1
|
Yazdi M, Yavarmanesh M, Bahreini M, Mohebbi M. Preliminary Source Tracking of Male-Specific (F +) RNA Coliphage on Lettuce as a Surrogate of Enteric Viruses Using Reverse Transcription-PCR. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:103-113. [PMID: 27815782 DOI: 10.1007/s12560-016-9267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 10/19/2016] [Indexed: 06/06/2023]
Abstract
The aim of this research was to preliminary track fecal source male-specific F+RNA coliphages including human and animals in lettuce. At first, two published virus extraction procedures of ultracentrifugation and PEG precipitation were compared using DAL assay for determining the recovery efficiency in lettuce spiked artificially with three concentrations (102, 104, 106 pfu/100 ml) of MS2 coliphage. The results showed that PEG precipitation had the highest recovery in which the recovery efficiency at the spiked level of 106 pfu/100 ml was 16.63 %. Aqueous phase obtained from the final step of PEG method was applied for enumeration of coliphage and viral RNA extraction in naturally contaminated lettuce samples (N = 30) collected from two sources (market and farm). The samples were then analyzed based on (I, II, III, and IV primer sets) using RT-PCR method. Coliphages were detected in 9 (60 %) and 12 (80 %) out of 15 market and farm samples, respectively, using DAL assay, whereas male-specific F+RNA coliphages were detected using the RT-PCR method in 9 (60 %) and 13 (86.6 %) out of 15 samples of market and farm, respectively. Based on the results, only genotype I of male-specific F+RNA coliphages was detected in lettuce samples and no sample tested was positive for other genotypes (II, III, and IV).
Collapse
Affiliation(s)
- Mojgan Yazdi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Masoud Yavarmanesh
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran.
| | - Masumeh Bahreini
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mohebbat Mohebbi
- Department of Food Science and Technology, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
2
|
Krishnamurthy SR, Janowski AB, Zhao G, Barouch D, Wang D. Hyperexpansion of RNA Bacteriophage Diversity. PLoS Biol 2016; 14:e1002409. [PMID: 27010970 PMCID: PMC4807089 DOI: 10.1371/journal.pbio.1002409] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
Bacteriophage modulation of microbial populations impacts critical processes in ocean, soil, and animal ecosystems. However, the role of bacteriophages with RNA genomes (RNA bacteriophages) in these processes is poorly understood, in part because of the limited number of known RNA bacteriophage species. Here, we identify partial genome sequences of 122 RNA bacteriophage phylotypes that are highly divergent from each other and from previously described RNA bacteriophages. These novel RNA bacteriophage sequences were present in samples collected from a range of ecological niches worldwide, including invertebrates and extreme microbial sediment, demonstrating that they are more widely distributed than previously recognized. Genomic analyses of these novel bacteriophages yielded multiple novel genome organizations. Furthermore, one RNA bacteriophage was detected in the transcriptome of a pure culture of Streptomyces avermitilis, suggesting for the first time that the known tropism of RNA bacteriophages may include gram-positive bacteria. Finally, reverse transcription PCR (RT-PCR)-based screening for two specific RNA bacteriophages in stool samples from a longitudinal cohort of macaques suggested that they are generally acutely present rather than persistent. This study uses computational metagenomics and molecular experimentation to massively expand the known genomic and ecological diversity of RNA bacteriophages, identifying novel tropisms and genes. Bacteriophages (viruses that infect bacteria) can alter biological processes in numerous ecosystems. While there are numerous studies describing the role of bacteriophages with DNA genomes in these processes, the role of bacteriophages with RNA genomes (RNA bacteriophages) is poorly understood. This gap in knowledge is in part because of the limited diversity of known RNA bacteriophages. Here, we begin to address the question by identifying 122 novel RNA bacteriophage partial genome sequences present in metagenomic datasets that are highly divergent from each other and previously described RNA bacteriophages. Additionally, many of these sequences contained novel properties, including novel genes, segmentation, and host range, expanding the frontiers of RNA bacteriophage genomics, evolution, and tropism. These novel RNA bacteriophage sequences were globally distributed from numerous ecological niches, including animal-associated and environmental habitats. These findings will facilitate our understanding of the role of the RNA bacteriophage in microbial communities. Furthermore, there are likely many more unrecognized RNA bacteriophages that remain to be discovered.
Collapse
Affiliation(s)
- Siddharth R. Krishnamurthy
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Andrew B. Janowski
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Guoyan Zhao
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Dan Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America, and Ragon Institute of MGH, MIT, and Harvard, Boston, Massachusetts, United States of America
| | - David Wang
- Departments of Molecular Microbiology and Pathology and Immunology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
3
|
Bonadonna L, Liberti R, Volterra L. Distribution of F-specific bacteriophages and coliphages in wastewater. World J Microbiol Biotechnol 2014; 9:34-6. [PMID: 24419835 DOI: 10.1007/bf00656512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/17/1992] [Accepted: 06/17/1992] [Indexed: 11/25/2022]
Abstract
A new method for quantifying F-specific bacteriophages in wastewater is described. Somatic coliphages were also determined. Host-strainSalmonella typhimurium WG 49 was sensitive to only a few bacteriophages and this could have arisen from infection by F-RNA phages. Host-strainEscherichia coli ATCC 9723 C, however, supported multiplication of a wide range of bacteriophages present in sewage, giving plaque counts one to three orders of magnitude greater than those on F(+) and F(-) salmonellas.
Collapse
|
4
|
Kannoly S, Shao Y, Wang IN. Rethinking the evolution of single-stranded RNA (ssRNA) bacteriophages based on genomic sequences and characterizations of two R-plasmid-dependent ssRNA phages, C-1 and Hgal1. J Bacteriol 2012; 194:5073-9. [PMID: 22821966 PMCID: PMC3430324 DOI: 10.1128/jb.00929-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 07/12/2012] [Indexed: 11/20/2022] Open
Abstract
We have sequenced and characterized two R-plasmid-dependent single-stranded RNA bacteriophages (RPD ssRNA phages), C-1 and Hagl1. Phage C-1 requires a conjugative plasmid of the IncC group, while Hgal1 requires the IncH group. Both the adsorption rate constants and one-step growth curves are determined for both phages. We also empirically confirmed the lysis function of the predicted lysis genes. Genomic sequencing and phylogenetic analyses showed that both phages belong to the Levivirus group and are most closely related to another IncP-plasmid-dependent ssRNA phage, PRR1. Furthermore, our result strongly suggests that the stereotypical bauplans of genome organization found in Levivirus and Allolevivirus predate phage specialization for conjugative plasmids, suggesting that the utilization of conjugative plasmids for cell attachment and entry comprises independent evolutionary events for these two main clades of ssRNA phages. Our result is also consistent with findings of a previous study, making the Levivirus-like genome organization ancestral and the Allolevivirus-like genome derived. To obtain a deeper insight into the evolution of ssRNA phages, more phages specializing for various conjugative plasmids and infecting different bacterial species would be needed.
Collapse
Affiliation(s)
- Sherin Kannoly
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | | | | |
Collapse
|
5
|
Santiago-Rodríguez TM, Dávila C, González J, Bonilla N, Marcos P, Urdaneta M, Cadete M, Monteiro S, Santos R, Domingo JS, Toranzos GA. Characterization of Enterococcus faecalis-infecting phages (enterophages) as markers of human fecal pollution in recreational waters. WATER RESEARCH 2010; 44:4716-4725. [PMID: 20723963 DOI: 10.1016/j.watres.2010.07.078] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 07/02/2010] [Accepted: 07/20/2010] [Indexed: 05/29/2023]
Abstract
Enterophages are a novel group of phages that specifically infect Enterococcus faecalis and have been recently isolated from environmental water samples. Although enterophages have not been conclusively linked to human fecal pollution, we are currently characterizing enterophages to propose them as viral indicators and possible surrogates of enteric viruses in recreational waters. Little is known about the morphological or genetic diversity which will have an impact on their potential as markers of human fecal contamination. In the present study we are determining if enterophages can be grouped by their ability to replicate at different temperatures, and if different groups are present in the feces of different animals. As one of the main objectives is to determine if these phages can be used as indicators of the presence of enteric viruses, the survival rate under different conditions was also determined as was their prevalence in sewage and a large watershed. Coliphages were used as a means of comparison in the prevalence and survival studies. Results indicated that the isolates are mainly DNA viruses. Their morphology as well as their ability to form viral plaques at different temperatures indicates that several groups of enterophages are present in the environment. Coliphage and enterophage concentrations throughout the watershed were lower than those of thermotolerant coliforms and enterococci. Enterophage concentrations were lower than coliphages at all sampling points. Enterophages showed diverse inactivation rates and T(90) values across different incubation temperatures in both fresh and marine waters and sand. Further molecular characterization of enterophages may allow us to develop probes for the real-time detection of these alternative indicators of human fecal pollution.
Collapse
Affiliation(s)
- Tasha M Santiago-Rodríguez
- Environmental Microbiology Laboratory, Department of Biology, University of Puerto Rico, Rico, San Juan 00979, Puerto Rico
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Skraber S, Ogorzaly L, Helmi K, Maul A, Hoffmann L, Cauchie HM, Gantzer C. Occurrence and persistence of enteroviruses, noroviruses and F-specific RNA phages in natural wastewater biofilms. WATER RESEARCH 2009; 43:4780-9. [PMID: 19616820 DOI: 10.1016/j.watres.2009.05.020] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Revised: 04/30/2009] [Accepted: 05/10/2009] [Indexed: 05/15/2023]
Abstract
Enteroviruses and noroviruses are pathogenic viruses excreted by infected individuals. Discharged in wastewaters, some of these viruses can be captured by biofilms. In the present study, we assessed the occurrence and persistence of these viruses in wastewaters and in corresponding biofilms. Natural wastewaters and biofilms were analyzed monthly from January to July using real-time RT-PCR. Enterovirus RNA was detected in wastewater in June while norovirus RNA was detected from January to March. In contrast, biofilm analysis revealed the presence of both enterovirus and norovirus genomes throughout the study period. For instance, enterovirus and norovirus genogroups (GG) I and II were detected in 50, 46 and 37% of the biofilm samples, respectively (n=24). In a laboratory experiment, persistence of norovirus GGI RNA (quantified using molecular techniques) and F-specific bacteriophages (quantified using both culture and molecular techniques) was assessed in wastewater and corresponding naturally-contaminated biofilms at both 4 and 20 degrees C. The concentrations of viral genomes (norovirus GGI and F-specific RNA phage) were very stable in biofilms. Indeed, no significant decrease was observed during the persistence experiment that lasted 49 days. Furthermore, regardless of our experimental conditions, viral genome and infectious F-specific bacteriophages persisted longer in biofilm than in wastewater. According to our results, wastewater biofilms may contribute to the persistence and dispersal of pathogenic viruses outside of epidemic periods.
Collapse
Affiliation(s)
- Sylvain Skraber
- Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41 rue du Brill, L-4422 Belvaux, Luxembourg.
| | | | | | | | | | | | | |
Collapse
|
7
|
Molecular characterization of bacteriophages for microbial source tracking in Korea. Appl Environ Microbiol 2009; 75:7107-14. [PMID: 19767475 DOI: 10.1128/aem.00464-09] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated coliphages from various fecal sources, including humans and animals, for microbial source tracking in South Korea. Both somatic and F+-specific coliphages were isolated from 43 fecal samples from farms, wild animal habitats, and human wastewater plants. Somatic coliphages were more prevalent and abundant than F+ coliphages in all of the tested fecal samples. We further characterized 311 F+ coliphage isolates using RNase sensitivity assays, PCR and reverse transcription-PCR, and nucleic acid sequencing. Phylogenetic analyses were performed based on the partial nucleic acid sequences of 311 F+ coliphages from various sources. F+ RNA coliphages were most prevalent among geese (95%) and were least prevalent in cows (5%). Among the genogroups of F+ RNA coliphages, most F+ coliphages isolated from animal fecal sources belonged to either group I or group IV, and most from human wastewater sources were in group II or III. Some of the group I coliphages were present in both human and animal source samples. F+ RNA coliphages isolated from various sources were divided into two main clusters. All F+ RNA coliphages isolated from human wastewater were grouped with Qbeta-like phages, while phages isolated from most animal sources were grouped with MS2-like phages. UniFrac significance statistical analyses revealed significant differences between human and animal bacteriophages. In the principal coordinate analysis (PCoA), F+ RNA coliphages isolated from human waste were distinctively separate from those isolated from other animal sources. However, F+ DNA coliphages were not significantly different or separate in the PCoA. These results demonstrate that proper analysis of F+ RNA coliphages can effectively distinguish fecal sources.
Collapse
|
8
|
Ogorzaly L, Tissier A, Bertrand I, Maul A, Gantzer C. Relationship between F-specific RNA phage genogroups, faecal pollution indicators and human adenoviruses in river water. WATER RESEARCH 2009; 43:1257-64. [PMID: 19121532 DOI: 10.1016/j.watres.2008.12.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 11/27/2008] [Accepted: 12/10/2008] [Indexed: 05/04/2023]
Abstract
Recent studies have shown the increasing interest of F-specific RNA phage genotyping to identify major sources of faecal contamination in waters. This study, conducted in a river located in an urbanized watershed with recognized anthropogenic influences, was aimed at evaluating the relevance of direct phage genotyping by real-time RT-PCR. One hundred percent of positive results were obtained with a 5 mL aliquot of river water (n=31). Phage distribution was modified after cultivation, since the ratio of the two most abundant genogroups (II and I) reached 1.51 log(10) by direct RT-PCR-based method versus 0.30 log(10) after cultivation (n=8). For the first time, positive correlations between the concentrations of genogroup II, bacterial indicators and human adenoviruses were observed, which may indicate a human faecal pollution. No correlation between genogroups II and I has been revealed. The concentration of genogroup I was only correlated with water turbidity, suggesting an animal pollution coming from upstream after rainfall events. Among the microbiological parameters studied, only genogroup II/genogroup I ratio shows variations occurring in the major sources of faecal pollution.
Collapse
Affiliation(s)
- Leslie Ogorzaly
- Laboratory of Physical Chemistry and Microbiology for the Environment (LCPME), UMR 7564 CNRS Nancy Université, Faculté de Pharmacie, 5 rue Albert Lebrun, 54000 Nancy, France
| | | | | | | | | |
Collapse
|
9
|
Love DC, Vinjé J, Khalil SM, Murphy J, Lovelace GL, Sobsey MD. Evaluation of RT-PCR and reverse line blot hybridization for detection and genotyping F+ RNA coliphages from estuarine waters and molluscan shellfish. J Appl Microbiol 2007; 104:1203-12. [PMID: 18028362 DOI: 10.1111/j.1365-2672.2007.03646.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate a PCR-based detection and typing method for faecal indicator viruses (F+ RNA coliphages) in water and shellfish, and apply the method for better understanding of the ecology and microbial source tracking potential of these viruses. METHODS AND RESULTS Water and shellfish samples were collected over 3 years at nine estuaries in the East, West and Gulf Coasts of the USA, providing 1033 F+ RNA coliphage isolates. F+ RNA coliphage genotyping rates by reverse transcriptase-PCR-reverse line blot (RLB) hybridization ranged from 94.7% to 100% among estuaries, and were not significantly different in oysters, clams, mussels or water (P = 0.8427). Twenty samples negative by RLB were nucleotide sequenced for confirmation, and to refine RLB probes. More F+ RNA coliphages were genotyped from colder water than warmer waters, while the water salinity did not affect F+ RNA coliphage levels. CONCLUSIONS RT-PCR-RLB was a robust method for detecting and genotyping F+ RNA coliphages from diverse coastal areas, which provided new information on the ecology of F+ RNA coliphages. SIGNIFICANCE AND IMPACT OF THE STUDY This performance-validated F+ RNA coliphage method can be used for faecal indicator monitoring and microbial source tracking, to protect recreational bathers and shellfish consumers from exposure to pathogenic virus and their disease risks.
Collapse
Affiliation(s)
- D C Love
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | | | | | | | | | | |
Collapse
|
10
|
Field KG, Samadpour M. Fecal source tracking, the indicator paradigm, and managing water quality. WATER RESEARCH 2007; 41:3517-38. [PMID: 17643471 DOI: 10.1016/j.watres.2007.06.056] [Citation(s) in RCA: 338] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/18/2007] [Accepted: 06/18/2007] [Indexed: 05/03/2023]
Abstract
Fecal source tracking is used because standard methods of measuring fecal contamination in water by enumerating fecal indicator bacteria (FIB) do not identify the sources of the contamination. This paper presents a critical review of source tracking with emphasis on the extent to which methods have been tested (especially in comparison with other methods and/or with blind samples), when methods are applicable, their shortcomings, and their usefulness in predicting public health risk or pathogen occurrence. In addition, the paper discusses the broader question of whether fecal source tracking and fecal indicator monitoring is the best approach to regulate water quality and protect human health. Many fecal source-tracking methods have only been tested against sewage or fecal samples or isolates in laboratory studies (proof of concept testing) and/or applied in field studies where the "real" answer is not known, so their comparative performance and accuracy cannot be assessed. For source tracking to be quantitative, stability of ratios between host-specific markers in the environment must be established. In addition, research is needed on the correlation between host-specific markers and pathogens, and survival of markers after waste treatments. As a result of the exclusive emphasis on FIB in legislation, monitoring has concentrated on FIB and lost sight of pathogens. A more rational approach to regulating water quality would start with available epidemiological data to identify pathogens of concern in a particular water body, and then use targeted pathogen monitoring coupled with targeted fecal source tracking to control them. Baseline monitoring of indicators would become just one tool among many.
Collapse
Affiliation(s)
- Katharine G Field
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|
11
|
Yan T, Sadowsky MJ. Determining sources of fecal bacteria in waterways. ENVIRONMENTAL MONITORING AND ASSESSMENT 2007; 129:97-106. [PMID: 17072547 DOI: 10.1007/s10661-006-9426-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2005] [Revised: 01/25/2006] [Accepted: 03/09/2006] [Indexed: 05/12/2023]
Abstract
The microbiological contamination of waterways by pathogenic microbes has been, and is still, a persistent public safety concern in the United States and in most countries of the world. As most enteric pathogens are transmitted through the fecal-oral route, fecal pollution is generally regarded as the major contributor of pathogens to waterways. Fecal pollution of waterways can originate from wastewater treatment facilities, septic tanks, domestic- and wild-animal feces, and pets. Because enteric pathogens are derived from human or animal sources, techniques capable of identifying and apportioning fecal sources have been intensively investigated for use in remediation efforts and to satisfy regulatory concerns. Pollution of human origin is of the most concern, since human feces is more likely to contain human-specific enteric pathogens. Fecal indicator bacteria have been used successfully as the primary tool for microbiologically based risk assessment. However measurement of fecal indicator bacteria does not define what pathogens are present, or define the sources of these bacteria. Microbial source tracking (MST) methods that have the ability to differentiate among sources of fecal pollution are currently under development. These methods will ultimately be useful for risk assessment purposes and to aid regulatory agencies in developing strategies to remediate microbiologically impaired waterways.
Collapse
Affiliation(s)
- Tao Yan
- Department of Soil, Water, and Climate, University of Minnesota, 1991 Upper Buford Circle, St. Paul, MN 55108, USA.
| | | |
Collapse
|
12
|
Stoeckel DM, Harwood VJ. Performance, design, and analysis in microbial source tracking studies. Appl Environ Microbiol 2007; 73:2405-15. [PMID: 17308193 PMCID: PMC1855604 DOI: 10.1128/aem.02473-06] [Citation(s) in RCA: 178] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
13
|
Stewart JR, Vinjé J, Oudejans SJG, Scott GI, Sobsey MD. Sequence variation among group III F-specific RNA coliphages from water samples and swine lagoons. Appl Environ Microbiol 2006; 72:1226-30. [PMID: 16461670 PMCID: PMC1392895 DOI: 10.1128/aem.72.2.1226-1230.2006] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Typing of F-specific RNA (FRNA) coliphages has been proposed as a useful method for distinguishing human from animal fecal contamination in environmental samples. Group II and III FRNA coliphages are generally associated with human wastes, but several exceptions have been noted. In the present study, we have genotyped and partially sequenced group III FRNA coliphage field isolates from swine lagoons in North Carolina (NC) and South Carolina (SC), along with isolates from surface waters and municipal wastewaters. Phylogenetic analysis of a region of the 5' end of the maturation protein gene revealed two genetically different group III FRNA subclusters with 36.6% sequence variation. The SC swine lagoon isolates were more closely related to group III prototype virus M11, whereas the isolates from a swine lagoon in NC, surface waters, and wastewaters grouped with prototype virus Q-beta. These results suggest that refining phage genotyping systems to discriminate M11-like phages from Q-beta-like phages would not necessarily provide greater discriminatory power in distinguishing human from animal sources of pollution. Within the group III subclusters, nucleotide sequence diversity ranged from 0% to 6.9% for M11-like strains and from 0% to 8.7% for Q-beta-like strains. It is demonstrated here that nucleotide sequencing of closely related FRNA strains can be used to help track sources of contamination in surface waters. A similar use of phage genomic sequence information to track fecal pollution promises more reliable results than phage typing by nucleic acid hybridization and may hold more potential for field applications.
Collapse
Affiliation(s)
- Jill R Stewart
- National Oceanic & Atmospheric Administration, 219 Ft. Johnson Rd., Charleston, SC 29412, USA.
| | | | | | | | | |
Collapse
|
14
|
Cole D, Long SC, Sobsey MD. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol 2004; 69:6507-14. [PMID: 14602607 PMCID: PMC262259 DOI: 10.1128/aem.69.11.6507-6514.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Male-specific (F+) coliphages have been investigated as viral indicators of fecal contamination that may provide source-specific information for impacted environmental waters. This study examined the presence and proportions of the different subgroups of F+ coliphages in a variety of fecal wastes and surface waters with well-defined potential waste impacts. Municipal wastewater samples had high proportions of F+ DNA and group II and III F+ RNA coliphages. Bovine wastewaters also contained a high proportion of F+ DNA coliphages, but group I and IV F+ RNA coliphages predominated. Swine wastewaters contained approximately equal proportions of F+ DNA and RNA coliphages, and group I and III F+ RNA coliphages were most common. Waterfowl (gull and goose) feces contained almost exclusively F+ RNA coliphages of groups I and IV. No F+ coliphages were isolated from the feces of the other species examined. F+ coliphage recovery from surface waters was influenced by precipitation events and animal or human land use. There were no significant differences in coliphage density among land use categories. Significant seasonal variation was observed in the proportions of F+ DNA and RNA coliphages. Group I F+ RNA coliphages were the vast majority (90%) of those recovered from surface waters. The percentage of group I F+ RNA coliphages detected was greatest at background sites, and the percentage of group II F+ RNA coliphages was highest at human-impacted sites. Monitoring of F+ coliphage groups can indicate the presence and major sources of microbial inputs to surface waters, but environmental effects on the relative occurrence of different groups need to be considered.
Collapse
Affiliation(s)
- Dana Cole
- Department of Environmental Sciences and Engineering, The University of North Carolina School of Public Health, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
15
|
Cole D, Long SC, Sobsey MD. Evaluation of F+ RNA and DNA coliphages as source-specific indicators of fecal contamination in surface waters. Appl Environ Microbiol 2003. [PMID: 14602607 DOI: 10.1128/aem.69.11.6507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2023] Open
Abstract
Male-specific (F+) coliphages have been investigated as viral indicators of fecal contamination that may provide source-specific information for impacted environmental waters. This study examined the presence and proportions of the different subgroups of F+ coliphages in a variety of fecal wastes and surface waters with well-defined potential waste impacts. Municipal wastewater samples had high proportions of F+ DNA and group II and III F+ RNA coliphages. Bovine wastewaters also contained a high proportion of F+ DNA coliphages, but group I and IV F+ RNA coliphages predominated. Swine wastewaters contained approximately equal proportions of F+ DNA and RNA coliphages, and group I and III F+ RNA coliphages were most common. Waterfowl (gull and goose) feces contained almost exclusively F+ RNA coliphages of groups I and IV. No F+ coliphages were isolated from the feces of the other species examined. F+ coliphage recovery from surface waters was influenced by precipitation events and animal or human land use. There were no significant differences in coliphage density among land use categories. Significant seasonal variation was observed in the proportions of F+ DNA and RNA coliphages. Group I F+ RNA coliphages were the vast majority (90%) of those recovered from surface waters. The percentage of group I F+ RNA coliphages detected was greatest at background sites, and the percentage of group II F+ RNA coliphages was highest at human-impacted sites. Monitoring of F+ coliphage groups can indicate the presence and major sources of microbial inputs to surface waters, but environmental effects on the relative occurrence of different groups need to be considered.
Collapse
Affiliation(s)
- Dana Cole
- Department of Environmental Sciences and Engineering, The University of North Carolina School of Public Health, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
16
|
Scott TM, Rose JB, Jenkins TM, Farrah SR, Lukasik J. Microbial source tracking: current methodology and future directions. Appl Environ Microbiol 2002; 68:5796-803. [PMID: 12450798 PMCID: PMC134426 DOI: 10.1128/aem.68.12.5796-5803.2002] [Citation(s) in RCA: 364] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Troy M Scott
- College of Marine Science, University of South Florida, St. Petersburg 33701, USA
| | | | | | | | | |
Collapse
|
17
|
Schaper M, Durán AE, Jofre J. Comparative resistance of phage isolates of four genotypes of f-specific RNA bacteriophages to various inactivation processes. Appl Environ Microbiol 2002; 68:3702-7. [PMID: 12147462 PMCID: PMC124048 DOI: 10.1128/aem.68.8.3702-3707.2002] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of natural inactivation in freshwater, chlorination, ammonia, extreme pHs, temperature, and salt content on phage inactivation was evaluated on mixtures of F-specific RNA bacteriophage isolates belonging to genotypes I, II, III, and IV. The bacteriophages studied were previously but recently isolated from natural samples, characterized as F-specific RNA bacteriophages and genotyped by plaque hybridization with genotype-specific probes. Natural inactivation in river water was modeled by in situ incubation of bacteriophages inside submerged dialysis tubes. After several days bacteriophages of genotype I showed the highest persistence, which was significantly different from that of bacteriophages of genotype II, IV, or III. The pattern of resistance of phages belonging to the various genotypes to extreme pHs, ammonia, temperature, salt concentration, and chlorination was similar. In all cases, phages of genotype I showed the highest persistence, followed by the phages of genotypes II, III, and IV. The phages of genotypes III and IV were the least resistant to all treatments, and resistance of genotypes III and IV to the treatments was similar. Bacteriophages of genotype II showed intermediate resistance to some of the treatments. The resistance of four phages of genotype I to natural inactivation and chlorination did not differ significantly. These results indicate that genotypes III and IV are much more sensitive to environmental stresses and to treatments than the other genotypes, especially than genotype I. This should be taken into consideration in future studies aimed at using genotypes of F-specific RNA bacteriophages to fingerprint the origin of fecal pollution.
Collapse
Affiliation(s)
- M Schaper
- Department of Microbiology, University of Barcelona, E-08028 Barcelona, Spain
| | | | | |
Collapse
|
18
|
Schaper M, Jofre J, Uys M, Grabow WOK. Distribution of genotypes of F-specific RNA bacteriophages in human and non-human sources of faecal pollution in South Africa and Spain. J Appl Microbiol 2002; 92:657-67. [PMID: 11966906 DOI: 10.1046/j.1365-2672.2002.01600.x] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To assess whether the distribution of genotypes of F-specific RNA bacteriophages reflects faecal pollution of human and animal origin in water environments. METHODS AND RESULTS Stool samples, animal feedlot waste slurries and a wide variety of faecally polluted waters were studied in South Africa and Spain. Genotyping was performed by plaque and spot hybridization with genotype-specific probes. Only genotypes II and III were detected in human stool. Animal faeces contained predominantly, but not exclusively, genotypes I and IV. Raw hospital and municipal sewage contained mostly genotypes II and III, whereas genotypes I and II prevailed in settled sewage, secondary treated sewage and non-point diffuse effluents from developing communities. Abattoir wastewaters contained mostly genotypes I and IV. No differences were observed between the distribution of genotypes in Spain and South Africa. CONCLUSIONS Although the association of genotypes II and III with human excreta and I and IV with animal excreta was statistically significant, the results suggest that the association cannot be used for absolute distinction between faecal pollution of human and animal origin. SIGNIFICANCE AND IMPACT OF THE STUDY This study contributes greatly to understanding the usefulness of genotypes of F-specific RNA bacteriophages in source tracking of faecal wastes.
Collapse
Affiliation(s)
- M Schaper
- Department of Microbiology, University of Barcelona, Spain.
| | | | | | | |
Collapse
|
19
|
Maciorowski KG, Pillai SD, Ricke SC. Presence of bacteriophages in animal feed as indicators of fecal contamination. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2001; 36:699-708. [PMID: 11599731 DOI: 10.1081/pfc-100106196] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The objectives of this study were to determine if indigenous male specific and somatic bacteriophages could be detected in animal feeds and if isolated phages contained RNA or DNA. Seven fresh feeds, 2 fresh feed ingredients, 7 stored feeds, 2 stored feed ingredients, and 8 samples of poultry diets suspected to contain Salmonella spp. were enriched and spot plated for indigenous phages using Escherichia coli Famp and CN-13 as hosts. Bacteriophage numbers were below detection without enrichment, but both male specific and somatic coliphages were detected in all animal feeds, feed ingredients, and poultry diets after 16 h of enrichment, even after the samples had been stored for 14 months of storage at -20 C. Five out of 9 fresh feeds and 7 out of 8 stored feeds contained RNA somatic phages.
Collapse
Affiliation(s)
- K G Maciorowski
- Poultry Science Department, Texas A&M University, College Station 77843-2472, USA
| | | | | |
Collapse
|
20
|
Schaper M, Jofre J. Comparison of methods for detecting genotypes of F-specific RNA bacteriophages and fingerprinting the origin of faecal pollution in water samples. J Virol Methods 2000; 89:1-10. [PMID: 10996634 DOI: 10.1016/s0166-0934(00)00171-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The performance of Salmonella typhimurium WG49 and Escherichia coli HS(pFamp)R was compared on detecting the different genotypes of F-specific RNA bacteriophages by plaque hybridisation. The sensitivity of this assay was also compared with the sensitivity of RT-PCR followed by Southern blotting for detecting F-specific RNA bacteriophages belonging to genotype III in water. S. typhimurium WG49 detected slightly higher numbers of F-specific RNA bacteriophages than E. coli HS(pFamp)R both in mixtures of pure culture bacteriophage suspensions and in water samples. There were no differences between the two host strains with regard to detection of the four genotypes of F-specific RNA phages both in mixtures of pure culture bacteriophage suspensions and in environmental samples. In urban sewage samples, the host strains detected genotypes II and III as the predominant F-RNA bacteriophages. Plaque transfer to a N(+) hybond membrane and posterior hybridisation was easier using S. thyphimurium WG49 as the host strain. The efficiency of detection in sewage of genotype III F-specific RNA bacteriophages by RT-PCR was inferior to that of plaque hybridisation with the assay conditions described below. Hybridisation of plaques obtained on WG49 seems to be the most sensitive method to study the distribution of genotypes of F-specific RNA bacteriophages in water samples.
Collapse
Affiliation(s)
- M Schaper
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Avinguda Diagonol 645, 08028, Barcelona, Spain.
| | | |
Collapse
|
21
|
Dombek PE, Johnson LK, Zimmerley ST, Sadowsky MJ. Use of repetitive DNA sequences and the PCR To differentiate Escherichia coli isolates from human and animal sources. Appl Environ Microbiol 2000; 66:2572-7. [PMID: 10831440 PMCID: PMC110583 DOI: 10.1128/aem.66.6.2572-2577.2000] [Citation(s) in RCA: 345] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Accepted: 03/30/2000] [Indexed: 11/20/2022] Open
Abstract
The rep-PCR DNA fingerprint technique, which uses repetitive intergenic DNA sequences, was investigated as a way to differentiate between human and animal sources of fecal pollution. BOX and REP primers were used to generate DNA fingerprints from Escherichia coli strains isolated from human and animal sources (geese, ducks, cows, pigs, chickens, and sheep). Our initial studies revealed that the DNA fingerprints obtained with the BOX primer were more effective for grouping E. coli strains than the DNA fingerprints obtained with REP primers. The BOX primer DNA fingerprints of 154 E. coli isolates were analyzed by using the Jaccard band-matching algorithm. Jackknife analysis of the resulting similarity coefficients revealed that 100% of the chicken and cow isolates and between 78 and 90% of the human, goose, duck, pig, and sheep isolates were assigned to the correct source groups. A dendrogram constructed by using Jaccard similarity coefficients almost completely separated the human isolates from the nonhuman isolates. Multivariate analysis of variance, a form of discriminant analysis, successfully differentiated the isolates and placed them in the appropriate source groups. Taken together, our results indicate that rep-PCR performed with the BOX A1R primer may be a useful and effective tool for rapidly determining sources of fecal pollution.
Collapse
Affiliation(s)
- P E Dombek
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | |
Collapse
|
22
|
Wiggins BA, Andrews RW, Conway RA, Corr CL, Dobratz EJ, Dougherty DP, Eppard JR, Knupp SR, Limjoco MC, Mettenburg JM, Rinehardt JM, Sonsino J, Torrijos RL, Zimmerman ME. Use of antibiotic resistance analysis to identify nonpoint sources of fecal pollution. Appl Environ Microbiol 1999; 65:3483-6. [PMID: 10427038 PMCID: PMC91523 DOI: 10.1128/aem.65.8.3483-3486.1999] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/1999] [Accepted: 05/27/1999] [Indexed: 11/20/2022] Open
Abstract
A study was conducted to determine the reliability and repeatability of antibiotic resistance analysis as a method of identifying the sources of fecal pollution in surface water and groundwater. Four large sets of isolates of fecal streptococci (from 2,635 to 5,990 isolates per set) were obtained from 236 samples of human sewage and septage, cattle and poultry feces, and pristine waters. The patterns of resistance of the isolates to each of four concentrations of up to nine antibiotics were analyzed by discriminant analysis. When isolates were classified individually, the average rate of correct classification (ARCC) into four possible types (human, cattle, poultry, and wild) ranged from 64 to 78%. When the resistance patterns of all isolates from each sample were averaged and the resulting sample-level resistance patterns were classified, the ARCCs were much higher (96 to 100%). These data confirm that there are measurable and consistent differences in the antibiotic resistance patterns of fecal streptococci isolated from various sources of fecal pollution and that antibiotic resistance analysis can be used to classify and identify these sources.
Collapse
Affiliation(s)
- B A Wiggins
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Parveen S, Portier KM, Robinson K, Edmiston L, Tamplin ML. Discriminant analysis of ribotype profiles of Escherichia coli for differentiating human and nonhuman sources of fecal pollution. Appl Environ Microbiol 1999; 65:3142-7. [PMID: 10388715 PMCID: PMC91468 DOI: 10.1128/aem.65.7.3142-3147.1999] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/1999] [Accepted: 04/26/1999] [Indexed: 11/20/2022] Open
Abstract
Estuarine waters receive fecal pollution from a variety of sources, including humans and wildlife. Escherichia coli is a ubiquitous bacterium in the intestines of warm-blooded animals and is used as an indicator of fecal pollution. However, its presence does not specifically differentiate sources of pollution. A total of 238 E. coli isolates from human sources (HS) and nonhuman sources (NHS) were collected from the Apalachicola National Estuarine Research Reserve, from associated sewage treatment plants, and directly from animals and tested for ribotype (RT) profile. HS and NHS isolates showed 41 and 61 RT profiles, respectively. At a similarity index of ca. 50%, HS and NHS isolates demonstrated four clusters, with the majority of HS and NHS isolates located in clusters C and D; isolates obtained directly from human and animal feces also could be grouped within these clusters. Discriminant analysis (DA) of RT profiles showed that 97% of the NHS isolates and 100% of the animal fecal isolates were correctly classified. The average rate of correct classification for HS and NHS isolates was 82%. We conclude that DA of RT profiles may be a useful method for identifying HS and NHS fecal pollution and may potentially facilitate management practices.
Collapse
Affiliation(s)
- S Parveen
- Department of Family, Youth, and Community Sciences, University of Florida, Gainesville, Florida 32611-0287, USA
| | | | | | | | | |
Collapse
|
24
|
Wiggins BA. Discriminant analysis of antibiotic resistance patterns in fecal streptococci, a method to differentiate human and animal sources of fecal pollution in natural waters. Appl Environ Microbiol 1996; 62:3997-4002. [PMID: 8899986 PMCID: PMC168217 DOI: 10.1128/aem.62.11.3997-4002.1996] [Citation(s) in RCA: 143] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Discriminant analysis of patterns of antibiotic resistance in fecal streptococci was used to differentiate between human and animal sources of fecal pollution in natural waters. A total of 1,435 isolates from 17 samples of cattle, poultry, human, and wild-animal wastes were obtained, and their ability to grow in the presence of four concentrations of five antibiotics (chlortetracycline, halofuginone, oxytetracycline, salinomycin, and streptomycin) was measured. When the resulting antibiotic resistance patterns were analyzed, an average of 74% of the known isolates were correctly classified into one of six possible sources (beef, chicken, dairy, human, turkey, or wild). Ninety-two percent of human isolates were correctly classified. When the isolates were pooled into four possible categories (cattle, human, poultry, and wild), the average rate of correct classification (ARCC) increased to 84%. Human versus animal isolates were correctly classified at an average rate of 95%. Human versus wild isolates had an ARCC of 98%, and cattle versus poultry isolates had an ARCC of 92%. When fecal streptococci that were isolated from surface waters receiving fecal pollution from unknown origins were analyzed, 72% of the isolates from one stream and 68% of the isolates from another were classified as cattle isolates. Because the correct classification rates of these fecal streptococci are much higher than would be expected by chance alone, the use of discriminant analysis appears to hold promise as a method to determine the sources of fecal pollution in natural waters.
Collapse
Affiliation(s)
- B A Wiggins
- Department of Biology, James Madison University, Harrisonburg, Virginia 22807, USA.
| |
Collapse
|
25
|
Qureshi MA, Qureshi AA. Efficiency of removal of coliforms, faecal coliforms and coliphages in the tubli sewage treatment plant, bahrain. WATER RESEARCH 1990. [DOI: 10.1016/0043-1354(90)90079-l] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
|
26
|
Snowdon JA, Cliver DO, Hurst CJ. Coliphages as indicators of human enteric viruses in groundwater. ACTA ACUST UNITED AC 1989. [DOI: 10.1080/10643388909388366] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
27
|
Havelaar AH, Furuse K, Hogeboom WM. Bacteriophages and indicator bacteria in human and animal faeces. THE JOURNAL OF APPLIED BACTERIOLOGY 1986; 60:255-62. [PMID: 3710943 DOI: 10.1111/j.1365-2672.1986.tb01081.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In an attempt to explain the presence of F-specific (RNA) bacteriophages in waste-water, faecal material from humans and a variety of animals was examined. The phages were detected in appreciable numbers only in faeces from pigs, broiler chickens, sheep and calves but not from dogs, cows, horses and humans. Parallel examinations for somatic coliphages, thermotolerant coliforms, faecal streptococci and spores of sulphite-reducing clostridia revealed the consistent presence of these organisms in all types of samples, albeit in variable numbers. The number of F-specific bacteriophages was related to the total number of somatic coliphages, but phage counts were unrelated to bacterial counts. F-specific RNA phages were grouped by serotyping and all animal isolates were found to belong to either group I (MS2 subtype) or IV (four different subtypes). Among the group IV isolates, most belonged to well-known subtypes SP (24 isolates) or FI (18 isolates) but five isolates were related to phage ID2 and one isolate was a new subtype. In contrast with animal isolates, 19 isolates from hospital wastewater belonged to serogroups II or III.
Collapse
|
28
|
Furuse K, Sakurai T, Inokuchi Y, Inoko H, Ando A, Watanabe I. Distribution of RNA coliphages in Senegal, Ghana, and Madagascar. Microbiol Immunol 1983; 27:347-58. [PMID: 6888291 DOI: 10.1111/j.1348-0421.1983.tb00593.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The distribution patterns of RNA coliphages (phages) in Senegal, Ghana, and Madagascar were investigated by collecting sewage samples from domestic drainage in November, 1980. In Senegal, among 65 sewage samples collected mainly from Dakar and its vicinity, 14 (22%) contained RNA phages (16 strains). By serological analysis, 13 of 16 strains were found to belong to group III. This is consistent with the distribution pattern of RNA coliphages in tropical and subtropical regions of Asia. In Ghana, however, among 106 samples collected from Accra, Suhum, and their vicinities, only seven (7%) contained RNA phages (seven strains) (groups I, II, and III [1:3:3]). In Madagascar, among 124 samples collected from Antananarivo, Moramanga, and their vicinities, seven (6%) contained RNA phages (seven strains) (groups I, II, III, and IV [1:1:1:4]). In spite of the low isolation frequency, it can be said that Madagascar appears to have a unique distribution pattern (abundance of group IV phages) which differs from that of any other countries we have examined. The generality of the distribution pattern of RNA phages in the tropical region (abundance of group III phages) was thus verified at least in Senegal.
Collapse
|
29
|
Abstract
Sewage was enriched with 35 Escherichia coli strains, and sediments of enrichment cultures were studied in the electron microscope. They contained up to 10 varieties of morphologically different particles. T-even-type phages predominated in 14 samples. Thirteen phages were enriched, representing the families Myoviridae (seven), Styloviridae (two), Podoviridae (three), and Microviridae (one). Twelve of these corresponded to known enterobacterial phage species, namely, 121, K19, FC3-9, O1, 9266, T2, 16-19, kappa, beta 4, N4, T7, and phi X174. Cubic RNA phages and filamentous phages were not detected. Types 121 and 9266 have previously been observed only in Romania and South Africa. Identification by morphology is usually simple. Our investigative technique is qualitative and will not detect all phages present. Most enrichment strains are polyvalent, and electron microscopy is always required for phage identification. In a general way, electron microscopy seems to be the method of choice for investigation of phage geography and ecology.
Collapse
|