1
|
Dong B, Chen Y, Wang X, Li J, Zhang S, Kang X, Li Y, Li B, Liao L, Zhang Z, Xiong J, Shao L, Huang S, Feng Y, Jiang T. Development of a highly sensitive luciferase assay for intracellular evaluation of coronavirus Mpro activity. Front Microbiol 2025; 16:1560251. [PMID: 40241735 PMCID: PMC12000094 DOI: 10.3389/fmicb.2025.1560251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/06/2025] [Indexed: 04/18/2025] Open
Abstract
COVID-19, caused by SARS-CoV-2 virus, has emerged as a global threat to human health. The main protease (Mpro) of SARS-CoV-2 is an excellent target for the development of antiviral drugs against COVID-19, and various protease biosensors have been developed to evaluate anti-coronavirus drugs. However, the application of these protease biosensors was limited due to high background fluorescence, poor signal-to-noise ratios, and constraints in enzyme activity thresholds for accessing live viruses. In this study, we rationally designed a highly conserved Mpro cleavage site sequence among different coronaviruses (CoVs) with high proteolytic activity, and described an intracellular coronavirus Mpro proteolytic (ICMP) reporter system that takes advantage of virus-encoded Mpro expressed in infected cells to reform the NanoBiT fluorescent protein. The system can be used to visualize and identify cells infected with coronavirus, and demonstrated high compatibility with various Mpro proteins from 13 different mammalian coronaviruses (covering α, β, γ, and δ CoVs), exhibiting at least a 1,030-fold increase in luminescence. Stronger Nluc signals were detectable with CoV 229E virus infection at a MOI of 0.001. Additionally, the system proved suitable for evaluating and screening of antiviral compounds, including lufotrelvir, GC376, Nirmatrelvir, X77, MG-101, and the potential inhibitor Cynaroside. The ICMP system is not only an invaluable tool for the detection of live coronaviruses, but also for the discovery of antivirals against current and future pandemic coronaviruses.
Collapse
Affiliation(s)
- Bao Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuehong Chen
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xin Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jing Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Sen Zhang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Xiaoping Kang
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Yuchang Li
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Biao Li
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Liangning Liao
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Zhengwei Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jiaqi Xiong
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
| | - Lele Shao
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Shenghai Huang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Ye Feng
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
| | - Tao Jiang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing, China
- School of Public Health, Mudanjiang Medical University, Mudanjiang, China
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
2
|
Liang L, Zhang Z, You Q, Guo X. Recent advances in the design of small molecular drugs with acrylamides covalent warheads. Bioorg Med Chem 2024; 112:117902. [PMID: 39236467 DOI: 10.1016/j.bmc.2024.117902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/07/2024]
Abstract
In the development of covalent inhibitors, acrylamides warhead is one of the most popular classes of covalent warheads. In recent years, researchers have made different structural modifications to acrylamides warheads, resulting in the creation of fluorinated acrylamide warheads and cyano acrylamide warheads. These new warheads exhibit superior selectivity, intracellular accumulation, and pharmacokinetic properties. Additionally, although ketoamide warheads have been applied in the design of covalent inhibitors for viral proteins, it has not received sufficient attention. Combined with the studies in kinase inhibitors and antiviral drugs, this review presents the structural features and the progression of acrylamides warheads, offering a perspective on future research and development in this field.
Collapse
Affiliation(s)
- Luxia Liang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ze Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaoke Guo
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
3
|
Spieß P, Brześkiewicz J, Maulide N. Deprotective Lossen rearrangement: a direct and general transformation of Nms-amides to unsymmetrical ureas. Chem Sci 2024:d4sc04974h. [PMID: 39268216 PMCID: PMC11385062 DOI: 10.1039/d4sc04974h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024] Open
Abstract
Ureas stand out as potent pharmacophores in drug development, rendering them a prime focus for synthesis. Herein, we present an appealing entry point for urea synthesis from protected amines (Nms-amides) and relying on a Lossen-type rearrangement process as an elegant example of deprotective functionalisation. The method developed exhibits an exceptionally broad tolerance towards various protected amines, encompassing numerous drug derivatives, and delivers high reaction yields.
Collapse
Affiliation(s)
- Philipp Spieß
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| | - Jakub Brześkiewicz
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| | - Nuno Maulide
- Institute of Organic Chemistry, University of Vienna Währinger Strasse 38 1090 Vienna Austria
| |
Collapse
|
4
|
Chen J, Zhang L, Wang Z, Liu L, Tu L, Zhang Y, Chen Y, Han W. De Novo Synthesis of α-Ketoamides via Pd/TBD Synergistic Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404266. [PMID: 38986026 PMCID: PMC11425860 DOI: 10.1002/advs.202404266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/17/2024] [Indexed: 07/12/2024]
Abstract
Precisely controlling the product selectivity of a reaction is an important objective in organic synthesis. α-Ketoamides are vital intermediates in chemical transformations and privileged motifs in numerous drugs, natural products, and biologically active molecules. The selective synthesis of α-ketoamides from feedstock chemicals in a safe and operationally simple manner under mild conditions is a long-standing catalysis challenge. Herein, an unprecedented TBD-switched Pd-catalyzed double isocyanide insertion reaction for assembling ketoamides in aqueous DMSO from (hetero)aryl halides and pseudohalides under mild conditions is reported. The effectiveness and utility of this protocol are demonstrated by its diverse substrate scope (93 examples), the ability to late-stage modify pharmaceuticals, scalability to large-scale synthesis, and the synthesis of pharmaceutically active molecules. Mechanistic studies indicate that TBD is a key ligand that modulates the Pd-catalyzed double isocyanide insertion process, thereby selectively providing the desired α-ketoamides in a unique manner. In addition, the imidoylpalladium(II) complex and α-ketoimine amide are successfully isolated and determined by X-ray analysis, confirming that they are probable intermediates in the catalytic pathway.
Collapse
Affiliation(s)
- Jia‐He Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Li‐Ren Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Zhang‐Yang Wang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Lu‐Jie Liu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Li‐Ping Tu
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Yun Zhang
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou ProvinceGeneric Drug Research Center of Guizhou ProvinceGreen Pharmaceuticals Engineering Research Center of Guizhou ProvinceSchool of Pharmacy, Zunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of EducationZunyi Medical UniversityNo. 6 West Xuefu Rd.Zunyi563006China
| |
Collapse
|
5
|
Iman K, Mirza MU, Sadia F, Froeyen M, Trant JF, Chaudhary SU. Pharmacophore-Assisted Covalent Docking Identifies a Potential Covalent Inhibitor for Drug-Resistant Genotype 3 Variants of Hepatitis C Viral NS3/4A Serine Protease. Viruses 2024; 16:1250. [PMID: 39205224 PMCID: PMC11359326 DOI: 10.3390/v16081250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 07/28/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
The emergence of drug-resistance-inducing mutations in Hepatitis C virus (HCV) coupled with genotypic heterogeneity has made targeting NS3/4A serine protease difficult. In this work, we investigated the mutagenic variations in the binding pocket of Genotype 3 (G3) HCV NS3/4A and evaluated ligands for efficacious inhibition. We report mutations at 14 positions within the ligand-binding residues of HCV NS3/4A, including H57R and S139P within the catalytic triad. We then modelled each mutational variant for pharmacophore-based virtual screening (PBVS) followed by covalent docking towards identifying a potential covalent inhibitor, i.e., cpd-217. The binding stability of cpd-217 was then supported by molecular dynamic simulation followed by MM/GBSA binding free energy calculation. The free energy decomposition analysis indicated that the resistant mutants alter the HCV NS3/4A-ligand interaction, resulting in unbalanced energy distribution within the binding site, leading to drug resistance. Cpd-217 was identified as interacting with all NS3/4A G3 variants with significant covalent docking scores. In conclusion, cpd-217 emerges as a potential inhibitor of HCV NS3/4A G3 variants that warrants further in vitro and in vivo studies. This study provides a theoretical foundation for drug design and development targeting HCV G3 NS3/4A.
Collapse
Affiliation(s)
- Kanzal Iman
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Muhammad Usman Mirza
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Fazila Sadia
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| | - Matheus Froeyen
- Department of Pharmaceutical and Pharmacological Sciences, Rega Institute for Medical Research, KU Leuven—University of Leuven, B-3000 Leuven, Belgium;
| | - John F. Trant
- Department of Chemistry & Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada;
| | - Safee Ullah Chaudhary
- Biomedical Informatics & Engineering Research Laboratory, Department of Life Sciences, Lahore University of Management Sciences, Lahore 36000, Pakistan; (K.I.); (F.S.)
| |
Collapse
|
6
|
Alade AA, Ahmed SA, Mujwar S, Kikiowo B, Akinnusi PA, Olubode SO, Olufemi OM, Ohilebo AA. Identification of levomenthol derivatives as potential dipeptidyl peptidase-4 inhibitors: a comparative study with gliptins. J Biomol Struct Dyn 2024; 42:4029-4047. [PMID: 37261796 DOI: 10.1080/07391102.2023.2217927] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/20/2023] [Indexed: 06/02/2023]
Abstract
Dipeptidyl peptidase-4 (DPP4) inhibitors are a potent therapeutic treatment for type 2 diabetes mellitus (T2DM). There is a family of compounds used as DPP4 inhibitors (DPP4Is) called gliptins. They bind tightly to DPP4 to form an inactive protein-ligand complex. However, there remains a need to identify novel DPP4Is that are more efficacious and safer due to the increasing prevalence of T2DM and the undesirable side effects of gliptins. To identify potential DPP4Is, we screened over 1800 novel compounds in a comparative study with gliptins. We performed dual-factor molecular docking to assess the binding affinity of the compounds to DPP4 and found four compounds with a higher binding affinity to DPP4 than currently used gliptins. The newly identified compounds interacted with the dyad glutamate (GLU205 and GLU206) and tyrosine (TYR662 and TYR666) residues in DPP4's active site. We performed molecular dynamics simulations to determine the stability of the protein-ligand complexes formed by the compounds and DPP4. Furthermore, we examined the toxicity and pharmacological profile of the compounds. The compounds are drug-like, easy to synthesize, and relatively less toxic than gliptins. Collectively, our results suggest that the novel compounds are potential DPP4Is and should be considered for further studies to develop novel antidiabetics.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Adebowale A Alade
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Samad A Ahmed
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Punjab, Rajpura, India
| | | | | | - Samuel O Olubode
- Department of Biochemistry, Adekunle Ajasin University, Ondo, Nigeria
| | | | - Abass A Ohilebo
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Ali University Ekpoma, Edo, Nigeria
| |
Collapse
|
7
|
She Z, Yao Y, Wang C, Li Y, Xiong X, Liu Y. M pro-targeted anti-SARS-CoV-2 inhibitor-based drugs. JOURNAL OF CHEMICAL RESEARCH 2023; 47:17475198231184799. [PMID: 37455837 PMCID: PMC10333551 DOI: 10.1177/17475198231184799] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
The COVID-19 pandemic caused by severe acute respiratory syndrome coronavirus 2 is a global health emergency. The main protease is an important drug target in coronaviruses. It plays an important role in the processing of viral RNA-translated polyproteins and is highly conserved in the amino acid sequence and three-dimensional structure, making it a good drug target for which several small molecule inhibitors are available. This paper describes the various anti-severe acute respiratory syndrome coronavirus 2 inhibitor drugs targeting Mpro discovered since the severe acute respiratory syndrome coronavirus 2 outbreak at the end of 2019, with all these compounds inhibiting severe acute respiratory syndrome coronavirus 2 Mpro activity in vitro. This provides a reference for the development of severe acute respiratory syndrome coronavirus 2 Mpro-targeted inhibitors and the design of therapeutic approaches to address newly emerged severe acute respiratory syndrome coronavirus 2 mutant strains with immune evasion capabilities.
Collapse
Affiliation(s)
- Zhuxin She
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Yinuo Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Conglong Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Yi Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Xiaohui Xiong
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Yuanyuan Liu
- School of Pharmaceutical and Chemical Engineering, ChengXian College, Southeast University, Nanjing, P.R. China
| |
Collapse
|
8
|
Wu Z, Zhu X, Hong A, He G, Wang Z, Xu Q, Hu Z, Wu X, Wang Y, Chen Q, Zhao X, Li L, Deng X. Discovery of urea-based pleuromutilin derivatives as potent gram-positive antibacterial agents. Bioorg Chem 2023; 136:106547. [PMID: 37105000 DOI: 10.1016/j.bioorg.2023.106547] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/03/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
There is an urgent need to discover new antibacterial drugs and provide new treatment options for clinical antimicrobial resistance (AMR) pathogen infections. Inspired by the structural insights from analyzing the co-crystal structure of lefamulin with the ribosomes of S. aureus, a series of novel pleuromutilin derivatives of phenylene sulfide incorporated with urea moiety were designed and synthesized. The structure-activity relationship (SAR) study revealed that derivatives with urea in the meta position of phenylene sulfide had optimal antibacterial activities in vitro. Among them, 21h was the most potent one against Methicillin-resistant Staphylococcus aureus (MRSA) and clinical AMR Gram-positive bacteria with minimum inhibitory concentrations (MICs) in the range of 0.00195-0.250 μg/mL. And it possessed low resistance frequency, prolonged Post-Antibiotic Effect and the capability to overcome lefamulin-induced resistance. Furthermore, 21h exhibited potent antibacterial activity in vivo in both the thigh infection model and trauma infection model, representing a promising lead for the development of new antibiotics against Gram-positive pathogens, especially for AMR bacteria.
Collapse
Affiliation(s)
- Zhenhua Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoli Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Guanghui He
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zheng Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaobing Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qiufang Chen
- Women and Children's Hospital, School of Medicine, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Xilin Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
9
|
Ghosh AK, Mishevich JL, Mesecar A, Mitsuya H. Recent Drug Development and Medicinal Chemistry Approaches for the Treatment of SARS-CoV-2 Infection and COVID-19. ChemMedChem 2022; 17:e202200440. [PMID: 36165855 PMCID: PMC9538661 DOI: 10.1002/cmdc.202200440] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/21/2022] [Indexed: 01/14/2023]
Abstract
COVID-19, caused by SARS-CoV-2 infection, continues to be a major public health crisis around the globe. Development of vaccines and the first cluster of antiviral drugs has brought promise and hope for prevention and treatment of severe coronavirus disease. However, continued development of newer, safer, and more effective antiviral drugs are critically important to combat COVID-19 and counter the looming pathogenic variants. Studies of the coronavirus life cycle revealed several important biochemical targets for drug development. In the present review, we focus on recent drug design and medicinal chemistry efforts in small molecule drug discovery, including the development of nirmatrelvir that targets viral protein synthesis and remdesivir and molnupiravir that target viral RdRp. These are recent FDA approved drugs for the treatment of COVID-19.
Collapse
Affiliation(s)
- Arun K Ghosh
- Purdue UniversityDepartments of Chemistry and Medicinal Chemistry560 Oval Drive47907West LafayetteUNITED STATES
| | | | - Andrew Mesecar
- Purdue University College of ScienceBiochemistryUNITED STATES
| | - Hiroaki Mitsuya
- National Cancer InstituteHIV and AIDS Malignancy BranchUNITED STATES
| |
Collapse
|
10
|
Mosayebnia M, Hajiagha Bozorgi A, Rezaeianpour M, Kobarfard F. In silico prediction of SARS-CoV-2 main protease and polymerase inhibitors: 3D-Pharmacophore modelling. J Biomol Struct Dyn 2022; 40:6569-6586. [PMID: 33599180 PMCID: PMC7898304 DOI: 10.1080/07391102.2021.1886991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/02/2021] [Indexed: 01/18/2023]
Abstract
The outbreak of the second severe acute respiratory syndrome coronavirus (SARS-CoV-2) known as COVID-19 has caused global concern. No effective vaccine or treatment to control the virus has been approved yet. Social distancing and precautionary protocols are still the only way to prevent person-to-person transmission. We hope to identify anti-COVID-19 activity of the existing drugs to overcome this pandemic as soon as possible. The present study used HEX and AutoDock Vina softwares to predict the affinity of about 100 medicinal structures toward the active site of 3-chymotrypsin-like protease (3Clpro) and RNA-dependent RNA polymerase (RdRp), separately. Afterwards, MOE software and the pharmacophore-derived query methodology were employed to determine the pharmacophore model of their inhibitors. Tegobuvir (19) and compound 45 showed the best binding affinity toward RdRp and 3Clpro of SARS-CoV-2 in silico, respectively. Tegobuvir -previously applied for hepatitis C virus- formed highly stable complex with uncommon binding pocket of RdRp (E total: -707.91 Kcal/mol) in silico. In addition to compound 45, tipranavir (28) and atazanavir (26) as FDA-approved HIV protease inhibitors were tightly interacted with the active site of SARS-CoV-2 main protease as well. Based on pharmacophore modelling, a good structural pattern for potent candidates against SARS-CoV-2 main enzymes is suggested. Re-tasking or taking inspiration from the structures of tegobuvir and tipranavir can be a proper approach toward coping with the COVID-19 in the shortest possible time and at the lowest cost.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mona Mosayebnia
- Department of Radiopharmacy and Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefeh Hajiagha Bozorgi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Alborz University of Medical Sciences, Karaj, Iran
| | - Maliheh Rezaeianpour
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberclosis and Lung Diseases (NRTLD), Shahid Beheshti University of Medical sciences, Tehran, Iran
| | - Farzad Kobarfard
- Department of Radiopharmacy and Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Fagnani L, Nazzicone L, Bellio P, Franceschini N, Tondi D, Verri A, Petricca S, Iorio R, Amicosante G, Perilli M, Celenza G. Protocetraric and Salazinic Acids as Potential Inhibitors of SARS-CoV-2 3CL Protease: Biochemical, Cytotoxic, and Computational Characterization of Depsidones as Slow-Binding Inactivators. Pharmaceuticals (Basel) 2022; 15:ph15060714. [PMID: 35745633 PMCID: PMC9227325 DOI: 10.3390/ph15060714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 11/25/2022] Open
Abstract
The study investigated the inhibitory activity of protocetraric and salazinic acids against SARS-CoV-2 3CLpro. The kinetic parameters were determined by microtiter plate-reading fluorimeter using a fluorogenic substrate. The cytotoxic activity was tested on murine Sertoli TM4 cells. In silico analysis was performed to ascertain the nature of the binding with the 3CLpro. The compounds are slow-binding inactivators of 3CLpro with a Ki of 3.95 μM and 3.77 μM for protocetraric and salazinic acid, respectively, and inhibitory efficiency kinact/Ki at about 3 × 10−5 s−1µM−1. The mechanism of inhibition shows that both compounds act as competitive inhibitors with the formation of a stable covalent adduct. The viability assay on epithelial cells revealed that none of them shows cytotoxicity up to 80 μM, which is well below the Ki values. By molecular modelling, we predicted that the catalytic Cys145 makes a nucleophilic attack on the carbonyl carbon of the cyclic ester common to both inhibitors, forming a stably acyl-enzyme complex. The computational and kinetic analyses confirm the formation of a stable acyl-enzyme complex with 3CLpro. The results obtained enrich the knowledge of the already numerous biological activities exhibited by lichen secondary metabolites, paving the way for developing promising scaffolds for the design of cysteine enzyme inhibitors.
Collapse
Affiliation(s)
- Lorenza Fagnani
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Lisaurora Nazzicone
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
- Correspondence: (P.B.); (D.T.)
| | - Nicola Franceschini
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
- Correspondence: (P.B.); (D.T.)
| | - Andrea Verri
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125 Modena, Italy;
| | - Sabrina Petricca
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Roberto Iorio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Gianfranco Amicosante
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Mariagrazia Perilli
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy; (L.F.); (L.N.); (N.F.); (S.P.); (R.I.); (G.A.); (M.P.); (G.C.)
| |
Collapse
|
12
|
Lv Z, Cano KE, Jia L, Drag M, Huang TT, Olsen SK. Targeting SARS-CoV-2 Proteases for COVID-19 Antiviral Development. Front Chem 2022; 9:819165. [PMID: 35186898 PMCID: PMC8850931 DOI: 10.3389/fchem.2021.819165] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022] Open
Abstract
The emergence of severe acute respiratory syndrome (SARS-CoV-2) in 2019 marked the third occurrence of a highly pathogenic coronavirus in the human population since 2003. As the death toll surpasses 5 million globally and economic losses continue, designing drugs that could curtail infection and disease progression is critical. In the US, three highly effective Food and Drug Administration (FDA)-authorized vaccines are currently available, and Remdesivir is approved for the treatment of hospitalized patients. However, moderate vaccination rates and the sustained evolution of new viral variants necessitate the ongoing search for new antivirals. Several viral proteins have been prioritized as SARS-CoV-2 antiviral drug targets, among them the papain-like protease (PLpro) and the main protease (Mpro). Inhibition of these proteases would target viral replication, viral maturation, and suppression of host innate immune responses. Knowledge of inhibitors and assays for viruses were quickly adopted for SARS-CoV-2 protease research. Potential candidates have been identified to show inhibitory effects against PLpro and Mpro, both in biochemical assays and viral replication in cells. These results encourage further optimizations to improve prophylactic and therapeutic efficacy. In this review, we examine the latest developments of potential small-molecule inhibitors and peptide inhibitors for PLpro and Mpro, and how structural biology greatly facilitates this process.
Collapse
Affiliation(s)
- Zongyang Lv
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kristin E. Cano
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lijia Jia
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Marcin Drag
- Department of Chemical Biology and Bioimaging, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Tony T. Huang
- Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY, United States
| | - Shaun K. Olsen
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
13
|
Hu H, Yu T, Cheng S, Li J, Gan C, Luo S, Zhu Q. Palladium-catalyzed tandem Heck/carbonylation/aminocarbonylation en route to chiral heterocyclic α-ketoamides. Org Chem Front 2022. [DOI: 10.1039/d1qo01680f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
An unprecedented tandem carbonylation/aminocarbonylation triggered by palladium-catalyzed enantioselective Heck-type exocyclopalladation delivering chiral heterocyclic α-ketoamides has been developed.
Collapse
Affiliation(s)
- Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Sidi Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Jing Li
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
| | - Chunfang Gan
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No.19(A) Yuquan Road, Shijingshan District, Beijing, 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), 510005 Guangzhou, China
| |
Collapse
|
14
|
Song X, Liu X, Yu W, Jin Y. Amide-Assisted Rearrangement of Hydroxyarylformimidoyl Chloride to Diarylurea. Molecules 2021; 26:6437. [PMID: 34770846 PMCID: PMC8587945 DOI: 10.3390/molecules26216437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 11/26/2022] Open
Abstract
A novel amide-assisted rearrangement reaction of hydroxybenzimidoyl chloride has been established for the efficient synthesis of 1,3-diphenylurea derivatives. A variety of electronically and sterically different 1,3-diphenylurea derivatives can be obtained in good to excellent yields, and a proposed reaction mechanism is also presented.
Collapse
Affiliation(s)
- Xizhong Song
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; (X.S.); (X.L.)
- Jianxi Nafutang Pharmaceutical Co., Ltd., Zhangshu 331200, China
| | - Xiaoyu Liu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; (X.S.); (X.L.)
| | - Wei Yu
- 920th Hospital of Joint Logistics Support Force, PLA, Kunming 650118, China
| | - Yi Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China; (X.S.); (X.L.)
| |
Collapse
|
15
|
Could Probiotics and Postbiotics Function as "Silver Bullet" in the Post-COVID-19 Era? Probiotics Antimicrob Proteins 2021; 13:1499-1507. [PMID: 34386940 PMCID: PMC8360758 DOI: 10.1007/s12602-021-09833-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/14/2022]
Abstract
We are currently experiencing the realities of the most severe pandemic within living memory, with major impacts on the health and economic well-being of our planet. The scientific community has demonstrated an unprecedented mobilization capability, with the rapid development of vaccines and drugs targeting the protection of human life and palliative measures for infected individuals. However, are we adequately prepared for ongoing defense against COVID-19 and its variants in the post-pandemic world? Moreover, are we equipped to provide a satisfactory quality of life for individuals who are recovering from COVID-19 disease? What are the possibilities for the acceleration of the recovery process? Here, we give special consideration to the potential and already-demonstrated role of probiotics and traditional medical approaches to the management of current and potential future encounters with our major virus adversaries.
Collapse
|
16
|
Mirzaie S, Abdi F, GhavamiNejad A, Lu B, Wu XY. Covalent Antiviral Agents. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:285-312. [PMID: 34258745 DOI: 10.1007/978-981-16-0267-2_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Nowadays, many viral infections have emerged and are taking a huge toll on human lives globally. Meanwhile, viral resistance to current drugs has drastically increased. Hence, there is a pressing need to design potent broad-spectrum antiviral agents to treat a variety of viral infections and overcome viral resistance. Covalent inhibitors have the potential to achieve both goals owing to their biochemical efficiency, prolonged duration of action, and the capability to inhibit shallow, solvent-exposed substrate-binding domains. In this chapter, we review the structures, activities, and inhibition mechanisms of covalent inhibitors against severe acute respiratory syndrome coronavirus 2, dengue virus, enterovirus, hepatitis C virus, human immunodeficiency virus, and influenza viruses. We also discuss the application of in silico study in covalent inhibitor design.
Collapse
Affiliation(s)
- Sako Mirzaie
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada.
| | - Fatemeh Abdi
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Amin GhavamiNejad
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Brian Lu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Xiao Yu Wu
- Advanced Pharmaceutics and Drug Delivery Laboratory, Leslie L. Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
17
|
Robello M, Barresi E, Baglini E, Salerno S, Taliani S, Settimo FD. The Alpha Keto Amide Moiety as a Privileged Motif in Medicinal Chemistry: Current Insights and Emerging Opportunities. J Med Chem 2021; 64:3508-3545. [PMID: 33764065 PMCID: PMC8154582 DOI: 10.1021/acs.jmedchem.0c01808] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over the years, researchers in drug discovery have taken advantage of the use of privileged structures to design innovative hit/lead molecules. The α-ketoamide motif is found in many natural products, and it has been widely exploited by medicinal chemists to develop compounds tailored to a vast range of biological targets, thus presenting clinical potential for a plethora of pathological conditions. The purpose of this perspective is to provide insights into the versatility of this chemical moiety as a privileged structure in drug discovery. After a brief analysis of its physical-chemical features and synthetic procedures to obtain it, α-ketoamide-based classes of compounds are reported according to the application of this motif as either a nonreactive or reactive moiety. The goal is to highlight those aspects that may be useful to understanding the perspectives of employing the α-ketoamide moiety in the rational design of compounds able to interact with a specific target.
Collapse
Affiliation(s)
- Marco Robello
- Synthetic Bioactive Molecules Section, LBC, NIDDK, NIH, 8 Center Drive, Room 404, Bethesda, Maryland 20892, United States
| | - Elisabetta Barresi
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Emma Baglini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Silvia Salerno
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Federico Da Settimo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
18
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
19
|
Nimgaonkar I, Archer NF, Becher I, Shahrad M, LeDesma RA, Mateus A, Caballero-Gómez J, Berneshawi AR, Ding Q, Douam F, Gaska JM, Savitski MM, Kim H, Ploss A. Isocotoin suppresses hepatitis E virus replication through inhibition of heat shock protein 90. Antiviral Res 2021; 185:104997. [PMID: 33326835 PMCID: PMC8649941 DOI: 10.1016/j.antiviral.2020.104997] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 11/21/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Hepatitis E virus (HEV) causes 14 million infections and 60,000 deaths per year globally, with immunocompromised persons and pregnant women experiencing severe symptoms. Although ribavirin can be used to treat chronic hepatitis E, toxicity in pregnant patients and the emergence of resistant strains are major concerns. Therefore there is an imminent need for effective HEV antiviral agents. The aims of this study were to develop a drug screening platform and to discover novel approaches to targeting steps within the viral life cycle. We developed a screening platform for molecules inhibiting HEV replication and selected a candidate, isocotoin. Isocotoin inhibits HEV replication through interference with heat shock protein 90 (HSP90), a host factor not previously known to be involved in HEV replication. Additional work is required to understand the compound's translational potential, however this suggests that HSP90-modulating molecules, which are in clinical development as anti-cancer agents, may be promising therapies against HEV.
Collapse
Affiliation(s)
- Ila Nimgaonkar
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Nicholas F Archer
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Isabelle Becher
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Mohammad Shahrad
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Robert A LeDesma
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - André Mateus
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Javier Caballero-Gómez
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Andrew R Berneshawi
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Qiang Ding
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Florian Douam
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Jenna M Gaska
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA
| | - Mikhail M Savitski
- Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hahn Kim
- Princeton University Small Molecule Screening Center, Frick Laboratory, Princeton University, Princeton, NJ, USA; Department of Chemistry, Frick Laboratory, Princeton University, Princeton, NJ, USA
| | - Alexander Ploss
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
20
|
Fu L, Ye F, Feng Y, Yu F, Wang Q, Wu Y, Zhao C, Sun H, Huang B, Niu P, Song H, Shi Y, Li X, Tan W, Qi J, Gao GF. Both Boceprevir and GC376 efficaciously inhibit SARS-CoV-2 by targeting its main protease. Nat Commun 2020; 11:4417. [PMID: 32887884 PMCID: PMC7474075 DOI: 10.1038/s41467-020-18233-x] [Citation(s) in RCA: 395] [Impact Index Per Article: 79.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/22/2020] [Indexed: 01/08/2023] Open
Abstract
COVID-19 was declared a pandemic on March 11 by WHO, due to its great threat to global public health. The coronavirus main protease (Mpro, also called 3CLpro) is essential for processing and maturation of the viral polyprotein, therefore recognized as an attractive drug target. Here we show that a clinically approved anti-HCV drug, Boceprevir, and a pre-clinical inhibitor against feline infectious peritonitis (corona) virus (FIPV), GC376, both efficaciously inhibit SARS-CoV-2 in Vero cells by targeting Mpro. Moreover, combined application of GC376 with Remdesivir, a nucleotide analogue that inhibits viral RNA dependent RNA polymerase (RdRp), results in sterilizing additive effect. Further structural analysis reveals binding of both inhibitors to the catalytically active side of SARS-CoV-2 protease Mpro as main mechanism of inhibition. Our findings may provide critical information for the optimization and design of more potent inhibitors against the emerging SARS-CoV-2 virus.
Collapse
Affiliation(s)
- Lifeng Fu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Influenza Research and Early Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, 100101, Beijing, China
| | - Fei Ye
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Yong Feng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Feng Yu
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Qisheng Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Yan Wu
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101, Beijing, China
- Department of Pathogen Microbiology, School of Basic Medical Sciences, Capital Medical University, 100069, Beijing, China
| | - Cheng Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Huan Sun
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Peihua Niu
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, China CDC, 102206, Beijing, China
| | - Hao Song
- Research Network of Immunity and Health (RNIH), Beijing Institutes of Life Science, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- Center for Influenza Research and Early Warning (CASCIRE), CAS-TWAS Center of Excellence for Emerging Infectious Disease (CEEID), Chinese Academy of Sciences, 100101, Beijing, China
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xuebing Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - Wenjie Tan
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control & Prevention, Chinese Center for Disease Control and Prevention, China CDC, 102206, Beijing, China.
| | - Jianxun Qi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- Savaid Medical School, University of Chinese Academy of Sciences, 100049, Beijing, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
21
|
Wyatt JW, Korasick DA, Qureshi IA, Campbell AC, Gates KS, Tanner JJ. Inhibition, crystal structures, and in-solution oligomeric structure of aldehyde dehydrogenase 9A1. Arch Biochem Biophys 2020; 691:108477. [PMID: 32717224 DOI: 10.1016/j.abb.2020.108477] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 10/23/2022]
Abstract
Aldehyde dehydrogenase 9A1 (ALDH9A1) is a human enzyme that catalyzes the NAD+-dependent oxidation of the carnitine precursor 4-trimethylaminobutyraldehyde to 4-N-trimethylaminobutyrate. Here we show that the broad-spectrum ALDH inhibitor diethylaminobenzaldehyde (DEAB) reversibly inhibits ALDH9A1 in a time-dependent manner. Possible mechanisms of inhibition include covalent reversible inactivation involving the thiohemiacetal intermediate and slow, tight-binding inhibition. Two crystal structures of ALDH9A1 are reported, including the first of the enzyme complexed with NAD+. One of the structures reveals the active conformation of the enzyme, in which the Rossmann dinucleotide-binding domain is fully ordered and the inter-domain linker adopts the canonical β-hairpin observed in other ALDH structures. The oligomeric structure of ALDH9A1 was investigated using analytical ultracentrifugation, small-angle X-ray scattering, and negative stain electron microscopy. These data show that ALDH9A1 forms the classic ALDH superfamily dimer-of-dimers tetramer in solution. Our results suggest that the presence of an aldehyde substrate and NAD+ promotes isomerization of the enzyme into the active conformation.
Collapse
Affiliation(s)
- Jesse W Wyatt
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States
| | - David A Korasick
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Insaf A Qureshi
- Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad, 500046, India
| | - Ashley C Campbell
- Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - Kent S Gates
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States
| | - John J Tanner
- Department of Chemistry, University of Missouri, Columbia, MO, 65211, United States; Department of Biochemistry, University of Missouri, Columbia, MO, 65211, United States.
| |
Collapse
|
22
|
Cotabarren J, Broitman DJ, Quiroga E, Obregón WD. GdTI, the first thermostable trypsin inhibitor from Geoffroea decorticans seeds. A novel natural drug with potential application in biomedicine. Int J Biol Macromol 2020; 148:869-879. [DOI: 10.1016/j.ijbiomac.2020.01.214] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 02/07/2023]
|
23
|
Cotabarren J, Lufrano D, Parisi MG, Obregón WD. Biotechnological, biomedical, and agronomical applications of plant protease inhibitors with high stability: A systematic review. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 292:110398. [PMID: 32005400 DOI: 10.1016/j.plantsci.2019.110398] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/29/2019] [Accepted: 12/30/2019] [Indexed: 06/10/2023]
Abstract
Protease inhibitors (PIs) are regulatory proteins found in numerous animal tissues and fluids, plants, and microorganisms that reduce and inhibit the exacerbated and uncontrolled activity of the target proteases. Specific PIs are also effective tools for inactivating proteases involved in human diseases like arthritis, pancreatitis, hepatitis, cancer, AIDS, thrombosis, emphysema, hypertension, and muscular dystrophy among others. Plant PIs-small peptides with a high content of cystine residues in disulfide bridges-possess a remarkable resistance to heat treatment and a high stability against shifts in pH, denaturing agents, ionic strength, and proteolysis. In recent years, novel biologic activities have been reported for plant PIs, including antimicrobial, anticoagulant, antioxidant action plus inhibition of tumor-cell growth; thus pointing to possible applications in medicine, agriculture, and biotechnology. In this review, we provide a comparative overview of plant-PIs classifying them in four groups according of their thermal and pH stability (high stability and hyperstable -to temperature and to pHs-, respectively), then emphasizing the relevance of the physicochemical characteristics of these proteins for potential biotechnological and industrial applications. Finally, we analyze the biologic activities of the stable protease inhibitors previously characterized that are the most relevant to potential applications in biomedicine, the food industry, and agriculture.
Collapse
Affiliation(s)
- Juliana Cotabarren
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Daniela Lufrano
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| | - Mónica Graciela Parisi
- Departamento de Ciencias Básicas, Universidad Nacional de Luján, Ruta 5 y Avenida Constitución, Luján, 6700, Buenos Aires, Argentina.
| | - Walter David Obregón
- Centro de Investigación de Proteínas Vegetales (CIProVe-CICPBA-UNLP), Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 S/N, B1900AVW, La Plata, Argentina.
| |
Collapse
|
24
|
Abstract
The urea functionality is inherent to numerous bioactive compounds, including a variety of clinically approved therapies. Urea containing compounds are increasingly used in medicinal chemistry and drug design in order to establish key drug-target interactions and fine-tune crucial drug-like properties. In this perspective, we highlight physicochemical and conformational properties of urea derivatives. We provide outlines of traditional reagents and chemical procedures for the preparation of ureas. Also, we discuss newly developed methodologies mainly aimed at overcoming safety issues associated with traditional synthesis. Finally, we provide a broad overview of urea-based medicinally relevant compounds, ranging from approved drugs to recent medicinal chemistry developments.
Collapse
Affiliation(s)
- Arun K Ghosh
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Margherita Brindisi
- Department of Chemistry and Department of Medicinal Chemistry, Purdue University, West Lafayette, Indiana 47907, United States.,Department of Excellence of Pharmacy, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
25
|
Abstract
Introduction: Unlike other hepatitis C virus (HCV) genotypes (GTs), patients infected with GT3 are associated with an increased risk of accelerated liver disease progression. Although early immuno-modulator therapies yielded moderate sustained virologic response (SVR) rates, treatment of GT3 patients has proven more challenging in the era of direct-acting antivirals (DAAs). Areas covered: The review provides an overview of the evolution of therapies against GT3 since the approval of the first immunomodulatory agent nearly 30 years ago. Expert opinion: A greater choice of treatment options is now available for HCV GT3-infected patients. In treatment-naïve patients with or without compensated cirrhosis, SVR rates are comparably high approaching 100% irrespective of treatment option. For treatment-experienced patients, choosing the right therapy is important, especially for those with advanced liver disease. For the few patients who fail with multiple persistent highly resistant DAA substitutions, retreatment options are limited. Additional real-world treatment comparisons are required to confirm differences in SVR in these more difficult-to-treat patients. This also includes patients infected with GT3 subtypes such as GT3b where multiple DAA-resistant substitutions occur naturally. In the absence of new drugs with non-overlapping drug-resistant profiles, an interferon-based therapy may still be beneficial in select patient populations with high-level multiple DAA-resistant substitutions.
Collapse
Affiliation(s)
- Fiona McPhee
- Translational Medicine, Bristol-Myers Squibb Company , Cambridge , MA , USA
| |
Collapse
|
26
|
Nazario de Moraes L, Tommasini Grotto RM, Targino Valente G, de Carvalho Sampaio H, Magro AJ, Fogaça L, Wolf IR, Perahia D, Faria Silva G, Plana Simões R. A novel molecular mechanism to explain mutations of the HCV protease associated with resistance against covalently bound inhibitors. Virus Res 2019; 274:197778. [PMID: 31618615 DOI: 10.1016/j.virusres.2019.197778] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 02/07/2023]
Abstract
NS3 is an important therapeutic target for direct-acting antiviral (DAA) drugs. However, many patients treated with DAAs have unsustained virologic response (UVR) due to the high mutation rate of HCV. The aim of this work was to shed some light on the puzzling molecular mechanisms of the virus's of patients who showed high viral loads even under treatment with DAA. Bioinformatics tools, molecular modelling analyses were employed to identify mutations associated with HCV resistance to boceprevir and possible structural features related to this phenomenon. We identified two mutations of NS3 that may be associated with HCV resistance: D168N and L153I. The substitution D168N was previously reported in the literature as related with drug failure. Additionally, we identified that its molecular resistance mechanism can be explained by the destabilization of receptor-ligand hydrogen bonds. For the L153I mutation, the resistance mechanism is different from previous models reported in the literature. The L153I substitution decreases the S139 deprotonation susceptibility, and consequently, this mutation impairs the covalent binding between the residue S139 from NS3 and the electrophilic trap on boceprevir, which can induce drug failure. These results were supported by the time course analysis of the mutations of the NS3 protease, which showed that boceprevir was designed for enzymes with an L residue at position 153; however, the sequences with I153 are predominant nowadays. The results presented here could be used to infer about resistance in others DAA, mainly protease inhibitors.
Collapse
Affiliation(s)
- Leonardo Nazario de Moraes
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil
| | - Rejane Maria Tommasini Grotto
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil
| | - Guilherme Targino Valente
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Max Planck Institut for Heart and Lung Research, Ludwigstraße 43, 61231, Bad Nauheim, Germany
| | - Heloisa de Carvalho Sampaio
- Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil
| | - Angelo José Magro
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Institute of Biosciences, Street Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, Brazil
| | - Lauana Fogaça
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Institute of Biosciences, Street Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, Brazil
| | - Ivan Rodrigo Wolf
- Sao Paulo State University (UNESP), Institute of Biosciences, Street Prof. Dr. Antônio Celso Wagner Zanin, 250, Botucatu, SP, Brazil
| | - David Perahia
- École Normale Supérieure Paris-Saclay, Laboratory of Biology and Applied Pharmacology, Cachan, 94235, France
| | - Giovanni Faria Silva
- Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil
| | - Rafael Plana Simões
- Sao Paulo State University (UNESP), School of Agriculture, Department of Bioprocess and Biotechnology, Avenue Universitária, 3780, Botucatu, SP, Brazil; Sao Paulo State University (UNESP), Medical School, Blood Center, Avenue Prof. Mário Rubens Guimarães Montenegro, s/n, Botucatu, SP, Brazil.
| |
Collapse
|
27
|
Kammarabutr J, Mahalapbutr P, Nutho B, Kungwan N, Rungrotmongkol T. Low susceptibility of asunaprevir towards R155K and D168A point mutations in HCV NS3/4A protease: A molecular dynamics simulation. J Mol Graph Model 2019; 89:122-130. [PMID: 30884449 DOI: 10.1016/j.jmgm.2019.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/02/2023]
Abstract
Hepatitis C has become an important health problem that requires expensive treatment and leads to liver tumorigenesis. Hepatitis C virus (HCV), which is the main cause of hepatitis C, has a high mutation rate due to the lack of proofreading activity of the RNA polymerase enzyme. The NS3/4A serine protease is an important target for anti-HCV drug discovery and development because of its crucial role in the cleavage of the polypeptides involved in viral replication. In the present study, all-atom molecular dynamics simulation was performed to elucidate the effect of the single point mutations R155K and D168A in the HCV genotype 1 NS3/4A protease on the structural dynamics, molecular interactions and susceptibility of asunaprevir (ASV), a second-generation NS3/4A protease inhibitor. Principal component analysis indicated that these two mutations converted the direction of motion of residues 123, 155 and 168 in the binding pocket to significantly point outwards from ASV, resulting in a loss of the hydrogen bond network of residues R123···R155···D168. The free energy calculations based on different semiempirical QM/MM-GBSA methods revealed that the binding affinity of ASV with the two mutant forms of the NS3/4A protease was significantly decreased in the order of wild-type < R155K < D168A. This work provided useful structural information regarding the atomistic understanding of acquired drug resistance against ASV caused by the R155K and D168A mutations.
Collapse
Affiliation(s)
- Jirayu Kammarabutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Panupong Mahalapbutr
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Bodee Nutho
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nawee Kungwan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Huay Kaew Road, Muang District, Chiang Mai, 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, 254 Phayathai Road, Pathumwan, Bangkok, 10330, Thailand; Ph.D. Program in Bioinformatics and Computational Biology, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
28
|
Özen A, Prachanronarong K, Matthew AN, Soumana DI, Schiffer CA. Resistance outside the substrate envelope: hepatitis C NS3/4A protease inhibitors. Crit Rev Biochem Mol Biol 2019; 54:11-26. [PMID: 30821513 DOI: 10.1080/10409238.2019.1568962] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct acting antivirals have dramatically increased the efficacy and tolerability of hepatitis C treatment, but drug resistance has emerged with some of these inhibitors, including nonstructural protein 3/4 A protease inhibitors (PIs). Although many co-crystal structures of PIs with the NS3/4A protease have been reported, a systematic review of these crystal structures in the context of the rapidly emerging drug resistance especially for early PIs has not been performed. To provide a framework for designing better inhibitors with higher barriers to resistance, we performed a quantitative structural analysis using co-crystal structures and models of HCV NS3/4A protease in complex with natural substrates and inhibitors. By comparing substrate structural motifs and active site interactions with inhibitor recognition, we observed that the selection of drug resistance mutations correlates with how inhibitors deviate from viral substrates in molecular recognition. Based on this observation, we conclude that guiding the design process with native substrate recognition features is likely to lead to more robust small molecule inhibitors with decreased susceptibility to resistance.
Collapse
Affiliation(s)
- Ayşegül Özen
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Kristina Prachanronarong
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Ashley N Matthew
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Djade I Soumana
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| | - Celia A Schiffer
- a Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , MA , USA
| |
Collapse
|
29
|
Asante-Appiah E, Liu R, Curry S, McMonagle P, Agrawal S, Carr D, Rokosz L, Lahser F, Bystol K, Chase R, Black S, Ferrari E, Ingravallo P, Tong L, Yu W, Kozlowski J. In Vitro Antiviral Profile of Ruzasvir, a Potent and Pangenotype Inhibitor of Hepatitis C Virus NS5A. Antimicrob Agents Chemother 2018; 62:e01280-18. [PMID: 30150466 PMCID: PMC6201069 DOI: 10.1128/aac.01280-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/13/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition of NS5A has emerged as an attractive strategy to intervene in hepatitis C virus (HCV) replication. Ruzasvir (formerly MK-8408) was developed as a novel NS5A inhibitor to improve upon the potency and barrier to resistance of early compounds. Ruzasvir inhibited HCV RNA replication with 50% effective concentrations (EC50s) of 1 to 4 pM in Huh7 or Huh7.5 cells bearing replicons for HCV genotype 1 (GT1) to GT7. The antiviral activity was modestly (10-fold) reduced in the presence of 40% normal human serum. The picomolar potency in replicon cells extended to sequences of clinical isolates available in public databases that were synthesized and tested as replicons. In GT1a, ruzasvir inhibited common NS5A resistance-associated substitutions (RASs), with the exception of M28G. De novo resistance selection studies identified pathways with certain amino acid substitutions at residues 28, 30, 31, and 93 across genotypes. Substitutions at position 93 were more common in GT1 to -4, while changes at position 31 emerged frequently in GT5 and -6. With the exception of GT4, the reintroduction of selected RASs conferred a ≥100-fold potency reduction in the antiviral activity of ruzasvir. Common RASs from other classes of direct-acting antiviral agents (DAAs) did not confer cross-resistance to ruzasvir. The interaction of ruzasvir with an NS3/4A protease inhibitor (grazoprevir) and an NS5B polymerase prodrug (uprifosbuvir) was additive to synergistic, with no evidence of antagonism or cytotoxicity. The antiviral profile of ruzasvir supported its further evaluation in human trials in combination with grazoprevir and uprifosbuvir.
Collapse
Affiliation(s)
- Ernest Asante-Appiah
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Rong Liu
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Stephanie Curry
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Patricia McMonagle
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Sony Agrawal
- Department of In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Donna Carr
- Department of In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Laura Rokosz
- Department of In Vitro Pharmacology, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Frederick Lahser
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Karin Bystol
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Robert Chase
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Stuart Black
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Eric Ferrari
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Paul Ingravallo
- Department of Infectious Diseases, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Ling Tong
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Wensheng Yu
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| | - Joseph Kozlowski
- Department of Medicinal Chemistry, Merck & Co., Inc., Kenilworth, New Jersey, USA
| |
Collapse
|
30
|
Rohrbacher F, Zwicky A, Bode JW. Facile Synthesis of Internal and C-Terminal Peptide α
-Ketoamides with Fmoc-Solid Phase Peptide Synthesis. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201800039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Florian Rohrbacher
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 3 CH 8093 Zürich Switzerland
| | - André Zwicky
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 3 CH 8093 Zürich Switzerland
| | - Jeffrey W. Bode
- Laboratorium für Organische Chemie; Department of Chemistry and Applied Biosciences; ETH Zürich; Vladimir Prelog Weg 3 CH 8093 Zürich Switzerland
- Institute of Transformative bio-Molecules (WPI-ITbM); Nagoya University; Chikusa, Nagoya 464-8602 Japan
| |
Collapse
|
31
|
Belfrage AK, Abdurakhmanov E, Åkerblom E, Brandt P, Alogheli H, Neyts J, Danielson UH, Sandström A. Pan-NS3 protease inhibitors of hepatitis C virus based on an R3-elongated pyrazinone scaffold. Eur J Med Chem 2018; 148:453-464. [DOI: 10.1016/j.ejmech.2018.02.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/20/2018] [Accepted: 02/10/2018] [Indexed: 02/07/2023]
|
32
|
Morozov VA, Lagaye S. Hepatitis C virus: Morphogenesis, infection and therapy. World J Hepatol 2018; 10:186-212. [PMID: 29527256 PMCID: PMC5838439 DOI: 10.4254/wjh.v10.i2.186] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 01/11/2018] [Accepted: 02/07/2018] [Indexed: 02/06/2023] Open
Abstract
Hepatitis C virus (HCV) is a major cause of liver diseases including liver cirrhosis and hepatocellular carcinoma. Approximately 3% of the world population is infected with HCV. Thus, HCV infection is considered a public healthy challenge. It is worth mentioning, that the HCV prevalence is dependent on the countries with infection rates around 20% in high endemic countries. The review summarizes recent data on HCV molecular biology, the physiopathology of infection (immune-mediated liver damage, liver fibrosis and lipid metabolism), virus diagnostic and treatment. In addition, currently available in vitro, ex vivo and animal models to study the virus life cycle, virus pathogenesis and therapy are described. Understanding of both host and viral factors may in the future lead to creation of new approaches in generation of an efficient therapeutic vaccine.
Collapse
Affiliation(s)
- Vladimir Alexei Morozov
- Center for HIV and Retrovirology, Department of Infectious Diseases, Robert Koch Institute, Berlin 13353, Germany
| | - Sylvie Lagaye
- Department of Immunology, Institut Pasteur, INSERM U1223, Paris 75015, France
| |
Collapse
|
33
|
Zia A, Abbasi SW, Ahmad S, Zia M, Raza A. Phylogenetic analysis, structure modeling and docking study of HCV NS3 protease for the identification of potent inhibitors. INFECTION GENETICS AND EVOLUTION 2018; 59:51-62. [PMID: 29391202 DOI: 10.1016/j.meegid.2018.01.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/24/2018] [Accepted: 01/28/2018] [Indexed: 01/31/2023]
Abstract
The nonstructural protein 3 (NS3) helicase of HCV is believed to be a plausible target for the identification and designing of potent antiviral drugs. NS3 protein is involved in a positive sense single-stranded viral replication as well as it also cleaves viral poly protein into diverse mature proteins at different time spans. Structural exploration of NS3 revealed that HCV helicase could also act as translocase. In order to identify potential inhibitors for HCV-3a, the current study has been designed. Serum samples from the Pakistani HCV positive patients were collected, sequenced and after purification included in the present study. Phylogenetic analysis on the samples clustered around it in the same group with those from India. Using homology modeling technique, we determined 3D structure of NS3 gene of HCV-3a and employed further in docking studies to discover potent inhibitor against it. As a result of docking Compound 1, with IC50 value of 0.015 and -14.4 kcal/mol energy, ranked as a most pungent inhibitor among all the studied inhibitors. Compound 1 also exhibited good hydrogen bond interactions with the modeled protein. The finding of present study could be used as a lead in future to design an effective dual inhibitor against HCV-3a.
Collapse
Affiliation(s)
- Asad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sumra Wajid Abbasi
- Department of Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Shabeer Ahmad
- Department of Microbiology and Biotechnology, Abasyn University Peshawar, Pakistan
| | - Muhammad Zia
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Abida Raza
- National Institute of Lasers and Optronics, Islamabad, Pakistan.
| |
Collapse
|
34
|
Alihodžić S, Bukvić M, Elenkov IJ, Hutinec A, Koštrun S, Pešić D, Saxty G, Tomašković L, Žiher D. Current Trends in Macrocyclic Drug Discovery and beyond -Ro5. PROGRESS IN MEDICINAL CHEMISTRY 2018; 57:113-233. [DOI: 10.1016/bs.pmch.2018.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
35
|
Brun MJ, Gomez EJ, Suh J. Stimulus-responsive viral vectors for controlled delivery of therapeutics. J Control Release 2017; 267:80-89. [PMID: 28842318 PMCID: PMC5723212 DOI: 10.1016/j.jconrel.2017.08.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 08/17/2017] [Accepted: 08/19/2017] [Indexed: 12/31/2022]
Abstract
Virus-based therapies have gained momentum as the next generation of treatments for a variety of serious diseases. In order to make these therapies more controllable, stimulus-responsive viral vectors capable of sensing and responding to specific environmental inputs are currently being developed. A number of viruses naturally respond to endogenous stimuli, such as pH, redox, and proteases, which are present at different concentrations in diseases and at different organ and organelle sites. Additionally, rather than relying on natural viral properties, efforts are underway to engineer viruses to respond to endogenous stimuli in new ways as well as to exogenous stimuli, such as temperature, magnetic field, and optical light. Viruses with stimulus-responsive capabilities, either nature-evolved or human-engineered, will be reviewed to capture the current state of the field. Stimulus-responsive viral vector design considerations as well as gaps in current research efforts will be identified.
Collapse
Affiliation(s)
- Mitchell J Brun
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, United States
| | - Eric J Gomez
- Department of Bioengineering, Rice University, Houston, TX, United States
| | - Junghae Suh
- Department of Bioengineering, Rice University, Houston, TX, United States; Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX, United States.
| |
Collapse
|
36
|
Liu X, Shi D, Zhou S, Liu H, Liu H, Yao X. Molecular dynamics simulations and novel drug discovery. Expert Opin Drug Discov 2017; 13:23-37. [DOI: 10.1080/17460441.2018.1403419] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Xuewei Liu
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | - Danfeng Shi
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| | | | - Hongli Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Huanxiang Liu
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xiaojun Yao
- State Key Laboratory of Applied Organic Chemistry and Department of Chemistry, Lanzhou University, Lanzhou, China
| |
Collapse
|
37
|
Novel peptidyl α-aminoalkylphosphonates as inhibitors of hepatitis C virus NS3/4A protease. Antiviral Res 2017; 144:286-298. [DOI: 10.1016/j.antiviral.2017.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/10/2017] [Accepted: 06/20/2017] [Indexed: 12/13/2022]
|
38
|
Evaluation of preclinical antimalarial drugs, which can overcome direct-acting antivirals-resistant hepatitis C viruses, using the viral reporter assay systems. Virus Res 2017; 235:37-48. [PMID: 28322919 DOI: 10.1016/j.virusres.2017.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/15/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022]
Abstract
Persistent hepatitis C virus (HCV) infection causes chronic liver diseases and is a major global health problem. Recently developed treatments with direct-acting antivirals (DAAs) have largely improved the sustained virologic response rate of patients with chronic hepatitis C. However, this approach is still hindered by its great expense and the problem of drug resistance. Using our cell-based HCV assay systems, we reported that the preclinical antimalarial drugs N-89 and N-251 exhibited potent anti-HCV activities. In this study we used our assay systems to evaluate the anti-HCV activities of six kinds of DAAs individually or in combination with N-89 or N-251. The results showed that the DAAs had potent anti-HCV activities and N-89 or N-251 contributed additive or synergistic effect. Using DAA-resistant HCV-RNA-replicating cells, which were prepared by continuous treatment with each DAA, we demonstrated that N-89 and N-251 could overcome all of the DAA-resistant HCVs. These preclinical drugs would have been potential as components of a therapeutic regimen that also included combinations of various DAAs. In addition, sequence analysis of the NS3-NS5B regions of the DAA-resistant HCV genomes newly found several amino acid (aa) substitutions that were suggested to contribute to DAA-resistance in addition to the aa substitutions already known to cause DAA-resistance. Among these new aa substitutions, we found that two substitutions in the NS3 region (D79G and S174Y) contributed to simeprevir- and/or asunaprevir-resistance.
Collapse
|
39
|
Guo Z, Black S, Hu Y, McMonagle P, Ingravallo P, Chase R, Curry S, Asante-Appiah E. Unraveling the structural basis of grazoprevir potency against clinically relevant substitutions in hepatitis C virus NS3/4A protease from genotype 1a. J Biol Chem 2017; 292:6202-6212. [PMID: 28228479 DOI: 10.1074/jbc.m116.772996] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 02/03/2017] [Indexed: 12/14/2022] Open
Abstract
Grazoprevir is a potent pan-genotype and macrocyclic inhibitor of hepatitis C virus (HCV) NS3/4A protease and was developed for treating chronic HCV infection. In HCV genotype (GT) 1a, grazoprevir maintains potent activity against a majority of NS3 resistance-associated amino acid substitutions, including the highly prevalent and naturally occurring Q80K polymorphism that impacts simeprevir, another NS3/4A protease inhibitor. The basis for an unexpected difference in the clinical impact of some NS3 substitutions was investigated. Phenotypic analysis of resistance-associated substitutions identified in NS3 from GT1a-infected patients who failed therapy with grazoprevir (in combination with elbasvir, an inhibitor of HCV NS5A protein) showed that positions 56, 156, and 168 in NS3 were most impactful because they diminished protein-inhibitor interactions. Although an amino acid substitution from aspartic acid to alanine at position 168 (D168A) reduced the potency of grazoprevir, its combination with R155K unexpectedly nullified this effect. Molecular dynamics and free-energy surface studies indicated that Asp-168 is important in anchoring Arg-155 for ligand binding but is not critical for Lys-155 because of the inherent flexibility of its side chain. Moreover, modeling studies supported a strong direct cation-heterocycle interaction between the Lys-155 side chain of the double substitution, R155K/D168A, and the lone pair on the quinoxaline in grazoprevir. This unique interaction provides a structural basis for grazoprevir's higher potency than simeprevir, an inhibitor to which the double substitution confers a significant reduction in potency. Our findings are consistent with the detection of R155K/D168A in NS3 from virologic failures treated with simeprevir but not grazoprevir.
Collapse
Affiliation(s)
- Zhuyan Guo
- From the Departments of Chemistry, Modeling and Informatics and
| | - Stuart Black
- Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Yuan Hu
- From the Departments of Chemistry, Modeling and Informatics and
| | - Patricia McMonagle
- Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Paul Ingravallo
- Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Robert Chase
- Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | - Stephanie Curry
- Infectious Diseases, Merck Research Laboratories, Kenilworth, New Jersey 07033
| | | |
Collapse
|
40
|
Burstow NJ, Mohamed Z, Gomaa AI, Sonderup MW, Cook NA, Waked I, Spearman CW, Taylor-Robinson SD. Hepatitis C treatment: where are we now? Int J Gen Med 2017; 10:39-52. [PMID: 28255252 PMCID: PMC5322849 DOI: 10.2147/ijgm.s127689] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic hepatitis C infection affects millions of people worldwide and confers significant morbidity and mortality. Effective treatment is needed to prevent disease progression and associated complications. Previous treatment options were limited to interferon and ribavirin (RBV) regimens, which gave low cure rates and were associated with unpleasant side effects. The era of direct-acting antiviral (DAA) therapies began with the development of first-generation NS3/4A protease inhibitors in 2011. They vastly improved outcomes for patients, particularly those with genotype 1 infection, the most prevalent genotype globally. Since then, a multitude of DAAs have been licensed for use, and outcomes for patients have improved further, with fewer side effects and cure rates approaching 100%. Recent regimens are interferon-free, and in many cases, RBV-free, and involve a combination of DAA agents. This review summarizes the treatment options currently available and discusses potential barriers that may delay the global eradication of hepatitis C.
Collapse
Affiliation(s)
- Nicholas J Burstow
- Liver Unit, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Zameer Mohamed
- Liver Unit, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Asmaa I Gomaa
- National Liver Institute, Menoufiya University, Shbeen El Kom, Egypt
| | - Mark W Sonderup
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, Republic of South Africa
| | - Nicola A Cook
- Liver Unit, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Imam Waked
- National Liver Institute, Menoufiya University, Shbeen El Kom, Egypt
| | - C Wendy Spearman
- Division of Hepatology, Department of Medicine, Faculty of Health Sciences, University of Cape Town and Groote Schuur Hospital, Cape Town, Republic of South Africa
| | | |
Collapse
|
41
|
Thai KM, Dong QH, Nguyen TTL, Le DP, Le MT, Tran TD. Computational Approaches for the Discovery of Novel Hepatitis C Virus NS3/4A and NS5B Inhibitors. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nonstructural 5B (NS5B) polymerase and Nonstructural 3/4A (NS3/4A) protease have proven to be promising targets for the development of anti-HCV (Hepatitis C Virus) agents. The NS5B polymerase is of paramount importance in HCV viral replication; therefore, employing NS5B inhibitors was considered an effective way for the treatment of HCV. Identifying inhibitors against NS3/4A serine protease represents another attractive approach applied in anti-HCV drug discovery, which is evidenced by its crucial role of in the biogenesis of the viral replication activity. In this chapter, many different computational approaches including Quantitative Structure-Activity Relationship (QSAR) and virtual screening in anti-HCV drug discovery were considered and discussed in detail. Virtual Screening (VS) techniques, including ligand-based and structure-based, and QSAR have been utilized for the discovery of NS5B inhibitors. Moreover, using various in silico protocols and workflows, a number of studies have been conducted with an aim of identifying potential NS3/4A blockage agents.
Collapse
Affiliation(s)
| | | | | | - Duy-Phong Le
- University of Medicine and Pharmacy at HCMC, Vietnam
| | - Minh-Tri Le
- University of Medicine and Pharmacy at HCMC, Vietnam
| | | |
Collapse
|
42
|
Lin KH, Nalivaika EA, Prachanronarong KL, Yilmaz NK, Schiffer CA. Dengue Protease Substrate Recognition: Binding of the Prime Side. ACS Infect Dis 2016; 2:734-743. [PMID: 27657335 DOI: 10.1021/acsinfecdis.6b00131] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dengue virus (DENV), transmitted predominantly in tropical and subtropical regions by the mosquito Aedes aegypti, infects millions of people and leads to dengue fever and thousands of deaths each year. There are no direct-acting antivirals to combat DENV, and molecular and structural knowledge is required to develop such compounds. The dengue NS2B/NS3 protease is a promising target for direct-acting antivirals, as viral polyprotein cleavage during replication is required for the maturation of the viral particle. The NS2B/NS3 protease processes 8 of the 13 viral polyprotein cleavage sites to allow viral maturation. Although these sites share little sequence homology beyond the P1 and P2 positions, most are well conserved among the serotypes. How the other substrate residues, especially at the P' side, affect substrate recognition remains unclear. We exploited the tight-binding general serine protease inhibitor aprotinin to investigate protease-substrate interactions at the molecular level. We engineered aprotinin's binding loop with sequences mimicking the P' side of DENV substrates. P' residues significantly modulate substrate affinity to protease, with inhibition constants varying from nanomolar to sub-millimolar. Structural and dynamic analysis revealed the molecular basis of this modulation and allowed identifying optimal residues for each of the P' positions. In addition, isothermal titration calorimetry showed binding to be solely entropy driven for all constructs. Potential flaviviral P' side inhibitors could benefit from mimicking the optimal residues at P' positions and incorporate hydrophobicity and rigidity to maintain entropic advantage for potency.
Collapse
Affiliation(s)
- Kuan-Hung Lin
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Ellen A. Nalivaika
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kristina L. Prachanronarong
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
43
|
Soumana DI, Yilmaz NK, Ali A, Prachanronarong KL, Schiffer CA. Molecular and Dynamic Mechanism Underlying Drug Resistance in Genotype 3 Hepatitis C NS3/4A Protease. J Am Chem Soc 2016; 138:11850-9. [PMID: 27512818 PMCID: PMC5221612 DOI: 10.1021/jacs.6b06454] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatitis C virus (HCV), affecting an estimated 150 million people worldwide, is the leading cause of viral hepatitis, cirrhosis and hepatocellular carcinoma. HCV is genetically diverse with six genotypes (GTs) and multiple subtypes of different global distribution and prevalence. Recent development of direct-acting antivirals against HCV including NS3/4A protease inhibitors (PIs) has greatly improved treatment outcomes for GT-1. However, all current PIs exhibit significantly lower potency against GT-3. Lack of structural data on GT-3 protease has limited our ability to understand PI failure in GT-3. In this study the molecular basis for reduced potency of current inhibitors against GT-3 NS3/4A protease is elucidated with structure determination, molecular dynamics simulations and inhibition assays. A chimeric GT-1a3a NS3/4A protease amenable to crystallization was engineered to recapitulate decreased sensitivity of GT-3 protease to PIs. High-resolution crystal structures of this GT-1a3a bound to 3 PIs, asunaprevir, danoprevir and vaniprevir, had only subtle differences relative to GT-1 despite orders of magnitude loss in affinity. In contrast, hydrogen-bonding interactions within and with the protease active site and dynamic fluctuations of the PIs were drastically altered. The correlation between loss of intermolecular dynamics and inhibitor potency suggests a mechanism where polymorphisms between genotypes (or selected mutations) in the drug target confer resistance through altering the intermolecular dynamics of the protein-inhibitor complex.
Collapse
Affiliation(s)
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Kristina L. Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
44
|
Kempf DJ, Klein C, Chen HJ, Klein LL, Yeung C, Randolph JT, Lau YY, Chovan LE, Guan Z, Hernandez L, Turner TM, Dandliker PJ, Marsh KC. Pharmacokinetic Enhancement of the Hepatitis C Virus Protease Inhibitors VX-950 and SCH 503034 by Co-Dosing with Ritonavir. ACTA ACUST UNITED AC 2016; 18:163-7. [PMID: 17626600 DOI: 10.1177/095632020701800306] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Inhibitors of hepatitis C virus (HCV) protease have shown marked antiviral activity in short-term clinical studies in HCV-infected individuals. The interaction of the investigational HCV protease inhibitors VX-950 and SCH 503034 with ritonavir, a potent inhibitor of cytochrome P450 3A, was studied in vitro and in vivo. In rat and human liver microsomes, the metabolism of VX-950 and SCH 503034 was strongly inhibited by the presence of 4 µM ritonavir. Upon co-dosing either VX-950 or SCH 503034 with ritonavir in rats, plasma exposure of the HCV protease inhibitors was increased by >15-fold, and plasma concentrations 8 h after dosing were increased by >50-fold. A human pharmacokinetic model of VX-950 co-administered with low-dose ritonavir suggested that improved efficacy and/or dosing convenience may be feasible by pharmacokinetic enhancement with ritonavir.
Collapse
Affiliation(s)
- Dale J Kempf
- Global Pharmaceutical Research & Development Division Abbott, Abbott Park, IL, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang H, Guo C, Chen BZ, Ji M. Computational study on the drug resistance mechanism of HCV NS3 protease to BMS-605339. Biotechnol Appl Biochem 2016; 64:153-164. [PMID: 26790544 DOI: 10.1002/bab.1479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 01/16/2016] [Indexed: 12/11/2022]
Abstract
NS3 protease plays a vital role in the replication of the hepatitis C virus (HCV). BMS-605339 is a novel linear tetra-peptide α-ketoamide inhibitor of NS3 protease and shows specificity for HCV NS3 protease genotype 1a and genotype 1b. Mutation at the key site 168 of the HCV NS3 protease can induce resistance to BMS-605339, which greatly affects the antiviral therapy efficacy to hepatitis C. In the present study, we employed molecular dynamics simulations, free energy calculations, and free energy decomposition to explore the drug resistance mechanism of BMS-605339 due to the three representative mutations D168C/Y/V. The free energy decomposition analysis indicates that the decrease in the binding affinity is mainly attributed to the decrease in both van der Waals and electrostatic interactions. After detailed analysis of our calculated results, we observed that the break of the salt bridge between residues 155 and 168 caused by the mutations D168C/Y/V is the original reason for the decrease in the binding ability between BMS-605339 and the mutant NS3 proteases. The obtained results will reveal the drug resistance mechanism between BMS-605339 and the mutant NS3 proteases, and provide valuable clue for designing novel and more potent drugs to HCV NS3 protease.
Collapse
Affiliation(s)
- Huiqun Wang
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| | - Chenchen Guo
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| | - Bo-Zhen Chen
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| | - Mingjuan Ji
- School of Chemistry and Chemical Engineering, UCA S, Beijing, People's Republic of China
| |
Collapse
|
46
|
Witteveldt J, Martin-Gans M, Simmonds P. Enhancement of the Replication of Hepatitis C Virus Replicons of Genotypes 1 to 4 by Manipulation of CpG and UpA Dinucleotide Frequencies and Use of Cell Lines Expressing SECL14L2 for Antiviral Resistance Testing. Antimicrob Agents Chemother 2016; 60:2981-92. [PMID: 26953209 PMCID: PMC4862521 DOI: 10.1128/aac.02932-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/21/2016] [Indexed: 01/09/2023] Open
Abstract
Treatment for hepatitis C virus (HCV) has improved greatly through the use of direct-acting antivirals (DAAs). However, their effectiveness and potential for drug resistance development in non-genotype 1 variants of HCV remain relatively unexplored, as in vitro assays to assess drug susceptibility are poorly developed and unsuited for a transient-transfection format. In the current study, we have evaluated the effects of dinucleotide frequency changes in the replicon and the use of a SEC14L2-expressing cell line on the replication of HCVs of different genotypes and evaluated the resulting assay formats for measurements of susceptibility to the DAA sofosbuvir. Removal of CpG and UpA dinucleotides from the luciferase gene used in HCV replicons of genotype 1b (Con1) and genotype 2a (JFH-1) achieved between 10- and 100-fold enhancement of replication over that of the wild type posttransfection. Removal of CpG and UpA dinucleotides in the neomycin gene or deletion of the whole gene in replicons of genotype 3a (S52) and genotype 4a (ED43) enhanced replication, but phenotypic effects on altering luciferase gene composition were minimal. A further 10-fold replication enhancement of replicons from all four genotypes was achieved by using a transgenic Huh7.5 cell line expressing SECL14L2, whose expression showed a dose-dependent effect on HCV replication that was reversible by small interfering RNA (siRNA) knockdown of gene expression. By combining these strategies, the 100- to 1,000-fold enhancement of replication allowed the susceptibility of all four genotypes to the RNA polymerase inhibitor sofosbuvir to be robustly determined in a transient-transfection assay format. These methods of replication enhancement provide new tools for monitoring the susceptibility and resistance of a wide range of HCV genotypes to DAAs.
Collapse
Affiliation(s)
- Jeroen Witteveldt
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Marion Martin-Gans
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom
| | - Peter Simmonds
- Roslin Institute, University of Edinburgh, Easter Bush, Edinburgh, United Kingdom Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
47
|
Kurt Yilmaz N, Swanstrom R, Schiffer CA. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends Microbiol 2016; 24:547-557. [PMID: 27090931 DOI: 10.1016/j.tim.2016.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design.
Collapse
Affiliation(s)
- Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
48
|
Soumana DI, Kurt Yilmaz N, Prachanronarong KL, Aydin C, Ali A, Schiffer CA. Structural and Thermodynamic Effects of Macrocyclization in HCV NS3/4A Inhibitor MK-5172. ACS Chem Biol 2016; 11:900-9. [PMID: 26682473 DOI: 10.1021/acschembio.5b00647] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recent advances in direct-acting antivirals against Hepatitis C Virus (HCV) have led to the development of potent inhibitors, including MK-5172, that target the viral NS3/4A protease with relatively low susceptibility to resistance. MK-5172 has a P2-P4 macrocycle and a unique binding mode among current protease inhibitors where the P2 quinoxaline packs against the catalytic residues H57 and D81. However, the effect of macrocyclization on this binding mode is not clear, as is the relation between macrocyclization, thermodynamic stabilization, and susceptibility to the resistance mutation A156T. We have determined high-resolution crystal structures of linear and P1-P3 macrocyclic analogs of MK-5172 bound to WT and A156T protease and compared these structures, their molecular dynamics, and experimental binding thermodynamics to the parent compound. We find that the "unique" binding mode of MK-5172 is conserved even when the P2-P4 macrocycle is removed or replaced with a P1-P3 macrocycle. While beneficial to decreasing the entropic penalty associated with binding, the constraint exerted by the P2-P4 macrocycle prevents efficient rearrangement to accommodate the A156T mutation, a deficit alleviated in the linear and P1-P3 analogs. Design of macrocyclic inhibitors against NS3/4A needs to achieve the best balance between exerting optimal conformational constraint for enhancing potency, fitting within the substrate envelope and allowing adaptability to be robust against resistance mutations.
Collapse
Affiliation(s)
- Djadé I. Soumana
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Kristina L. Prachanronarong
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Cihan Aydin
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| | - Celia A. Schiffer
- Department of Biochemistry
and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, Massachusetts 01605, United States
| |
Collapse
|
49
|
Belfrage AK, Abdurakhmanov E, Kerblom E, Brandt P, Oshalim A, Gising J, Skogh A, Neyts J, Danielson UH, Sandström A. Discovery of pyrazinone based compounds that potently inhibit the drug-resistant enzyme variant R155K of the hepatitis C virus NS3 protease. Bioorg Med Chem 2016; 24:2603-20. [PMID: 27160057 DOI: 10.1016/j.bmc.2016.03.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/17/2016] [Accepted: 03/21/2016] [Indexed: 01/15/2023]
Abstract
Herein, we present the design and synthesis of 2(1H)-pyrazinone based HCV NS3 protease inhibitors with variations in the C-terminus. Biochemical evaluation was performed using genotype 1a, both the wild-type and the drug resistant enzyme variant, R155K. Surprisingly, compounds without an acidic sulfonamide retained good inhibition, challenging our previous molecular docking model. Moreover, selected compounds in this series showed nanomolar potency against R155K NS3 protease; which generally confer resistance to all HCV NS3 protease inhibitors approved or in clinical trials. These results further strengthen the potential of this novel substance class, being very different to the approved drugs and clinical candidates, in the development of inhibitors less sensitive to drug resistance.
Collapse
Affiliation(s)
- Anna Karin Belfrage
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Eldar Abdurakhmanov
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Eva Kerblom
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Peter Brandt
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Anna Oshalim
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Johan Gising
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Anna Skogh
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden
| | - Johan Neyts
- Rega Institute, Department of Microbiology and Immunology, University of Leuven, B-3000 Leuven, Belgium
| | - U Helena Danielson
- Department of Chemistry-BMC, Uppsala University, Box 576, SE-75123 Uppsala, Sweden
| | - Anja Sandström
- Department of Medicinal Chemistry, Organic Pharmaceutical Chemistry, Uppsala University, Box 574, SE-75123 Uppsala, Sweden.
| |
Collapse
|
50
|
Isakov V, Nikitin I, Chulanov V, Ogurtsov P, Lukyanova E, Long J, Wahl J, Helmond FA. Boceprevir plus peginterferon/ribavirin for treatment of chronic hepatitis C in Russia. World J Hepatol 2016; 8:331-339. [PMID: 26962399 PMCID: PMC4766261 DOI: 10.4254/wjh.v8.i6.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 10/07/2015] [Accepted: 12/19/2015] [Indexed: 02/06/2023] Open
Abstract
AIM To evaluate addition of boceprevir to peginterferon/ribavirin (PR) in Russian patients with chronic hepatitis C virus (HCV). METHODS Treatment-naive (TN) and treatment-experienced (TE) patients (who had failed prior treatment with PR for ≥ 12 wk) with chronic HCV genotype 1 infection were enrolled in this placebo-controlled, double-blind study. All patients initially received PR for 4 wk. Patients randomized to control treatment then received PR for an additional 44 wk. TN patients randomized to triple therapy received boceprevir (800 mg three times daily) plus PR for 24 wk and then further therapy according to treatment week 8 (TW8) HCV RNA levels. TE patients received boceprevir plus PR for 32 wk and then further therapy according to TW8 HCV RNA levels. Treatment was discontinued for TN patients with detectable HCV RNA at TW24 and TE patients with detectable HCV RNA at TW12 because of futility. The primary efficacy end point was sustained virologic response (SVR) defined as undetectable HCV RNA 24 wk after completing all study therapy. RESULTS SVR was 74.8% in the boceprevir plus PR arm compared with 46.2% in the control arm, with a stratification-adjusted treatment difference of 29.2% (95%CI: 16.4-41.5; P < 0.0001). Rates of SVR were higher in the boceprevir arm in both TN and TE patient groups (TN 78.4% vs 56.3%; TE 69.4% vs 30.0%). Within TE patients, the rates of SVR were higher with boceprevir plus PR compared with PR, regardless of treatment failure type (null responder, partial responder, and relapser). Most patients receiving boceprevir plus PR in both TN (86%) and TE (71%) populations were eligible for reduced treatment duration. Anemia was increased in patients receiving boceprevir plus PR vs PR alone (47.2% vs 24.4%); there was a corresponding increase in ribavirin dose reduction and erythropoietin use. Among patients receiving boceprevir plus PR, SVR rates were similar in patients with anemia (< 10 g/dL) and those without anemia (71.2% vs 77.4%). CONCLUSION Regulatory approval has been obtained for boceprevir plus PR in Russian patients with HCV genotype 1 infection based on the results of this study.
Collapse
Affiliation(s)
- Vasily Isakov
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Igor Nikitin
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Vladimir Chulanov
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Pavel Ogurtsov
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Ekaterina Lukyanova
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Jianmin Long
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Janice Wahl
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| | - Frans A Helmond
- Vasily Isakov, Department of Gastroenterology and Hepatology, Institute of Nutrition, Moscow 115446, Russia
| |
Collapse
|