | - Edward C. Holmes
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
- Sydney Institute for Infectious Diseases, School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Tommy Tsan-Yuk Lam
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Huachen Zhu
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| | - Yi Guan
- Guangdong-Hong Kong Joint Laboratory of Emerging Infectious Diseases, Joint Institute of Virology (STU/HKU), Shantou University, Shantou, Guangdong, China
- State Key Laboratory of Emerging Infectious Diseases (SKLEID), School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
- Advanced Pathogen Research Institute, Shenzhen, Guangdong, China
- Laboratory of Data Discovery for Health Limited, Hong Kong SAR, China
| |
Collapse
|
11
|
Hörner C, Fiedler AH, Bodmer BS, Walz L, Scheuplein VA, Hutzler S, Matrosovich MN, von Messling V, Mühlebach MD. A protective measles virus-derived vaccine inducing long-lasting immune responses against influenza A virus H7N9. NPJ Vaccines 2023; 8:46. [PMID: 36964176 PMCID: PMC10037405 DOI: 10.1038/s41541-023-00643-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 03/09/2023] [Indexed: 03/26/2023] Open
Abstract
A novel Influenza A virus (subtype H7N9) emerged in spring 2013 and caused considerable mortality in zoonotically infected patients. To be prepared for potential pandemics, broadly effective and safe vaccines are crucial. Recombinant measles virus (MeV) encoding antigens of foreign pathogens constitutes a promising vector platform to generate novel vaccines. To characterize the efficacy of H7N9 antigens in a prototypic vaccine platform technology, we generated MeVs encoding either neuraminidase (N9) or hemagglutinin (H7). Moraten vaccine strain-derived vaccine candidates were rescued; they replicated with efficiency comparable to that of the measles vaccine, robustly expressed H7 and N9, and were genetically stable over 10 passages. Immunization of MeV-susceptible mice triggered the production of antibodies against H7 and N9, including hemagglutination-inhibiting and neutralizing antibodies induced by MVvac2-H7(P) and neuraminidase-inhibiting antibodies by MVvac2-N9(P). Vaccinated mice also developed long-lasting H7- and N9-specific T cells. Both MVvac2-H7(P) and MVvac2-N9(P)-vaccinated mice were protected from lethal H7N9 challenge.
Collapse
Affiliation(s)
- Cindy Hörner
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Anna H Fiedler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
| | - Bianca S Bodmer
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, 17493, Greifswald-Insel Riems, Germany
| | - Lisa Walz
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Vivian A Scheuplein
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Stefan Hutzler
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Mikhail N Matrosovich
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Institute of Virology, Philipps University, Marburg, Germany
| | - Veronika von Messling
- German Center for Infection Research, Gießen-Marburg-Langen, Germany
- Section 4/0: Research in Veterinary Medicine, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Michael D Mühlebach
- Section 4/3: Product Testing of IVMPs, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
- German Center for Infection Research, Gießen-Marburg-Langen, Germany.
| |
Collapse
|
12
|
Du R, Cui Q, Chen Z, Zhao X, Lin X, Rong L. Revisiting influenza A virus life cycle from a perspective of genome balance. Virol Sin 2023; 38:1-8. [PMID: 36309307 PMCID: PMC10006207 DOI: 10.1016/j.virs.2022.10.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022] Open
Abstract
Influenza A virus (IAV) genome comprises eight negative-sense RNA segments, of which the replication is well orchestrated and the delicate balance of multiple segments are dynamically regulated throughout IAV life cycle. However, previous studies seldom discuss these balances except for functional hemagglutinin-neuraminidase balance that is pivotal for both virus entry and release. Therefore, we attempt to revisit IAV life cycle by highlighting the critical role of "genome balance". Moreover, we raise a "balance regression" model of IAV evolution that the virus evolves to rebalance its genome after reassortment or interspecies transmission, and direct a "balance compensation" strategy to rectify the "genome imbalance" as a result of artificial modifications during creation of recombinant IAVs. This review not only improves our understanding of IAV life cycle, but also facilitates both basic and applied research of IAV in future.
Collapse
Affiliation(s)
- Ruikun Du
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China.
| | - Qinghua Cui
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China; Qingdao Academy of Chinese Medicinal Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, 266122, China
| | - Zinuo Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiujuan Zhao
- Innovation Research Institute of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Xiaojing Lin
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China
| | - Lijun Rong
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, 60612, USA.
| |
Collapse
|
13
|
Kasumba DM, Huot S, Caron E, Fortin A, Laflamme C, Zamorano Cuervo N, Lamontagne F, Pouliot M, Grandvaux N. DUOX2 regulates secreted factors in virus-infected respiratory epithelial cells that contribute to neutrophil attraction and activation. FASEB J 2023; 37:e22765. [PMID: 36607642 PMCID: PMC10107641 DOI: 10.1096/fj.202201205r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023]
Abstract
The first line of defense against respiratory viruses relies on the antiviral and proinflammatory cytokine response initiated in infected respiratory epithelial cells. The cytokine response not only restricts virus replication and spreading, but also orchestrates the subsequent immune response. The epithelial Dual Oxidase 2 (DUOX2) has recently emerged as a regulator of the interferon antiviral response. Here, we investigated the role of DUOX2 in the inflammatory cytokine response using a model of A549 cells deficient in DUOX2 generated using Crispr-Cas9 and infected by Sendai virus. We found that the absence of DUOX2 selectively reduced the induction of a restricted panel of 14 cytokines and chemokines secreted in response to Sendai virus by 20 to 89%. The secreted factors produced by epithelial cells upon virus infection promoted the migration, adhesion, and degranulation of primary human neutrophils, in part through the DUOX2-dependent secretion of TNF and chemokines. In contrast, DUOX2 expression did not impact neutrophil viability or NETosis, thereby highlighting a selective impact of DUOX2 in neutrophil functions. Overall, this study unveils previously unrecognized roles of epithelial DUOX2 in the epithelial-immune cells crosstalk during respiratory virus infection.
Collapse
Affiliation(s)
- Dacquin M Kasumba
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| | - Sandrine Huot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Elise Caron
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Audray Fortin
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Cynthia Laflamme
- Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Natalia Zamorano Cuervo
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Felix Lamontagne
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada
| | - Marc Pouliot
- Département de Microbiologie-Infectiologie et Immunologie, Faculté de Médecine de l'Université Laval, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.,Axe maladies infectieuses et immunitaires, Centre de Recherche du CHU de Québec - Université Laval, Québec City, Québec, Canada
| | - Nathalie Grandvaux
- Centre de recherche du Centre Hospitalier de l'Université de Montréal, Montréal, Québec, Canada.,Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
14
|
Sequential Transmission of Influenza Viruses in Ferrets Does Not Enhance Infectivity and Does Not Predict Transmissibility in Humans. mBio 2022; 13:e0254022. [PMID: 36300929 PMCID: PMC9765597 DOI: 10.1128/mbio.02540-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Airborne transmission in ferrets is a key component of pandemic risk assessment. However, some emerging avian influenza viruses transmit between ferrets but do not spread in humans. Therefore, we evaluated sequential rounds of airborne transmission as an approach to enhance the predictive accuracy of the ferret model. We reasoned that infection of ferrets via the respiratory route and onward transmission would more closely model transmission in humans. We hypothesized that pandemic and seasonal viruses would transmit efficiently over two rounds of transmission, while emerging avian viruses would fail to transmit in a second round. The 2009 pandemic H1N1 (pdm09) and seasonal H3N2 viruses were compared to avian-origin H7N9 and H3N8 viruses. Depending on the virus strain, transmission efficiency varied from 50 to 100% during the first round of transmission; the efficiency for each virus did not change during the second round, and viral replication kinetics in both rounds of transmission were similar. Both the H1N1pdm09 and H7N9 viruses acquired specific mutations during sequential transmission, while the H3N2 and H3N8 viruses did not; however, a global analysis of host-adaptive mutations revealed that minimal changes were associated with transmission of H1N1 and H3N2 viruses, while a greater number of changes occurred in the avian H3N8 and H7N9 viruses. Thus, influenza viruses that transmit in ferrets maintain their transmission efficiency through serial rounds of transmission. This answers the question of whether ferrets can propagate viruses through more than one round of airborne transmission and emphasizes that transmission in ferrets is necessary but not sufficient to infer transmissibility in humans. IMPORTANCE Airborne transmission in ferrets is used to gauge the pandemic potential of emerging influenza viruses; however, some emerging influenza viruses that transmit between ferrets do not spread between humans. Therefore, we evaluated sequential rounds of airborne transmission in ferrets as a strategy to enhance the predictive accuracy of the ferret model. Human influenza viruses transmitted efficiently (>83%) over two rounds of airborne transmission, demonstrating that, like humans, ferrets infected by the respiratory route can propagate the infection onward through the air. However, emerging avian influenza viruses with associated host-adaptive mutations also transmitted through sequential transmission. Thus, airborne transmission in ferrets is necessary but not sufficient to infer transmissibility in humans, and sequential transmission did not enhance pandemic risk assessment.
Collapse
|
15
|
Kong J, Feng K, Zhao Q, Chen Y, Wang J, Chen S, Shao G, Liao L, Li Y, Xie Z, Zhang X, Xie Q. Pathogenicity and transmissibility studies on live attenuated duck enteritis virus vaccine in non-target species. Front Microbiol 2022; 13:979368. [DOI: 10.3389/fmicb.2022.979368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/11/2022] Open
Abstract
In the second half of 2021, a highly pathogenic case occurred in a mixed chicken and duck family farm in Guangdong, China. After the duck flocks were immunized with live attenuated duck enteritis virus vaccine (live attenuated DEV vaccine), the chickens of the same farm showed clinical symptoms similar to duck enteritis, such as pericardial effusion, hepatic hemorrhagic spots, kidney enlargement, and intestinal bleeding, with mass mortality. The infection model of target animal tested, as well as the non-target species, was established according to the risk of live attenuated DEV vaccine and transmission in chickens. Live attenuated DEV vaccine was initially replicated in host animals, released the virus, and effectively colonized in the common environment, according to birds challenged experiments. There was evidence to suggest the mode of transmission of duck enteritis virus, and horizontal transmission is the main route of DEV transmission. In addition, high levels of virus titer were detected in chicken embryos and different tissues of SPF chickens. Different degrees of pathological damage occurred in the tissue of chickens. After the SPF chickens were inoculated with live attenuated DEV vaccine, different degrees of virulence were exhibited, pointing to a potential risk to other domestic bird species.
Collapse
|
16
|
Kawahara T, Sakou M, Fumotogawa Y, Kanazawa S, Sakaguchi T, Akiba I. Complex formation of potassium salt of highly fatty acid with hemagglutinin protein in influenza virus via exothermic interaction. Biochem Biophys Rep 2022; 31:101302. [PMID: 35782784 PMCID: PMC9240363 DOI: 10.1016/j.bbrep.2022.101302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 12/09/2022] Open
Abstract
In our previous study, we found highly fatty acid salts, which are a skin-friendly soaps, had a high ability to inactivate the influenza virus. In order to elucidate the mechanism of inactivation of influenza virus, we investigated interactions and complex formation of potassium tetradecanoate (C14K) as a highly fatty acid salt with a virus particle (VP) derived from avian influenza virus by using isothermal titration calorimetry (ITC) and small-angle X-ray scattering (SAXS). ITC showed C14K attractively interacted with hemagglutinin protein (HA) which exists in the envelop of VP. SAXS analyses revealed C14K formed highly ordered complex with HA through the attractive interaction. Since the HA is responsible for cell entry events, inactivation of influenza viruses by highly fatty acid salts are derived owing to HA inhibition of influenza viruses through the complex formation. Time-resolved SAXS measurements elucidated the complex formation was completed within 40 s after mixing aqueous solutions of C14K and VP. This result strongly suggests that hand-washing with a highly fatty acid salts is an effective measure to prevent infection with influenza virus without causing rough hands. Pottasium salts of fatty acids show negative change of enthalpy of mixing with influenza viruses. Fatty acid salts form complexes with hemagglutinin of influenza viruses through electrostatic interaction. The electrostatic complex of fatty acid salts and hemagglutinin forms ordered lamellar structures. Inactivation of influenza virus by fatty acid salts is related to hemagglutinin inhibition.
Collapse
|
17
|
Abstract
Past pandemic influenza viruses with sustained human-to-human transmissibility have emerged from animal influenza viruses. Employment of experimental models to assess the pandemic risk of emerging zoonotic influenza viruses provides critical information supporting public health efforts. Ferret transmission experiments have been utilized to predict the human-to-human transmission potential of novel influenza viruses. However, small sample sizes and a lack of standardized protocols can introduce interlaboratory variability, complicating interpretation of transmission experimental data. To assess the range of variation in ferret transmission experiments, a global exercise was conducted by 11 laboratories using two common stock H1N1 influenza viruses with different transmission characteristics in ferrets. Parameters known to affect transmission were standardized, including the inoculation route, dose, and volume, as well as a strict 1:1 donor/contact ratio for respiratory droplet transmission. Additional host and environmental parameters likely to affect influenza transmission kinetics were monitored and analyzed. The overall transmission outcomes for both viruses across 11 laboratories were concordant, suggesting the robustness of the ferret model for zoonotic influenza risk assessment. Among environmental parameters that varied across laboratories, donor-to-contact airflow directionality was associated with increased transmissibility. To attain high confidence in identifying viruses with moderate to high transmissibility or low transmissibility under a smaller number of participating laboratories, our analyses support the notion that as few as three but as many as five laboratories, respectively, would need to independently perform viral transmission experiments with concordant results. This exercise facilitates the development of a more homogenous protocol for ferret transmission experiments that are employed for the purposes of risk assessment.
Collapse
|
18
|
Tarrahimofrad H, Rahimnahal S, Zamani J, Jahangirian E, Aminzadeh S. Designing a multi-epitope vaccine to provoke the robust immune response against influenza A H7N9. Sci Rep 2021; 11:24485. [PMID: 34966175 PMCID: PMC8716528 DOI: 10.1038/s41598-021-03932-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
A new strain of Influenza A Virus (IAV), so-called "H7N9 Avian Influenza", is the first strain of this virus in which a human is infected by transmitting the N9 of influenza virus. Although continuous human-to-human transmission has not been reported, the occurrence of various H7N9-associated epidemics and the lack of production of strong antibodies against H7N9 in humans warn of the potential for H7N9 to become a new pandemic. Therefore, the need for effective vaccination against H7N9 as a life-threatening viral pathogen has become a major concern. The current study reports the design of a multi-epitope vaccine against Hemagglutinin (HA) and Neuraminidase (NA) proteins of H7N9 Influenza A virus by prediction of Cytotoxic T lymphocyte (CTL), Helper T lymphocyte (HTL), IFN-γ and B-cell epitopes. Human β-defensin-3 (HβD-3) and pan HLA DR-binding epitope (PADRE) sequence were considered as adjuvant. EAAAK, AAY, GPGPG, HEYGAEALERAG, KK and RVRR linkers were used as a connector for epitopes. The final construct contained 777 amino acids that are expected to be a recombinant protein of about ~ 86.38 kDa with antigenic and non-allergenic properties after expression. Modeled protein analysis based on the tertiary structure validation, docking studies, and molecular dynamics simulations results like Root-mean-square deviation (RMSD), Gyration, Root-mean-square fluctuation (RMSF) and Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PBSA) showed that this protein has a stable construct and capable of being in interaction with Toll-like receptor 7 (TLR7), TLR8 and m826 antibody. Analysis of the obtained data the demonstrates that suggested vaccine has the potential to induce the immune response by stimulating T and Bcells, and may be utilizable for prevention purposes against Avian Influenza A (H7N9).
Collapse
Affiliation(s)
- Hossein Tarrahimofrad
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Somayyeh Rahimnahal
- Department of Animal Science, Faculty of Agriculture, Ilam University, Ilam, Iran
| | - Javad Zamani
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Ehsan Jahangirian
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Saeed Aminzadeh
- Bioprocess Engineering Group, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran.
| |
Collapse
|
19
|
Varghese PM, Mukherjee S, Al-Mohanna FA, Saleh SM, Almajhdi FN, Beirag N, Alkahtani SH, Rajkumari R, Nal Rogier B, Sim RB, Idicula-Thomas S, Madan T, Murugaiah V, Kishore U. Human Properdin Released By Infiltrating Neutrophils Can Modulate Influenza A Virus Infection. Front Immunol 2021; 12:747654. [PMID: 34956182 PMCID: PMC8695448 DOI: 10.3389/fimmu.2021.747654] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
The complement system is designed to recognise and eliminate invading pathogens via activation of classical, alternative and lectin pathways. Human properdin stabilises the alternative pathway C3 convertase, resulting in an amplification loop that leads to the formation of C5 convertase, thereby acting as a positive regulator of the alternative pathway. It has been noted that human properdin on its own can operate as a pattern recognition receptor and exert immune functions outside its involvement in complement activation. Properdin can bind directly to microbial targets via DNA, sulfatides and glycosaminoglycans, apoptotic cells, nanoparticles, and well-known viral virulence factors. This study was aimed at investigating the complement-independent role of properdin against Influenza A virus infection. As one of the first immune cells to arrive at the site of IAV infection, we show here that IAV challenged neutrophils released properdin in a time-dependent manner. Properdin was found to directly interact with haemagglutinin, neuraminidase and matrix 1 protein Influenza A virus proteins in ELISA and western blot. Furthermore, modelling studies revealed that properdin could bind HA and NA of the H1N1 subtype with higher affinity compared to that of H3N2 due to the presence of an HA cleavage site in H1N1. In an infection assay using A549 cells, properdin suppressed viral replication in pH1N1 subtype while promoting replication of H3N2 subtype, as revealed by qPCR analysis of M1 transcripts. Properdin treatment triggered an anti-inflammatory response in H1N1-challenged A549 cells and a pro-inflammatory response in H3N2-infected cells, as evident from differential mRNA expression of TNF-α, NF-κB, IFN-α, IFN-β, IL-6, IL-12 and RANTES. Properdin treatment also reduced luciferase reporter activity in MDCK cells transduced with H1N1 pseudotyped lentiviral particles; however, it was increased in the case of pseudotyped H3N2 particles. Collectively, we conclude that infiltrating neutrophils at the site of IAV infection can release properdin, which then acts as an entry inhibitor for pandemic H1N1 subtype while suppressing viral replication and inducing an anti-inflammatory response. H3N2 subtype can escape this immune restriction due to altered haemagglutinin and neuraminindase, leading to enhanced viral entry, replication and pro-inflammatory response. Thus, depending on the subtype, properdin can either limit or aggravate IAV infection in the host.
Collapse
Affiliation(s)
- Praveen M Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom.,School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Shuvechha Mukherjee
- Biomedical Informatics Centre, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Futwan A Al-Mohanna
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Souad M Saleh
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Fahad N Almajhdi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nazar Beirag
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Saad H Alkahtani
- Department of Zoology, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Reena Rajkumari
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Beatrice Nal Rogier
- INSERM U1104 Centre d'immunologie de Marseille-Luminy (CIML), Marseille, France
| | - Robert B Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Susan Idicula-Thomas
- Biomedical Informatics Centre, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Taruna Madan
- Department of Innate Immunity, Indian Council of Medical Research (ICMR)-National Institute for Research in Reproductive Health, Mumbai, India
| | - Valarmathy Murugaiah
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
20
|
Kessler S, Harder TC, Schwemmle M, Ciminski K. Influenza A Viruses and Zoonotic Events-Are We Creating Our Own Reservoirs? Viruses 2021; 13:v13112250. [PMID: 34835056 PMCID: PMC8624301 DOI: 10.3390/v13112250] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 01/16/2023] Open
Abstract
Zoonotic infections of humans with influenza A viruses (IAVs) from animal reservoirs can result in severe disease in individuals and, in rare cases, lead to pandemic outbreaks; this is exemplified by numerous cases of human infection with avian IAVs (AIVs) and the 2009 swine influenza pandemic. In fact, zoonotic transmissions are strongly facilitated by manmade reservoirs that were created through the intensification and industrialization of livestock farming. This can be witnessed by the repeated introduction of IAVs from natural reservoirs of aquatic wild bird metapopulations into swine and poultry, and the accompanied emergence of partially- or fully-adapted human pathogenic viruses. On the other side, human adapted IAV have been (and still are) introduced into livestock by reverse zoonotic transmission. This link to manmade reservoirs was also observed before the 20th century, when horses seemed to have been an important reservoir for IAVs but lost relevance when the populations declined due to increasing industrialization. Therefore, to reduce zoonotic events, it is important to control the spread of IAV within these animal reservoirs, for example with efficient vaccination strategies, but also to critically surveil the different manmade reservoirs to evaluate the emergence of new IAV strains with pandemic potential.
Collapse
Affiliation(s)
- Susanne Kessler
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Timm C. Harder
- Friedrich-Loeffler-Institut (FLI), Institute of Diagnostic Virology, 17493 Greifswald-Insel Riems, Germany;
| | - Martin Schwemmle
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Kevin Ciminski
- Medical Center, Institute of Virology, University of Freiburg, 79104 Freiburg, Germany; (S.K.); (M.S.)
- Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
- Correspondence:
| |
Collapse
|
21
|
Ancestral sequence reconstruction pinpoints adaptations that enable avian influenza virus transmission in pigs. Nat Microbiol 2021; 6:1455-1465. [PMID: 34702977 PMCID: PMC8557130 DOI: 10.1038/s41564-021-00976-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 09/07/2021] [Indexed: 12/22/2022]
Abstract
Understanding the evolutionary adaptations that enable avian influenza viruses to transmit in mammalian hosts could allow better detection of zoonotic viruses with pandemic potential. We applied ancestral sequence reconstruction to gain viruses representing different adaptive stages of the European avian-like (EA) H1N1 swine influenza virus as it transitioned from avian to swine hosts since 1979. Ancestral viruses representing the avian-like precursor virus and EA swine viruses from 1979–1983, 1984–1987, and 1988–1992 were reconstructed and characterized. Glycan array analyses showed stepwise changes in the hemagglutinin receptor binding specificity from recognizing both alpha2,3- and alpha2,6-sialosides to alpha2,6-sialosides; however, efficient transmission in piglets was enabled by adaptive changes in the viral polymerase protein and nucleoprotein that have been fixed after 1983. PB1-Q621R and NP-R351K increased viral replication and transmission in piglets when introduced into the 1979–1983 ancestral virus that lacked efficient transmissibility. The stepwise adaptation of an avian influenza virus to a mammalian host suggests that there may be opportunities to intervene and prevent interspecies jump through strategic coordination of surveillance and risk assessment activities.
Collapse
|
22
|
Zhang L, Lu M, Lu J, Wang N, Pan Z, Su S. Development of a duplex real-time PCR method for the detection of influenza C and D viruses. ANIMAL DISEASES 2021. [DOI: 10.1186/s44149-021-00016-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractInfluenza viruses are major respiratory pathogens known to infect human and a variety of animals and are widely prevalent worldwide. Genome structure of influenza D virus (IDV) is identical to that of influenza C virus (ICV), and phylogenetic analyses suggest that IDV and ICV share a common ancestry and high homology. To date, the prevalence of ICV and IDV in China is unclear, but these viruses represent a potential threat to public health due to cross-species transmission and zoonotic potential. To efficiently monitor ICV and IDV, it is necessary to establish a dual detection method to understand their prevalence and conduct in-depth research. A duplex real-time PCR method for the simultaneous detection of ICV and IDV was developed. TaqMan fluorescent probes and specific primers targeting NP gene of ICV and PB1 gene of IDV were designed. This method exhibited good specificity and sensitivity, and the detection limit reached 1 × 101 copies/μL of plasmid standards of each pathogen. Thirty-one clinical swine samples and 10 clinical cattle samples were analyzed using this method. One positive sample of IDV was detected, and the accuracy of clinical test results was verified by conventional PCR and DNA sequencing. The duplex real-time PCR detection method represents a sensitive and specific tool to detect ICV and IDV. It provides technical support for virus research and clinical diagnosis of ICV and IDV. This information will benefit animal and human health.
Collapse
|
23
|
Abstract
In early 2013, human infections caused by a novel H7N9 avian influenza virus (AIV) were first reported in China; these infections caused severe disease and death. The virus was initially low pathogenic to poultry, enabling it to spread widely in different provinces, especially in live poultry markets. Importantly, the H7N9 low pathogenic AIVs (LPAIVs) evolved into highly pathogenic AIVs (HPAIVs) in the beginning of 2017, causing a greater threat to human health and devastating losses to the poultry industry. Fortunately, nationwide vaccination of chickens with an H5/H7 bivalent inactivated avian influenza vaccine since September 2017 has successfully controlled H7N9 avian influenza infections in poultry and, importantly, has also prevented human infections. In this review, we summarize the biological properties of the H7N9 viruses, specifically their genetic evolution, adaptation, pathogenesis, receptor binding, transmission, drug resistance, and antigenic variation, as well as the prevention and control measures. The information obtained from investigating and managing the H7N9 viruses could improve our ability to understand other novel AIVs and formulate effective measures to control their threat to humans and animals.
Collapse
Affiliation(s)
- Chengjun Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Hualan Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| |
Collapse
|
24
|
Harrington WN, Kackos CM, Webby RJ. The evolution and future of influenza pandemic preparedness. Exp Mol Med 2021; 53:737-749. [PMID: 33953324 PMCID: PMC8099712 DOI: 10.1038/s12276-021-00603-0] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 12/17/2022] Open
Abstract
The influenza virus is a global threat to human health causing unpredictable yet recurring pandemics, the last four emerging over the course of a hundred years. As our knowledge of influenza virus evolution, distribution, and transmission has increased, paths to pandemic preparedness have become apparent. In the 1950s, the World Health Organization (WHO) established a global influenza surveillance network that is now composed of institutions in 122 member states. This and other surveillance networks monitor circulating influenza strains in humans and animal reservoirs and are primed to detect influenza strains with pandemic potential. Both the United States Centers for Disease Control and Prevention and the WHO have also developed pandemic risk assessment tools that evaluate specific aspects of emerging influenza strains to develop a systematic process of determining research and funding priorities according to the risk of emergence and potential impact. Here, we review the history of influenza pandemic preparedness and the current state of preparedness, and we propose additional measures for improvement. We also comment on the intersection between the influenza pandemic preparedness network and the current SARS-CoV-2 crisis. We must continually evaluate and revise our risk assessment and pandemic preparedness plans and incorporate new information gathered from research and global crises.
Collapse
Affiliation(s)
- Walter N Harrington
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Christina M Kackos
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Children's Research Hospital, Graduate School of Biomedical Sciences, Memphis, TN, USA
| | - Richard J Webby
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Rioux M, Francis ME, Swan CL, Ge A, Kroeker A, Kelvin AA. The Intersection of Age and Influenza Severity: Utility of Ferrets for Dissecting the Age-Dependent Immune Responses and Relevance to Age-Specific Vaccine Development. Viruses 2021; 13:678. [PMID: 33920917 PMCID: PMC8071347 DOI: 10.3390/v13040678] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/09/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023] Open
Abstract
Many factors impact the host response to influenza virus infection and vaccination. Ferrets have been an indispensable reagent for influenza virus research for almost one hundred years. One of the most significant and well-known factors affecting human disease after infection is host age. Another significant factor is the virus, as strain-specific disease severity is well known. Studying age-related impacts on viral infection and vaccination outcomes requires an animal model that reflects both the physiological and immunological changes that occur with human aging, and sensitivity to differentially virulent influenza viruses. The ferret is uniquely susceptible to a plethora of influenza viruses impacting humans and has proven extremely useful in studying the clinical and immunological pictures of influenza virus infection. Moreover, ferrets developmentally have several of the age-related physiological changes that occur in humans throughout infancy, adulthood, old age, and pregnancy. In this review, we discuss ferret susceptibility to influenza viruses, summarize previous influenza studies using ferrets as models of age, and finally, highlight the application of ferret age models in the pursuit of prophylactic and therapeutic agents to address age-related influenza disease severity.
Collapse
Affiliation(s)
- Melissa Rioux
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Magen E. Francis
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Cynthia L. Swan
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Anni Ge
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
| | - Andrea Kroeker
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
| | - Alyson A. Kelvin
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS B3H4R2, Canada; (M.R.); (A.G.)
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK S7N5E3, Canada; (M.E.F.); (C.L.S.); (A.K.)
- Department of Pediatrics, Division of Infectious Disease, Faculty of Medicine, Dalhousie University, Halifax, NS B3K6R8, Canada
- The Canadian Center for Vaccinology (IWK Health Centre, Dalhousie University and the Nova Scotia Health Authority), Halifax, NS B3K6R8, Canada
- Department of Biochemistry, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK S7N5E5, Canada
| |
Collapse
|
26
|
Wang D, Zhu W, Yang L, Shu Y. The Epidemiology, Virology, and Pathogenicity of Human Infections with Avian Influenza Viruses. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a038620. [PMID: 31964651 DOI: 10.1101/cshperspect.a038620] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Influenza is a global challenge, and future pandemics of influenza are inevitable. One of the lessons learned from past pandemics is that all pandemic influenza viruses characterized to date possess viral genes originating from avian influenza viruses (AIVs). During the past decades, a wide range of AIVs have overcome the species barrier and infected humans with different clinical manifestations ranging from mild illness to severe disease and even death. Understanding the mechanisms of infection in the context of clinical outcomes, the mechanism of interspecies transmission, and the molecular determinants that confer interspecies transmission is important for pandemic preparedness. Here, we summarize the epidemiology, virology, and pathogenicity of human infections with AIVs to further our understanding of interspecies transmission.
Collapse
Affiliation(s)
- Dayan Wang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Wenfei Zhu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Lei Yang
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China
| | - Yuelong Shu
- National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory for Medical Virology, National Health Commission of the People's Republic of China, Beijing 102206, P.R. China.,School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, P.R. China
| |
Collapse
|
27
|
Winokur P, El Sahly HM, Mulligan MJ, Frey SE, Rupp R, Anderson EJ, Edwards KM, Bernstein DI, Schmader K, Jackson LA, Chen WH, Hill H, Bellamy A. Immunogenicity and safety of different dose schedules and antigen doses of an MF59-adjuvanted H7N9 vaccine in healthy adults aged 65 years and older. Vaccine 2021; 39:1339-1348. [PMID: 33485646 PMCID: PMC8504682 DOI: 10.1016/j.vaccine.2020.11.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/10/2020] [Accepted: 11/14/2020] [Indexed: 11/25/2022]
Abstract
BACKGROUND The number of human influenza A (H7N9) infections has escalated since 2013 with high resultant mortality. We conducted a phase II, randomized, partially-blinded trial to evaluate the safety and immunogenicity of an MF59-adjuvanted inactivated, split virion, H7N9 influenza vaccine (H7N9 IIV) administered at various dose levels and schedules in older adults. METHODS 479 adults ≥ 65 years of age in stable health were randomized to one of six groups to receive either 3.75, 7.5 or 15 µg of influenza A/Shanghai/02/2013 (H7N9) IIV adjuvanted with MF59 given as a 3-dose series either on days 1, 28 and 168 or on days 1, 57 and 168. Immunogenicity was assessed using both hemagglutination inhibition (HAI) and microneutralization (MN) assays prior to and 28 days following each dose. Safety was assessed through 1 year following the last dose. RESULTS Subjects in all groups had only modest immune responses, with the HAI GMT < 20 after the second vaccine dose and <29 after the third vaccine dose. HAI titers ≥ 40 were seen in <37% of subjects after the second dose and <49% after the third dose. There were no significant differences seen between the two dose schedules. MN titers followed similar patterns, although the titers were approximately two-fold higher than the HAI titers. Logistic regression modeling demonstrated no statistically significant associations between the immune responses and age, sex or body mass index whereas recent prior receipt of seasonal influenza vaccine significantly reduced the HAI response [OR 0.13 (95% CI 0.05, 0.33); p < 0.001]. Overall, the vaccine was well tolerated. Two mild potentially immune mediated adverse events occurred, lichen planus and guttate psoriasis. CONCLUSIONS MF59-adjuvanted H7N9 IIV was only modestly immunogenic in the older adult population following three doses. There were no significant differences in antibody responses noted among the various antigen doses or the two dose schedules.
Collapse
Affiliation(s)
- Patricia Winokur
- Division of Infectious Diseases, Department of Internal Medicine, University of Iowa, Iowa City, Iowa, United States.
| | - Hana M El Sahly
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Mark J Mulligan
- The Hope Clinic of the Emory Vaccine Center, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Sharon E Frey
- Department of Medicine, Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Richard Rupp
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Evan J Anderson
- Emory Children's Center, Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt Vaccine Research Program, Vanderbilt University, Nashville, TN, United States
| | - David I Bernstein
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | | | - Lisa A Jackson
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, United States
| | - Wilbur H Chen
- Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heather Hill
- The Emmes Corporation, Rockville, MD, United States
| | | |
Collapse
|
28
|
Wang B, Su Q, Luo J, Li M, Wu Q, Chang H, Du J, Huang C, Ma J, Han S, Yuan G, He Y, Guo M, Zhang Q, He H. Differences in Highly Pathogenic H5N6 Avian Influenza Viral Pathogenicity and Inflammatory Response in Chickens and Ducks. Front Microbiol 2021; 12:593202. [PMID: 33584608 PMCID: PMC7878534 DOI: 10.3389/fmicb.2021.593202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/06/2021] [Indexed: 01/09/2023] Open
Abstract
Infection with H5N6 highly pathogenic avian influenza virus caused high mortality in chickens, while ducks often appear to be asymptomatic. But, some recent H5Nx subtype viruses could cause high mortality in ducks. The variation between different species and the mechanisms by which some H5Nx viruses cause death in ducks requires investigation to identify the key processes in influenza susceptibility and pathogenesis. Here, we characterized two representative H5N6 viruses, A/Pavo cristatus/Jiangxi/JA1/2016 (JA1) and A/Anas crecca/shanghai/SH1/2016 (SH1), and compared their pathogenicity and expression profiles of immune-related genes in chickens and ducks to identify the elements of the host immune-related response that were involved in disease lethality. Results suggested that H5N6 HPAIVs had higher pathogenic and inflammatory effect in chickens than in ducks. Importantly, the TNF-α, IL-6, IFN-γ and iNOS levels were significantly higher in the lung of SH1 infected chickens compared to those of ducks. And we found higher systemic levels of IL-6 induced by JA1 in chickens than in ducks. In addition, our experiments demonstrated that JA1 was associated with greater pathogenicity in ducks were accompanied by the excessive expression of iNOS in the brain. These results are helpful to understand the relationship between the pathogenicity of H5N6 AIVs and inflammatory responses to them in chickens and ducks.
Collapse
Affiliation(s)
- Bo Wang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Qianqian Su
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Luo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Meng Li
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qiaoxing Wu
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Han Chang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Du
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Chengmei Huang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jiajun Ma
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Guohui Yuan
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yapeng He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Minglei Guo
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Qingxun Zhang
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hongxuan He
- National Research Center for Wildlife-Borne Diseases, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
29
|
Sialic Acid Receptors: The Key to Solving the Enigma of Zoonotic Virus Spillover. Viruses 2021; 13:v13020262. [PMID: 33567791 PMCID: PMC7915228 DOI: 10.3390/v13020262] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/14/2022] Open
Abstract
Emerging viral diseases are a major threat to global health, and nearly two-thirds of emerging human infectious diseases are zoonotic. Most of the human epidemics and pandemics were caused by the spillover of viruses from wild mammals. Viruses that infect humans and a wide range of animals have historically caused devastating epidemics and pandemics. An in-depth understanding of the mechanisms of viral emergence and zoonotic spillover is still lacking. Receptors are major determinants of host susceptibility to viruses. Animal species sharing host cell receptors that support the binding of multiple viruses can play a key role in virus spillover and the emergence of novel viruses and their variants. Sialic acids (SAs), which are linked to glycoproteins and ganglioside serve as receptors for several human and animal viruses. In particular, influenza and coronaviruses, which represent two of the most important zoonotic threats, use SAs as cellular entry receptors. This is a comprehensive review of our current knowledge of SA receptor distribution among animal species and the range of viruses that use SAs as receptors. SA receptor tropism and the predicted natural susceptibility to viruses can inform targeted surveillance of domestic and wild animals to prevent the future emergence of zoonotic viruses.
Collapse
|
30
|
Thompson AJ, Paulson JC. Adaptation of influenza viruses to human airway receptors. J Biol Chem 2020; 296:100017. [PMID: 33144323 PMCID: PMC7948470 DOI: 10.1074/jbc.rev120.013309] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022] Open
Abstract
Through annual epidemics and global pandemics, influenza A viruses (IAVs) remain a significant threat to human health as the leading cause of severe respiratory disease. Within the last century, four global pandemics have resulted from the introduction of novel IAVs into humans, with components of each originating from avian viruses. IAVs infect many avian species wherein they maintain a diverse natural reservoir, posing a risk to humans through the occasional emergence of novel strains with enhanced zoonotic potential. One natural barrier for transmission of avian IAVs into humans is the specificity of the receptor-binding protein, hemagglutinin (HA), which recognizes sialic-acid-containing glycans on host cells. HAs from human IAVs exhibit “human-type” receptor specificity, binding exclusively to glycans on cells lining the human airway where terminal sialic acids are attached in the α2-6 configuration (NeuAcα2-6Gal). In contrast, HAs from avian viruses exhibit specificity for “avian-type” α2-3-linked (NeuAcα2-3Gal) receptors and thus require adaptive mutations to bind human-type receptors. Since all human IAV pandemics can be traced to avian origins, there remains ever-present concern over emerging IAVs with human-adaptive potential that might lead to the next pandemic. This concern has been brought into focus through emergence of SARS-CoV-2, aligning both scientific and public attention to the threat of novel respiratory viruses from animal sources. In this review, we summarize receptor-binding adaptations underlying the emergence of all prior IAV pandemics in humans, maintenance and evolution of human-type receptor specificity in subsequent seasonal IAVs, and potential for future human-type receptor adaptation in novel avian HAs.
Collapse
Affiliation(s)
- Andrew J Thompson
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA.
| | - James C Paulson
- Department of Molecular Medicine, Scripps Research, La Jolla, California, USA; Department of Immunology & Microbiology, Scripps Research, La Jolla, California, USA.
| |
Collapse
|
31
|
Gul A, Khan S, Arshad M, Anjum SI, Attaullah S, Ali I, Rauf A, Arshad A, Alghanem SM, Khan SN. Peripheral blood T cells response in human parainfluenza virus-associated lower respiratory tract infection in children. Saudi J Biol Sci 2020; 27:2847-2852. [PMID: 32994745 PMCID: PMC7499292 DOI: 10.1016/j.sjbs.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/04/2020] [Accepted: 07/05/2020] [Indexed: 11/23/2022] Open
Abstract
Human Parainfluenza virus (HPIV) causes lower respiratory tract infections (LRTI) mostly in young children. Respiratory viral infections may decline T cells in circulation and display enhanced pathogenicity. This study is aimed to analyze T cells alterations due to HPIV in children with LRTIs. Children (N = 152) with bronchitis or pneumonia, admitted in tertiary care hospitals were included in the study. Respiratory samples (throat or nasopharyngeal swabs) were taken and HPIV genotypes (1-4) were analyzed through RT-PCR. Peripheral blood T cells, CD3+, CD4+, CD8+, and CD19+, were analyzed in confirmed HPIV positive and healthy control group children through flow cytometry. The positivity rate of HPIV was 24.34% and the most prevalent genotype was HPIV-3 (20.40%). HPIV-1 and HPIV-2 were detected in 0.66% and 02% children respectively. The T lymphocyte counts were observed significantly reduced in children infected with HPIV-3. CD4+ cell (1580 ± 97.87) counts did not change significantly but the lowest CD8+ T cell counts (518.5 ± 74.00) were recorded. Similarly, CD3+ and CD19 cell ratios were also reduced. The CD4/CD8 ratio was significantly higher (3.12 ± 0.59) in the study population as compared to the control group (2.18 ± 0.654). Changes in the count of CD8+ T cells were more pronounced in patients with bronchiolitis and pneumonia. It is concluded that CD8+ T cells show a reduced response to HPIV-3 in children with severe LRTIs suggesting a strong association of these cells with disease severity.
Collapse
Affiliation(s)
- Aisha Gul
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Sanaullah Khan
- Department of Zoology, University of Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arshad
- Department of Biological Sciences, International Islamic University, Islamabad Pakistan
| | - Syed Ishtiaq Anjum
- Department of Zoology Kohat University of Science & Technology, Kohat, Pakistan
| | - Sobia Attaullah
- Department of Zoology, Islamia College Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Ijaz Ali
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Abdur Rauf
- Department of Zoology, University of Azad Jammu and Kashmir, Muzaffarabad, Pakistan
| | - Abida Arshad
- Department of Zoology, PMAS-Arid Agriculture University, Rawalpindi, Pakistan
| | - Suliman M. Alghanem
- Biology Department, Faculty of Science, Tabuk University, Tabuk 71491, Saudi Arabia
| | - Shahid Niaz Khan
- Department of Zoology Kohat University of Science & Technology, Kohat, Pakistan
| |
Collapse
|
32
|
Horman WSJ, Nguyen THO, Kedzierska K, Butler J, Shan S, Layton R, Bingham J, Payne J, Bean AGD, Layton DS. The Dynamics of the Ferret Immune Response During H7N9 Influenza Virus Infection. Front Immunol 2020; 11:559113. [PMID: 33072098 PMCID: PMC7541917 DOI: 10.3389/fimmu.2020.559113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022] Open
Abstract
As the recent outbreak of SARS-CoV-2 has highlighted, the threat of a pandemic event from zoonotic viruses, such as the deadly influenza A/H7N9 virus subtype, continues to be a major global health concern. H7N9 virus strains appear to exhibit greater disease severity in mammalian hosts compared to natural avian hosts, though the exact mechanisms underlying this are somewhat unclear. Knowledge of the H7N9 host-pathogen interactions have mainly been constrained to natural sporadic human infections. To elucidate the cellular immune mechanisms associated with disease severity and progression, we used a ferret model to closely resemble disease outcomes in humans following influenza virus infection. Intriguingly, we observed variable disease outcomes when ferrets were inoculated with the A/Anhui/1/2013 (H7N9) strain. We observed relatively reduced antigen-presenting cell activation in lymphoid tissues which may be correlative with increased disease severity. Additionally, depletions in CD8+ T cells were not apparent in sick animals. This study provides further insight into the ways that lymphocytes maturate and traffic in response to H7N9 infection in the ferret model.
Collapse
Affiliation(s)
- William S J Horman
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia.,Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Thi H O Nguyen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Katherine Kedzierska
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Jeffrey Butler
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Songhua Shan
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Rachel Layton
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - John Bingham
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Jean Payne
- Commonwealth Scientific and Industrial Research Organisation, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Andrew G D Bean
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| | - Daniel S Layton
- Commonwealth Scientific and Industrial Research Organisation Health and Biosecurity, Australian Centre for Disease Prevention, East Geelong, VIC, Australia
| |
Collapse
|
33
|
Bhat S, Bialy D, Sealy JE, Sadeyen JR, Chang P, Iqbal M. A ligation and restriction enzyme independent cloning technique: an alternative to conventional methods for cloning hard-to-clone gene segments in the influenza reverse genetics system. Virol J 2020; 17:82. [PMID: 32576218 PMCID: PMC7309217 DOI: 10.1186/s12985-020-01358-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Reverse genetics is used in many laboratories around the world and enables the creation of tailor-made influenza viruses with a desired genotype or phenotype. However, the process is not flawless, and difficulties remain during cloning of influenza gene segments into reverse genetics vectors (pHW2000, pHH21, pCAGGS). Reverse genetics begins with making cDNA copies of influenza gene segments and cloning them into bi-directional (pHW2000) or uni-directional plasmids (pHH21, pCAGGS) followed by transfection of the recombinant plasmid(s) to HEK-293 T or any other suitable cells which are permissive to transfection. However, the presence of internal restriction sites in the gene segments of many field isolates of avian influenza viruses makes the cloning process difficult, if employing conventional methods. Further, the genetic instability of influenza gene-containing plasmids in bacteria (especially Polymerase Basic 2 and Polymerase Basic 1 genes; PB2 and PB1) also leads to erroneous incorporation of bacterial genomic sequences into the influenza gene of interest. METHODS Herein, we report an easy and efficient ligation and restriction enzyme independent (LREI) cloning method for cloning influenza gene segments into pHW2000 vector. The method involves amplification of megaprimers followed by PCR amplification of megaprimers using a bait plasmid, DpnI digestion and transformation. RESULTS Hard-to-clone genes: PB2 of A/chicken/Bangladesh/23527/2014 (H9N2) and PB1 of A/chicken/Bangladesh/23527/2014 (H9N2), A/chicken/Jiangxi/02.05YGYXG023-P/2015 (H5N6) and A/Chicken/Vietnam/H7F-14-BN4-315/2014 (H9N2) were cloned into pHW2000 using our LREI method and recombinant viruses were subsequently rescued. CONCLUSION The LREI cloning procedure represents an alternative strategy for cloning influenza gene segments which have internal restriction sites for the enzymes used in reverse genetics. Further, the problem of genetic instability in bacteria can be alleviated by growing recombinant bacterial cultures at a lower temperature. This technique can be applied to clone any influenza gene segment using universal primers, which would help in rapid generation of influenza viruses and facilitate influenza research and vaccine development.
Collapse
|
34
|
H7N9 influenza split vaccine with SWE oil-in-water adjuvant greatly enhances cross-reactive humoral immunity and protection against severe pneumonia in ferrets. NPJ Vaccines 2020; 5:38. [PMID: 32411401 PMCID: PMC7214439 DOI: 10.1038/s41541-020-0187-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 04/21/2020] [Indexed: 12/24/2022] Open
Abstract
Until universal influenza vaccines become available, pandemic preparedness should include developing classical vaccines against potential pandemic influenza subtypes. We here show that addition of SWE adjuvant, a squalene-in-water emulsion, to H7N9 split influenza vaccine clearly enhanced functional antibody responses in ferrets. These were cross-reactive against H7N9 strains from different lineages and newly emerged H7N9 variants. Both vaccine formulations protected in almost all cases against severe pneumonia induced by intratracheal infection of ferrets with H7N9 influenza; however, the SWE adjuvant enhanced protection against virus replication and disease. Correlation analysis and curve fitting showed that both VN- and NI-titers were better predictors for protection than HI-titers. Moreover, we show that novel algorithms can assist in better interpretation of large data sets generated in preclinical studies. Cluster analysis showed that the adjuvanted vaccine results in robust immunity and protection, whereas the response to the non-adjuvanted vaccine is heterogeneous, such that the protection balance may be more easily tipped toward severe disease. Finally, cluster analysis indicated that the dose-sparing capacity of the adjuvant is at least a factor six, which greatly increases vaccine availability in a pandemic situation.
Collapse
|
35
|
Abstract
Worldwide outbreaks of influenza (pandemics) are caused by influenza A viruses to which persons lack protective immune responses. Currently, we are unable to predict which influenza virus strains may cause a pandemic. In this article, we summarize some of the information that will be needed to better assess the pandemic potential of influenza viruses, and we discuss our current gaps in knowledge.
Collapse
Affiliation(s)
- Gabriele Neumann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison
| | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison.,Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Japan
| |
Collapse
|
36
|
Park MS, Kim JI, Bae JY, Park MS. Animal models for the risk assessment of viral pandemic potential. Lab Anim Res 2020; 36:11. [PMID: 32337177 PMCID: PMC7175453 DOI: 10.1186/s42826-020-00040-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023] Open
Abstract
Pandemics affect human lives severely and globally. Experience predicts that there will be a pandemic for sure although the time is unknown. When a viral epidemic breaks out, assessing its pandemic risk is an important part of the process that characterizes genomic property, viral pathogenicity, transmission in animal model, and so forth. In this review, we intend to figure out how a pandemic may occur by looking into the past influenza pandemic events. We discuss interpretations of the experimental evidences resulted from animal model studies and extend implications of viral pandemic potentials and ingredients to emerging viral epidemics. Focusing on the pandemic potential of viral infectious diseases, we suggest what should be assessed to prevent global catastrophes from influenza virus, Middle East respiratory syndrome coronavirus, dengue and Zika viruses.
Collapse
Affiliation(s)
- Mee Sook Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Jin Il Kim
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Joon-Yong Bae
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| | - Man-Seong Park
- Department of Microbiology, Institute for Viral Diseases, College of Medicine, Korea University, Seoul, Republic of Korea 02841
| |
Collapse
|
37
|
Abstract
In 1918, a strain of influenza A virus caused a human pandemic resulting in the deaths of 50 million people. A century later, with the advent of sequencing technology and corresponding phylogenetic methods, we know much more about the origins, evolution and epidemiology of influenza epidemics. Here we review the history of avian influenza viruses through the lens of their genetic makeup: from their relationship to human pandemic viruses, starting with the 1918 H1N1 strain, through to the highly pathogenic epidemics in birds and zoonoses up to 2018. We describe the genesis of novel influenza A virus strains by reassortment and evolution in wild and domestic bird populations, as well as the role of wild bird migration in their long-range spread. The emergence of highly pathogenic avian influenza viruses, and the zoonotic incursions of avian H5 and H7 viruses into humans over the last couple of decades are also described. The threat of a new avian influenza virus causing a human pandemic is still present today, although control in domestic avian populations can minimize the risk to human health. This article is part of the theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: approaches and important themes’. This issue is linked with the subsequent theme issue ‘Modelling infectious disease outbreaks in humans, animals and plants: epidemic forecasting and control’.
Collapse
Affiliation(s)
| | | | - Paul Digard
- The Roslin Institute, University of Edinburgh , Edinburgh , UK
| |
Collapse
|
38
|
Evaluation of the immune response of a H7N9 candidate vaccine virus derived from the fifth wave A/Guangdong/17SF003/2016. Antiviral Res 2020; 177:104776. [PMID: 32201204 DOI: 10.1016/j.antiviral.2020.104776] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/04/2020] [Accepted: 03/16/2020] [Indexed: 12/22/2022]
Abstract
Highly pathogenic influenza H7N9 viruses that emerged in the fifth wave of H7N9 outbreak pose a risk to human health. The World Health Organization has updated the candidate vaccine viruses for H7N9 viruses recently. In this study, we evaluated the immune response to an updated H7N9 candidate vaccine virus, which derived from the highly pathogenic A/Guangdong/17SF003/2016 (GD/16) in mice and rhesus macaques. GD/16 vaccination elicited robust neutralizing, virus-specific immunoglobulin G antibodies and effective protection, but poor hemagglutination inhibition antibody titers. Furthermore, mouse and rhesus macaque serum raised against the previous H7N9 CVV A/Anhui/1/2013 (AH/13) were tested for its cross-reactivity to GD/16 virus. We found that although AH/13-immune serum has poor hemagglutination inhibition reactivity against GD/16 virus, AH/13 elicit efficient cross-neutralizing antibodies and in vivo protection against GD/16. Further studies showed that the hemagglutinin of GD/16 has strong receptor binding avidity, which might be associated with the decreased hemagglutination inhibition assay sensitivity. This study underscores the point that receptor binding avidity should be taken into account when performing quantitative interpretation of hemagglutination inhibition data. A combination of multiple serological assays is required for accurate vaccine evaluation and antigenic analysis of influenza viruses.
Collapse
|
39
|
Wang Q, Xu K, Xie W, Yang L, Chen H, Shi N, Bao C, Huang H, Zhang X, Liao Y, Jin H. Seroprevalence of H7N9 infection among humans: A systematic review and meta-analysis. Influenza Other Respir Viruses 2020; 14:587-595. [PMID: 32157809 PMCID: PMC7431636 DOI: 10.1111/irv.12736] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/27/2019] [Accepted: 02/19/2020] [Indexed: 12/12/2022] Open
Abstract
In spring 2013, a novel avian-origin influenza A (H7N9) virus emerged in mainland China. The burden of H7N9 infection was estimated based on systematic review and meta-analysis. The systematic search for available literature was conducted using Chinese and English databases. We calculated the pooled seroprevalence of H7N9 infection and its 95% confidence interval by using Freeman-Tukey double arcsine transformation. Out of 16 890 records found using Chinese and English databases, 54 articles were included in the meta-analysis. These included studies of a total of 64 107 individuals. The pooled seroprevalence of H7N9 infection among humans was 0.122% (95% CI: 0.023, 0.275). In high-risk populations, the highest pooled seroprevalence was observed among close contacts (1.075%, 95% CI: 0.000, 4.357). The seroprevalence among general population was (0.077%, 95% CI: 0.011, 0.180). Our study discovered that asymptomatic infection of H7N9 virus did occur, even if the seroprevalence among humans was low.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Ke Xu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Weihua Xie
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Liuqing Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Haiyan Chen
- Department of Laboratory Medicine, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Naiyang Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| | - Changjun Bao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Haodi Huang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Xuefeng Zhang
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Yilan Liao
- The State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China
| | - Hui Jin
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China.,Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
40
|
Dou WT, Qin ZY, Li J, Zhou DM, He XP. Self-assembled sialyllactosyl probes with aggregation-enhanced properties for ratiometric detection and blocking of influenza viruses. Sci Bull (Beijing) 2019; 64:1902-1909. [PMID: 36659586 DOI: 10.1016/j.scib.2019.08.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 07/30/2019] [Accepted: 08/14/2019] [Indexed: 01/21/2023]
Abstract
Infection and dissemination of influenza viruses (IVs) causes serious health concerns worldwide. However, effective tools for the accurate detection and blocking of IVs remain elusive. Here, we develop a new sialyllactosyl probe with self-assembled core-shell structure for the ratiometric detection and blocking of IVs. N,N'-diaryl-dihydrodibenzo[a,c]phenazines were used to form the core structure by hydrophobic assembly in an aqueous solution with an aggregation-enhanced blue fluorescence mission. Subsequently, dicyanomethylene-4H-pyran-based sialyllactosides were used for self-assembly with the core structure, producing the sialyllactosyl probe that emits a red fluorescence due to Förster resonance energy transfer. The probe developed has been proven to be available for (1) the fluorescence ratiometric detection of IVs through selective interaction with the sialyllactosyl-binding proteins on the virus surface, and (2) effectively blocking the invasion of human-infecting IVs towards host cells as accentuated by the sialyllactosides on the surface of the probes.
Collapse
Affiliation(s)
- Wei-Tao Dou
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zhao-Yang Qin
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Li
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong-Ming Zhou
- Vaccine Research Center, Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
41
|
Xu S, Li X, Yang J, Wang Z, Jia Y, Han L, Wang L, Zhu Q. Comparative Pathogenicity and Transmissibility of Pandemic H1N1, Avian H5N1, and Human H7N9 Influenza Viruses in Tree Shrews. Front Microbiol 2019; 10:2955. [PMID: 31921093 PMCID: PMC6933948 DOI: 10.3389/fmicb.2019.02955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022] Open
Abstract
Influenza A viruses (IAVs) continuously challenge the poultry industry and human health. Studies of IAVs are still hampered by the availability of suitable animal models. Chinese tree shrews (Tupaia belangeri chinensis) are closely related to primates physiologically and genetically, which make them a potential animal model for human diseases. In this study, we comprehensively evaluated infectivity and transmissibility in Chinese tree shrews by using pandemic H1N1 (A/Sichuan/1/2009, pdmH1N1), avian-origin H5N1 (A/Chicken/Gansu/2/2012, H5N1) and early human-origin H7N9 (A/Suzhou/SZ19/2014, H7N9) IAVs. We found that these viruses replicated efficiently in primary tree shrew cells and tree shrews without prior adaption. Pathological lesions in the lungs of the infected tree shrews were severe on day 3 post-inoculation, although clinic symptoms were self-limiting. The pdmH1N1 and H7N9 viruses, but not the H5N1 virus, transmitted among tree shrews by direct contact. Interestingly, we also observed that unadapted H7N9 virus could transmit from tree shrews to naïve guinea pigs. Virus-inoculated tree shrews generated a strong humoral immune response and were protected from challenge with homologous virus. Taken together, our findings suggest the Chinese tree shrew would be a useful mammalian model to study the pathogenesis and transmission of IAVs.
Collapse
Affiliation(s)
- Shuai Xu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xuyong Li
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jiayun Yang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengxiang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yane Jia
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lu Han
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Liang Wang
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Qiyun Zhu
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
42
|
Belser JA, Eckert AM, Huynh T, Gary JM, Ritter JM, Tumpey TM, Maines TR. A Guide for the Use of the Ferret Model for Influenza Virus Infection. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 190:11-24. [PMID: 31654637 DOI: 10.1016/j.ajpath.2019.09.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/24/2019] [Accepted: 09/26/2019] [Indexed: 12/09/2022]
Abstract
As influenza viruses continue to jump species barriers to cause human infection, assessments of disease severity and viral replication kinetics in vivo provide crucial information for public health professionals. The ferret model is a valuable resource for evaluating influenza virus pathogenicity; thus, understanding the most effective techniques for sample collection and usage, as well as the full spectrum of attainable data after experimental inoculation in this species, is paramount. This is especially true for scheduled necropsy of virus-infected ferrets, a standard component in evaluation of influenza virus pathogenicity, as necropsy findings can provide important information regarding disease severity and pathogenicity that is not otherwise available from the live animal. In this review, we describe the range of influenza viruses assessed in ferrets, the measures of experimental disease severity in this model, and optimal sample collection during necropsy of virus-infected ferrets. Collectively, this information is critical for assessing systemic involvement after influenza virus infection in mammals.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia.
| | - Alissa M Eckert
- Division of Communication Services, Office of the Associate Director for Communication, Atlanta, Georgia
| | - Thanhthao Huynh
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Joy M Gary
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jana M Ritter
- Division of High-Consequence Pathogens and Pathology, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Terrence M Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| | - Taronna R Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Atlanta, Georgia
| |
Collapse
|
43
|
Guan W, Yang Z, Wu NC, Lee HHY, Li Y, Jiang W, Shen L, Wu DC, Chen R, Zhong N, Wilson IA, Peiris M, Mok CKP. Clinical Correlations of Transcriptional Profile in Patients Infected With Avian Influenza H7N9 Virus. J Infect Dis 2019; 218:1238-1248. [PMID: 29846612 PMCID: PMC6129114 DOI: 10.1093/infdis/jiy317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/24/2018] [Indexed: 12/27/2022] Open
Abstract
Background Avian influenza A (H7N9) viruses emerged in China in 2013 and caused zoonotic disease associated with a case-fatality ratio of over 30%. Transcriptional profiles in peripheral blood reflect host responses and can help to elucidate disease pathogenesis. Methods We correlated serial blood transcriptomic profiles of patients with avian influenza A (H7N9) virus infection and determined the biological significances from the analysis. Results We found that specific gene expression profiles in the blood were strongly correlated with the Pao 2/Fio 2 ratio and viral load in the lower respiratory tract. Cell cycle and leukocyte-related immunity were activated at the acute stage of the infection while T-cell functions and various metabolic processes were associated with the recovery phase of the illness. A transition from systemic innate to adaptive immunity was found. Conclusions We developed a novel approach for transcriptomic analysis to identify key host responses that were strongly correlated with specific clinical and virologic parameters in patients with H7N9 infection.
Collapse
Affiliation(s)
- Wenda Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| | - Zifeng Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| | - Nicholas C Wu
- Department of Integrative Structural and Computational Biology
| | - Horace H Y Lee
- Hong Kong University-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Yimin Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| | - Wenxin Jiang
- Department of Emergency and Critical Care Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences
| | | | - Douglas C Wu
- Institute for Cellular and Molecular Biology, University of Texas at Austin
| | - Rongchang Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| | - Nanshan Zhong
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology.,Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California
| | - Malik Peiris
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University.,Hong Kong University-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| | - Chris K P Mok
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University.,Hong Kong University-Pasteur Research Pole, School of Public Health, Li Ka Shing Faculty of Medicine, The University of Hong Kong
| |
Collapse
|
44
|
Zou X, Guo Q, Zhang W, Chen H, Bai W, Lu B, Zhang W, Fan Y, Liu C, Wang Y, Zhou F, Cao B. Dynamic Variation and Reversion in the Signature Amino Acids of H7N9 Virus During Human Infection. J Infect Dis 2019; 218:586-594. [PMID: 29688498 PMCID: PMC6047446 DOI: 10.1093/infdis/jiy217] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/22/2018] [Indexed: 11/25/2022] Open
Abstract
Background Signature amino acids of H7N9 influenza A virus play critical roles in human adaption and pathogenesis, but their dynamic variation is unknown during disease development. Methods We sequentially collected respiratory samples from H7N9 patients at different timepoints and applied next-generation sequencing (NGS) to the whole genome of the H7N9 virus to investigate the variation at signature sites. Results A total of 11 patients were involved, from whom 29 samples were successfully sequenced, including samples from multiple timepoints in 9 patients. Neuraminidase (NA) R292K, basic polymerase 2 (PB2) E627K, and D701N were the 3 most dynamic mutations. The oseltamivir resistance-related NA R292K mutation was present in 9 samples from 5 patients, including 1 sample obtained before antiviral therapy. In all patients with the NA 292K mutation, the oseltamivir-sensitive 292R genotype persisted and was not eliminated by antiviral treatment. The PB2 E627K substitution was present in 18 samples from 8 patients, among which 12 samples demonstrated a mixture of E/K and the 627K frequency exhibited dynamic variation. Dual D701N and E627K mutations emerged but failed to achieve predominance in any of the samples. Conclusions Signature amino acids in PB2 and NA demonstrated high polymorphism and dynamic variation within individual patients during H7N9 virus infection.
Collapse
Affiliation(s)
- Xiaohui Zou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Qiang Guo
- Department of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu
| | - Wei Zhang
- First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| | - Hui Chen
- Department of Respiratory, Emergency and Critical Care Medicine, First Affiliated Hospital of Soochow University, Jiangsu
| | - Wei Bai
- First Affiliated Hospital of Nanchang University, Jiangxi, People's Republic of China
| | - Binghuai Lu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Wang Zhang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Yanyan Fan
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Chao Liu
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Yeming Wang
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Fei Zhou
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | - Bin Cao
- Department of Pulmonary and Critical Care Medicine, Laboratory of Clinical Microbiology and Infectious Diseases, Center for Respiratory Diseases, China-Japan Friendship Hospital, National Clinical Research Centre for Respiratory Disease, Beijing
| | | |
Collapse
|
45
|
Guan M, Hall JS, Zhang X, Dusek RJ, Olivier AK, Liu L, Li L, Krauss S, Danner A, Li T, Rutvisuttinunt W, Lin X, Hallgrimsson GT, Ragnarsdottir SB, Vignisson SR, TeSlaa J, Nashold SW, Jarman R, Wan XF. Aerosol Transmission of Gull-Origin Iceland Subtype H10N7 Influenza A Virus in Ferrets. J Virol 2019; 93:e00282-19. [PMID: 30996092 PMCID: PMC6580963 DOI: 10.1128/jvi.00282-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/09/2019] [Indexed: 01/02/2023] Open
Abstract
Subtype H10 influenza A viruses (IAVs) have been recovered from domestic poultry and various aquatic bird species, and sporadic transmission of these IAVs from avian species to mammals (i.e., human, seal, and mink) are well documented. In 2015, we isolated four H10N7 viruses from gulls in Iceland. Genomic analyses showed four gene segments in the viruses were genetically associated with H10 IAVs that caused influenza outbreaks and deaths among European seals in 2014. Antigenic characterization suggested minimal antigenic variation among these H10N7 isolates and other archived H10 viruses recovered from human, seal, mink, and various avian species in Asia, Europe, and North America. Glycan binding preference analyses suggested that, similar to other avian-origin H10 IAVs, these gull-origin H10N7 IAVs bound to both avian-like alpha 2,3-linked sialic acids and human-like alpha 2,6-linked sialic acids. However, when the gull-origin viruses were compared with another Eurasian avian-origin H10N8 IAV, which caused human infections, the gull-origin virus showed significantly higher binding affinity to human-like glycan receptors. Results from a ferret experiment demonstrated that a gull-origin H10N7 IAV replicated well in turbinate, trachea, and lung, but replication was most efficient in turbinate and trachea. This gull-origin H10N7 virus can be transmitted between ferrets through the direct contact and aerosol routes, without prior adaptation. Gulls share their habitat with other birds and mammals and have frequent contact with humans; therefore, gull-origin H10N7 IAVs could pose a risk to public health. Surveillance and monitoring of these IAVs at the wild bird-human interface should be continued.IMPORTANCE Subtype H10 avian influenza A viruses (IAVs) have caused sporadic human infections and enzootic outbreaks among seals. In the fall of 2015, H10N7 viruses were recovered from gulls in Iceland, and genomic analyses showed that the viruses were genetically related with IAVs that caused outbreaks among seals in Europe a year earlier. These gull-origin viruses showed high binding affinity to human-like glycan receptors. Transmission studies in ferrets demonstrated that the gull-origin IAV could infect ferrets, and that the virus could be transmitted between ferrets through direct contact and aerosol droplets. This study demonstrated that avian H10 IAV can infect mammals and be transmitted among them without adaptation. Thus, avian H10 IAV is a candidate for influenza pandemic preparedness and should be monitored in wildlife and at the animal-human interface.
Collapse
Affiliation(s)
- Minhui Guan
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Jeffrey S Hall
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Xiaojian Zhang
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Robert J Dusek
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Alicia K Olivier
- Department of Population and Pathobiology Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Liyuan Liu
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Lei Li
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| | - Scott Krauss
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Angela Danner
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Tao Li
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Wiriya Rutvisuttinunt
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiaoxu Lin
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | | | | | | | - Josh TeSlaa
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Sean W Nashold
- United States Geological Survey National Wildlife Health Center, Madison, Wisconsin, USA
| | - Richard Jarman
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Xiu-Feng Wan
- Department of Basic Science, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
46
|
Yan H, Ma L, Wang H, Wu S, Huang H, Gu Z, Jiang J, Li Y. Luteolin decreases the yield of influenza A virus in vitro by interfering with the coat protein I complex expression. J Nat Med 2019; 73:487-496. [PMID: 30758716 DOI: 10.1007/s11418-019-01287-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/03/2019] [Indexed: 11/28/2022]
Abstract
Influenza is an acute transmissible respiratory infectious disease in humans and animals with high morbidity and mortality. It was reported that luteolin, extracted from Chinese herbs, could potently inhibit influenza virus replication in vitro. To assess the effect and explore the fundamental mechanism of luteolin, we infected several cell lines with two subtypes of influenza A virus (IAV), including A/Jiangxi/312/2006 (H3N2) and A/Fort Monmouth/1/1947 (H1N1) and demonstrated that luteolin suppressed the replication of IAV by cytopathic effect reduction method, qRT-PCR, immunofluorescence and Western blot assays. A time-of-addition assay indicated that this compound interfered with viral replication at the early stage of infection. In addition, we found that luteolin suppressed coat protein I complex expression, which was related to influenza virus entry and endocytic pathway. Overall, our findings demonstrated the antiviral effect of luteolin against IAV and its novel antiviral mechanism.
Collapse
Affiliation(s)
- Haiyan Yan
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Linlin Ma
- Key Laboratory of Molecular Imaging of Shanghai Education Commission, Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Huiqiang Wang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Shuo Wu
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Hua Huang
- Xinjiang Institute of Materia Medica, Ürümqi, China
| | - Zhengyi Gu
- Xinjiang Institute of Materia Medica, Ürümqi, China
| | - Jiandong Jiang
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yuhuan Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
47
|
Zhang W, Zhao K, Jin J, He J, Zhou W, Wu J, Tang R, Ma W, Ding C, Liu W, Zhang L, Gao R. A hospital cluster combined with a family cluster of avian influenza H7N9 infection in Anhui Province, China. J Infect 2019; 79:49-55. [PMID: 31100362 PMCID: PMC7112695 DOI: 10.1016/j.jinf.2019.05.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/07/2019] [Accepted: 05/10/2019] [Indexed: 12/09/2022]
Abstract
We reported a hospital cluster combined with family cluster of H7N9 infection. A poultry farm was the initially infectious source of the H7N9 virus infection. Airborne transmission may result in the hospital cluster.
Objectives To identify human-to-human transmission of H7N9 avian influenza virus, we investigated a hospital cluster combined with family cluster in this study. Methods We obtained and analyzed clinical, epidemiological and virological data from the three patients. RT-PCR, viral culture and sequencing were conducted for determination of causative pathogen. Results The index case presented developed pneumonia with fever after exposure to chicken in a poultry farm. Case A presented pneumonia with high fever on day 3 after she shared a hospital room with the index case. Case B, the father of the index case, presented pneumonia with high fever on day 15 after he took care of the index case. H7N9 virus circulated in the local farm to which the index case was exposed. Full genomic sequence of virus showed 99.8–100% identity shared between the index case and case A or case B. Compared to the earliest virus of Anhui, a total of 29 amino acid variation sites were observed in the 8 segments. Conclusions A hospital cluster combined with family cluster of H7N9 avian influenza infection was identified. Air transmission resulted in the hospital cluster possibly. A poultry farm was the initially infectious source of the cluster.
Collapse
Affiliation(s)
- Wenyan Zhang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Kefu Zhao
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jing Jin
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jun He
- Anhui Provincial Center for Disease Control and Prevention, Heifei, Anhui Province, 230601, China
| | - Wei Zhou
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Jinju Wu
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Renshu Tang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Wenbo Ma
- Lujiang County People's Hospital, Heifei, Anhui Province, 231501, China
| | - Caiyu Ding
- The Second Hospital of Anhui Medical University, Heifei, Anhui Province, 230601, China
| | - Wei Liu
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Lei Zhang
- Hefei Center for Disease Control and Prevention, Heifei, Anhui Province, 230061, China
| | - Rongbao Gao
- National Institute for Viral Disease Control and Prevention, China CDC, Key Laboratory of Medical Virology and Viral Diseases, National Health Commission of People's Republic of China, Beijing, 102206, China.
| |
Collapse
|
48
|
Shu Y, Song Y, Wang D, Greene CM, Moen A, Lee CK, Chen Y, Xu X, McFarland J, Xin L, Bresee J, Zhou S, Chen T, Zhang R, Cox N. A ten-year China-US laboratory collaboration: improving response to influenza threats in China and the world, 2004-2014. BMC Public Health 2019; 19:520. [PMID: 32326921 PMCID: PMC6696701 DOI: 10.1186/s12889-019-6776-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The emergence of severe acute respiratory syndrome (SARS) underscored the importance of influenza detection and response in China. From 2004, the Chinese National Influenza Center (CNIC) and the United States Centers for Disease Control and Prevention (USCDC) initiated Cooperative Agreements to build capacity in influenza surveillance in China.From 2004 to 2014, CNIC and USCDC collaborated on the following activities: 1) developing human technical expertise in virology and epidemiology in China; 2) developing a comprehensive influenza surveillance system by enhancing influenza-like illness (ILI) reporting and virological characterization; 3) strengthening analysis, utilization and dissemination of surveillance data; and 4) improving early response to influenza viruses with pandemic potential.Since 2004, CNIC expanded its national influenza surveillance and response system which, as of 2014, included 408 laboratories and 554 sentinel hospitals. With support from USCDC, more than 2500 public health staff from China received virology and epidemiology training, enabling > 98% network laboratories to establish virus isolation and/or nucleic acid detection techniques. CNIC established viral drug resistance surveillance and platforms for gene sequencing, reverse genetics, serologic detection, and vaccine strains development. CNIC also built a bioinformatics platform to strengthen data analysis and utilization, publishing weekly on-line influenza surveillance reports in English and Chinese. The surveillance system collects 200,000-400,000 specimens and tests more than 20,000 influenza viruses annually, which provides valuable information for World Health Organization (WHO) influenza vaccine strain recommendations. In 2010, CNIC became the sixth WHO Collaborating Centre for Influenza. CNIC has strengthened virus and data sharing, and has provided training and reagents for other countries to improve global capacity for influenza control and prevention.The collaboration's successes were built upon shared mission and values, emphasis on long-term capacity development and sustainability, and leadership commitment.
Collapse
Affiliation(s)
- Yuelong Shu
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206 People’s Republic of China
| | - Ying Song
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Dayan Wang
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206 People’s Republic of China
| | - Carolyn M. Greene
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Ann Moen
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - C. K. Lee
- On behalf of Emerging Disease Surveillance and Response (ESR), World Health Organization Western Pacific Region, Manila, Philippines
| | - Yongkun Chen
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206 People’s Republic of China
| | - Xiyan Xu
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Jeffrey McFarland
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Li Xin
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206 People’s Republic of China
| | - Joseph Bresee
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Suizan Zhou
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Tao Chen
- Chinese National Influenza Center, National Institute for Viral Disease Control and Prevention, Collaboration Innovation Center for Diagnosis and Treatment of Infectious Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory for Medical Virology, National Health and Family Planning Commission, Beijing, 102206 People’s Republic of China
| | - Ran Zhang
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| | - Nancy Cox
- Influenza Division, U.S. Centers for Disease Control and Prevention, WHO Collaborating Center for Surveillance, Epidemiology and Control of Influenza, Atlanta, GA 30333 USA
| |
Collapse
|
49
|
Wang WH, Erazo EM, Ishcol MRC, Lin CY, Assavalapsakul W, Thitithanyanont A, Wang SF. Virus-induced pathogenesis, vaccine development, and diagnosis of novel H7N9 avian influenza A virus in humans: a systemic literature review. J Int Med Res 2019; 48:300060519845488. [PMID: 31068040 PMCID: PMC7140199 DOI: 10.1177/0300060519845488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
H7N9 avian influenza virus (AIV) caused human infections in 2013 in China.
Phylogenetic analyses indicate that H7N9 AIV is a novel reassortant strain with
pandemic potential. We conducted a systemic review regarding virus-induced
pathogenesis, vaccine development, and diagnosis of H7N9 AIV infection in
humans. We followed PRISMA guidelines and searched PubMed, Web of Science, and
Google Scholar to identify relevant articles published between January 2013 and
December 2018. Pathogenesis data indicated that H7N9 AIV belongs to low
pathogenic avian influenza, which is mostly asymptomatic in avian species;
however, H7N9 induces high mortality in humans. Sporadic human infections have
recently been reported, caused by highly pathogenic avian influenza viruses
detected in poultry. H7N9 AIVs resistant to adamantine and oseltamivir cause
severe human infection by rapidly inducing progressive acute community-acquired
pneumonia, multiorgan dysfunction, and cytokine dysregulation; however,
mechanisms via which the virus induces severe syndromes remain unclear. An H7N9
AIV vaccine is lacking; designs under evaluation include synthesized peptide,
baculovirus-insect system, and virus-like particle vaccines. Molecular diagnosis
of H7N9 AIVs is suggested over conventional assays, for biosafety reasons.
Several advanced or modified diagnostic assays are under investigation and
development. We summarized virus-induced pathogenesis, vaccine development, and
current diagnostic assays in H7N9 AIVs.
Collapse
Affiliation(s)
- Wen-Hung Wang
- Division of Infectious Disease, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung.,Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung
| | - Esmeralda Merari Erazo
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Max R Chang Ishcol
- Program in Tropical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung
| | - Chih-Yen Lin
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung
| | - Wanchai Assavalapsakul
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | | | - Sheng-Fan Wang
- Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung
| |
Collapse
|
50
|
Belser JA, Barclay W, Barr I, Fouchier RAM, Matsuyama R, Nishiura H, Peiris M, Russell CJ, Subbarao K, Zhu H, Yen HL. Ferrets as Models for Influenza Virus Transmission Studies and Pandemic Risk Assessments. Emerg Infect Dis 2019; 24:965-971. [PMID: 29774862 PMCID: PMC6004870 DOI: 10.3201/eid2406.172114] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
The ferret transmission model is extensively used to assess the pandemic potential of emerging influenza viruses, yet experimental conditions and reported results vary among laboratories. Such variation can be a critical consideration when contextualizing results from independent risk-assessment studies of novel and emerging influenza viruses. To streamline interpretation of data generated in different laboratories, we provide a consensus on experimental parameters that define risk-assessment experiments of influenza virus transmissibility, including disclosure of variables known or suspected to contribute to experimental variability in this model, and advocate adoption of more standardized practices. We also discuss current limitations of the ferret transmission model and highlight continued refinements and advances to this model ongoing in laboratories. Understanding, disclosing, and standardizing the critical parameters of ferret transmission studies will improve the comparability and reproducibility of pandemic influenza risk assessment and increase the statistical power and, perhaps, accuracy of this model.
Collapse
|