1
|
Li M, Yuan H, Chen Y, Yao S, Guo Z, He W. Tuning SBDs as Endoplasmic Reticulum Self-Targeting Fluorophores and Its Application for Zn 2+ Tracking in ER Stress. CHEMICAL & BIOMEDICAL IMAGING 2025; 3:322-331. [PMID: 40443554 PMCID: PMC12117392 DOI: 10.1021/cbmi.4c00063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 06/02/2025]
Abstract
The emerging endoplasmic recticulum (ER) crosstalk system demands a more reliable approach for ER-targeting fluorophores to explore ER-associated biochemical species and events. Providing the aromatic sulfonamides' affinity to ATP-sensitive potassium channel protein localized mainly on ER membrane, the sulfonamide fluorophore 4-amino-7-sulfamoylbenzoxadiazole (SBD) was modified to construct ER self-targeting fluorophores without any additional targeting group by alternating the N-substituent structure and numbers of its 4-amino and 7-sulfamoyl groups. The results revealed that a ClogP value over 3.0 endowed those SBDs the ER self-targetability effectively. This provides a strategy to devise an ER-targeting probe by simply modifying the 4-amino group of SBDs as a sensing moiety to make the probe CLogP over 3.0 despite the CLogP value of parent SBDs, and two ER-targeting Zn2+ probes ER-SBD-Zn1 and ER-SBD-Zn2 were obtained following this idea. Moreover, ER Zn2+ tracking with ER-SBD-Zn1 disclosed for the first time tunicamycin concentration-dependent ER Zn2+ fluctuation behavior during ER stress induction.
Collapse
Affiliation(s)
- Mingfeng Li
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| | - Hao Yuan
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| | - Yuncong Chen
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary
Research Center, Nanjing University, Jiangsu, Nanjing210023, China
- Department
of Cardiothoracic Surgery, Nanjing Drum Tower Hospital, Medical School, Nanjing University, Jiangsu, Nanjing210008, China
| | - Shankun Yao
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
- Chemistry
and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary
Research Center, Nanjing University, Jiangsu, Nanjing210023, China
| | - Weijiang He
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Jiangsu, Nanjing210023, China
| |
Collapse
|
2
|
Qian Y, Wu Q. The Multifaceted Roles of Zinc Finger Proteins in Pluripotency and Reprogramming. Int J Mol Sci 2025; 26:5106. [PMID: 40507915 PMCID: PMC12155391 DOI: 10.3390/ijms26115106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 06/16/2025] Open
Abstract
Zinc finger proteins (ZFPs) play a crucial role in regulating gene expression. In recent years, there has been increasing evidence highlighting the importance of zinc finger proteins in pluripotent stem cells, which hold great promise in regenerative medicine. The general mechanism by which zinc finger proteins function in gene regulation of pluripotent stem cells involves their interaction with core transcriptional regulatory networks. ZFPs can either enhance key pluripotency genes to maintain pluripotency or promote differentiation of stem cells towards specific lineages by suppressing these key pluripotency genes. Hence, understanding the role of ZFPs in pluripotency and reprogramming is crucial for unraveling the complex regulatory network that governs cell fate decisions. Here we provide a comprehensive review of the current knowledge regarding the multifaceted role of ZFPs in pluripotency maintenance and reprogramming. We propose that more efforts should be focused on fully understanding the fascinating functions of ZFPs in stem cell fate decision.
Collapse
Affiliation(s)
| | - Qiang Wu
- The State Key Laboratory of Quality Research in Chinese Medicine, Faculty of Chinese Medicine, Macau University of Science and Technology, Macau, China;
| |
Collapse
|
3
|
Chen D, Li J, Li Z, Deng T, Li J. A novel two-photon excitation/red-emission AIEgen chemosensor for intracellular zinc ion imaging assay. Talanta 2025; 295:128332. [PMID: 40388876 DOI: 10.1016/j.talanta.2025.128332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/08/2025] [Accepted: 05/13/2025] [Indexed: 05/21/2025]
Abstract
Herein, a novel two-photon excited fluorescent sensor for the detection of zinc ions in aqueous solution as well as in cells was synthesized by the complexation process using an aggregation-induced emission (AIE) fluorophore. The near-infrared AIEgen chemosensor containing Schiff base derivatives with a salicylaldehyde moiety showed a distinctly selective response to zinc ion. The tetraphenylethylene quinoline benserazide probe based on tetraphenylethylene structure complexed zinc ions and then aggregated in aqueous buffered solution, causing the remarkable off-on enhancement of red emissions at 650 nm. Furthermore, this fluorescent molecule easily penetrated the cytomembrane and successfully achieved the intracellular zinc ion imaging of living cells.
Collapse
Affiliation(s)
- Daian Chen
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China; State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Jun Li
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Zuhao Li
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China
| | - Ting Deng
- Institute of Applied Chemistry, College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha, 410004, PR China.
| | - Jishan Li
- State Key Laboratory of Chemo and Biosensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, PR China.
| |
Collapse
|
4
|
Wang T, Meng K, Zhu Z, Pan L, Okita TW, Zhang L, Tian L. The Regulatory Roles of RNA-Binding Proteins in Plant Salt Stress Response. PLANTS (BASEL, SWITZERLAND) 2025; 14:1402. [PMID: 40364430 PMCID: PMC12074014 DOI: 10.3390/plants14091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025]
Abstract
Salt stress is one of the most prominent abiotic stresses. Behind the intricate adaptive responses of plants to salt stress, the regulation of gene expression assumes a pivotal role. Complementing transcriptional mechanisms, post-transcriptional regulation performed by RNA-binding proteins provides an additional layer of control through sophisticated molecular machinery. RBPs interact with both RNA molecules and protein partners to coordinate RNA metabolism and, thus, fine-tune the expression of salt-responsive genes, enabling plants to rapidly adapt to ionic challenges. This review systematically evaluates the functional roles of RBPs localized in distinct subcellular compartments, including nuclear, cytoplasmic, chloroplastic, and mitochondrial systems, in mediating post-transcriptional regulatory networks under salinity challenges. Specific classes of RBPs are discussed in detail, including glycine-rich RNA-binding proteins (GR-RBPs), serine/arginine-rich splicing factors (SR proteins), zinc finger domain-containing proteins, DEAD-box RNA helicases (DBRHs), KH domain-containing proteins, Pumilio domain-containing proteins (PUMs), pentatricopeptide repeat proteins (PPRs), and RBPs involved in cytoplasmic RNA granule formation. By integrating their subcellular localization and current mechanistic insights, this review concludes by summarizing the current knowledge and highlighting potential future research directions, aiming to inspire further investigations into the complex network of RBPs in modulating plant responses to salt stress and facilitating the development of strategies to enhance plant salt tolerance.
Collapse
Affiliation(s)
- Tangying Wang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Kaiyuan Meng
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Zilin Zhu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Linxuan Pan
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Thomas W. Okita
- Institute of Biological Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Laining Zhang
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| | - Li Tian
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China; (T.W.); (K.M.); (Z.Z.); (L.P.)
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
5
|
Garstka K, Hecel A, Kozłowski H, Dominguez-Martin A, Szewczyk K, Rowińska-Żyrek M. AdcA lipoprotein involved in Zn(II) transport in Streptococcus mutans - is it as metal-specific as expected? Dalton Trans 2025; 54:6795-6804. [PMID: 40071445 DOI: 10.1039/d5dt00131e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Streptococcus mutans, a Gram-positive pathogen, is a primary causative agent of dental caries. It modifies the oral biofilm architecture on tooth enamel and, like other bacteria, requires transition metal ions such as Zn(II), Cu(II), and Ni(II) for survival and virulence. Physiological salivary Zn(II) levels are insufficient for optimal bacterial growth, prompting S. mutans to develop a specialized ABC transport system comprising AdcA, AdcB, and AdcC. Among these, the lipoprotein AdcA plays a pivotal role in Zn(II) acquisition. In this study, we examined two probable Zn(II)-binding sites in AdcA-EGHGHKGHHHA and HGIKSQKAEHFH-and their Zn(II), Cu(II), and Ni(II) complexes, keeping in mind that Cu(II) and Ni(II) are essential nutrients for bacterial enzymes and can compete with Zn(II) for its binding sites. At physiological pH, in the Zn(II)-Ac-EGHGHKGHHHA-NH2 species, Zn(II) binds to histidine residues, forming complexes with up to four coordinated imidazole nitrogens, while in the Zn(II)-Ac-HGIKSQKAEHFH-NH2 complex, we found three coordinated histidine side chains. The same regions of the AdcA lipoprotein are able to bind Cu(II) with even higher affinity. The stability of Zn(II) and Ni(II) complexes, on the other hand, is more comparable, with a slight advantage for Ni(II). In this case, at pH 7.4, the coordination spheres of both Zn(II) and Ni(II) consist of the same set of donor atoms. The metal binding preferences align with the Irving-Williams series; however, given the significantly higher Zn(II) concentrations in saliva and dental plaques, Zn(II) occupies the AdcA binding sites in vivo, highlighting its critical role in S. mutans virulence and metal ion homeostasis.
Collapse
Affiliation(s)
- Kinga Garstka
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Aleksandra Hecel
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
| | - Henryk Kozłowski
- Faculty of Chemistry, University of Wrocław, F. Joliot-Curie 14, 50-383 Wrocław, Poland.
- Institute of Health Sciences, University of Opole, Katowicka 68 St, 45-060 Opole, Poland
| | - Alicia Dominguez-Martin
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Granada, E-18071 Granada, Spain
| | - Krzysztof Szewczyk
- Department of Oncology, Wrocław Medical University, pl. L. Hirszfelda 12, 53-413 Wrocław, Poland
| | | |
Collapse
|
6
|
Wang Z, Li S, Wu H, Huang L, Fu L, Zhan C, Lu X, Yang L, Dai L, Zeng D. Identification and Expression Analysis of CCCH Zinc Finger Family Genes in Oryza sativa. Genes (Basel) 2025; 16:429. [PMID: 40282389 PMCID: PMC12026475 DOI: 10.3390/genes16040429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/26/2025] [Accepted: 03/28/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND CCCH zinc finger proteins (OsC3Hs) are a class of transcriptional regulators that play important roles in plant development and stress responses. Although their functional significance has been widely studied in model species, comprehensive genome-wide characterization of CCCH proteins in rice (Oryza sativa) remains limited. METHODS Using Arabidopsis CCCH proteins as references, we identified the CCCH gene family in rice and analyzed the physicochemical properties, subcellular localization, conserved structures, phylogeny, cis-regulatory elements, synteny analysis, spatiotemporal expression patterns, and expression patterns under drought, ABA, and MeJA treatments for the identified CCCH family members. RESULTS The results showed that the rice CCCH family comprises 73 members, which are unevenly distributed across the 12 chromosomes. Phylogenetic analysis classified them into 11 subfamilies. Subcellular localization indicated that most members are localized in the nucleus. The upstream regions of CCCH promoters contain a large number of cis-regulatory elements related to plant hormones and biotic stress responses. Most genes respond to drought, abscisic acid (ABA), and methyl jasmonate (MeJA) treatments. OsC3H36 was highly expressed under drought, ABA, and MeJA treatments. Haplotype analysis of this gene revealed two major allelic variants (H1 and H2), with H1 predominantly found in japonica rice and associated with increased grain width and 1000-grain weight. Functional validation using a chromosome segment substitution line (CSSL1) confirmed these findings. CONCLUSIONS CCCH genes play important roles in rice growth, development, and stress responses. Additionally, we validated that OsC3H36 is associated with rice grain width and 1000-grain weight.
Collapse
Affiliation(s)
- Zhihan Wang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shunyuan Li
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hongkai Wu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Linzhou Huang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Liangbo Fu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Chengfang Zhan
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xueli Lu
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Long Yang
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311400, China
| | - Liping Dai
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Dali Zeng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
7
|
Zhao X, Cai J, Xu P, Zhou Z, Guo C, Nian H, Li K. NAA enhances armillaria gallica growth by modulating nitrogen metabolism through AgZFP48. Int J Biol Macromol 2025; 299:140032. [PMID: 39828159 DOI: 10.1016/j.ijbiomac.2025.140032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Armillaria gallica (A. gallica) is a fungus with both medicinal and edible properties. Previous transcriptome analysis has identified the C2H2-type zinc finger transcription factor as a candidate gene involved in the NAA-induced growth promotion of A. gallica. However, the molecular mechanism underlying the enhancement of A. gallica growth by C2H2 transcription factor in response to NAA treatment remains unclear. In this study, we identified a C2H2-type zinc finger transcription factor gene in A. gallica and investigated its function, aiming to elucidate the mechanism by which C2H2-type zinc finger transcription factors regulate the growth of A. gallica. We identified and characterized a novel C2H2-type zinc finger transcription factor, AgZFP48, in A. gallica and found that AgZFP48 is located in the nucleus, where it acts as a transcription activator. AgZFP48 positively regulated the growth of A. gallica. The potential targets of AgZFP48 were identified by using DNA affinity purification sequencing (DAP-seq). In addition, four candidate genes were selected for Electrophoretic Mobility Shift Assays (EMSA) and luciferase reporter activity assessment. The results showed that AgZFP48 activated the expression of ammonium transporter (AgAMT), glutamine synthetase (AgGS), acetylornithine aminotransferase (AgAcOAT), and amino acid permease (AgAAP) by binding to their promoters or exons. In summary, our results suggest that AgZFP48 promotes nitrogen metabolism in A. gallica by activating the expression of nitrogen metabolism-related genes, thereby regulating the growth of the fungus.
Collapse
Affiliation(s)
- Xing Zhao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Jinlong Cai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Peng Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Zeyi Zhou
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Caixia Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Hongjun Nian
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China
| | - Kunzhi Li
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Chenggong, 650500 Kunming, China.
| |
Collapse
|
8
|
Higuera M, Vargas-Accarino E, Torrens M, Bermúdez-Ramos M, Soriano-Varela A, Salcedo MT, Mínguez B. Impact of zinc on hepatocellular carcinoma cell behavior and metallothionein expression: Insights from preclinical models. Biomed Pharmacother 2025; 185:117918. [PMID: 40048869 DOI: 10.1016/j.biopha.2025.117918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/10/2025] [Accepted: 02/14/2025] [Indexed: 03/23/2025] Open
Abstract
BACKGROUND Zinc (Zn) is an essential trace element involved in a wide variety of cellular processes and is vital for optimal liver function. Our objective was to elucidate the potential therapeutic role of Zn in hepatocellular carcinoma (HCC), the third leading cause of cancer-related death and the first cause of death in patients with cirrhosis. METHODS The impact of Zn supplementation on proliferation, invasion, migration, cell cycle, and apoptosis was conducted on four HCC cell lines as well as in a xenograft mouse model of HCC from which tumor gene expression profiles were also analyzed. Gene deregulation and protein expression were validated in human HCC tissues. Finally, Zn and MT1 (Metallothionein 1) levels were quantified in plasma from patients with HCC. RESULTS Zn supplementation significantly modulated proliferation, invasion, and migration in HCC cell lines and induced apoptosis in a dose-dependent manner. Although Zn did not exhibit a significant increase in survival, Zn supplementation significantly altered the expression of MT genes. Specifically, MT1G and MT1H expression were notably suppressed in HCC tissues from mice and these results were validated in human HCC samples. Overall, gene and protein MTs expression was significantly lower in HCC areas compared to adjacent liver tissue and plasma Zn levels exhibited substantial variation across different stages of the liver disease. CONCLUSION Zn supplementation influences key cellular behaviors in a dose-dependent manner and upregulates the expression of MT family genes, which may have tumor-suppressive properties, in vitro an in vivo models. Future research should investigate the prognostic implications of Zn supplementation as part of a comprehensive therapeutic strategy for HCC patients.
Collapse
Affiliation(s)
- Mónica Higuera
- Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - Elena Vargas-Accarino
- Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - María Torrens
- Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Liver Unit, Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - María Bermúdez-Ramos
- Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain.
| | - Agnès Soriano-Varela
- Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Liver Unit, Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain.
| | - María Teresa Salcedo
- Pathology Department, Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Instituto de salud Carlos III, Madrid, Spain; Department of Medicine, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, Bellaterra 08193, Spain.
| | - Beatriz Mínguez
- Liver Cancer Research Group, Liver Diseases, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Instituto de Salud Carlos III, Madrid, Spain; Liver Unit, Hospital Universitario Vall d'Hebron, Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona (UAB), Campus de la UAB, Plaça Cívica, Bellaterra 08193, Spain.
| |
Collapse
|
9
|
Maret W. The Arcana of Zinc. J Nutr 2025; 155:669-675. [PMID: 39788322 PMCID: PMC11934285 DOI: 10.1016/j.tjnut.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 12/17/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
This perspective discusses the essential micronutrient zinc, which functions in >3000 human proteins (the zinc proteome), and the implications of three aspects to ascertain an adequate zinc status for human health. First, the advent of highly sensitive fluorescent (bio)chemicals revealed cellular pools of zinc ions involved in signaling and secretion from cells for paracrine, autocrine, and possibly endocrine functions. Zinc signaling adds a yet unaccounted number of targeted proteins to the already impressive number of zinc proteins. Second, cellular zinc concentrations are remarkably high in the order of the concentrations of major metabolites and, therefore, at the cellular level zinc is not a trace element. Zinc is also not an antioxidant because zinc ions are redox-inactive in biology. However, zinc can express indirect pro-oxidant or proantioxidant effects depending on how cellular zinc is buffered. Zinc sites in proteins and other biomolecules can become redox-active when zinc is bound to the redox-active sulfur donor atom of cysteine. This interaction links zinc and redox metabolism, confers mobility on tightly bound zinc, and has implications for treating zinc deficiency. Third, the concept of zinc deficiency in blood as the only measure of an inadequate zinc status needs to be extended to zinc dyshomeostasis in cells because overwhelming the mechanisms controlling cellular zinc homeostasis can result in either not enough or too much available zinc. We need additional biomarkers of zinc status that determine cell-specific changes and perturbations of the system regulating cellular zinc, including functional deficits, and address the multiple genetic and environmental factors that can cause a conditioned zinc deficiency or overload. Considering the wider context of altered zinc availability in different organs, cells, and organelles impinges on whether zinc supplementation will be efficacious and adds another dimension to the already high health burden of zinc deficiency and its sequelae worldwide.
Collapse
Affiliation(s)
- Wolfgang Maret
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
10
|
Kumar MS, Das AK, Bylappa Y, Nag A. Selective dual-mode detection of reactive oxygen species and metal ions by chemodosimetric vs. chelation pathways: fluorescence 'turn-on' with OCl - and Zn 2+/Mn 2+, employing theoretical, practical, and bioimaging applications. RSC Adv 2025; 15:6708-6717. [PMID: 40027582 PMCID: PMC11869208 DOI: 10.1039/d4ra08191a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/22/2025] [Indexed: 03/05/2025] Open
Abstract
An indole-coupled diaminomaleonitrile-based fluorescent chemosensor IMA has been designed and developed for the selective detection of ROS (OCl-) and metal ions Zn2+ and Mn2+ via chemodosimetric and chelation pathways respectively. The selective sensing of OCl- is induced by a method of oxidatively cleaving of the imine bond of IMA, forming free indole aldehyde, which results in a 21-fold enhancement of fluorescence at 521 nm, with a detection limit of 2.8 µM. On the other hand, the selective binding of IMA with Zn2+ and Mn2+ results in chelation-induced enhanced fluorescence (CHEF) and increased intermolecular charge transfer (ICT), leading to a 4-fold and 3-fold fluorescence enhancement at 432 nm and 435 nm, with the detection limits of 12.71 µM and 17.34 µM, respectively. UV-vis spectroscopy, fluorescence, DFT study, mass spectra, 1H-NMR analysis, and Job's plot analysis have been used to validate the sensing mechanism of IMA with OCl-, Zn2+, and Mn2+. For practical applications, the binding of IMA with OCl- has been utilized in the detection of commercial samples like bleaching powder and water analysis. Bio-imaging studies were conducted with IMA in the presence of OCl- and Zn2+ using green gram seeds in a physiological medium.
Collapse
Affiliation(s)
- Malavika S Kumar
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | - Avijit Kumar Das
- Department of Chemistry, Christ University Hosur Road Bangalore Karnataka 560029 India
| | | | - Anish Nag
- Department of Life Science, Christ University Hosur Road Bangalore Karnataka 560029 India
| |
Collapse
|
11
|
Yang W, Yang W, Ma Y, Yan L. A New Coumarin-Based Fluorescent Chemosensor for Selection Detection of Zinc Ions in Aqueous Ethanol. LUMINESCENCE 2025; 40:e70122. [PMID: 39989229 DOI: 10.1002/bio.70122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/15/2025] [Accepted: 02/09/2025] [Indexed: 02/25/2025]
Abstract
In this study, a coumarin-based Schiff base (1) was designed and synthesized as a Zn2+-selective fluorescent chemosensor based on the PET mechanism. The structure of compound 1 was characterized by 1H NMR and 13C NMR. The fluorescence properties of this chemosensor toward various metal ions were explored by fluorescence and UV-vis spectra. The results indicated that the chemosensor had high selectivity toward Zn2+ over other coexisting metal ions. The binding stoichiometry of 1 toward Zn2+ was determined to be 1:1 by Job's plot. Furthermore, the chemosensor was reversible for Zn2+ in an ethanol/H2O (7:3, V/V) solution by the addition of Na2 EDTA. The above experimental results demonstrate that 1 can be used as a fluorescent chemosensor for the real-time detection of Zn2+ in biological species and environmental systems.
Collapse
Affiliation(s)
- Wensheng Yang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Wan Yang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Yajun Ma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Long Yan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| |
Collapse
|
12
|
Xu Y, Sui ZH, Ye YP, Wu L, Qi KJ, He M, Guo L, Gu C, Zhang SL. An involvement of a new zinc finger protein PbrZFP719 into pear self-incompatibility reaction. PLANT CELL REPORTS 2025; 44:37. [PMID: 39864019 DOI: 10.1007/s00299-024-03418-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 01/27/2025]
Abstract
KEY MESSAGE This study indicated that the CCHC-type zinc finger protein PbrZFP719 involves into self-incompatibility by affecting the levels of reactive oxygen species and cellulose content at the tips of pollen tubes. S-RNase-based self-incompatibility (SI) facilitates cross-pollination and prevents self-pollination, which in turn increases the costs associated with artificial pollination in fruit crops. Self S-RNase exerts its inhibitory effects on pollen tube growth by altering cell structures and components, including reactive oxygen species (ROS) level and cellulose content. Presently, only a limited number of genes have been implicated in the gametophytic SI. In this study, the CCHC-type zinc finger proteins (ZFP), PbrZFP719, was found to be more highly expressed in pollen grains and pollen tubes than other ZFPs. Experimental over-expression of PbrZFP719 via pollen magnetofection and its knockdown using antisense oligonucleotides demonstrated that PbrZFP719 positively mediates pollen tube growth in pear. Further analyses revealed that variations in PbrZFP719 expression correlate with the changes in ROS levels and cellulose content at the tips of pollen tubes. Notably, PbrZFP719 expression was reduced in pollen tubes treated with self S-RNase. These results suggest that self S-RNase can inhibit pollen tube growth by decreasing ROS levels and cellulose content through the downregulation of PbrZFP719 expression. The information provide insights into a novel mechanism by which self S-RNase inhibits pollen tube growth during SI reaction and offers a refined approach for gene over-expression in pollen tube.
Collapse
Affiliation(s)
- Ying Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Zhi-Heng Sui
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Yi-Peng Ye
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lei Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Kai-Jie Qi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Min He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Lin Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China
| | - Chao Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| | - Shao-Ling Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Saya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing, 211800, China.
| |
Collapse
|
13
|
Yi D, Li L, Li M. Subcellular Compartment-Specific Amplified Imaging of Metal Ions via Ribosomal RNA-Regulated DNAzyme Sensors. Angew Chem Int Ed Engl 2025; 64:e202412387. [PMID: 39480115 DOI: 10.1002/anie.202412387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Indexed: 11/02/2024]
Abstract
Although DNAzyme sensors have been widely developed for imaging metal ions, their application in specific subcellular compartments remains challenging due to low spatial controllability. Here we present a locally activatable, DNAzyme-based sensing technology that enables subcellular compartment-specific imaging of metal ions through ribosomal RNA (rRNA) regulated signal amplification. The system leverages a subcellularly encoded rRNA to locally activate DNAzyme-based sensors, and further drives signal amplification via multiple turnover cleavage of molecular beacons, to significantly enhance sensitivity and spatial precision for metal-ion imaging in specific organelles (e.g. mitochondria) or membraneless compartments (e.g. cytosol). Furthermore, we demonstrate that the system allows in situ monitoring of subcellular dynamics of mitochondrial Zn2+ during ischemia and the drug intervention. This study expands the DNAzyme toolbox for investigating the role of subcellular metal-ion dynamics in disease processes.
Collapse
Affiliation(s)
- Deyu Yi
- School of Chemistry and Biological Engineering Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| | - Lele Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, 11 ZhongGuanCun BeiYiTiao, Beijing, 100190, China
| | - Mengyuan Li
- School of Chemistry and Biological Engineering Beijing Key Laboratory for Bioengineering and Sensing Technology, University of Science and Technology Beijing, 30 XueYuan Road, Beijing, 100083, China
| |
Collapse
|
14
|
He J, Fang Y, Zhao L, Su Y. ZnT35C Maintains Zinc Homeostasis to Regulate Spermatogenesis in Drosophila Testis. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2025; 118:e70017. [PMID: 39835502 DOI: 10.1002/arch.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 12/01/2024] [Indexed: 01/22/2025]
Abstract
Zinc homeostasis contributes significantly to numerous physiological processes. Drosophila ZnT35C protein, a zinc transporter encoded by CG3994, is chiefly located on the cell membrane and facilitates the transport of zinc from the cytoplasm to the extracellular space to sustain zinc homeostasis within the organism. Previous studies about ZnT35C have involved diverse structures such as the Malpighian tubules, adult brain, and sensory nervous system. Nonetheless, the role of ZnT35C in Drosophila spermatogenesis remained unclear. In our study, we discovered that ZnT35C plays a pivotal role in Drosophila spermatogenesis. Its knockdown resulted in sperm loss and male infertility. When ZnT35C was knocked down in cyst cells, zinc was concentrated within cyst cells, inhibiting the proper development of germ cells and thereby causing the incapacity of flies to generate mature sperms. Zinc supplementation can effectively rescue this failure of spermatogenesis. Our research outcomes suggest that ZnT35C, through modulating the zinc environment within the testes, impacts the male fertility of Drosophila, occupying a crucial position in the spermatogenesis process.
Collapse
Affiliation(s)
- Jiayu He
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Yang Fang
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Long Zhao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
- Fisheries College, Ocean University of China, Qingdao, China
| | - Ying Su
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| |
Collapse
|
15
|
Xu Y, Shi Y, Zhang W, Zhu K, Feng L, Wang J. C2H2 Zinc Finger Protein Family Analysis of Rosa rugosa Identified a Salt-Tolerance Regulator, RrC2H2-8. PLANTS (BASEL, SWITZERLAND) 2024; 13:3580. [PMID: 39771278 PMCID: PMC11678247 DOI: 10.3390/plants13243580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
Rosa rugosa is a representative aromatic species. Wild roses are known for their strong tolerance to highly salty environments, whereas cultivated varieties of roses exhibit lower salt stress tolerance, limiting their development and industrial expansion. Previous studies have shown that C2H2-type zinc finger proteins play a crucial role in plants' resistance to abiotic stresses. In this study, 102 C2H2-type zinc finger genes (RrC2H2s) were identified in R. rugosa via a comprehensive approach. These genes were categorized into three lineages, and their motif constitutions were grouped into four classes. RrC2H2s were distributed across all seven rose chromosomes, with 15 paralogous gene pairs identified within synteny regions. Additionally, 43 RrC2H2s showed differential expression across various tissues under salt stress, with RrC2H2-8 being the only gene consistently repressed in all tissues. Subcellular localization analysis revealed that the RrC2H2-8 protein was localized in the nucleus. The heterologous expression of RrC2H2-8 in Arabidopsis significantly improved its growth under salt stress compared to the wild-type (WT) plants. Furthermore, the malondialdehyde content in the roots of transgenic Arabidopsis was significantly lower than that in the WT, suggesting that RrC2H2-8 enhanced salt tolerance by reducing cellular damage. This study provides a systematic understanding of the RrC2H2 family and identifies RrC2H2-8 as a regulator of salt tolerance, laying a foundation for future research on the mechanisms of salt stress regulation by RrC2H2.
Collapse
Affiliation(s)
- Yong Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Yuqing Shi
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Weijie Zhang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Kaikai Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China;
| | - Liguo Feng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| | - Jianwen Wang
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China; (Y.X.); (Y.S.); (W.Z.)
| |
Collapse
|
16
|
Su Q, Han J, Yu H, Zhou X, Liu S. Computational insights into the underlying mechanism of zinc ion-specificity of the fluorescent probe, BDA-1. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 322:124854. [PMID: 39089061 DOI: 10.1016/j.saa.2024.124854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/03/2024]
Abstract
Ion specificity is crucial for developing fluorescence probes. Using a recently reported optical sensor (BDA-1) of Zn2+ as a representative, we carried out extensive quantum chemical calculations on its photophysical properties using density function theory. According to the calculated optimized geometries, excitation energies and transition oscillator strengths, the weak fluorescence of BDA-1 observed in experiments is attributed to the suppression of fluorescence emission by efficient internal conversion, rather than the previously proposed photoinduced electron transfer (PET) mechanism. With the addition of Zn2+ or Cd2+ ions, the tetradentate chelates [M:BDA-1-H+]+ (M=Zn, Cd) are produced. According to frontier molecular orbital and interfragment charge transfer analyses of these complexes, PET is preferentially confirmed to occur upon photo-excitation. Notably, as one coordination bond in the excited [Cd:BDA-1-H+]+ complex is significantly weakened in comparison to that of [Zn:BDA-1-H+]+, their molecular orbital compositions in the S1 state are completely different. As a result, absorption and radiation transitions of [Zn:BDA-1-H+]+ both have considerable oscillator strength, while fluorescence radiation from the excited [Cd:BDA-1-H+]+ is doubly suppressed. This difference causes that the fluorescence intensity of BDA-1 is sensitive to the addition of metal ions, and exhibits the zinc ion-specificity.
Collapse
Affiliation(s)
- Quyan Su
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Jia Han
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China
| | - Haili Yu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaoguo Zhou
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| | - Shilin Liu
- Department of Chemical Physics, University of Science and Technology of China, Hefei, 230026, China; Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
17
|
Yao G, Wang Z, Xie R, Zhanghuang C, Yan B. Trace element zinc metabolism and its relation to tumors. Front Endocrinol (Lausanne) 2024; 15:1457943. [PMID: 39717098 PMCID: PMC11664221 DOI: 10.3389/fendo.2024.1457943] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/19/2024] [Indexed: 12/25/2024] Open
Abstract
Zinc is an essential trace element in the human body, playing a crucial role in cellular metabolism.Dysregulation of zinc homeostasis can lead to abnormal cellular metabolism, contributing to diseases and closely related to tumor development. Adequate zinc intake can maintain zinc homeostasis in the body and support normal cellular metabolism. This review discusses the metabolic processes of zinc in the human body and its close relationship with tumorigenesis. It briefly describes zinc absorption, transport, storage, and release, as well as its important role in gene expression, signal transduction, oxidative stress, immune response, and apoptosis. It focuses on the abnormal cellular metabolism caused by excessive or insufficient zinc, the relationship between zinc homeostasis disruption and metabolic syndrome, and the mechanisms involved in tumor development. It analyzes how changes in the expression and activity of zinc transporters may lead to disrupted zinc homeostasis in tumor tissues. It points out that zinc deficiency is associated with various cancers, including prostate cancer, hepatocellular carcinoma, pancreatic cancer, lung cancer, ovarian cancer, esophageal squamous cell carcinoma, and breast cancer. The summary emphasizes that zinc metalloproteins could serve as potential targets for cancer therapy, and regulating the expression and activity of zinc transport proteins may offer new methods and strategies for clinical cancer treatment.
Collapse
Affiliation(s)
- Guiping Yao
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Zhiwei Wang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Rui Xie
- Department of Orthopedics, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Chenghao Zhanghuang
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| | - Bing Yan
- Department of Urology, Kunming Children’s Hospital, Kunming, Yunnan, China
- Yunnan Province Clinical Research Center for Children’s Health and Disease, Kunming Children’s Solid Tumor Diagnosis and Treatment Center, Kunming, Yunnan, China
- Yunnan Key Laboratory of Children’s Major Disease Research, Yunnan Clinical Medical Center for Pediatric Diseases, Kunming Children’s Hospital, Kunming, Yunnan, China
| |
Collapse
|
18
|
Jin L, Tian X, Ji X, Xiao G. The expression of Catsup in the hindgut is essential for zinc homeostasis in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2024; 33:601-612. [PMID: 38664880 DOI: 10.1111/imb.12916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/10/2024] [Indexed: 11/06/2024]
Abstract
Zinc excretion is crucial for zinc homeostasis. However, the mechanism of zinc excretion has not been well characterized. Zinc homeostasis in Drosophila seems well conserved to mammals. In this study, we screened all members of the zinc transporters ZnT (SLC30) and Zip (SLC39) for their potential roles in Drosophila hindgut, an insect organ that belongs to the excretory system. The results indicated that Catecholamines up (Catsup, CG10449), a ZIP member localized to the Golgi, is responsible for zinc homeostasis in the hindgut of Drosophila hindgut-specific knockdown of Catsup leads to a developmental arrest in the larval stage, which could be rescued well by human ZIP7. Further study suggested that Catsup RNAi in the hindgut reduced zinc levels in the excretory system (containing the Malpighian tubule and hindgut) but exhibited systemic zinc overload. Besides, more calculi were observed in the Malpighian tubules of Catsup RNAi flies. The developmental arrest and calculi in the Malpighian tubules of hindgut-specific Catsup RNAi flies could be rescued by dietary zinc restriction but hypersensitivity to zinc. These results will help us understand the fundamental process of zinc excretion in higher eukaryotes.
Collapse
Affiliation(s)
- Li Jin
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xueke Tian
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Xiaowen Ji
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
| | - Guiran Xiao
- China Light Industry Key Laboratory of Meat Microbial Control and Utilization, Hefei University of Technology, Hefei, China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, China
- Engineering Research Center of Bio-Process of Ministry of Education, Hefei University of Technology, Hefei, China
| |
Collapse
|
19
|
Huzayyin AAS, Ibrahim MK, Hassanein NMA, Ahmed HMS. Vitamin D3 and zinc supplements augment the antimanic efficacy of lithium and olanzapine treatments in an animal model of mania. Nutr Neurosci 2024; 27:1391-1404. [PMID: 38635860 DOI: 10.1080/1028415x.2024.2338344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Objective: Bipolar disorder (BD) is a challenging psychiatric disorder and a complex disease. The associated reduction in serum vitamin D3 (VitD3) levels in BD patients and the contribution of zinc (Zn) to the treatment, along with the severe side effects of lithium (Li) treatment, were encouraging to assess the efficacy of different correlated combinations of therapeutic/nutraceutical treatments such as olanzapine (Oln), VitD3, and Zn against Li. Methods: Mania was induced in C57BL/6 mice by administering methylphenidate (MPH) for 14 consecutive days. On the 8th day of MPH injection, different treatment regimens were administered, Li, Oln, VitD3/Zn, VitD3/Zn/Oln, VitD3 + Zn + Oln + Li50mg/kg (C50), and VitD3 + Zn + Oln + Li100mg/kg (C100). Both VitD3 (850 IU/kg) and Zn (180 mg/kg) were supplied with food for 2 weeks before starting the induction of mania, which continued until the end of MPH administration. Behavioral, brain oxidative stress, thyroid hormones, VitD3, Zn, GsK-3β, and Bcl2 levels, as well as brain histopathological alterations, were assessed. Results: Manic mice exhibited alterations in all tested parameters, and the histopathological examination of the cortex and hippocampus confirmed these results. The VitD3/Zn/Oln, C50, and C100 treatment regimens reversed most of the behavioral and pathophysiological alterations; however, the C50 treatment regimen was the most efficient. Conclusions: This study emphasizes the importance of combining different antimanic medications like Li and Oln with nutraceutical supplements to increase their antimanic efficacy, reduce their adverse effects, and, ideally, improve the BD patient's quality of life.
Collapse
Affiliation(s)
- Aya A S Huzayyin
- Central Administration of Drug Control, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Michael K Ibrahim
- Central Administration of Biological and Innovative Products and Clinical Studies, Egyptian Drug Authority (EDA), Giza, Egypt
| | - Nahed M A Hassanein
- Developmental Pharmacology and Acute Toxicity Department, National Organization for Drug Control and Research (NODCAR), Giza, Egypt
| | - Helmy M S Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy-Cairo University, Cairo, Egypt
| |
Collapse
|
20
|
Shang N, Li X, Zhang L, Wang S, He C, Zhang L, Niu Q, Zheng X. Zinc as a Mediator Through the ROCK1 Pathway of Cognitive Impairment in Aluminum-Exposed Workers: A Clinical and Animal Study. Biol Trace Elem Res 2024; 202:5413-5428. [PMID: 38407795 DOI: 10.1007/s12011-024-04119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
Aluminum (Al) exposure was implicated in neurodegenerative diseases and cognitive impairment, yet the involvement of zinc (Zn) and its mechanism in Al-induced mild cognitive impairment (MCI) remains poorly understood. The objective is to explore the role of Zn in Al-induced cognitive impairment and its potential mechanisms. Montreal cognitive assessment (MoCA) test scores and serum Al, Zn from Al industry workers were collected. A mediation analysis was performed to evaluate the role of serum Zn among serum Al and MoCA test scores. Subsequently, an Al-exposure study was conducted on a rat model categorized into control, low-, medium-, and high-dose groups. After a Morris Water Maze test and detection of Al, Zn content in the hippocampus, integrated transcriptomic and proteomic analyses between the control group and the high-dose group were performed to identify the differentially expressed genes (DEPs), proteins (DEPs), and pathways. To corroborate these findings, quantitative real-time polymerase chain reaction (qRT-PCR) and western blotting (WB) were selected to identify the gene and protein results. Zn overall mediates the relationship between serum Al and cognitive function (mediation effect 17.82%, effect value = - 0.0351). In the Al-exposed rat model, 734 DEGs, 18 miRNAs, 35 lncRNAs, 64 circRNAs, and 113 DEPs were identified between the high-dose group and the control group. Among them, ROCK1, DMD, and other four DEPs were identified as related to zinc finger proteins (ZNF). Co-enrichment analyses of the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) linked these changes to the RHOA/ROCK1 signaling axis. ZNF-related proteins Rock1, DMD, and DHX57 in the high-dose group were downregulated (p = 0.006, 0.003, 0.04), and the expression of Myl9, Rhoa, miR431, and miR182 was also downregulated (p = 0.003, 0.032, 0.032, and 0.046). These findings also show correlations between Al, Zn levels in the hippocampus, water maze performance, and expressions of Myl9, Rhoa, miR431, miR182, DMD, ROCK1, and DHX57, with both negative and positive associations. Based on the results, we determined that Zn was involved in Al-induced MCI in Al workers and Al-exposed rat models. Al exposure and interaction with Zn could trigger the downregulation of ZNF of ROCK1, DMD, and DHX57. miR431, miR182 regulate RHOA/ROCK1 was one of the Zn-involved pathways in Al-induced cognitive impairment.
Collapse
Affiliation(s)
- Nan Shang
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China
| | - Xianlin Li
- School of Pharmacy, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lan Zhang
- School of Public Health, Capital Medical University, Beijing, 100069, China
| | - ShanShan Wang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
- Section of Occupational Medicine, Department of Special Medicine, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Chanting He
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ling Zhang
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Xiaojun Zheng
- Department of Pharmacy, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, China.
| |
Collapse
|
21
|
Yan L, You H, Wang H, Ding C, He B, Wang J, Fang W, Lin Y, Kang D, Chen F. Association of multiple trace metals in scalp hair with glioma risk: the mediating role of inflammation. Ann Clin Transl Neurol 2024; 11:2987-2997. [PMID: 39305183 PMCID: PMC11572748 DOI: 10.1002/acn3.52210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/17/2024] [Accepted: 09/01/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE To explore the relationship between 35 trace metals in scalp hair and the glioma risk as well as the potential mediating roles of 27 plasma inflammatory cytokines. METHODS A case-control study involving 228 participants was performed in southeastern China. Trace metals in scalp hair were analyzed using inductively coupled plasma mass spectrometry, and multiplex cytokines were detected based on Luminex® technology. The least absolute shrinkage and selection operator (LASSO) regression in combination with four machine learning methods were used to select trace metals associated with gliomas. The joint exposure effect of trace metals was estimated using the generalized weighted quantile sum (gWQS) regression and quantile-based g-computation (qgcomp) algorithms. RESULTS Both LASSO regression and random forest algorithms identified five trace metals (gadolinium [Gd], lithium [Li], thulium [Tm], thorium [Th], and molybdenum [Mo]) associated with gliomas. After adjustments for potential confounders, Gd (odds ratio [OR] = 2.84, 95% confidence interval [CI]: 1.89-4.43) and Li (OR = 1.77, 95% CI: 1.04-3.02) concentrations were positively associated with glioma risk, while Tm (OR = 0.36, 95% CI: 0.17-0.73) and Th (OR = 0.45, 95% CI: 0.28-0.71) exhibited inverse associations. Both gWQS and qgcomp algorithms showed Gd contributed most to the mixture effect. Moreover, there was a significant interaction between Gd and Tm or Th on glioma risk (p < 0.05). Notably, granulocyte-macrophage colony-stimulating factor (GM-CSF) mediated the association between Gd exposure and glioma risk by 25.75%. INTERPRETATION These findings suggest potential associations of certain trace metals, especially for Gd, with glioma risk, and may provide new insights into the mechanisms underlying from an inflammatory response perspective.
Collapse
Affiliation(s)
- Lingjun Yan
- Department of Neurosurgery, The First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujian350212China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
| | - Honghai You
- Department of Neurosurgery, The First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujian350212China
| | - Huiying Wang
- Department of Epidemiology and Health Statistics, School of Public HealthFujian Medical UniversityFuzhou350122China
| | - Chenyu Ding
- Department of Neurosurgery, The First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujian350212China
| | - Baochang He
- Department of Epidemiology and Health Statistics, School of Public HealthFujian Medical UniversityFuzhou350122China
| | - Jing Wang
- Laboratory Center, The Major Subject of Environment and Health of Fujian Key Universities, School of Public HealthFujian Medical UniversityFuzhou350122China
| | - Wenhua Fang
- Department of Neurosurgery, The First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
| | - Yuanxiang Lin
- Department of Neurosurgery, The First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujian350212China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
| | - Dezhi Kang
- Department of Neurosurgery, The First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated HospitalFujian Medical UniversityFuzhouFujian350212China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, First Affiliated HospitalFujian Medical UniversityFuzhouFujian350005China
| | - Fa Chen
- Department of Epidemiology and Health Statistics, School of Public HealthFujian Medical UniversityFuzhou350122China
| |
Collapse
|
22
|
Wang R, Lin J, Liu Q, Wu W, Wu J, Liu X. Micronutrients and Androgenetic Alopecia: A Systematic Review. Mol Nutr Food Res 2024; 68:e2400652. [PMID: 39440586 DOI: 10.1002/mnfr.202400652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Indexed: 10/25/2024]
Abstract
SCOPE Hair loss is a common problem that can negatively impact individuals' psychological well-being. Androgenetic alopecia (AGA) is one of the most prevalent types of nonscarring hair loss. This review summarizes the existing evidence on the relationship between AGA and various micronutrients, including vitamin B, vitamin D, vitamin A, vitamin C, iron, selenium, zinc, manganese, and copper. METHODS A literature search was conducted to identify relevant articles published between 1993 and 2023. The search identified 49 relevant articles. RESULTS The findings suggest that deficiencies or imbalances in these micronutrients may contribute to the pathogenesis of AGA and represent modifiable risk factors for hair loss prevention and treatment. Vitamin B, vitamin D, iron, and zinc appear to play critical roles in hair growth and maintenance. Deficiencies in these micronutrients have been associated with increased risk of AGA, while supplementation with these nutrients has shown potential benefits in improving hair growth and preventing hair loss. However, the current evidence is not entirely consistent, with some studies reporting no significant associations. CONCLUSION Deficiencies or imbalances in specific vitamins and minerals, especially vitamin B, vitamin D, Fe, Se, and Zn are involved in the pathogenesis of AGA and may represent modifiable risk factors for the treatment and prevention of this condition.
Collapse
Affiliation(s)
- Ruilong Wang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinran Lin
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingmei Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Wenyu Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jinfeng Wu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
23
|
Li M, Fan D, Wen Z, Meng J, Li P, Cheng T, Zhang Q, Sun L. Genome-wide identification of the Dof gene family: How it plays a part in mediating cold stress response in Prunus mume. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 217:109215. [PMID: 39515001 DOI: 10.1016/j.plaphy.2024.109215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/24/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024]
Abstract
DNA binding with a finger transcription factor (Dof) takes part in several plant physiological activities such as seed germination, flowering time, cold and drought resistance. Although the function, molecular phylogeny and expression pattern of Dof genes in Prunus mume was not clear yet. Here, the gene structure, motif, chromosome location and phylogenetic relationship of the Dof gene family in Prunus species was explored. We identified 24 members of the Dof gene family from P. mume, which were divided into 3 different subgroups. All these PmDof genes can be mapped to the pseudochromosome. Only one pair of tandem duplication genes are located in Chr3, whereas 8 pairs of segmentally duplicated PmDof genes located in Chr1, Chr2, Chr4, Chr5, and Chr7. Motif and gene structure analysis showed that each group had a similar conservative motif and similar exon/intron composition. Cis-acting elements analysis indicate that PmDofs may be involved in regulating abiotic stress response. Gene expression patterns showed that most PmDofs genes were specifically expressed in different tissues and at different stages. We next found that PmDofs genes display an obvious expression preference or specificity in cold stress response according to qRT-PCR analysis. We further observe a great cold resistance in PmDof10/11/20 OE lines, they showed lower electrolyte leakage rate, MDA content and higher soluble sugar/protein, POD/SOD/proline content than WT after -5 °C 6h freezing treatment. This research offers fresh perspectives on the development of PmDofs, enhancing our comprehension of the structure and role of plant Dof gene families.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Dongqing Fan
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Zhenying Wen
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Juan Meng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Ping Li
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Tangren Cheng
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Qixiang Zhang
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Lidan Sun
- State Key Laboratory of Efficient Production of Forest Resources, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
24
|
Wang L, Wang R, Cai X, Zheng H, Huang Y, Li Y, Cui M, Lin M, Tang H. A loss-of-function mutation in OsTZF5 confers sensitivity to low temperature and effects the growth and development in rice. PLANT MOLECULAR BIOLOGY 2024; 114:116. [PMID: 39438338 DOI: 10.1007/s11103-024-01513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 09/21/2024] [Indexed: 10/25/2024]
Abstract
Rice (Oryza sativa L.) is highly sensitive to low temperatures, which can significantly reduce its production. Cold tolerance in rice is a complex trait regulated by multiple mechanisms. OsTZF5, a member of the CCCH-type zinc finger gene family in rice, has been previously reported that overexpressing OsTZF5 under the stress-responsive promoter can confer drought resistance. In this study, we showed that the loss of function mutants of OsTZF5 decreased seed germination rate and chilling tolerance in rice, and influencing normal growth and development. OsTZF5 is expressed in various parts of the rice plant, including roots, stems, leaves and inflorescences, with the highest expression levels observed in leaves. Additionally, the expression of OsTZF5 gene was influenced by various stress conditions and hormone treatments. OsTZF5 knock-out mutants exhibited significantly lower survival rates compared to the wild type (Zhonghua11, ZH11) after cold stress, as well as fewer tillers, lower thousand-grain weight, and reduced grain yield under normal conditions. Transcriptomic analyses revealed that the expression of cold stress-related genes was significantly down-regulated in OsTZF5 knock-out mutants compared to ZH11 after cold stress. This down-regulation likely contributes to the reduced cold stress tolerance observed in OsTZF5 knock-out mutants. Our findings suggest that OsTZF5 is a multifunctional gene that plays a crucial role in regulating cold stress in rice.
Collapse
Affiliation(s)
- Limin Wang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Ru Wang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xin Cai
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Huiqi Zheng
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471000, China
| | - Yuxing Huang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Yuechen Li
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mingyue Cui
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Mingli Lin
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Huiwu Tang
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China.
| |
Collapse
|
25
|
Ren Y, Hao C, Yu C, Liu S, Wang N, Wu J. A novel peptide fluorescent chemical sensor capable of detecting Cu 2+, Zn 2+, and S 2. LUMINESCENCE 2024; 39:e4910. [PMID: 39359228 DOI: 10.1002/bio.4910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 10/04/2024]
Abstract
A novel peptide-based chemical fluorescence sensor L (Dansyl-His-Pro-Thr-Cys-NH2) was designed and synthesized. This sensor exhibits an "On-Off-On" detection cycle to detect Cu2+, Zn2+, and S2- in solution. According to the chelation-enhanced fluorescence (CHEF) mechanism, when Zn2+ is present, the fluorescence is significantly enhanced and a blue shift occurs, representing a "Turn-On" phase of the fluorescence detection mode. Because copper ions (Cu2+) have a paramagnetic quenching sensing mechanism, the fluorescence of L quenches rapidly with the formation of the L-Cu system, representing the "Turn-Off" phase. The subsequent introduction of S2- to the L-Cu system results in the recovery of the L-fluorescence, thereby representing the second "Turn-On" phase. As a peptide molecule, the sensor L has several advantages over other types of sensors, including water solubility, high sensitivity, and good biocompatibility, with a very low detection limit. The detection lines of Zn2+ and Cu2+ are 97 nM (R = 0.993) and 75 nM (R = 0.995), respectively. Additionally, the sensor does not exhibit any obvious cell toxicity. These results indicate that this peptide chemiluminescent sensor has the potential to be applied in in vivo detection.
Collapse
Affiliation(s)
- Yixuan Ren
- Department of Procurement Management, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Chaowei Hao
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Qinghai Minzu University-Zangnuo Joint-Lab, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Chenyi Yu
- Department of Procurement Management, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Shuijuan Liu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Qinghai Minzu University-Zangnuo Joint-Lab, College of Pharmacy, Qinghai Nationalities University, Xining, China
| | - Nan Wang
- Department of Procurement Management, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Jiang Wu
- Key Laboratory for Tibet Plateau Phytochemistry of Qinghai Province, Qinghai Minzu University-Zangnuo Joint-Lab, College of Pharmacy, Qinghai Nationalities University, Xining, China
| |
Collapse
|
26
|
Liang F, Sun S, Zhou Y, Peng T, Xu X, Li B, Tan G. Escherichia coli alcohol dehydrogenase YahK is a protein that binds both iron and zinc. PeerJ 2024; 12:e18040. [PMID: 39282118 PMCID: PMC11397123 DOI: 10.7717/peerj.18040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Background Previous studies have highlighted the catalytic activity of Escherichia coli alcohol dehydrogenase YahK in the presence of coenzyme nicotinamide adenine dinucleotide (NAD) and metal zinc. Notably, competitive interaction between iron and zinc ligands has been shown to influence the catalytic efficiency of several key proteases. This study aims to unravel the intricate mechanisms underlying YahK's catalytic action, with a particular focus on the pivotal roles played by metal ions zinc and iron. Methods The purified YahK protein from E. coli cells cultivated in LB medium was utilized to investigate its metal-binding properties through UV-visible absorption measurements and determination of metal content. Subsequently, the effects of excess zinc and iron on the metal-binding ability and alcohol dehydrogenase activity of the YahK protein were explored using M9 minimal medium. Furthermore, site-directed mutagenesis technology was employed to determine the iron-binding site location within the YahK protein. Polyacrylamide gel electrophoresis was conducted to examine the relationship between iron and zinc with respect to the YahK protein. Results The study confirmed the presence of iron and zinc in the YahK protein, with the zinc-bound form exhibiting enhanced catalytic activity in alcohol dehydrogenation reactions. Conversely, the presence of iron appears to play a pivotal role in maintaining overall stability of the YahK protein. Furthermore, experimental findings indicate that excessive zinc within M9 minimal medium can competitively bind to iron-binding sites on YahK, thereby augmenting its alcohol dehydrogenase activity. Conclusion The dynamic binding of YahK to iron and zinc unveils its intricate regulatory mechanism as an alcohol dehydrogenase, thereby highlighting the possible physiological role of YahK in E. coli and its significance in governing cellular metabolic processes. This discovery provides a novel perspective for further investigating the specific impact of metal ion binding on YahK and E. coli cell metabolism.
Collapse
Affiliation(s)
- Feng Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Wenzhou Medical University, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, Wenzhou, Zhejiang, China
| | - Shujuan Sun
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi, Shandong, China
| | - YongGuang Zhou
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Tiantian Peng
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xianxian Xu
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Beibei Li
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoqiang Tan
- Laboratory of Molecular Medicine, Zhejiang Provincial Key Laboratory for Technology and Application of Model Organisms, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
27
|
Wang Y, Qin J, Sharma A, Dakal TC, Wang J, Pan T, Bhushan R, Chen P, Setiawan MF, Schmidt-Wolf IGH, Li F. Exploring the promise of regulator of G Protein Signaling 20: insights into potential mechanisms and prospects across solid cancers and hematological malignancies. Cancer Cell Int 2024; 24:305. [PMID: 39227952 PMCID: PMC11373255 DOI: 10.1186/s12935-024-03487-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
RGS (Regulator of G protein signaling) proteins have long captured the fascination of researchers due to their intricate involvement across a wide array of signaling pathways within cellular systems. Their diverse and nuanced functions have positioned them as continual subjects of scientific inquiry, especially given the implications of certain family members in various cancer types. Of particular note in this context is RGS20, whose clinical relevance and molecular significance in hepatocellular carcinoma we have recently investigated. These investigations have prompted questions into the prevalence of pathogenic mutations within the RGS20 gene and the intricate network of interacting proteins that could contribute to the complex landscape of cancer biology. In our study, we aim to unravel the mutations within the RGS20 gene and the multifaceted interplay between RGS20 and other proteins within the context of cancer. Expanding on this line of inquiry, our research is dedicated to uncovering the intricate mechanisms of RGS20 in various cancers. In particular, we have redirected our attention to examining the role of RGS20 within hematological malignancies, with a specific focus on multiple myeloma and follicular lymphoma. These hematological cancers hold significant promise for further investigation, as understanding the involvement of RGS20 in their pathogenesis could unveil novel therapeutic strategies and treatment avenues. Furthermore, our exploration has extended to encompass the latest discoveries concerning the potential involvement of RGS20 in diseases affecting the central nervous system, thereby broadening the scope of its implications beyond oncology to encompass neurobiology and related fields.
Collapse
Affiliation(s)
- Yulu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Jiading Qin
- Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital of Bonn, Bonn, Germany
| | - Tikam Chand Dakal
- Department of Biotechnology, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Jieyu Wang
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Tiantian Pan
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Ravi Bhushan
- Department of Zoology, M.S. College, Motihari, Bihar, India
| | - Peng Chen
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Maria F Setiawan
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Ingo G H Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, Bonn, Germany
| | - Fei Li
- Jiangxi Provincial Key Laboratory of Hematological Diseases, Department of Hematology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
28
|
Pang H, Dai X, Yan X, Liu Y, Li Q. C2H2 zinc finger protein PagIDD15A regulates secondary wall thickening and lignin biosynthesis in poplar. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 346:112159. [PMID: 38901779 DOI: 10.1016/j.plantsci.2024.112159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/14/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
Wood production is largely determined by the activity of cambial cell proliferation, and the secondary cell wall (SCW) thickening of xylem cells determines the wood property. In this study, we identified an INDETERMINATE DOMAIN (IDD) type C2H2 zinc finger transcription factor PagIDD15A as a regulator of wood formation in Populus alba × Populus glandulosa. Downregulation of PagIDD15A expression by RNA interference (RNAi) inhibited xylem development and xylem cell secondary wall thickening. RNA-seq analysis showed that PagPAL1, PagCCR2 and PagCCoAOMT1 were downregulated in the differentiating xylem of the PagIDD15A-RNAi transgenic plants, showing that PagIDD15A may regulate SCW biosynthesis through inhibiting lignin biosynthesis. The downregulation of PagVND6-B2, PagMYB10 and PagMYC4 and upregulation of PagWRKY12 in the differentiating xylem of RNAi transgenic plants suggest that PagIDD15A may also regulate these transcription factor (TF) genes to affect SCW thickening. RT-qPCR analysis in the phloem-cambium of RNAi transgenic demonstrates that PagIDD15A may regulate the expression of the genes associated with cell proliferation, including, PagSHR (SHORTROOT), PagSCR (SCARECROW), PagCYCD3;1 (CYCLIN D3;1) and PagSMR4 (SIAMESE-RELATED4), to affect the cambial activity. This study provides the knowledge of the IDD-type C2H2 zinc finger protein in regulating wood formation.
Collapse
Affiliation(s)
- Hongying Pang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xinren Dai
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xiaojing Yan
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yingli Liu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China.
| |
Collapse
|
29
|
Cheng L, Zhao S, Li F, Ni X, Yang N, Yu J, Wang X. Overexpression of EgrZFP6 from Eucalyptus grandis increases ROS levels by downregulating photosynthesis in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108972. [PMID: 39067106 DOI: 10.1016/j.plaphy.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/06/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
In plants, abiotic stressors are frequently encountered during growth and development. To counteract these challenges, zinc finger proteins play a critical role as transcriptional regulators. The EgrZFP6 gene, which codes for a zinc finger protein of the C2H2 type, was shown to be considerably elevated in the leaves of Eucalyptus grandis seedlings in the current study when they were subjected to a variety of abiotic stimuli, including heat, salinity, cold, and drought. Analysis conducted later showed that in EgrZFP6 transgenic Arabidopsis thaliana, EgrZFP6 was essential for causing hyponastic leaves and controlling the stress response. Furthermore, the transgenic plants showed elevated levels of reactive oxygen species (ROS), such as superoxide and hydrogen peroxide (H2O2). Additionally, in EgrZFP6-overexpressing plants, transcriptome sequencing analysis demonstrated a considerable downregulation of many genes involved in photosynthesis, decreasing electron transport efficiency and perhaps promoting the buildup of ROS. Auxin levels were higher and auxin signal transduction was compromised in the transgenic plants. Stress-related genes were also upregulated in Arabidopsis as a result of EgrZFP6 overexpression. It is hypothesized that EgrZFP6 can downregulate photosynthesis, which would cause the production of ROS in chloroplasts. As a result, this protein may alter plant stress responses and leaf morphology via a retrograde mechanism driven by ROS. These results highlight the significance of zinc finger proteins in this sophisticated process and advance our understanding of the complex link between gene regulation, ROS signaling, and plant stress responses.
Collapse
Affiliation(s)
- Longjun Cheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| | - Shuang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Fangyan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoxiang Ni
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Ning Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jianfeng Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaofei Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
30
|
Asthana S, Maddeshiya T, Tamrakar A, Kumar P, Garg N, Pandey MD. L-Tryptophan-based pyrene conjugate for intracellular zinc-guided excimer emission and controlled nano-assembly. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:5633-5641. [PMID: 39139130 DOI: 10.1039/d4ay00979g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This article describes intracellular zinc-induced excimer emission and tuning of self-assembly from L-tryptophan-pyrene conjugate (1). The zinc-guided excimer formation is due to the interaction of the pyrene moiety in an excited state. AFM studies show the structural modification in the supramolecular nano-assembly of 1 from dome-shaped to porous surface after complexation with zinc ions. Further, the interaction of 1 with Zn(II) ion is also studied using DFT, Job's plot, NMR titration and HRMS. The results of Zn(II) ion determination in natural water samples and RAW 264.7 cells demonstrate the practical utility of 1.
Collapse
Affiliation(s)
- Surabhi Asthana
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Tarkeshwar Maddeshiya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Arpna Tamrakar
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| | - Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Mrituanjay D Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, UP, India.
| |
Collapse
|
31
|
Li S, Xu J, Cao Y, Wu J, Liu Q, Zhang D. Genome-Wide Analyses of CCHC Family Genes and Their Expression Profiles under Drought Stress in Rose ( Rosa chinensis). Int J Mol Sci 2024; 25:8983. [PMID: 39201669 PMCID: PMC11354476 DOI: 10.3390/ijms25168983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
CCHC-type zinc finger proteins (CCHC-ZFPs), ubiquitous across plant species, are integral to their growth, development, hormonal regulation, and stress adaptation. Roses (Rosa sp.), as one of the most significant and extensively cultivated ornamentals, account for more than 30% of the global cut-flower market. Despite its significance, the CCHC gene family in roses (Rosa sp.) remains unexplored. This investigation identified and categorized 41 CCHC gene members located on seven chromosomes of rose into 14 subfamilies through motif distribution and phylogenetic analyses involving ten additional plant species, including Ginkgo biloba, Ostreococcus lucimarinus, Arabidopsis thaliana, and others. This study revealed that dispersed duplication likely plays a crucial role in the diversification of the CCHC genes, with the Ka/Ks ratio suggesting a history of strong purifying selection. Promoter analysis highlighted a rich presence of cis-acting regulatory elements linked to both abiotic and biotic stress responses. Differential expression analysis under drought conditions grouped the 41 CCHC gene members into five distinct clusters, with those in group 4 exhibiting pronounced regulation in roots and leaves under severe drought. Furthermore, virus-induced gene silencing (VIGS) of the RcCCHC25 member from group 4 compromised drought resilience in rose foliage. This comprehensive analysis lays the groundwork for further investigations into the functional dynamics of the CCHC gene family in rose physiology and stress responses.
Collapse
Affiliation(s)
- Shijie Li
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Jun Xu
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Yong Cao
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Jie Wu
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| | - Qing Liu
- CSIRO Agriculture and Food, Black Mountain, Canberra, ACT 2601, Australia;
| | - Deqiang Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beinong Road 7, Huilongguan, Changping District, Beijing 102206, China; (S.L.); (J.X.); (Y.C.); (J.W.)
| |
Collapse
|
32
|
Zhang D, Liang P, Xia B, Wu J, Hu X. Comprehensive pan-cancer analysis of ZNF337 as a potential diagnostic, immunological, and prognostic biomarker. BMC Cancer 2024; 24:987. [PMID: 39123194 PMCID: PMC11313096 DOI: 10.1186/s12885-024-12703-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Zinc Finger Protein 337 (ZNF337) is a novel Zinc Finger (ZNF) protein family member. However, the roles of ZNF337 in human cancers have not yet been investigated. METHODS In this study, with the aid of TCGA databases, GTEx databases, and online websites, we determined the expression levels of ZNF337 in pan-cancer and its potential value as a diagnostic and prognostic marker for pan-cancer and analyzed the relationship between ZNF337 expression and immune cell infiltration and immune checkpoint genes. We then focused our research on the potential of ZNF337 as a biomarker for diagnostic and prognostic in KIRC (kidney renal clear cell carcinoma) and validated in the E-MTAB-1980 database. Moreover, the expression of ZNF337 was detected through qRT-PCR and Western blotting (WB). CCK-8 experiment, colony formation experiment, and EDU experiment were performed to evaluate cell proliferation ability. Wound healing assay and transwell assay were used to analyze its migration ability. The qRT-PCR and WB were used to detect the expression of ZNF337 in tumor tissues and paracancerous tissues of KIRC patients. RESULTS The pan-cancer analysis revealed that abnormal ZNF337 expression was found in multiple human cancer types. ZNF337 had a high diagnostic value in pan-cancer and a significant association with the prognosis of certain cancers, indicating that ZNF337 may be a valuable prognostic biomarker for multiple cancers. Further analysis demonstrated that the expression level of ZNF337 displayed significant correlations with cancer-associated fibroblasts, immune cell infiltration, and immune checkpoint genes in many tumors. Additionally, ZNF337 was observed to have a high expression in KIRC. Its expression was significantly associated with poor prognosis [overall survival (OS), disease-specific survival (DSS)], age, TNM stage, histologic grade, and pathologic stage. The high ZNF337 expression was associated with poor prognosis in the E-MTAB-1980 validation cohort. The in vitro experiments suggested that the expression of ZNF337 in KIRC tumor tissues was higher than in adjacent tissues, and ZNF337 knockdown inhibited the proliferation and migration of KIRC cells, whereas overexpression of ZNF337 had the opposite effects. CONCLUSIONS ZNF337 might be an important prognostic and immunotherapeutic biomarker for pan-cancer, especially in KIRC.
Collapse
Affiliation(s)
- Dongxu Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Pu Liang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Beijing Institute of Infectious Diseases, Beijing, 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, Beijing, 100015, China
| | - Bowen Xia
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO. 8 Gongti South Road, Beijing, China
- Institute of Urology, Capital Medical University, Beijing, China
| | - Jitao Wu
- Department of Urology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, China
| | - Xiaopeng Hu
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, NO. 8 Gongti South Road, Beijing, China.
- Institute of Urology, Capital Medical University, Beijing, China.
| |
Collapse
|
33
|
Aktay I, Billur D, Tuncay E, Turan B. An Overexpression of SLC30A6 Gene Contributes to Cardiomyocyte Dysfunction via Affecting Mitochondria and Inducing Activations in K-Acetylation and Epigenetic Proteins. Biochem Genet 2024; 62:3198-3214. [PMID: 38091184 DOI: 10.1007/s10528-023-10602-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 11/13/2023] [Indexed: 07/31/2024]
Abstract
Intracellular free Zn2+ ([Zn2+]i) is less than 1-nM in cardiomyocytes and its regulation is performed with Zn2+-transporters. However, the roles of Zn2+-transporters in cardiomyocytes are not defined exactly yet. Here, we aimed to examine the role of an overexpression and subcellular localization of a ZnT6 in insulin-resistance mimic H9c2 cardiomyoblasts (IR-cells; 50-μM palmitic acid for 24-h incubation). We used both IR-cells and ZnT6-overexpressed (ZnT6OE) cells in comparison to those of H9c2 cells (CON-cells). The IR-cells have higher ZnT6-protein levels than CON-cells while this level was similar to those of ZnT6OE-cells. The [Zn2+]i in IR-cells was increased significantly and mitochondrial localization of ZnT6 was demonstrated in these cells by using confocal microscopy visualization. Furthermore, electron microscopy analysis demonstrated abnormal morphological appearance in both IR-cells and ZnT6OE-cells characterized by irregular mitochondrion cristae and condensed and dilated cisterna in the sarcoplasmic reticulum. Mitochondria were similarly depolarized in both IR-cells and ZnT6OE-cells. The protein expression level of a mitofusin protein MFN2 in the IR-cells was decreased, significantly, whereas, it was found significantly upregulated in both ZnT6-OE-cells and IR-incubated ZnT6OE-cells, which demonstrates the role of ZnT6-overexpression but not IR. Additionally, the total protein level of a mitochondrial fission protein, dynamin-related protein 1, DRP1 was found to be increased over 1.5-fold in IR-cells while this increase was found to be higher in the ZnT6OE-cells than those of IR-cells, demonstrating an additional effect on IR-increase. ZnT6-overexpression induced also significant increases in K-acetylation, trimethylation of histone H3 lysine27, and mono-methylation of histone H3 lysine36, in a similar manner to those of IR-cells. Overall, our data point out an important contribution of ZnT6-overexpression to IR-induced cellular changes, such as alteration in mitochondria function and activation of epigenetic modifications.
Collapse
Affiliation(s)
- Irem Aktay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Deniz Billur
- Department of Histology & Embryology, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Erkan Tuncay
- Department of Biophysics, Faculty of Medicine, Ankara University, Ankara, Turkey
| | - Belma Turan
- Department of Biophysics, Faculty of Medicine, Lokman Hekim University, Ankara, Turkey.
| |
Collapse
|
34
|
Armentrout PB. Perspective: intrinsic interactions of metal ions with biological molecules as studied by threshold collision-induced dissociation and infrared multiple photon dissociation. Phys Chem Chem Phys 2024. [PMID: 39042103 DOI: 10.1039/d4cp00897a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
In this perspective, gas-phase studies of group 1 monocations and group 12 dications with amino acids and small peptides are highlighted. Although the focus is on two experimental techniques, threshold collision-induced dissociation and infrared multiple photon dissociation action spectroscopy, these methods as well as complementary approaches are summarized. The synergistic interplay with theory, made particularly powerful by the small sizes of the systems explored and the absence of solvent and support, is also elucidated. Importantly, these gas-phase methods permit quantitative insight into the structures and thermodynamics of metal cations interacting with biological molecules. Periodic trends in how these interactions vary as the metal cations get heavier are discussed as are quantitative trends with changes in the amino acid side chain and effects of hydration. Such trends allow these results to transcend the limitations associated with the biomimetic model systems.
Collapse
Affiliation(s)
- P B Armentrout
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
35
|
Yu L, Sun F, Wang Y, Li W, Zheng Y, Shen G, Wang Y, Chen M. Effects of MgO nanoparticle addition on the mechanical properties, degradation properties, antibacterial properties and in vitro and in vivo biological properties of 3D-printed Zn scaffolds. Bioact Mater 2024; 37:72-85. [PMID: 38523703 PMCID: PMC10958222 DOI: 10.1016/j.bioactmat.2024.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024] Open
Abstract
Bone tissue engineering is the main method for repairing large segment bone defects. In this study, a layer of bioactive MgO nanoparticles was wrapped on the surface of spherical Zn powders, which allowed the MgO nanoparticles to be incorporated into 3D-printed Zn matrix and improved the biodegradation and biocompatibility of the Zn matrix. The results showed that porous pure Zn scaffolds and Zn/MgO scaffolds with skeletal-gyroid (G) model structure were successfully prepared by selective laser melting (SLM). The average porosity of two porous scaffolds was 59.3 and 60.0%, respectively. The pores were uniformly distributed with an average pore size of 558.6-569.3 μm. MgO nanoparticles regulated the corrosion rate of scaffolds, resulting in a more uniform corrosion degradation behavior of the Zn/MgO scaffolds in simulated body fluid solution. The degradation ratio of Zn/MgO composite scaffolds in vivo was increased compared to pure Zn scaffolds, reaching 15.6% at 12 weeks. The yield strength (10.8 ± 2.4 MPa) of the Zn/MgO composite scaffold was comparable to that of cancellous bone, and the antimicrobial rate were higher than 99%. The Zn/MgO composite scaffolds could better guide bone tissue regeneration in rat cranial bone repair experiments (completely filling the scaffolds at 12 weeks). Therefore, porous Zn/MgO scaffolds with G-model structure prepared with SLM are a promising biodegradable bone tissue engineering scaffold.
Collapse
Affiliation(s)
- Leiting Yu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Fengdong Sun
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yuanyuan Wang
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Wei Li
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Guangxin Shen
- Changzhi Medical College, Changzhi, 046000, Shanxi, China
| | - Yao Wang
- School of Stomatology, Tianjin Medical University, Tianjin, 300070, China
| | - Minfang Chen
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin, 300384, China
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin, 300384, China
| |
Collapse
|
36
|
Wang H, Wang X, Yang Y, Zhu Y, Wang S, Chen Q, Yan D, Dong X, Li M, Lu S. Genome-wide identification of quantitative trait loci and candidate genes for seven carcass traits in a four-way intercross porcine population. BMC Genomics 2024; 25:582. [PMID: 38858624 PMCID: PMC11165779 DOI: 10.1186/s12864-024-10484-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 05/30/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Carcass traits are essential economic traits in the commercial pig industry. However, the genetic mechanism of carcass traits is still unclear. In this study, we performed a genome-wide association study (GWAS) based on the specific-locus amplified fragment sequencing (SLAF-seq) to study seven carcass traits on 223 four-way intercross pigs, including dressing percentage (DP), number of ribs (RIB), skin thinkness (ST), carcass straight length (CSL), carcass diagonal length (CDL), loin eye width (LEW), and loin eye thickness (LET). RESULTS A total of 227,921 high-quality single nucleotide polymorphisms (SNPs) were detected to perform GWAS. A total of 30 SNPs were identified for seven carcass traits using the mixed linear model (MLM) (p < 1.0 × 10- 5), of which 9 SNPs were located in previously reported quantitative trait loci (QTL) regions. The phenotypic variation explained (PVE) by the significant SNPs was from 2.43 to 16.32%. Furthermore, 11 candidate genes (LYPLAL1, EPC1, MATN2, ZFAT, ZBTB10, ZNF704, INHBA, SMYD3, PAK1, SPTBN2, and ACTN3) were found for carcass traits in pigs. CONCLUSIONS The GWAS results will improve our understanding of the genetic basis of carcass traits. We hypothesized that the candidate genes associated with these discovered SNPs would offer a biological basis for enhancing the carcass quality of pigs in swine breeding.
Collapse
Affiliation(s)
- Huiyu Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
- Faculty of Animal Science, Xichang University, Xichang, Sichuan, 615000, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yongli Yang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Yixuan Zhu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Shuyan Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Dawei Yan
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Xinxing Dong
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China
| | - Mingli Li
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| | - Shaoxiong Lu
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, 650201, China.
| |
Collapse
|
37
|
Bourgon N, Tacail T, Jaouen K, Leichliter JN, McCormack J, Winkler DE, Clauss M, Tütken T. Dietary and homeostatic controls of Zn isotopes in rats: a controlled feeding experiment and modeling approach. Metallomics 2024; 16:mfae026. [PMID: 38755021 PMCID: PMC11157155 DOI: 10.1093/mtomcs/mfae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/15/2024] [Indexed: 05/18/2024]
Abstract
The stable isotope composition of zinc (δ66Zn), which is an essential trace metal for many biological processes in vertebrates, is increasingly used in ecological, archeological, and paleontological studies to assess diet and trophic level discrimination among vertebrates. However, the limited understanding of dietary controls and isotopic fractionation processes on Zn isotope variability in animal tissues and biofluids limits precise dietary reconstructions. The current study systematically investigates the dietary effects on Zn isotope composition in consumers using a combined controlled feeding experiment and box-modeling approach. For this purpose, 21 rats were fed one of seven distinct animal- and plant-based diets and a total of 148 samples including soft and hard tissue, biofluid, and excreta samples of these individuals were measured for δ66Zn. Relatively constant Zn isotope fractionation is observed across the different dietary groups for each tissue type, implying that diet is the main factor controlling consumer tissue δ66Zn values, independent of diet composition. Furthermore, a systematic δ66Zn diet-enamel fractionation is reported for the first time, enabling diet reconstruction based on δ66Zn values from tooth enamel. In addition, we investigated the dynamics of Zn isotope variability in the body using a box-modeling approach, providing a model of Zn isotope homeostasis and inferring residence times, while also further supporting the hypothesis that δ66Zn values of vertebrate tissues are primarily determined by that of the diet. Altogether this provides a solid foundation for refined (paleo)dietary reconstruction using Zn isotopes of vertebrate tissues.
Collapse
Affiliation(s)
- Nicolas Bourgon
- IsoTROPIC research group, Max Planck Institute for Geoanthropology, Kahlaische Str. 10, Jena, Germany
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Institute of Geosciences, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, Mainz, Germany
| | - Théo Tacail
- Institute of Geosciences, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, Mainz, Germany
| | - Klervia Jaouen
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Géosciences Environnement Toulouse, Observatoire Midi Pyrénées, 14 avenue Edouard Belin, Toulouse, France
| | - Jennifer N Leichliter
- Institute of Geosciences, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, Mainz, Germany
- HoMeCo Emmy Noether research group, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, Mainz, Germany
| | - Jeremy McCormack
- Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Deutscher Platz 6, Leipzig, Germany
- Department of Geosciences, Goethe University Frankfurt, Altenhöferallee 1, Frankfurt, Germany
| | - Daniela E Winkler
- Institute of Geosciences, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, Mainz, Germany
- Zoology and Functional Morphology of Vertebrates, Zoological Institute, University Kiel, Am Botanischen Garten 3–9, Kiel, Germany
| | - Marcus Clauss
- Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse Faculty, University of Zurich, Winterthurerstr. 260, Zurich, Switzerland
| | - Thomas Tütken
- Institute of Geosciences, Johannes Gutenberg University, Johann-Joachim-Becher-Weg 21, Mainz, Germany
| |
Collapse
|
38
|
Zhou X, Gao T, Zhang Y, Han M, Shen Y, Su Y, Feng X, Wu Q, Sun G, Wang Y. Genome-wide identification, characterization and expression of C2H2 zinc finger gene family in Opisthopappus species under salt stress. BMC Genomics 2024; 25:385. [PMID: 38641598 PMCID: PMC11027532 DOI: 10.1186/s12864-024-10273-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/30/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND The C2H2 zinc finger protein family plays important roles in plants. However, precisely how C2H2s function in Opisthopappus (Opisthopappus taihangensis and Opisthopappus longilobus) remains unclear. RESULTS In this study, a total of 69 OpC2H2 zinc finger protein genes were identified and clustered into five Groups. Seven tandem and ten fragment repeats were found in OpC2H2s, which underwent robust purifying selection. Of the identified motifs, motif 1 was present in all OpC2H2s and conserved at important binding sites. Most OpC2H2s possessed few introns and exons that could rapidly activate and react when faced with stress. The OpC2H2 promoter sequences mainly contained diverse regulatory elements, such as ARE, ABRE, and LTR. Under salt stress, two up-regulated OpC2H2s (OpC2H2-1 and OpC2H2-14) genes and one down-regulated OpC2H2 gene (OpC2H2-7) might serve as key transcription factors through the ABA and JA signaling pathways to regulate the growth and development of Opisthopappus species. CONCLUSION The above results not only help to understand the function of C2H2 gene family but also drive progress in genetic improvement for the salt tolerance of Opisthopappus species.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Ting Gao
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yimeng Zhang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Mian Han
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yuexin Shen
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Yu Su
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Xiaolong Feng
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Qi Wu
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China
| | - Genlou Sun
- Department of Botany, Saint Mary's University, Halifax, NS, B3H 3C3, Canada.
| | - Yiling Wang
- School of Life Science, Shanxi Normal University, Taiyuan, 030031, China.
| |
Collapse
|
39
|
Bai G, Mahati S, Tulahong A, Eli M, Mao R. ZNF468 inhibits irradiation-induced G2/M cell cycle arrest and apoptosis by facilitating AURKA transcription in Esophageal Squamous Cell Carcinoma. Biochem Biophys Res Commun 2024; 703:149687. [PMID: 38368674 DOI: 10.1016/j.bbrc.2024.149687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND ZNF468 is a relatively unexplored gene that has been implicated in potential oncogenic properties in various cancer types. However, the exact role of ZNF468 in radiotherapy resistance of esophageal squamous cell carcinomas (ESCCs) is not well understood. METHODS Bioinformatic analysis was performed using the TCGA database to assess ZNF468 expression and prognostic significance in pan-cancer and ESCC. Functional experiments were conducted using ZNF468 overexpressing and knockdown cell lines to assess its impact on cell survival, DNA damage response, cell cycle, and apoptosis upon radiation. A luciferase reporter assay was utilized to validate ZNF468 binding to the AURKA promoter. RESULTS ZNF468 was significantly upregulated in diverse cancer types, including ESCC, and its high expression correlated with adverse prognosis in specific tumors. In the ESCC cohort, ZNF468 exhibited substantial upregulation in post-radiotherapy tissues, indicating its potential role in conferring radiotherapy resistance. Functional experiments revealed that ZNF468 enhances cell viability and facilitates DNA damage repair in radiotherapy-treated ESCC cells, while dampening the G2/M cell cycle arrest and apoptosis induced by radiation. Moreover, ZNF468 facilitated AURKA transcription, resulting in upregulated Aurora A expression, and subsequently inhibited P53 expression, unveiling key molecular mechanisms underlying radiotherapy resistance in ESCC. CONCLUSION ZNF468 plays an oncogenic role in ESCC and contributes to radiotherapy resistance. It enhances cell survival while dampening radiation-induced G2/M cell cycle arrest and apoptosis. By modulating AURKA and P53 expression, ZNF468 represents a promising therapeutic target for enhancing radiotherapy efficacy in ESCC.
Collapse
Affiliation(s)
- Ge Bai
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Ürümqi, Xinjiang Uyghur Autonomous Region, 830011, China
| | - Shaya Mahati
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Ürümqi, Xinjiang Uyghur Autonomous Region, 830011, China
| | - Asikeer Tulahong
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Ürümqi, Xinjiang Uyghur Autonomous Region, 830011, China
| | - Mayinur Eli
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Ürümqi, Xinjiang Uyghur Autonomous Region, 830011, China.
| | - Rui Mao
- Cancer Center, The First Affiliated Hospital of Xinjiang Medical University, 137 Liyushan South Road, Ürümqi, Xinjiang Uyghur Autonomous Region, 830011, China.
| |
Collapse
|
40
|
Wang J, Liu Q, Li Y, Pang Y. An environmentally sensitive zinc-selective two-photon NIR fluorescent turn-on probe and zinc sensing in stroke. J Pharm Anal 2024; 14:100903. [PMID: 38655400 PMCID: PMC11035362 DOI: 10.1016/j.jpha.2023.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/01/2023] [Accepted: 11/21/2023] [Indexed: 04/26/2024] Open
Abstract
A two-photon near infrared (NIR) fluorescence turn-on sensor with high selectivity and sensitivity for Zn2+ detection has been developed. This sensor exhibits a large Stokes' shift (∼300 nm) and can be excited from 900 to 1000 nm, with an emission wavelength of ∼785 nm, making it ideal for imaging in biological tissues. The sensor's high selectivity for Zn2+ over other structurally similar cations, such as Cd2+, makes it a promising tool for monitoring zinc ion levels in biological systems. Given the high concentration of zinc in thrombi, this sensor could provide a useful tool for in vivo thrombus imaging.
Collapse
Affiliation(s)
- Junfeng Wang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Qibing Liu
- Department of Pharmacy, The First Affiliated Hospital of Hainan Medical University, Haikou, 570100, China
- Engineering Research Center of Tropical Medicine, Ministry of Education, Hainan Medical University, Haikou, 571199, China
| | - Yingbo Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yi Pang
- Department of Chemistry, The University of Akron, Akron, OH 44325, USA
- Maurice Morton Institute of Polymer Science, The University of Akron, Akron, OH 44325, USA
| |
Collapse
|
41
|
Bhattacharyya M, Hossain M. Picomolar level sensorial dual colorimetric gold nanoparticle sensor for Zn 2+ and Hg 2+ ions synthesized from bark extract of Lannea Grandis Coromandelica and its wide range applications in real sample analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123682. [PMID: 38042120 DOI: 10.1016/j.saa.2023.123682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023]
Abstract
In this work a facile, rapid, reproducible and non-toxic approach has been demonstrated for synthesis of most stable AuNPs from bark extract of Lannea Grandis Coromandelica. UV-Visible spectroscopy, FTIR, TEM, SAED, EDX, XRD, DLS, Zeta Potential, FE-SEM, AFM and XPS techniques were employed for the characterization of synthesized LGC-AuNPs. The UV-Vis spectra of LGC-AuNPs gave SPR peak at 536 nm while the TEM analysis revealed LGC-AuNPs have 20.75 nm size with spherical in shape. DLS study showed the AuNPs have average diameter 50.18 nm. The synthesized AuNPs exhibited very high selectivity, rapid response in recognition towards Zn2+ and Hg2+ ions by changing its color within 20 sec. This proposed sensor can detect very low picomolar level of Zn2+ and Hg2+ ions (LOD value for Zn2+ and Hg2+ were found 1.36 pM and 24.60 pM respectively). Here we also studied effect of several factors such as variation of conc of gold, temperature, incubation time, pH, salt, solvent (polar protic and polar aprotic) to know in which condition AuNPs have high stability and sensitivity. The data revealed that synthesized AuNPs was stable up to two years at pH 6.5 at room temperature in water media and under this condition, it shows maximum sensitivity and reactivity. Moreover, here interference study was carried out to identify high selectivity of synthesized LGC-AuNPs probe in presence of different metal ions. The real sample analyses also revealed the great applicability of this probe. Therefore, this simple, rapid, low-cost, sensing activity appeared to hold great sensibleness for detection of heavy metal ions in real sample.
Collapse
|
42
|
Pramanik A, Das R, Jyoti Boruah P, Majumder S, Mohanta S. A very rare fluorescent chemosensor of zinc(II) exhibiting AIEE, ESIPT and TICT: Spectroscopic, crystallographic and theoretical exploration. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123780. [PMID: 38142491 DOI: 10.1016/j.saa.2023.123780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
The basic systems in this study are HL (1; 1:2 condensation product of 2,6-diformyl-4-ethylphenol and o-anisidine) and its ZnII and CdII complexes of composition [ZnII(LH)Cl2]·CH3OH (2) and [CdII(LH)Cl2] (3), all of which are synthesized and characterized by CHN elemental analyses, single crystal X-ray crystallography, powder X-ray diffraction (PXRD) and fourier transform infrared (FT-IR) spectrum. It has been established from the following experimental and theoretical studies that 1 is a fluorescent turn on sensor of ZnII ion and it exhibits all of excited state intramolecular proton transfer (ESIPT), photoinduced electron transfer (PET), twisted intramolecular charge transfer (TICT) and aggregation induced enhanced emission (AIEE): (i) Detailed absorption and emission (steady state / time resolved) studies in various single solvents, in solvent mixtures, with pH variation, with various single metal ions, with mixtures of metal ions, on varying temperature and on varying viscosity; (ii) dynamic light scattering (DLS) and scanning electron microscopy (SEM) in solvent mixtures; (iii) density functional theory (DFT) and time dependent density functional theory (TD-DFT) calculations in ground and excites states of 1-3. It is shown that 1 can be efficaciously applied in inkless writing with the "write - erase - write" facility. The mechanisms/reasons of the observed properties have been addressed. The difference in fluorescence of ZnII and CdII complexes, unusual case of crystal structures of probe and complexes with ZnII and CdII, unusual features in the structures of 2 and 3 as well as a structure-property correlation have been discussed.
Collapse
Affiliation(s)
- Abhishek Pramanik
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
| | - Rampada Das
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India
| | - Palash Jyoti Boruah
- Department of Chemistry, National Institute of Technology, Meghalaya, Shillong, Meghalaya, 793003, India
| | - Samit Majumder
- Department of Chemistry, Bhairab Ganguly College, Feeder Road, Belghoria, Kolkata 700056, West Bengal, India.
| | - Sasankasekhar Mohanta
- Department of Chemistry, University of Calcutta, 92 A.P.C Road, Kolkata 700009, India.
| |
Collapse
|
43
|
Yang W, Yang W, Ma Y, Yan L, Ma X. A novel chromone Schiff base as Zn 2+ turn-on fluorescent chemosensor in a mixed solution. LUMINESCENCE 2024; 39:e4712. [PMID: 38481369 DOI: 10.1002/bio.4712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 01/04/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
In this study, a novel fluorescent chemosensor 1 based on chromone-3-carboxaldehyde Schiff base was synthesized and featured through nuclear magnetic resonance (NMR) and mass spectra. Spectroscopic investigation indicated that the fluorescent sensor showed high selectivity toward Zn2+ over other metal ions and that the detection limit of 1 could reach 10-7 M. These indicated that 1 acted as a highly selective and sensitive fluorescence chemosensor for Zn2+ .
Collapse
Affiliation(s)
- Wensheng Yang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Wan Yang
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Yajun Ma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Long Yan
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| | - Xiangrong Ma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, China
| |
Collapse
|
44
|
Kumar A, Chae PS. A Naphthoquinoline-Dione-Based Cu 2+ Sensing Probe with Visible Color Change and Fluorescence Quenching in an Aqueous Organic Solution. Molecules 2024; 29:808. [PMID: 38398561 PMCID: PMC10891706 DOI: 10.3390/molecules29040808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Copper metal ions (Cu2+) are widely used in various industries, and their salts are used as supplementary components in agriculture and medicine. As this metal ion is associated with various health issues, it is necessary to detect and monitor it in environmental and biological samples. In the present report, we synthesized a naphthoquinoline-dione-based probe 1 containing three ester groups to investigate its ability to detect metal ions in an aqueous solution. Among various metal ions, probe 1 showed a vivid color change from yellow to colorless in the presence of Cu2+, as observed by the naked eye. The ratiometric method using the absorbance ratio (A413/A476) resulted in a limit of detection (LOD) of 1 µM for Cu2+. In addition, the intense yellow-green fluorescence was quenched upon the addition of Cu2+, resulting in a calculated LOD of 5 nM. Thus, probe 1 has the potential for dual response toward Cu2+ detection through color change and fluorescence quenching. 1H-NMR investigation and density functional theory (DFT) calculations indicate 1:1 binding of the metal ion to the small cavity of the probe comprising four functional groups: the carbonyl group of the amide (O), the amino group (N), and two t-butyl ester groups (O). When adsorbed onto various solid surfaces, such as cotton, silica, and filter paper, the probe showed effective detection of Cu2+ via fluorescence quenching. Probe 1 was also useful for Cu2+ sensing in environmental samples (sea and drain water) and biological samples (live HeLa cells).
Collapse
Affiliation(s)
- Ashwani Kumar
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| | - Pil Seok Chae
- Department of Bionano Engineering, Hanyang University, Ansan 15588, Republic of Korea
| |
Collapse
|
45
|
Chen L, Li Y, Zhu J, Li Z, Wang W, Qi Z, Li D, Yao P, Bi Z, Sun C, Liu Y, Liu Z. Comprehensive Characterization of the C3HC4 RING Finger Gene Family in Potato ( Solanum tuberosum L.): Insights into Their Involvement in Anthocyanin Biosynthesis. Int J Mol Sci 2024; 25:2082. [PMID: 38396758 PMCID: PMC10889778 DOI: 10.3390/ijms25042082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/03/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
The C3HC4 RING finger gene (RING-HC) family is a zinc finger protein crucial to plant growth. However, there have been no studies on the RING-HC gene family in potato. In this study, 77 putative StRING-HCs were identified in the potato genome and grouped into three clusters based on phylogenetic relationships, the chromosome distribution, gene structure, conserved motif, gene duplication events, and synteny relationships, and cis-acting elements were systematically analyzed. By analyzing RNA-seq data of potato cultivars, the candidate StRING-HC genes that might participate in tissue development, abiotic stress, especially drought stress, and anthocyanin biosynthesis were further determined. Finally, a StRING-HC gene (Soltu.DM.09G017280 annotated as StRNF4-like), which was highly expressed in pigmented potato tubers was focused on. StRNF4-like localized in the nucleus, and Y2H assays showed that it could interact with the anthocyanin-regulating transcription factors (TFs) StbHLH1 of potato tubers, which is localized in the nucleus and membrane. Transient assays showed that StRNF4-like repressed anthocyanin accumulation in the leaves of Nicotiana tabacum and Nicotiana benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter activated by StAN1 and StbHLH1. The results suggest that StRNF4-like might repress anthocyanin accumulation in potato tubers by interacting with StbHLH1. Our comprehensive analysis of the potato StRING-HCs family contributes valuable knowledge to the understanding of their functions in potato development, abiotic stress, hormone signaling, and anthocyanin biosynthesis.
Collapse
Affiliation(s)
- Limin Chen
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China;
| | - Jinyong Zhu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhitao Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Weilu Wang
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zheying Qi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Dechen Li
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Panfeng Yao
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhenzhen Bi
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Chao Sun
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China; (L.C.); (Z.L.); (W.W.); (Z.Q.); (D.L.); (Z.B.); (C.S.)
| | - Yuhui Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Crop Improvement and Germplasm Enhancement, State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (J.Z.); (P.Y.)
| |
Collapse
|
46
|
Shrivastava D, Jha A, Kabrambam R, Vishwakarma J, Mitra K, Ramachandran R, Habib S. Plasmodium falciparum ZIP1 Is a Zinc-Selective Transporter with Stage-Dependent Targeting to the Apicoplast and Plasma Membrane in Erythrocytic Parasites. ACS Infect Dis 2024; 10:155-169. [PMID: 38163252 DOI: 10.1021/acsinfecdis.3c00426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Replication of the malarial parasite in human erythrocytes requires massive zinc fluxes, necessitating the action of zinc transporters across the parasite plasma and organellar membranes. Although genetic knockout studies have been conducted on a few "orphan" zinc transporters in Plasmodium spp., none of them have been functionally characterized. We used the recombinant Plasmodium falciparum Zrt-/Irt-like protein (PfZIP1) and specific antibodies generated against it to explore the subcellular localization, function, metal-ion selectivity, and response to cellular zinc levels. PfZIP1 expression was enhanced upon the depletion of cytosolic Zn2+. The protein transitioned from the processed to unprocessed form through blood stages, localizing to the apicoplast in trophozoites and to the parasite plasma membrane in schizonts and gametocytes, indicating stage-specific functional role. The PfZIP1 dimer mediated Zn2+ influx in proteoliposomes. It exhibited preferential binding to Zn2+ compared to Fe2+, with the selectivity for zinc being driven by a C-terminal histidine-rich region conserved only in primate-infecting Plasmodium species.
Collapse
Affiliation(s)
- Deepti Shrivastava
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akanksha Jha
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Rajlakshmi Kabrambam
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyoti Vishwakarma
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Kalyan Mitra
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Ravishankar Ramachandran
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| | - Saman Habib
- Division of Biochemistry and Structural Biology, CSIR-Central Drug Research Institute, Lucknow 226031, India
| |
Collapse
|
47
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
48
|
Wu L, Xu Y, Qi K, Jiang X, He M, Cui Y, Bao J, Gu C, Zhang S. Self S-RNase reduces the expression of two pollen-specific COBRA genes to inhibit pollen tube growth in pear. MOLECULAR HORTICULTURE 2023; 3:26. [PMID: 38037174 PMCID: PMC10691131 DOI: 10.1186/s43897-023-00074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
Due to self-incompatibility (SI) prevents self-fertilization, natural or artificial cross-pollination has been conducted in many orchards to stabilize fruit yield. However, it is still puzzled which routes of self S-RNase arresting pollen tube growth. Herein, 17 COBRA genes were isolated from pear genome. Of these genes, the pollen-specifically expressed PbCOB.A.1 and PbCOB.A.2 positively mediates pollen tube growth. The promoters of PbCOB.A.1 and/or PbCOB.A.2 were bound and activated by PbABF.E.2 (an ABRE-binding factor) and PbC2H2.K16.2 (a C2H2-type zinc finger protein). Notably, the expressions of PbCOB.A.1, PbCOB.A.2, and PbC2H2.K16.2 were repressed by self S-RNase, suggesting that self S-RNase reduces the expression of PbCOB.A.1 and PbCOB.A.2 by decreasing the expression of their upstream factors, such as PbC2H2.K16.2, to arrest pollen tube growth. PbCOB.A.1 or PbCOB.A.2 accelerates the growth of pollen tubes treated by self S-RNase, but can hardly affect level of reactive oxygen species and deploymerization of actin cytoskeleton in pollen tubes and cannot physically interact with any reported proteins involved in SI. These results indicate that PbCOB.A.1 and PbCOB.A.2 may not relieve S-RNase toxicity in incompatible pollen tube. The information provides a new route to elucidate the arresting pollen tube growth during SI reaction.
Collapse
Affiliation(s)
- Lei Wu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ying Xu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xueting Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Min He
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yanbo Cui
- Nanjing Ningcui Biological Seed Company Limited, Nanjing, Jiangsu, China
| | - Jianping Bao
- College of Plant Science, Tarim University, Alaer, Xinjiang, 843300, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu, China.
| |
Collapse
|
49
|
Rua AJ, Whitehead RD, Alexandrescu AT. NMR structure verifies the eponymous zinc finger domain of transcription factor ZNF750. J Struct Biol X 2023; 8:100093. [PMID: 37655311 PMCID: PMC10465944 DOI: 10.1016/j.yjsbx.2023.100093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/03/2023] [Indexed: 09/02/2023] Open
Abstract
ZNF750 is a nuclear transcription factor that activates skin differentiation and has tumor suppressor roles in several cancers. Unusually, ZNF750 has only a single zinc-finger (ZNF) domain, Z*, with an amino acid sequence that differs markedly from the CCHH family consensus. Because of its sequence differences Z* is classified as degenerate, presumed to have lost the ability to bind the zinc ion required for folding. AlphaFold predicts an irregular structure for Z* with low confidence. Low confidence predictions are often inferred to be intrinsically disordered regions of proteins, which would be the case if Z* did not bind Zn2+. We use NMR and CD spectroscopy to show that a 25-51 segment of ZNF750 corresponding to the Z* domain folds into a well-defined antiparallel ββα tertiary structure with a pM dissociation constant for Zn2+ and a thermal stability >80 °C. Of three alternative Zn2+ ligand sets, Z* uses a CCHC rather than the expected CCHH ligating motif. The switch in the last ligand maintains the folding topology and hydrophobic core of the classical ZNF motif. CCHC ZNFs are typically associated with protein-protein interactions, raising the possibility that ZNF750 interacts with DNA through other proteins rather than directly. The structure of Z* provides context for understanding the function of the domain and its cancer-associated mutations. We expect other ZNFs currently classified as degenerate could be CCHC-type structures like Z*.
Collapse
Affiliation(s)
- Antonio J. Rua
- Department of Molecular and Cellular Biology, University of Connecticut, United States
| | - Richard D. Whitehead
- Department of Molecular and Cellular Biology, University of Connecticut, United States
| | | |
Collapse
|
50
|
Lu G, Jia Z, Yu M, Zhang M, Xu C. A Ratiometric Fluorescent Sensor Based on Chelation-Enhanced Fluorescence of Carbon Dots for Zinc Ion Detection. Molecules 2023; 28:7818. [PMID: 38067546 PMCID: PMC10708225 DOI: 10.3390/molecules28237818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/18/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Zinc ion, one of the most important transition metal ions in living organisms, plays a crucial role in the homeostasis of the organism. The disorder of zinc is associated with many major diseases. It is highly desirable to develop selective and sensitive methods for the real-time detection of zinc ions. In this work, double-emitting fluorescent carbon dots (CDs) are prepared by a solvothermal method using glutathione, L-aspartic acid, and formamide as the raw materials. The carbon dots specifically recognize zine ions and produce a decrease in fluorescence intensity at 684 nm and an increase at 649 nm, leading to a ratiometric fluorescent sensor for zinc detection. Through surface modification and spectral analysis, the surface groups including carboxyl, carbonyl, hydroxyl, and amino groups, and C=N in heterocycles of CDs are revealed to synergistically coordinate Zn2+, inducing the structural changes in the emission site. The CDs can afford a low limit of detection of ~5 nM for Zn2+ detection with good linearity in the range of 0.02-5 μM, showing good selectivity as well. The results from real samples including fetal bovine serum, milk powder, and zinc gluconate oral solution indicated the good applicability of the CDs in the determination of Zn2+.
Collapse
Affiliation(s)
- Guangrong Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| | - Zhenzhen Jia
- School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Z.J.); (M.Y.)
| | - Mengdi Yu
- School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Z.J.); (M.Y.)
| | - Mingzhen Zhang
- School of Basic Medical Sciences, Health Science Center, Xi’an Jiaotong University, Xi’an 710061, China; (Z.J.); (M.Y.)
| | - Changlong Xu
- Department of Gastroenterology, The Second Affiliated Hospital, Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou 325000, China;
| |
Collapse
|