1
|
Golomidova A, Kupriyanov Y, Gabdrakhmanov R, Gurkova M, Kulikov E, Belalov I, Uskevich V, Bespiatykh D, Letarova M, Efimov A, Kuznetsov A, Shitikov E, Pushkar D, Letarov A, Zurabov F. Isolation, Characterization, and Unlocking the Potential of Mimir124 Phage for Personalized Treatment of Difficult, Multidrug-Resistant Uropathogenic E. coli Strain. Int J Mol Sci 2024; 25:12755. [PMID: 39684465 DOI: 10.3390/ijms252312755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Escherichia coli and its bacteriophages are among the most studied model microorganisms. Bacteriophages for various E. coli strains can typically be easily isolated from environmental sources, and many of these viruses can be harnessed to combat E. coli infections in humans and animals. However, some relatively rare E. coli strains pose significant challenges in finding suitable phages. The uropathogenic strain E. coli UPEC124, isolated from a patient suffering from neurogenic bladder dysfunction, was found to be resistant to all coliphages in our collections, and initial attempts to isolate new phages failed. Using an improved procedure for phage enrichment, we isolated the N4-related phage Mimir124, belonging to the Gamaleyavirus genus, which was able to lyse this "difficult" E. coli strain. Although Mimir124 is a narrow-spectrum phage, it was effective in the individualized treatment of the patient, leading to pathogen eradication. The primary receptor of Mimir124 was the O antigen of the O101 type; consequently, Mimir124-resistant clones were rough (having lost the O antigen). These clones, however, gained sensitivity to some phages that recognize outer membrane proteins as receptors. Despite the presence of nine potential antiviral systems in the genome of the UPEC124 strain, the difficulty in finding effective phages was largely due to the efficient, non-specific cell surface protection provided by the O antigen. These results highlight the importance of an individualized approach to phage therapy, where narrow host-range phages-typically avoided in pre-fabricated phage cocktails-may be instrumental. Furthermore, this study illustrates how integrating genomic, structural, and functional insights can guide the development of innovative therapeutic strategies, paving the way for broader applications of phage therapy in combating multidrug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Alla Golomidova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Yuriy Kupriyanov
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Ruslan Gabdrakhmanov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Marina Gurkova
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Eugene Kulikov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Ilya Belalov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Viktoria Uskevich
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| | - Dmitry Bespiatykh
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Maria Letarova
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Efimov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Alexander Kuznetsov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Egor Shitikov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya ul. 1a, 119435 Moscow, Russia
| | - Dmitry Pushkar
- Department of Urology, Russian University of Medicine (ROSUNIMED), 2nd Botkinsky Proezd, 5 Bldg 20, 125284 Moscow, Russia
| | - Andrey Letarov
- Winogradsky Institute of Microbiology, RC Biotechnology RAS, Prospekt 60-Letiya Oktyabrya 7 Bld. 2, 117312 Moscow, Russia
| | - Fedor Zurabov
- Research and Production Center "MicroMir", Nizhny Kiselny Lane 5/23 Bldg 1, 107031 Moscow, Russia
| |
Collapse
|
2
|
Letarov AV. Bacterial Virus Forcing of Bacterial O-Antigen Shields: Lessons from Coliphages. Int J Mol Sci 2023; 24:17390. [PMID: 38139217 PMCID: PMC10743462 DOI: 10.3390/ijms242417390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
In most Gram-negative bacteria, outer membrane (OM) lipopolysaccharide (LPS) molecules carry long polysaccharide chains known as the O antigens or O polysaccharides (OPS). The OPS structure varies highly from strain to strain, with more than 188 O serotypes described in E. coli. Although many bacteriophages recognize OPS as their primary receptors, these molecules can also screen OM proteins and other OM surface receptors from direct interaction with phage receptor-binding proteins (RBP). In this review, I analyze the body of evidence indicating that most of the E. coli OPS types robustly shield cells completely, preventing phage access to the OM surface. This shield not only blocks virulent phages but also restricts the acquisition of prophages. The available data suggest that OPS-mediated OM shielding is not merely one of many mechanisms of bacterial resistance to phages. Rather, it is an omnipresent factor significantly affecting the ecology, phage-host co-evolution and other related processes in E. coli and probably in many other species of Gram-negative bacteria. The phages, in turn, evolved multiple mechanisms to break through the OPS layer. These mechanisms rely on the phage RBPs recognizing the OPS or on using alternative receptors exposed above the OPS layer. The data allow one to forward the interpretation that, regardless of the type of receptors used, primary receptor recognition is always followed by the generation of a mechanical force driving the phage tail through the OPS layer. This force may be created by molecular motors of enzymatically active tail spikes or by virion structural re-arrangements at the moment of infection.
Collapse
Affiliation(s)
- Andrey V Letarov
- Winogradsky Institute of Micrbiology, Research Center Fundamentals of Biotechnology RAS, pr. 60-letiya Oktyabrya 7 bld. 2, Moscow 117312, Russia
| |
Collapse
|
3
|
Efimov AD, Golomidova AK, Kulikov EE, Belalov IS, Ivanov PA, Letarov AV. RB49-like Bacteriophages Recognize O Antigens as One of the Alternative Primary Receptors. Int J Mol Sci 2022; 23:ijms231911329. [PMID: 36232640 PMCID: PMC9569957 DOI: 10.3390/ijms231911329] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
The power of most of the enterobacterial O antigen types to provide robust protection against direct recognition of the cell surface by bacteriophage receptor-recognition proteins (RBP) has been recently recognized. The bacteriophages infecting O antigen producing strains of E. coli employ various strategies to tackle this nonspecific protection. T-even related phages, including RB49-like viruses, often have wide host ranges, being considered good candidates for use in phage therapy. However, the mechanisms by which these phages overcome the O antigen barrier remain unknown. We demonstrate here that RB49 and related phages Cognac49 and Whisky49 directly use certain types of O antigen as their primary receptors recognized by the virus long tail fibers (LTF) RBP gp38, so the O antigen becomes an attractant instead of an obstacle. Simultaneously to recognize multiple O antigen types, LTFs of each of these phages can bind to additional receptors, such as OmpA protein, enabling them to infect some rough strains of E. coli. We speculate that the mechanical force of the deployment of the short tail fibers (STF) triggered by the LTF binding to the O antigen or underneath of it, allows the receptor binding domains of STF to break through the O polysaccharide layer.
Collapse
Affiliation(s)
- Alexandr D Efimov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Alla K Golomidova
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Eugene E Kulikov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Ilya S Belalov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Pavel A Ivanov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
| | - Andrey V Letarov
- Laboratory of Microbial Viruses, Winogradsky Institute of Microbiology RC Biotechnology RAS, 117312 Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
4
|
Oral Toxicity Study for Salmonella Killing Lytic Bacteriophage NINP13076 in BALB/c Mice and Its Effect on Probiotic Microbiota. Curr Microbiol 2022; 79:89. [PMID: 35129700 DOI: 10.1007/s00284-021-02754-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/24/2021] [Indexed: 11/03/2022]
Abstract
Viruses that infect bacteria are emerging as attractive biocontrol agents and biopreservatives for foods. Since these bacteriophages kill the target pathogens by lysis and are also consumed along with food, it is essential to evaluate their collateral toxicity on the probiotic gut microbiota. In this study, we examined the acute oral toxicity of a Salmonella phage isolated from sewage in mice. Acute oral administration of the Salmonella phage for five consecutive days did not show any significant pathological changes in the vital organs like lung, kidneys, heart, liver, and intestine. In addition, growth of typical probiotic microbiota remained unaffected even after incubation up to 24 h with the Salmonella phage. The results of this study clearly showed that oral administration of the lytic Salmonella phage did not have any significant adverse effects on the animals, may not harm the probiotic gut microbiota, and are likely to be safe for use in food preservation.
Collapse
|
5
|
Equine Intestinal O-Seroconverting Temperate Coliphage Hf4s: Genomic and Biological Characterization. Appl Environ Microbiol 2021; 87:e0112421. [PMID: 34406832 DOI: 10.1128/aem.01124-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Tailed bacteriophages constitute the bulk of the intestinal viromes of vertebrate animals. However, the relationships between lytic and lysogenic lifestyles of phages in these ecosystems are not always clear and may vary between the species or even between the individuals. The human intestinal (fecal) viromes are dominated mostly by temperate phages, while in horse feces virulent phages are more prevalent. To our knowledge, all the previously reported isolates of horse fecal coliphages are virulent. Temperate coliphage Hf4s was isolated from horse feces, from the indigenous equine Escherichia coli 4s strain. It is a podovirus related to the Lederbergvirus genus (including the well-characterized Salmonella bacteriophage P22). Hf4s recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by the same bacteriophage and also abolishes the adsorption of some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. IMPORTANCE The relationships between virulent and temperate bacteriophages and their impact on high-density symbiotic microbial ecosystems of animals are not always clear and may vary between species or even between individuals. The horse intestinal virome is dominated by virulent phages, and Hf4s is the first temperate equine intestinal coliphage characterized. It recognizes the host O antigen as its primary receptor and possesses a functional O antigen seroconversion cluster that renders the lysogens protected from superinfection by some indigenous equine virulent coliphages, such as DT57C, while other phages, such as G7C or phiKT, retain the ability to infect E. coli 4s (Hf4s) lysogens. These findings raise questions on the significance of bacteriophage-bacteriophage interactions within the ecology of microbial viruses in mammal intestinal ecosystems.
Collapse
|
6
|
Abstract
Most phages of Gram-negative hosts encode spanins for disruption of the outer membrane, the last step in host lysis. However, bioinformatic analysis indicates that ∼15% of these phages lack a spanin gene, suggesting they have an alternate way of disrupting the OM. Here, we show that the T7-like coliphage phiKT causes the explosive cell lysis associated with spanin activity despite not encoding spanins. A putative lysis cassette cloned from the phiKT late gene region includes the hypothetical novel gene 28 located between the holin and endolysin genes and supports inducible lysis in E. coli K-12. Moreover, induction of an isogenic construct lacking gene 28 resulted in divalent cation-stabilized spherical cells rather than lysis, implicating gp28 in OM disruption. Additionally, gp28 was shown to complement the lysis defect of a spanin-null λ lysogen. Gene 28 encodes a 56-amino acid cationic protein with predicted amphipathic helical structure and is membrane-associated after lysis. Urea and KCl washes did not release gp28 from the particulate, suggesting a strong hydrophobic membrane interaction. Fluorescence microscopy supports membrane localization of the gp28 protein prior to lysis. Gp28 is similar in size, charge, predicted fold, and membrane association to the human cathelicidin antimicrobial peptide LL-37. Synthesized gp28 behaved similar to LL-37 in standard assays mixing peptide and cells to measure bactericidal and inhibitory effects. Taken together, these results indicate that phiKT gp28 is a phage-encoded cationic antimicrobial peptide that disrupts bacterial outer membranes during host lysis and thus establishes a new class of phage lysis proteins, the disruptins. Significance We provide evidence that phiKT produces an antimicrobial peptide for outer membrane disruption during lysis. This protein, designated as a disruptin, is a new paradigm for phage lysis and has no similarities to other known lysis genes. Although many mechanisms have been proposed for the function of antimicrobial peptides, there is no consensus on the molecular basis of membrane disruption. Additionally, there is no established genetic system to support such studies. Therefore, the phiKT disruptin may represent the first genetically tractable antimicrobial peptide, facilitating mechanistic analyses.
Collapse
|
7
|
Babenko V, Millard A, Kulikov E, Spasskaya N, Letarova M, Konanov D, Belalov I, Letarov A. The ecogenomics of dsDNA bacteriophages in feces of stabled and feral horses. Comput Struct Biotechnol J 2020; 18:3457-3467. [PMID: 33294140 PMCID: PMC7691681 DOI: 10.1016/j.csbj.2020.10.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022] Open
Abstract
The viromes of the mammalian lower gut were shown to be heavily dominated by bacteriophages; however, only for humans were the composition and intervariability of the bacteriophage communities studied in depth. Here we present an ecogenomics survey of dsDNA bacteriophage diversity in the feces of horses (Equus caballus), comparing two groups of stabled horses, and a further group of feral horses that were isolated on an island. Our results indicate that the dsDNA viromes of the horse feces feature higher richness than in human viromes, with more even distribution of genotypes. No over-represented phage genotypes, such as CrAssphage-related viruses found in humans, were identified. Additionally, many bacteriophage genus-level clusters were found to be present in all three geographically isolated populations. The diversity of the horse intestinal bacteriophages is severely undersampled, and so consequently only a minor fraction of the phage contigs could be linked with the bacteriophage genomes. Our study indicates that bacteriophage ecological parameters in the intestinal ecosystems in horses and humans differ significantly, leading them to shape their corresponding viromes in different ways. Therefore, the diversity and structure of the intestinal virome in different animal species needs to be experimentally studied.
Collapse
Affiliation(s)
| | - A. Millard
- Dept Genetics and Genome Biology, University of Leicester, UK
| | - E.E. Kulikov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
| | - N.N. Spasskaya
- Zoology Museum, Faculty of Biology, Lomonosov Moscow State University, Russia
| | - M.A. Letarova
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
| | | | - I.S. Belalov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
| | - A.V. Letarov
- Winogradsky Institute of Microbiology RC Biotechnology RAS, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Russia
| |
Collapse
|
8
|
Gilbert RA, Townsend EM, Crew KS, Hitch TCA, Friedersdorff JCA, Creevey CJ, Pope PB, Ouwerkerk D, Jameson E. Rumen Virus Populations: Technological Advances Enhancing Current Understanding. Front Microbiol 2020; 11:450. [PMID: 32273870 PMCID: PMC7113391 DOI: 10.3389/fmicb.2020.00450] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 03/02/2020] [Indexed: 01/07/2023] Open
Abstract
The rumen contains a multi-kingdom, commensal microbiome, including protozoa, bacteria, archaea, fungi and viruses, which enables ruminant herbivores to ferment and utilize plant feedstuffs that would be otherwise indigestible. Within the rumen, virus populations are diverse and highly abundant, often out-numbering the microbial populations that they both predate on and co-exist with. To date the research effort devoted to understanding rumen-associated viral populations has been considerably less than that given to the other microbial populations, yet their contribution to maintaining microbial population balance, intra-ruminal microbial lysis, fiber breakdown, nutrient cycling and genetic transfer may be highly significant. This review follows the technological advances which have contributed to our current understanding of rumen viruses and drawing on knowledge from other environmental and animal-associated microbiomes, describes the known and potential roles and impacts viruses have on rumen function and speculates on the future directions of rumen viral research.
Collapse
Affiliation(s)
- Rosalind A. Gilbert
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor M. Townsend
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Kathleen S. Crew
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Thomas C. A. Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Jessica C. A. Friedersdorff
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom
| | - Christopher J. Creevey
- Institute for Global Food Security, School of Biological Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Phillip B. Pope
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Diane Ouwerkerk
- Department of Agriculture and Fisheries, Brisbane, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eleanor Jameson
- Warwick Integrative Synthetic Biology Centre, School of Life Sciences, University of Warwick, Coventry, United Kingdom
| |
Collapse
|
9
|
Sausset R, Petit MA, Gaboriau-Routhiau V, De Paepe M. New insights into intestinal phages. Mucosal Immunol 2020; 13:205-215. [PMID: 31907364 PMCID: PMC7039812 DOI: 10.1038/s41385-019-0250-5] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 11/13/2019] [Accepted: 12/05/2019] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota plays important roles in human health. This last decade, the viral fraction of the intestinal microbiota, composed essentially of phages that infect bacteria, received increasing attention. Numerous novel phage families have been discovered in parallel with the development of viral metagenomics. However, since the discovery of intestinal phages by d'Hérelle in 1917, our understanding of the impact of phages on gut microbiota structure remains scarce. Changes in viral community composition have been observed in several diseases. However, whether these changes reflect a direct involvement of phages in diseases etiology or simply result from modifications in bacterial composition is currently unknown. Here we present an overview of the current knowledge in intestinal phages, their identity, lifestyles, and their possible effects on the gut microbiota. We also gather the main data on phage interactions with the immune system, with a particular emphasis on recent findings.
Collapse
Affiliation(s)
- R Sausset
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Myriade, 68 boulevard de Port Royal, 75005, Paris, France
| | - M A Petit
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
| | - V Gaboriau-Routhiau
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France
- Laboratory of Intestinal Immunity, INSERM UMR 1163, Institut Imagine, Paris, France
- Université Paris Descartes-Sorbonne Paris Cité, 75006, Paris, France
| | - M De Paepe
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.
| |
Collapse
|
10
|
Kauter A, Epping L, Semmler T, Antao EM, Kannapin D, Stoeckle SD, Gehlen H, Lübke-Becker A, Günther S, Wieler LH, Walther B. The gut microbiome of horses: current research on equine enteral microbiota and future perspectives. Anim Microbiome 2019; 1:14. [PMID: 33499951 PMCID: PMC7807895 DOI: 10.1186/s42523-019-0013-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 09/09/2019] [Indexed: 12/26/2022] Open
Abstract
Understanding the complex interactions of microbial communities including bacteria, archaea, parasites, viruses and fungi of the gastrointestinal tract (GIT) associated with states of either health or disease is still an expanding research field in both, human and veterinary medicine. GIT disorders and their consequences are among the most important diseases of domesticated Equidae, but current gaps of knowledge hinder adequate progress with respect to disease prevention and microbiome-based interventions. Current literature on enteral microbiomes mirrors a vast data and knowledge imbalance, with only few studies tackling archaea, viruses and eukaryotes compared with those addressing the bacterial components.Until recently, culture-dependent methods were used for the identification and description of compositional changes of enteral microorganisms, limiting the outcome to cultivatable bacteria only. Today, next generation sequencing technologies provide access to the entirety of genes (microbiome) associated with the microorganisms of the equine GIT including the mass of uncultured microbiota, or "microbial dark matter".This review illustrates methods commonly used for enteral microbiome analysis in horses and summarizes key findings reached for bacteria, viruses and fungi so far. Moreover, reasonable possibilities to combine different explorative techniques are described. As a future perspective, knowledge expansion concerning beneficial compositions of microorganisms within the equine GIT creates novel possibilities for early disorder diagnostics as well as innovative therapeutic approaches. In addition, analysis of shotgun metagenomic data enables tracking of certain microorganisms beyond species barriers: transmission events of bacteria including pathogens and opportunists harboring antibiotic resistance factors between different horses but also between humans and horses will reach new levels of depth concerning strain-level distinctions.
Collapse
Affiliation(s)
- Anne Kauter
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany
| | - Lennard Epping
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Microbial Genomics (NG1), Robert Koch Institute, Berlin, Germany
| | | | - Dania Kannapin
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Sabita D Stoeckle
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Heidrun Gehlen
- Equine Clinic, Surgery and Radiology, Freie Universität Berlin, Berlin, Germany
| | - Antina Lübke-Becker
- Institute of Microbiology and Epizootics, Centre for Infection Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Günther
- Pharmaceutical Biology Institute of Pharmacy, Universität Greifswald, Greifswald, Germany
| | | | - Birgit Walther
- Advanced Light and Electron Microscopy (ZBS-4), Robert Koch Institute, Seestraße 10, 13353, Berlin, Germany.
| |
Collapse
|
11
|
Complete Genome Sequence of Escherichia coli Siphophage Shashou. Microbiol Resour Announc 2019; 8:8/40/e01016-19. [PMID: 31582440 PMCID: PMC6776780 DOI: 10.1128/mra.01016-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Here, we announce the genome of the Escherichia coli 4s siphophage Shashou, which presents similarity to members of the Guernseyvirinae subfamily. Shashou is predicted to use a headful packaging mechanism for its 44,155-bp genome and to encode 77 proteins. Here, we announce the genome of the Escherichia coli 4s siphophage Shashou, which presents similarity to members of the Guernseyvirinae subfamily. Shashou is predicted to use a headful packaging mechanism for its 44,155-bp genome and to encode 77 proteins.
Collapse
|
12
|
Abstract
Escherichia coli is a Gram-negative bacterium often found in animal intestinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s siphophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which 33 functions were predicted. The capsid morphogenesis gene in Snoke contains a large intein. Escherichia coli is a Gram-negative bacterium often found in animal intestinal tracts. Here, we present the genome of the Guernseyvirinae-like E. coli 4s siphophage Snoke. The 44.4-kb genome contains 81 protein-coding genes, for which 33 functions were predicted. The capsid morphogenesis gene in Snoke contains a large intein.
Collapse
|
13
|
Complete Genome Sequence of Escherichia coli Podophage Peacock. Microbiol Resour Announc 2019; 8:8/39/e01056-19. [PMID: 31558648 PMCID: PMC6763663 DOI: 10.1128/mra.01056-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli
is typically a commensal bacterium of the mammalian intestinal tract. Here, the isolation and annotation of the 39,233-bp T7-like
E. coli
podophage Peacock genome are described.
Collapse
|
14
|
Complete Genome Sequence of Escherichia coli Siphophage Schulenberg. Microbiol Resour Announc 2019; 8:8/39/e01053-19. [PMID: 31558646 PMCID: PMC6763661 DOI: 10.1128/mra.01053-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Escherichia coli bacteria and their infecting bacteriophage exist within the gut. Here, we present the complete genome of Schulenberg, an E. coli siphophage similar to phages of the subfamily Guernseyvirinae. Schulenberg encodes 85 proteins, 33 of which have predicted functions. Escherichia coli bacteria and their infecting bacteriophage exist within the gut. Here, we present the complete genome of Schulenberg, an E. coli siphophage similar to phages of the subfamily Guernseyvirinae. Schulenberg encodes 85 proteins, 33 of which have predicted functions.
Collapse
|
15
|
Complete Genome Sequence of Escherichia coli Siphophage Sciku. Microbiol Resour Announc 2019; 8:8/38/e01052-19. [PMID: 31537682 PMCID: PMC6753286 DOI: 10.1128/mra.01052-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is a Gram-negative bacterium that is found in humans and animals as both a commensal organism and a pathogen. This report describes the isolation of Sciku, a siphophage infecting E. coli 4s, with 73 protein-coding genes. Genome comparisons suggest that Sciku is related to phages within Guernseyvirinae. Escherichia coli is a Gram-negative bacterium that is found in humans and animals as both a commensal organism and a pathogen. This report describes the isolation of Sciku, a siphophage infecting E. coli 4s, with 73 protein-coding genes. Genome comparisons suggest that Sciku is related to phages within Guernseyvirinae.
Collapse
|
16
|
Complete Genome Sequence of Escherichia coli Podophage Penshu1. Microbiol Resour Announc 2019; 8:8/38/e01055-19. [PMID: 31537683 PMCID: PMC6753287 DOI: 10.1128/mra.01055-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli 4s is a Gram-negative bacterium found in the equine intestinal ecosystem alongside diverse other coliform bacteria and bacteriophages. This announcement describes the complete genome of the T7-like E. coli 4s podophage Penshu1. From its 39,263-bp genome, 54 protein-encoding genes and a 179-bp terminal repeat were predicted.
Collapse
|
17
|
Complete Genome Sequence of Escherichia coli Myophage Mansfield. Microbiol Resour Announc 2019; 8:8/38/e01038-19. [PMID: 31537679 PMCID: PMC6753283 DOI: 10.1128/mra.01038-19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Mansfield is a PB1-like Escherichia bacteriophage with a 68,120-bp genome and a predicted 3,673-bp direct terminal repeat. This myophage encodes 105 proteins, for which 32 functions were predicted. Mansfield is a PB1-like Escherichia bacteriophage with a 68,120-bp genome and a predicted 3,673-bp direct terminal repeat. This myophage encodes 105 proteins, for which 32 functions were predicted.
Collapse
|
18
|
Kulikov EE, Golomidova AK, Prokhorov NS, Ivanov PA, Letarov AV. High-throughput LPS profiling as a tool for revealing of bacteriophage infection strategies. Sci Rep 2019; 9:2958. [PMID: 30814597 PMCID: PMC6393563 DOI: 10.1038/s41598-019-39590-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/25/2019] [Indexed: 12/25/2022] Open
Abstract
O-antigens of Gram-negative bacteria modulate the interactions of bacterial cells with diverse external factors, including the components of the immune system and bacteriophages. Some phages need to acquire specific adhesins to overcome the O-antigen layer. For other phages, O-antigen is required for phage infection. In this case, interaction of phage receptor binding proteins coupled with enzymatic degradation or modification of the O-antigen is followed by phage infection. Identification of the strategies used by newly isolated phages may be of importance in their consideration for various applications. Here we describe an approach based on screening for host LPS alterations caused by selection by bacteriophages. We describe an optimized LPS profiling procedure that is simple, rapid and suitable for mass screening of mutants. We demonstrate that the phage infection strategies identified using a set of engineered E. coli 4 s mutants with impaired or altered LPS synthesis are in good agreement with the results of simpler tests based on LPS profiling of phage-resistant spontaneous mutants.
Collapse
Affiliation(s)
- Eugene E Kulikov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7 bld. 2, 117312, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701, Russian Federation
| | - Alla K Golomidova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7 bld. 2, 117312, Moscow, Russian Federation
| | - Nikolai S Prokhorov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7 bld. 2, 117312, Moscow, Russian Federation
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, 301 University Bulevard, Galveston, TX, USA
| | - Pavel A Ivanov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7 bld. 2, 117312, Moscow, Russian Federation
| | - Andrey V Letarov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7 bld. 2, 117312, Moscow, Russian Federation.
- Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, Moscow Region, 141701, Russian Federation.
- Faculty of Biology, Lomonosov Moscow State University, ul. Leninskie Gory, 1, 119991, Moscow, Russia.
| |
Collapse
|
19
|
Each of 3,323 metabolic innovations in the evolution of E. coli arose through the horizontal transfer of a single DNA segment. Proc Natl Acad Sci U S A 2018; 116:187-192. [PMID: 30563853 DOI: 10.1073/pnas.1718997115] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Even closely related prokaryotes often show an astounding diversity in their ability to grow in different nutritional environments. It has been hypothesized that complex metabolic adaptations-those requiring the independent acquisition of multiple new genes-can evolve via selectively neutral intermediates. However, it is unclear whether this neutral exploration of phenotype space occurs in nature, or what fraction of metabolic adaptations is indeed complex. Here, we reconstruct metabolic models for the ancestors of a phylogeny of 53 Escherichia coli strains, linking genotypes to phenotypes on a genome-wide, macroevolutionary scale. Based on the ancestral and extant metabolic models, we identify 3,323 phenotypic innovations in the history of the E. coli clade that arose through changes in accessory genome content. Of these innovations, 1,998 allow growth in previously inaccessible environments, while 1,325 increase biomass yield. Strikingly, every observed innovation arose through the horizontal acquisition of a single DNA segment less than 30 kb long. Although we found no evidence for the contribution of selectively neutral processes, 10.6% of metabolic innovations were facilitated by horizontal gene transfers on earlier phylogenetic branches, consistent with a stepwise adaptation to successive environments. Ninety-eight percent of metabolic phenotypes accessible to the combined E. coli pangenome can be bestowed on any individual strain by transferring a single DNA segment from one of the extant strains. These results demonstrate an amazing ability of the E. coli lineage to adapt to novel environments through single horizontal gene transfers (followed by regulatory adaptations), an ability likely mirrored in other clades of generalist bacteria.
Collapse
|
20
|
Golomidova AK, Kulikov EE, Babenko VV, Ivanov PA, Prokhorov NS, Letarov AV. Escherichia coli bacteriophage Gostya9, representing a new species within the genus T5virus. Arch Virol 2018; 164:879-884. [PMID: 30506471 DOI: 10.1007/s00705-018-4113-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Escherichia coli bacteriophage Gostya9 (genus T5virus) was isolated from horse feces collected in Moscow, Russia, in 2013. This phage was associated in a single plaque with the previously reported phage 9g and was subsequently purified. Analysis of the complete genomic sequence of Gostya9 revealed that it is closely related to the T5-like bacteriophage DT57C, which had been isolated at the same location in 2007. These two viruses share 79.5% nucleotide sequence identity, which is below the 95% threshold applied currently to demarcate bacteriophage species. The most significant features distinguishing Gostya9 from DT57C include 1) the presence of one long tail fiber protein gene, 122c (ltf), instead of the two genes, ltfA and ltfB, that are present in DT57C; 2) the absence of the gene for the receptor-blocking lytic conversion lipoprotein precursor llp; and 3) the divergence of the receptor-recognition protein, pb5, which is only distantly related at the amino acid sequence level. The observed features of the Gostya9 adsorption apparatus are suggestive of a possible novel specificity for the final receptor and make this phage interesting for possible direct application in phage therapy of E. coli infections or as a source of receptor-recognition protein for engineering new phage specificities.
Collapse
Affiliation(s)
- Alla K Golomidova
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Winogradsky Institute of Microbiology, prosp. 60-letiya Oktyabrya, 7/2, 117312, Moscow, Russian Federation
| | - Eugene E Kulikov
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Winogradsky Institute of Microbiology, prosp. 60-letiya Oktyabrya, 7/2, 117312, Moscow, Russian Federation.,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Moscow, Russian Federation
| | - Vladislav V Babenko
- Federal Medical Biological Agency, Federal Research and Clinical Center of Physical-Chemical Medicine, Mal. Pirogovskaya ul., 1a, 119435, Moscow, Russian Federation
| | - Pavel A Ivanov
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Winogradsky Institute of Microbiology, prosp. 60-letiya Oktyabrya, 7/2, 117312, Moscow, Russian Federation.,The Mental Health Research Center, 115522, Moscow, Russia
| | - Nikolai S Prokhorov
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas, Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | - Andrey V Letarov
- Federal State Institution «Federal Research Centre «Fundamentals of Biotechnology» of the Russian Academy of Sciences», Winogradsky Institute of Microbiology, prosp. 60-letiya Oktyabrya, 7/2, 117312, Moscow, Russian Federation. .,Moscow Institute of Physics and Technology, Institutskiy per., 9, Dolgoprudny, 141701, Moscow, Russian Federation. .,Faculty of Biology, Lomonosov Moscow State University, ul. Leninskie Gory, 1, 119991, Moscow, Russia.
| |
Collapse
|
21
|
Bao HD, Pang MD, Olaniran A, Zhang XH, Zhang H, Zhou Y, Sun LC, Schmidt S, Wang R. Alterations in the diversity and composition of mice gut microbiota by lytic or temperate gut phage treatment. Appl Microbiol Biotechnol 2018; 102:10219-10230. [PMID: 30302521 DOI: 10.1007/s00253-018-9378-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 12/12/2022]
Abstract
Phages, the most abundant species in the mammalian gut, have numerous advantages as biocontrol agent over antibiotics. In this study, mice were orally treated with the lytic gut phage PA13076 (group B), the temperate phage BP96115 (group C), no phage (group A), or streptomycin (group D) over 31 days. At the end of the experiment, fecal microbiota diversity and composition was determined and compared using high-throughput sequencing of the V3-V4 hyper-variable region of the 16S rRNA gene and virus-like particles (VLPs) were quantified in feces. There was high diversity and richness of microbiota in the lytic and temperate gut phage-treated mice, with the lytic gut phage causing an increased alpha diversity based on the Chao1 index (p < 0.01). However, the streptomycin treatment reduced the microbiota diversity and richness (p = 0.0299). Both phage and streptomycin treatments reduced the abundance of Bacteroidetes at the phylum level (p < 0.01) and increased the abundance of the phylum Firmicutes. Interestingly, two beneficial genera, Lactobacillus and Bifidobacterium, were enhanced by treatment with the lytic and temperate gut phage. The abundance of the genus Escherichia/Shigella was higher in mice after temperate phage administration than in the control group (p < 0.01), but lower than in the streptomycin group. Moreover, streptomycin treatment increased the abundance of the genera Klebsiella and Escherichia/Shigella (p < 0.01). In terms of the gut virome, fecal VLPs did not change significantly after phage treatment. This study showed that lytic and temperate gut phage treatment modulated the composition and diversity of gut microbiota and the lytic gut phage promoted a beneficial gut ecosystem, while the temperate phage may promote conditions enabling diseases to occur.
Collapse
Affiliation(s)
- Hong-Duo Bao
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Pietermaritzburg, 3201, South Africa
| | - Mao-da Pang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Ademola Olaniran
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban, 4000, South Africa
| | - Xu-Hui Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, 210037, China
| | - Hui Zhang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Yan Zhou
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Li-Chang Sun
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China
| | - Stefan Schmidt
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg Campus, Private Bag X01, Pietermaritzburg, 3201, South Africa.
| | - Ran Wang
- Institute of Food Safety and Nutrition, Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Sciences, No. 50 Zhongling Street, Xuanwu Area, Nanjing, 210014, China.
| |
Collapse
|
22
|
Viral tools for detection of fecal contamination and microbial source tracking in wastewater from food industries and domestic sewage. J Virol Methods 2018; 262:79-88. [PMID: 30336954 DOI: 10.1016/j.jviromet.2018.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/28/2018] [Accepted: 10/07/2018] [Indexed: 12/27/2022]
Abstract
Alternative indicators may be more suitable than thermotolerant coliform bacteria to assess enteric virus pollution in environmental waters and their removal from wastewaters. In this study, F-specific RNA bacteriophages (F-RNAPh) showed to be potential viral indicators of fecal contamination when they were quantified from domestic and food-industrial effluents containing human, chicken, swine or bovine wastes. In addition, they showed to be resistant to the primary and secondary treatments of the wastewater treatment plants. The viable F-RNAPh count showed correlation with viable thermotolerant coliforms but also with human polyomaviruses (HPyV) quantified by a new molecular method. In domestic effluents, F-RNAPh and HPyV indicators significantly correlated with a human viral pathogen, norovirus, while the bacterial indicator did not, being then better predictors of the behavior of enteric pathogenic viruses. In addition, we assessed human, bovine and fowl microbial source tracking markers, based on the molecular detections of human polyomavirus, bovine polyomavirus, and fowl adenovirus, respectively. The techniques implemented extend the range of viruses detected, since they target different viral types simultaneously. These markers could be applied when multiple source pollution is suspected, contributing to making decisions on public health interventions.
Collapse
|
23
|
Abstract
Bacteriophage PGT2 was isolated from horse feces by using an uncharacterized Escherichia coli strain, 7s, isolated from the same sample as the host. Bacteriophage PGT2 and a related phage, phiKT, which was previously isolated from the same source, are likely to represent a new genus within the Autographivirinae subfamily of the Podoviridae family of viruses.
Collapse
|
24
|
Prokhorov NS, Riccio C, Zdorovenko EL, Shneider MM, Browning C, Knirel YA, Leiman PG, Letarov AV. Function of bacteriophage G7C esterase tailspike in host cell adsorption. Mol Microbiol 2017; 105:385-398. [PMID: 28513100 DOI: 10.1111/mmi.13710] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2017] [Indexed: 12/29/2022]
Abstract
Bacteriophages recognize and bind to their hosts with the help of receptor-binding proteins (RBPs) that emanate from the phage particle in the form of fibers or tailspikes. RBPs show a great variability in their shapes, sizes, and location on the particle. Some RBPs are known to depolymerize surface polysaccharides of the host while others show no enzymatic activity. Here we report that both RBPs of podovirus G7C - tailspikes gp63.1 and gp66 - are essential for infection of its natural host bacterium E. coli 4s that populates the equine intestinal tract. We characterize the structure and function of gp63.1 and show that unlike any previously described RPB, gp63.1 deacetylates surface polysaccharides of E. coli 4s leaving the backbone of the polysaccharide intact. We demonstrate that gp63.1 and gp66 form a stable complex, in which the N-terminal part of gp66 serves as an attachment site for gp63.1 and anchors the gp63.1-gp66 complex to the G7C tail. The esterase domain of gp63.1 as well as domains mediating the gp63.1-gp66 interaction is widespread among all three families of tailed bacteriophages.
Collapse
Affiliation(s)
- Nikolai S Prokhorov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7b2 pr. 60-letiya Oktyabrya, Moscow, 117312, Russia
| | - Cristian Riccio
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Evelina L Zdorovenko
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr, Moscow, 119991, Russia
| | - Mikhail M Shneider
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland.,Laboratory of Molecular Bioengineering, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, 16/10 Miklukho-Maklaya St, Moscow, 117997, Russia
| | - Christopher Browning
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Yuriy A Knirel
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky pr, Moscow, 119991, Russia
| | - Petr G Leiman
- École Polytechnique Fédérale de Lausanne (EPFL), BSP-415, Lausanne, 1015, Switzerland
| | - Andrey V Letarov
- Research Center of Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, 7b2 pr. 60-letiya Oktyabrya, Moscow, 117312, Russia.,Faculty of Biology, Lomonosov Moscow State University, 1-12 Leninskie Gory, Moscow, 119991, Russia
| |
Collapse
|
25
|
Pang TY, Lercher MJ. Supra-operonic clusters of functionally related genes (SOCs) are a source of horizontal gene co-transfers. Sci Rep 2017; 7:40294. [PMID: 28067311 PMCID: PMC5220362 DOI: 10.1038/srep40294] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/01/2016] [Indexed: 12/14/2022] Open
Abstract
Adaptation of bacteria occurs predominantly via horizontal gene transfer (HGT). While it is widely recognized that horizontal acquisitions frequently encompass multiple genes, it is unclear what the size distribution of successfully transferred DNA segments looks like and what evolutionary forces shape this distribution. Here, we identified 1790 gene family pairs that were consistently co-gained on the same branches across a phylogeny of 53 E. coli strains. We estimated a lower limit of their genomic distances at the time they were transferred to their host genomes; this distribution shows a sharp upper bound at 30 kb. The same gene-pairs can have larger distances (up to 70 kb) in other genomes. These more distant pairs likely represent recent acquisitions via transduction that involve the co-transfer of excised prophage genes, as they are almost always associated with intervening phage-associated genes. The observed distribution of genomic distances of co-transferred genes is much broader than expected from a model based on the co-transfer of genes within operons; instead, this distribution is highly consistent with the size distribution of supra-operonic clusters (SOCs), groups of co-occurring and co-functioning genes that extend beyond operons. Thus, we propose that SOCs form a basic unit of horizontal gene transfer.
Collapse
Affiliation(s)
- Tin Yau Pang
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, 40225, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Düsseldorf, 40225, Germany
| |
Collapse
|
26
|
Milani C, Ferrario C, Turroni F, Duranti S, Mangifesta M, van Sinderen D, Ventura M. The human gut microbiota and its interactive connections to diet. J Hum Nutr Diet 2016; 29:539-46. [PMID: 27161433 DOI: 10.1111/jhn.12371] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The microbiota of the gastrointestinal tract plays an important role in human health. In addition to their metabolic interactions with dietary constituents, gut bacteria may also be involved in more complex host interactions, such as modulation of the immune system. Furthermore, the composition of the gut microbiota may be important in reducing the risk of contracting particular gut infections. Changes in the microbiota during an individual's lifespan are accompanied by modifications in multiple health parameters, and such observations have prompted intense scientific efforts aiming to understand the complex interactions between the microbiota and its human host, as well as how this may be influenced by diet.
Collapse
Affiliation(s)
- C Milani
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - C Ferrario
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - F Turroni
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | - S Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy
| | | | - D van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - M Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma, Parma, Italy.
| |
Collapse
|
27
|
Julliand V, Grimm P. HORSE SPECIES SYMPOSIUM: The microbiome of the horse hindgut: History and current knowledge1. J Anim Sci 2016; 94:2262-74. [DOI: 10.2527/jas.2015-0198] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
28
|
Golomidova AK, Kulikov EE, Prokhorov NS, Guerrero-Ferreira RС, Knirel YA, Kostryukova ES, Tarasyan KK, Letarov AV. Branched Lateral Tail Fiber Organization in T5-Like Bacteriophages DT57C and DT571/2 is Revealed by Genetic and Functional Analysis. Viruses 2016; 8:v8010026. [PMID: 26805872 PMCID: PMC4728585 DOI: 10.3390/v8010026] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/14/2015] [Accepted: 01/11/2016] [Indexed: 01/21/2023] Open
Abstract
The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.
Collapse
Affiliation(s)
- Alla K Golomidova
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, build. 2, Moscow 119071, Russia.
| | - Eugene E Kulikov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, build. 2, Moscow 119071, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia.
| | - Nikolai S Prokhorov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, build. 2, Moscow 119071, Russia.
| | | | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Ave. 47, Moscow 119991, Russia.
| | - Elena S Kostryukova
- Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Pirogovskaya ul., 1a, Moscow 119435, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia.
| | - Karina K Tarasyan
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, build. 2, Moscow 119071, Russia.
- A.N. Severtsov Institute of Ecology and Evolution, Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, build. 2, Moscow 119071, Russia.
| | - Andrey V Letarov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, build. 2, Moscow 119071, Russia.
- Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141700, Russia.
| |
Collapse
|
29
|
Complete genome sequences of T5-related Escherichia coli bacteriophages DT57C and DT571/2 isolated from horse feces. Arch Virol 2015; 160:3133-7. [PMID: 26350770 DOI: 10.1007/s00705-015-2582-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/23/2015] [Indexed: 10/23/2022]
Abstract
We report the complete genome sequencing of two Escherichia coli T5-related bacteriophages, DT57C and DT571/2, isolated from the same specimen of horse feces. These two isolates share 96% nucleotide sequence identity and can thus be considered representatives of the same novel species within the genus T5likevirus. The observed variation in the ltfA gene of these phages, resulting from a recent recombination event, may explain the observed host-range differences, suggesting that a modular mechanism makes a significant contribution to the short-term evolution (or adaptation) of T5-like phage genomes in the intestinal ecosystem. Comparison of our isolates to their closest relative, coliphage T5, revealed high overall synteny of the genomes and high conservation of the sequences of almost all structural proteins as well as of the other proteins with identified functions. At the same time, numerous alterations and non-orthologous replacements of non-structural protein genes (mostly of those with unknown functions) as well as substantial differences in tail fiber locus organization support the conclusion that DT57C and DT571/2 form a species-level group clearly distinct from bacteriophage T5.
Collapse
|
30
|
Zdorovenko EL, Golomidova AK, Prokhorov NS, Shashkov AS, Wang L, Letarov AV, Knirel YA. Structure of the O-polysaccharide of Escherichia coli O87. Carbohydr Res 2015; 412:15-8. [PMID: 25988496 DOI: 10.1016/j.carres.2015.04.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 04/22/2015] [Indexed: 11/15/2022]
Abstract
The following structure of the O-polysaccharide of Escherichia coli HS1/2 serving as a primary receptor for bacteriophage DT57-12 was elucidated by sugar analysis along with 1D and 2D (1)H and (13)C NMR spectroscopy: This structure is shared by E. coli O87 type strain. Putatively assigned functions of genes in the O-antigen gene cluster of E. coli O87 are consistent with the O-polysaccharide structure established.
Collapse
Affiliation(s)
- Evelina L Zdorovenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia.
| | - Alla K Golomidova
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nikolai S Prokhorov
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Alexander S Shashkov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Lei Wang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, 300457 Tianjin, China
| | - Andrei V Letarov
- S. N. Winogradsky Institute of Microbiology, Russian Academy of Sciences, 117312 Moscow, Russia; Moscow Institute of Physics and Technology State University, 141700 Dolgoprudny, Moscow Region, Russia
| | - Yuriy A Knirel
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
31
|
Kulikov EE, Golomidova AK, Letarova MA, Kostryukova ES, Zelenin AS, Prokhorov NS, Letarov AV. Genomic sequencing and biological characteristics of a novel Escherichia coli bacteriophage 9g, a putative representative of a new Siphoviridae genus. Viruses 2014; 6:5077-92. [PMID: 25533657 PMCID: PMC4276943 DOI: 10.3390/v6125077] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/10/2014] [Accepted: 12/08/2014] [Indexed: 12/27/2022] Open
Abstract
Bacteriophage 9g was isolated from horse feces using Escherichia coli C600 as a host strain. Phage 9g has a slightly elongated capsid 62 × 76 nm in diameter and a non-contractile tail about 185 nm long. The complete genome sequence of this bacteriophage consists of 56,703 bp encoding 70 predicted open reading frames. The closest relative of phage 9g is phage PhiJL001 infecting marine alpha-proteobacterium associated with Ircinia strobilina sponge, sharing with phage 9g 51% of amino acid identity in the main capsid protein sequence. The DNA of 9g is resistant to most restriction endonucleases tested, indicating the presence of hypermodified bases. The gene cluster encoding a biosynthesis pathway similar to biosynthesis of the unusual nucleoside queuosine was detected in the phage 9g genome. The genomic map organization is somewhat similar to the typical temperate phage gene layout but no integrase gene was detected. Phage 9g efficiently forms stable associations with its host that continues to produce the phage over multiple passages, but the phage can be easily eliminated via viricide treatment indicating that no true lysogens are formed. Since the sequence, genomic organization and biological properties of bacteriophage 9g are clearly distinct from other known Enterobacteriaceae phages, we propose to consider it as the representative of a novel genus of the Siphoviridae family.
Collapse
Affiliation(s)
- Eugene E Kulikov
- Laboratory of microbial viruses, Winogradsky Institute of Microbiology, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Alla K Golomidova
- Laboratory of microbial viruses, Winogradsky Institute of Microbiology, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Maria A Letarova
- Laboratory of microbial viruses, Winogradsky Institute of Microbiology, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Elena S Kostryukova
- SRI of Physical-Chemical Medicine, Russian Federal Medical and Biological Agency, ul. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia.
| | - Alexandr S Zelenin
- SRI of Physical-Chemical Medicine, Russian Federal Medical and Biological Agency, ul. Malaya Pirogovskaya, 1a, 119435 Moscow, Russia.
| | - Nikolai S Prokhorov
- Laboratory of microbial viruses, Winogradsky Institute of Microbiology, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia.
| | - Andrey V Letarov
- Laboratory of microbial viruses, Winogradsky Institute of Microbiology, Russian Academy of Sciences, prosp. 60-letiya Oktyabrya, 7/2, 117312 Moscow, Russia.
| |
Collapse
|
32
|
Variations in O-antigen biosynthesis and O-acetylation associated with altered phage sensitivity in Escherichia coli 4s. J Bacteriol 2014; 197:905-12. [PMID: 25512310 DOI: 10.1128/jb.02398-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The O polysaccharide of the lipopolysaccharide (O antigen) of Gram-negative bacteria often serves as a receptor for bacteriophages that can make the phage dependent on a given O-antigen type, thus supporting the concept of the adaptive significance of the O-antigen variability in bacteria. The O-antigen layer also modulates interactions of many bacteriophages with their hosts, limiting the access of the viruses to other cell surface receptors. Here we report variations of O-antigen synthesis and structure in an environmental Escherichia coli isolate, 4s, obtained from horse feces, and its mutants selected for resistance to bacteriophage G7C, isolated from the same fecal sample. The 4s O antigen was found to be serologically, structurally, and genetically related to the O antigen of E. coli O22, differing only in side-chain α-D-glucosylation in the former, mediated by a gtr locus on the chromosome. Spontaneous mutations of E. coli 4s occurring with an unusually high frequency affected either O-antigen synthesis or O-acetylation due to the inactivation of the gene encoding the putative glycosyltransferase WclH or the putative acetyltransferase WclK, respectively, by the insertion of IS1-like elements. These mutations induced resistance to bacteriophage G7C and also modified interactions of E. coli 4s with several other bacteriophages conferring either resistance or sensitivity to the host. These findings suggest that O-antigen synthesis and O-acetylation can both ensure the specific recognition of the O-antigen receptor following infection by some phages and provide protection of the host cells against attack by other phages.
Collapse
|
33
|
Clokie MR, Millard AD, Letarov AV, Heaphy S. Phages in nature. BACTERIOPHAGE 2014; 1:31-45. [PMID: 21687533 DOI: 10.4161/bact.1.1.14942] [Citation(s) in RCA: 709] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/28/2010] [Revised: 01/17/2011] [Accepted: 01/18/2011] [Indexed: 12/28/2022]
Abstract
Bacteriophages or phages are the most abundant organisms in the biosphere and they are a ubiquitous feature of prokaryotic existence. A bacteriophage is a virus which infects a bacterium. Archaea are also infected by viruses, whether these should be referred to as 'phages' is debatable, but they are included as such in the scope this article. Phages have been of interest to scientists as tools to understand fundamental molecular biology, as vectors of horizontal gene transfer and drivers of bacterial evolution, as sources of diagnostic and genetic tools and as novel therapeutic agents. Unraveling the biology of phages and their relationship with their hosts is key to understanding microbial systems and their exploitation. In this article we describe the roles of phages in different host systems and show how modeling, microscopy, isolation, genomic and metagenomic based approaches have come together to provide unparalleled insights into these small but vital constituents of the microbial world.
Collapse
Affiliation(s)
- Martha Rj Clokie
- Department of Infection, Immunity and Inflammation; Medical Sciences Building; University of Leicester; Leicester, UK
| | | | | | | |
Collapse
|
34
|
Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread. Appl Environ Microbiol 2014; 80:4350-62. [PMID: 24814786 DOI: 10.1128/aem.00446-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli.
Collapse
|
35
|
De Paepe M, Leclerc M, Tinsley CR, Petit MA. Bacteriophages: an underestimated role in human and animal health? Front Cell Infect Microbiol 2014; 4:39. [PMID: 24734220 PMCID: PMC3975094 DOI: 10.3389/fcimb.2014.00039] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/11/2014] [Indexed: 01/07/2023] Open
Abstract
Metagenomic approaches applied to viruses have highlighted their prevalence in almost all microbial ecosystems investigated. In all ecosystems, notably those associated with humans or animals, the viral fraction is dominated by bacteriophages. Whether they contribute to dysbiosis, i.e., the departure from microbiota composition in symbiosis at equilibrium and entry into a state favoring human or animal disease is unknown at present. This review summarizes what has been learnt on phages associated with human and animal microbiota, and focuses on examples illustrating the several ways by which phages may contribute to a shift to pathogenesis, either by modifying population equilibrium, by horizontal transfer, or by modulating immunity.
Collapse
Affiliation(s)
- Marianne De Paepe
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| | - Marion Leclerc
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| | - Colin R Tinsley
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| | - Marie-Agnès Petit
- Institut National de la Recherche Agronomique, Micalis, UMR 1319 Jouy en Josas, France ; Agroparistech, Micalis, UMR 1319 Jouy en Josas, France
| |
Collapse
|
36
|
Mills S, Shanahan F, Stanton C, Hill C, Coffey A, Ross RP. Movers and shakers: influence of bacteriophages in shaping the mammalian gut microbiota. Gut Microbes 2013; 4:4-16. [PMID: 23022738 PMCID: PMC3555884 DOI: 10.4161/gmic.22371] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The human intestinal microbiota is one of the most densely populated ecosystems on Earth, containing up to 10 ( 13) bacteria/g and in some respects can be considered an organ itself given its role in human health. Bacteriophages (phages) are the most abundant replicating entities on the planet and thrive wherever their bacterial hosts exist. They undoubtedly influence the dominant microbial populations in many ecosystems including the human intestine. Within this setting, lysogeny appears to be the preferred life cycle, presumably due to nutrient limitations and lack of suitable hosts protected in biofilms, hence the predator/prey dynamic observed in many ecosystems is absent. On the other hand, free virulent phages in the gut are more common among sufferers of intestinal diseases and have been shown to increase with antibiotic usage. Many of these phages evolve from prophages of intestinal bacteria and emerge under conditions where their bacterial hosts encounter stress suggesting that prophages can significantly alter the microbial community composition. Based on these observations, we propose the "community shuffling" model which hypothesizes that prophage induction contributes to intestinal dysbiosis by altering the ratio of symbionts to pathobionts, enabling pathobiont niche reoccupation. The consequences of the increased phage load on the mammalian immune system are also addressed. While this is an area of intestinal biology which has received little attention, this review assembles evidence from the literature which supports the role of phages as one of the biological drivers behind the composition of the gut microbiota.
Collapse
Affiliation(s)
- Susan Mills
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland
| | - Fergus Shanahan
- Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Department of Medicine; University College Cork; National University of Ireland; Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland
| | - Colin Hill
- Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Department of Microbiology; University College Cork; National University of Ireland; Cork, Ireland
| | - Aidan Coffey
- Department of Biological Sciences; Cork Institute of Technology; Bishopstown, Cork, Ireland
| | - R. Paul Ross
- Teagasc Food Research Centre; Moorepark; Fermoy, County Cork, Ireland,Alimentary Pharmabiotic Centre; University College Cork; National University of Ireland; Cork, Ireland,Correspondence to: R. Paul Ross,
| |
Collapse
|
37
|
Kulikov E, Kropinski AM, Golomidova A, Lingohr E, Govorun V, Serebryakova M, Prokhorov N, Letarova M, Manykin A, Strotskaya A, Letarov A. Isolation and characterization of a novel indigenous intestinal N4-related coliphage vB_EcoP_G7C. Virology 2012; 426:93-9. [PMID: 22341309 DOI: 10.1016/j.virol.2012.01.027] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Revised: 11/03/2011] [Accepted: 01/26/2012] [Indexed: 12/22/2022]
Abstract
Lytic coliphage vB_EcoP_G7C and several other highly related isolates were obtained repeatedly from the samples of horse feces held in the same stable thus representing a component of the normal indigenous intestinal communities in this population of animals. The genome of G7C consists of 71,759 bp with terminal repeats of about 1160 bp, yielding approximately 73 kbp packed DNA size. Seventy-eight potential open reading frames, most of them unique to N4-like viruses, were identified and annotated. The overall layout of functional gene groups was close to that of the original N4 phage, with some important changes in late gene area including new tail fiber proteins containing hydrolytic domains. Structural proteome analysis confirmed all the predicted subunits of the viral particle. Unlike N4 itself, phage G7C did not exhibit a lysis-inhibited phenotype.
Collapse
Affiliation(s)
- Eugene Kulikov
- Winogradsky Institute of Microbiology, Russian Academy of Science, pr. 60-letiya Oktyabrya 7, Building 2. 117 312, Moscow, Russia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Letarova M, Strelkova D, Nevolina S, Letarov A. A test for the "physiological phagemia" hypothesis-natural intestinal coliphages do not penetrate to the blood in horses. Folia Microbiol (Praha) 2012; 57:81-3. [PMID: 22234557 DOI: 10.1007/s12223-011-0096-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/19/2011] [Indexed: 01/21/2023]
Affiliation(s)
- M Letarova
- Winogradsky Institute of Microbiology RAS, Moscow, Russia
| | | | | | | |
Collapse
|
39
|
Abstract
Antibiotics are a cost-effective tool for improving feed efficiency and preventing disease in agricultural animals, but the full scope of their collateral effects is not understood. Antibiotics have been shown to mediate gene transfer by inducing prophages in certain bacterial strains; therefore, one collateral effect could be prophage induction in the gut microbiome at large. Here we used metagenomics to evaluate the effect of two antibiotics in feed (carbadox and ASP250 [chlortetracycline, sulfamethazine, and penicillin]) on swine intestinal phage metagenomes (viromes). We also monitored the bacterial communities using 16S rRNA gene sequencing. ASP250, but not carbadox, caused significant population shifts in both the phage and bacterial communities. Antibiotic resistance genes, such as multidrug resistance efflux pumps, were identified in the viromes, but in-feed antibiotics caused no significant changes in their abundance. The abundance of phage integrase-encoding genes was significantly increased in the viromes of medicated swine over that in the viromes of nonmedicated swine, demonstrating the induction of prophages with antibiotic treatment. Phage-bacterium population dynamics were also examined. We observed a decrease in the relative abundance of Streptococcus bacteria (prey) when Streptococcus phages (predators) were abundant, supporting the “kill-the-winner” ecological model of population dynamics in the swine fecal microbiome. The data show that gut ecosystem dynamics are influenced by phages and that prophage induction is a collateral effect of in-feed antibiotics. This study advances our knowledge of the collateral effects of in-feed antibiotics at a time in which the widespread use of “growth-promoting” antibiotics in agriculture is under scrutiny. Using comparative metagenomics, we show that prophages are induced by in-feed antibiotics in swine fecal microbiomes and that antibiotic resistance genes were detected in most viromes. This suggests that in-feed antibiotics are contributing to phage-mediated gene transfer, potentially of antibiotic resistance genes, in the swine gut. Additionally, the so-called “kill-the-winner” model of phage-bacterium population dynamics has been shown in aquatic ecosystems but met with conflicting evidence in gut ecosystems. The data support the idea that swine fecal Streptococcus bacteria and their phages follow the kill-the-winner model. Understanding the role of phages in gut microbial ecology is an essential component of the antibiotic resistance problem and of developing potential mitigation strategies.
Collapse
|
40
|
Yeoman CJ, Chia N, Yildirim S, Miller MEB, Kent A, Stumpf R, Leigh SR, Nelson KE, White BA, Wilson BA. Towards an Evolutionary Model of Animal-Associated Microbiomes. ENTROPY (BASEL, SWITZERLAND) 2011; 13:570-594. [PMID: 39963611 PMCID: PMC11831856 DOI: 10.3390/e13030570] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Second-generation sequencing technologies have granted us greater access to the diversity and genetics of microbial communities that naturally reside endo- and ecto-symbiotically with animal hosts. Substantial research has emerged describing the diversity and broader trends that exist within and between host species and their associated microbial ecosystems, yet the application of these data to our evolutionary understanding of microbiomes appears fragmented. For the most part biological perspectives are based on limited observations of oversimplified communities, while mathematical and/or computational modeling of these concepts often lack biological precedence. In recognition of this disconnect, both fields have attempted to incorporate ecological theories, although their applicability is currently a subject of debate because most ecological theories were developed based on observations of macro-organisms and their ecosystems. For the purposes of this review, we attempt to transcend the biological, ecological and computational realms, drawing on extensive literature, to forge a useful framework that can, at a minimum be built upon, but ideally will shape the hypotheses of each field as they move forward. In evaluating the top-down selection pressures that are exerted on a microbiome we find cause to warrant reconsideration of the much-maligned theory of multi-level selection and reason that complexity must be underscored by modularity.
Collapse
Affiliation(s)
- Carl J. Yeoman
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Nicholas Chia
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Physics, University of Illinois, Urbana, IL 61801, USA
| | - Suleyman Yildirim
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | | | - Angela Kent
- Department of Natural Resources and Environmental Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Rebecca Stumpf
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
| | - Steven R. Leigh
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Anthropology, University of Illinois, Urbana, IL 61801, USA
| | | | - Bryan A. White
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Animal Sciences, University of Illinois, IL 61801, USA
| | - Brenda A. Wilson
- Institute of Genomic Biology, University of Illinois, Urbana, IL 61801, USA
- Department of Microbiology, University of Illinois, IL 61801, USA
| |
Collapse
|
41
|
The impact of bacteriophages on probiotic bacteria and gut microbiota diversity. GENES AND NUTRITION 2010; 6:205-7. [PMID: 21484155 DOI: 10.1007/s12263-010-0188-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 10/08/2010] [Indexed: 02/06/2023]
Abstract
The human body is colonized by a vast array of bacteria whose diversity is largely affected by predation of bacteriophages. Here, we discussed the impact of bacteriophages on the composition of human intestinal microbiota as well as on the survival and thus efficacy of probiotic bacteria in the human gut.
Collapse
|
42
|
Isaeva AS, Kulikov EE, Ravin NV, Dorokhov BD, Tarasyan KK, Letarov AV. Application of the new ccdAB-type natural toxin-antitoxin module for stabilization of inheritance of expressive plasmid vectors based on the bacteriophage N15 replicon in Escherichia coli cells. Microbiology (Reading) 2010. [DOI: 10.1134/s0026261710050085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Santiago-Rodríguez TM, Dávila C, González J, Bonilla N, Marcos P, Urdaneta M, Cadete M, Monteiro S, Santos R, Domingo JS, Toranzos GA. Characterization of Enterococcus faecalis-infecting phages (enterophages) as markers of human fecal pollution in recreational waters. WATER RESEARCH 2010; 44:4716-4725. [PMID: 20723963 DOI: 10.1016/j.watres.2010.07.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 05/29/2023]
Abstract
Enterophages are a novel group of phages that specifically infect Enterococcus faecalis and have been recently isolated from environmental water samples. Although enterophages have not been conclusively linked to human fecal pollution, we are currently characterizing enterophages to propose them as viral indicators and possible surrogates of enteric viruses in recreational waters. Little is known about the morphological or genetic diversity which will have an impact on their potential as markers of human fecal contamination. In the present study we are determining if enterophages can be grouped by their ability to replicate at different temperatures, and if different groups are present in the feces of different animals. As one of the main objectives is to determine if these phages can be used as indicators of the presence of enteric viruses, the survival rate under different conditions was also determined as was their prevalence in sewage and a large watershed. Coliphages were used as a means of comparison in the prevalence and survival studies. Results indicated that the isolates are mainly DNA viruses. Their morphology as well as their ability to form viral plaques at different temperatures indicates that several groups of enterophages are present in the environment. Coliphage and enterophage concentrations throughout the watershed were lower than those of thermotolerant coliforms and enterococci. Enterophage concentrations were lower than coliphages at all sampling points. Enterophages showed diverse inactivation rates and T(90) values across different incubation temperatures in both fresh and marine waters and sand. Further molecular characterization of enterophages may allow us to develop probes for the real-time detection of these alternative indicators of human fecal pollution.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodríguez
- Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rico, San Juan 00979, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Letarov A, Golomidova A, Tarasyan K. Ecological basis for rational phage therapy. Acta Naturae 2010; 2:60-72. [PMID: 22649629 PMCID: PMC3347537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Understanding the mutual interactions of bacterial and phage populations in the environment of a human or animal body is essential in any attempt to influence these complex processes, particularly for rational phage therapy. Current knowledge on the impact of naturally occurring bacteriophages on the populations of their host bacteria, and their role in the homeostasis maintenance of a macro host, is still sketchy. The existing data suggest that different mechanisms stabilize phage-bacteria coexistence in different animal species or different body sites. The defining set of parameters governing phage infection includes specific physical, chemical, and biological conditions, such as pH, nutrient densities, host prevalence, relation to mucosa and other surfaces, the presence of phage inhibiting substances, etc. Phage therapy is also an ecological process that always implies three components that form a complex pattern of interactions: populations of the pathogen, the bacteriophages used as antibacterial agents, and the macroorganism. We present a review of contemporary data on natural bacteriophages occuring in human- and animal-body associated microbial communities, and analyze ecological and physiological considerations that determine the success of phage therapy in mammals.
Collapse
Affiliation(s)
- A.V. Letarov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - A.K. Golomidova
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - K.K. Tarasyan
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| |
Collapse
|
45
|
Isaeva A, Kulikov E, Tarasyan K, Letarov A. A Novel High-Resolving Method for Genomic PCR-Fingerprinting of Enterobacteria. Acta Naturae 2010; 2:82-8. [PMID: 22649631 PMCID: PMC3347548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
We developed a novel PCR-fingerprinting system for differentiation of enterobacterial strains using a single oligonucleotide primer IS1tr that matches the inverted terminal repeats of the IS1 insertion element. Compared to widely used BOX-PCR and ribotyping methods, our system features higher resolution allowing differentiation of closely related isolates that appear identical in BOX-PCR and ribotyping but differ in their phage sensitivity. The IS1-profiling system is less sensitive to the quality of the material and equipment used. At the same time, BOX-PCR is more universal and suitable for bacterial strain grouping and reconstruction of the low-distance phylogeny. Thus, our system represents an important supplement to the existing set of tools for bacterial strain differentiation; it is particularly valuable for a detailed investigation of highly divergent and rapidly evolving natural bacterial populations and for studies on coliphage ecology. However, some isolates could not be reliably differentiated by IS1-PCR, because of the low number of bands in their patterns. For improvement of IS1-fingerprinting characteristics, we offer to modify the system by introducing the second primer TR8834 hybridizing to the sequence of a transposase gene that is widely spread in enterobacterial genomes.
Collapse
Affiliation(s)
- A.S. Isaeva
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - E.E. Kulikov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - K.K. Tarasyan
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| | - A.V. Letarov
- Winogradsky Institute of Microbiology, Russian Academy of Sciences
| |
Collapse
|
46
|
Rodriguez-Valera F, Martin-Cuadrado AB, Rodriguez-Brito B, Pasić L, Thingstad TF, Rohwer F, Mira A. Explaining microbial population genomics through phage predation. Nat Rev Microbiol 2009; 7:828-36. [PMID: 19834481 DOI: 10.1038/nrmicro2235] [Citation(s) in RCA: 452] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The remarkable differences that have been detected by metagenomics in the genomes of strains of the same bacterial species are difficult to reconcile with the widely accepted paradigm that periodic selection within bacterial populations will regularly purge genomic diversity by clonal replacement. We have found that many of the genes that differ between strains affect regions that are potential phage recognition targets. We therefore propose the constant-diversity dynamics model, in which the diversity of prokaryotic populations is preserved by phage predation. We provide supporting evidence for this model from metagenomics, mathematical analysis and computer simulations. Periodic selection and phage predation dynamics are not mutually exclusive; we compare their predictions to shed light on the ecological circumstances under which each type of dynamics could predominate.
Collapse
Affiliation(s)
- Francisco Rodriguez-Valera
- Departmento de Producción Vegetal y Microbiología, Universidad Miguel Hernandez, San Juan de Alicante, Spain
| | | | | | | | | | | | | |
Collapse
|
47
|
Letarov A, Kulikov E. The bacteriophages in human- and animal body-associated microbial communities. J Appl Microbiol 2009; 107:1-13. [PMID: 19239553 DOI: 10.1111/j.1365-2672.2009.04143.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Felix d'Herelle first demonstrated, about 90 years ago, the presence of bacteriophages in human and animal body microbiota. Our comprehension of the impact of naturally occurring bacteriophages on symbiotic bacteria, and of their role in general homeostasis of macro-organism, nevertheless remains quite fragmentary. Analysis of data in various human- and animal body-associated microbial systems on phage occurrence, diversity, host specificity and dynamics, as well as host occurrence, specificity and dynamics, suggests that mechanisms which stabilize phage-bacteria coexistence are not identical for either different species or different body sites. Regulation by phage infection instead probably depends on specific physical, chemical and biological conditions, e.g. pH, nutrient densities, host prevalence, relation to mucosa and other surfaces and presence of phage inhibiting substances. In some animal species intestinal bacteriophages thus appear to exert significant selective pressure over at least some resident bacterial populations, resulting in phages playing important roles in the self-regulation of these microbial systems while at the same time contributing to maintenance of bacterial diversity (i.e. 'killing the winner'). Emerging data additionally suggest that bacteriophage particles could play roles in regulating the immune reactions of the macro-organism. Alternatively, for many systems links between phages and community characteristics have not been established.
Collapse
Affiliation(s)
- A Letarov
- Winogradsky Institute of Microbiology RAS, Moscow, Russia.
| | | |
Collapse
|
48
|
Microbial ecology of the equine hindgut during oligofructose-induced laminitis. ISME JOURNAL 2008; 2:1089-100. [DOI: 10.1038/ismej.2008.67] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Zuber S, Ngom-Bru C, Barretto C, Bruttin A, Brüssow H, Denou E. Genome analysis of phage JS98 defines a fourth major subgroup of T4-like phages in Escherichia coli. J Bacteriol 2007; 189:8206-14. [PMID: 17693496 PMCID: PMC2168658 DOI: 10.1128/jb.00838-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Numerous T4-like Escherichia coli phages were isolated from human stool and environmental wastewater samples in Bangladesh and Switzerland. The sequences of the major head gene (g23) revealed that these coliphages could be placed into four subgroups, represented by the phages T4, RB69, RB49, and JS98. Thus, JS98 defines a new major subgroup of E. coli T4-like phages. We conducted an analysis of the 169-kb JS98 genome sequence. Overall, 198 of the 266 JS98 open reading frames (ORFs) shared amino acid sequence identity with the reference T4 phage, 41 shared identity with other T4-like phages, and 27 ORFs lacked any database matches. Genes on the plus strand encoded virion proteins, which showed moderate to high sequence identity with T4 proteins. The right genome half of JS98 showed a higher degree of sequence conservation with T4 and RB69, even for the nonstructural genes, than did the left genome half, containing exclusively nonstructural genes. Most of the JS98-specific genes were found in the left genome half. Two came as a hypervariability cluster, but most represented isolated genes, suggesting that they were acquired separately in multiple acquisition events. No evidence for DNA exchange between JS98 phage and the E. coli host genome or coliphages other than T4 was observed. No undesired genes which could compromise its medical use were detected in the JS98 genome sequence.
Collapse
Affiliation(s)
- Sophie Zuber
- Nestlé Research Center, Nestec Ltd., P.O. Box 44, CH-1000 Lausanne 26, Switzerland
| | | | | | | | | | | |
Collapse
|