1
|
Iuzzolino VV, Scaravilli A, Carignani G, Senerchia G, Pontillo G, Dubbioso R, Cocozza S. Mapping motor and extra-motor gray and white matter changes in ALS: a comprehensive review of MRI insights. Neuroradiology 2025:10.1007/s00234-025-03629-7. [PMID: 40314791 DOI: 10.1007/s00234-025-03629-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 04/15/2025] [Indexed: 05/03/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease primarily affecting motor neurons, yet with substantial clinical variability. Furthermore, beyond motor symptoms, ALS patients also show non-motor features, reflecting its classification as a multi-system disorder. The identification of reliable biomarkers is a critical challenge for improving diagnosis, tracking disease progression, and predicting patient outcomes. This review explores macro- and microstructural alterations in ALS, focusing on gray matter (GM) and white matter (WM) as observed through Magnetic Resonance Imaging (MRI). This approach synthesizes not only the expected involvement of motor areas but also highlights emerging evidence that these changes extend to extra-motor areas, such as the frontal and temporal lobes, underscoring the complex pathophysiology of ALS. The review emphasizes the potential of MRI as a non-invasive tool to provide new biomarkers by assessing both GM and WM integrity, a key advancement in ALS research. Additionally, it addresses existing discrepancies in findings and stresses the need for standardized imaging protocols. It also highlights the role of multi-modal MRI approaches in deepening our understanding of ALS pathology, emphasizing the importance of combining structural and diffusion MRI techniques to offer more comprehensive insights into ALS progression, ultimately advancing the potential for personalized treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Valentina Virginia Iuzzolino
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Alessandra Scaravilli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Guglielmo Carignani
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Gianmaria Senerchia
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Raffaele Dubbioso
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples Federico II, Naples, Italy.
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Gorgich EA, Heidari Z, Mahmoudzadeh-Sagheb H, Rustamzadeh A, Shabani A, Amirzadeh A, Haghi Ashtiani B. Brain Metabolite Profiles are Associated with Selective Neuronal Vulnerability and Underlying Mechanisms in Amyotrophic Lateral Sclerosis. ACS Chem Neurosci 2025; 16:1469-1480. [PMID: 40156516 DOI: 10.1021/acschemneuro.4c00593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2025] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal neurological syndrome accompanied by selective degeneration of somatic motor neurons and neurochemistry alterations. Nevertheless, eye movement's nuclei are relatively spared from ALS damage. This survey was to probe metabolite changes in the primary motor cortex (PMC) and interstitial nucleus of Cajal (INC) of ALS patients using proton magnetic resonance spectroscopy (1H-MRS). In this case-control study, 20 patients with ALS and 20 healthy controls underwent 1.5 T MRI and multivoxel 1H-MRS. 1H-MRS spectra to determine metabolite profiles including tNAA, mIns, tCr, tCho, and also tNAA/tCr, tNAA/tCho, and mIns/tNAA metabolite ratios from the PMC and INC were quantified via a point resolved spectroscopy pulse (PRESS) sequence in two groups. Further, the associations between 1H-MRS markers with forced vital capacity (FVC), ALS functional rating scale (ALSFRS-R), and disease progression rate (ΔFS) were investigated. In the PMC, tNAA and tNAA/tCr were significantly lower in ALS patients than the healthy controls, but mIns and mIns/tNAA were significantly greater in these patients (p < 0.05). In the INC, tCho and mIns concentrations, and mIns/tNAA ratio were significantly increased (p < 0.05) in ALS patients, while tNAA and tNAA/tCr ratio did not show significant discriminations between the two groups (p > 0.05). The PMC tNAA/Cr ratio is associated with ALSFRS-R (p = 0.001, r = 0.71), FVC (p = 0.03, r = 0.58), and ΔFS (p = 0.01, r = -0.33). The mIns/tNAA ratio in PMC is also associated with ΔFS (p = 0.02, r = 0.41). In the INC, tCho concentrations (p = 0.04, r = -0.54) and mIns/tNAA ratio (p = 0.02, r = -0.38) were negatively associated with ALSFRS-R and positively correlated with ΔFS (p = 0.01, r = 0.33) and (p = 0.001, r = 0.61), respectively. The study suggests that neurochemistry changes in ALS patients' brains are linked to selective neuronal vulnerability and the underlying pathophysiology of the disease.
Collapse
Affiliation(s)
- Enam Alhagh Gorgich
- Department of Anatomy, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr 99166-43535, Iran
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Zahra Heidari
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Hamidreza Mahmoudzadeh-Sagheb
- Department of Histology, School of Medicine, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
- Infectious Diseases and Tropical Medicine Research Center, Research Institute of Cellular and Molecular Sciences in Infectious Diseases, Zahedan University of Medical Sciences, Zahedan 98167-43463, Iran
| | - Auob Rustamzadeh
- Department of Anatomical Sciences, School of Medicine, Qazvin University of Medical Sciences, Qazvin 34148-53135, Iran
| | - Arash Shabani
- Department of Advanced Imaging and Image Processing, Saadatabad Medical Imaging Center, Tehran 14496-14535, Iran
| | - Ali Amirzadeh
- Department of Advanced Imaging and Image Processing, Saadatabad Medical Imaging Center, Tehran 14496-14535, Iran
| | - Bahram Haghi Ashtiani
- Department of Neurology, Firoozgar Hospital, School of Medicine, Iran University of Medical Sciences, Tehran 15937-48711, Iran
| |
Collapse
|
3
|
Ta D, Ishaque A, Srivastava O, Hanstock C, Seres P, Eurich DT, Luk C, Briemberg H, Frayne R, Genge AL, Graham SJ, Korngut L, Zinman L, Kalra S. Progressive Neurochemical Abnormalities in Cognitive and Motor Subgroups of Amyotrophic Lateral Sclerosis: A Prospective Multicenter Study. Neurology 2021; 97:e803-e813. [PMID: 34426551 PMCID: PMC8397589 DOI: 10.1212/wnl.0000000000012367] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/19/2021] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To evaluate progressive cerebral degeneration in amyotrophic lateral sclerosis (ALS) by assessing alterations in N-acetylaspartate (NAA) ratios in the motor and prefrontal cortex within clinical subgroups of ALS. METHODS Seventy-six patients with ALS and 59 healthy controls were enrolled in a prospective, longitudinal, multicenter study in the Canadian ALS Neuroimaging Consortium. Participants underwent serial clinical evaluations and magnetic resonance spectroscopy at baseline and 4 and 8 months using a harmonized protocol across 5 centers. NAA ratios were quantified in the motor cortex and prefrontal cortex. Patients were stratified into subgroups based on disease progression rate, upper motor neuron (UMN) signs, and cognitive status. Linear mixed models were used for baseline and longitudinal comparisons of NAA metabolite ratios. RESULTS Patients with ALS had reduced NAA ratios in the motor cortex at baseline (p < 0.001). Ratios were lower in those with more rapid disease progression and greater UMN signs (p < 0.05). A longitudinal decline in NAA ratios was observed in the motor cortex in the rapidly progressing (p < 0.01) and high UMN burden (p < 0.01) cohorts. The severity of UMN signs did not change significantly over time. NAA ratios were reduced in the prefrontal cortex only in cognitively impaired patients (p < 0.05); prefrontal cortex metabolites did not change over time. CONCLUSIONS Progressive degeneration of the motor cortex in ALS is associated with more aggressive clinical presentations. These findings provide biological evidence of variable spatial and temporal cerebral degeneration linked to the disease heterogeneity of ALS. The use of standardized imaging protocols may have a role in clinical trials for patient selection or subgrouping. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that MRS NAA metabolite ratios of the motor cortex are associated with more rapid disease progression and greater UMN signs in patients with ALS. TRIAL REGISTRATION INFORMATION ClinicalTrials.gov Identifier: NCT02405182.
Collapse
Affiliation(s)
- Daniel Ta
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada.
| | - Abdullah Ishaque
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Ojas Srivastava
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Chris Hanstock
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Peter Seres
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Dean T Eurich
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Collin Luk
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Hannah Briemberg
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Richard Frayne
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Angela L Genge
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Simon J Graham
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Lawrence Korngut
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Lorne Zinman
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada
| | - Sanjay Kalra
- From the Neuroscience and Mental Health Institute (D.T., A.I., O.S., S.K.), Department of Biomedical Engineering (C.H., P.S.), School of Public Health (D.T.E.), and Division of Neurology (C.L., S.K.), University of Alberta, Edmonton; Division of Neurology (H.B.), University of British Columbia, Vancouver; Seaman Family MR Centre (R.F.) and Hotchkiss Brain Institute (R.F., L.K.), University of Calgary, Alberta; Montreal Neurological Institute (A.L.G.), McGill University, Quebec; and Sunnybrook Health Sciences Centre (S.J.G., L.Z.), University of Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Dai Z, Kalra S, Mah D, Seres P, Sun H, Wu R, Wilman AH. Amide signal intensities may be reduced in the motor cortex and the corticospinal tract of ALS patients. Eur Radiol 2021; 31:1401-1409. [PMID: 32909054 DOI: 10.1007/s00330-020-07243-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/21/2020] [Accepted: 08/28/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES The aim of the study is to assess amide concentration changes in ALS patients compared with healthy controls by using quantitative amide proton transfer (APT) and multiparameter magnetic resonance imaging, and testing its correlation with clinical scores. METHODS Sixteen ALS patients and sixteen healthy controls were recruited as part of the Canadian ALS Neuroimaging Consortium, and multimodal magnetic resonance imaging was performed at 3 T, including APT and diffusion imaging. Lorentz fitting was used to quantify the amide effect. Clinical disability was evaluated using the revised ALS functional rating scale (ALSFRS-R), and its correlation with image characteristics was assessed. The diagnostic performance of different imaging parameters was evaluated with receiver operating characteristic analysis. RESULTS Our results showed that the amide peak was significantly different between the motor cortex and other gray matter territories within the brain of ALS patients (p < 0.001). Compared with controls, amide signal intensities in ALS were significantly reduced in the motor cortex (p < 0.001) and corticospinal tract (p = 0.046), while abnormalities were not detected using routine imaging methods. There was no significant correlation between amide and ALSFRS-R score. The diagnostic accuracy of the amide peak was superior to that of diffusion imaging. CONCLUSIONS This study demonstrated changes of amide signal intensities in the motor cortex and corticospinal tract of ALS patients. KEY POINTS • The neurodegenerative disease amyotrophic lateral sclerosis (ALS) has a lack of objective imaging indicators for diagnosis and assessment. • Analysis of amide proton transfer imaging revealed changes in the motor cortex and corticospinal tract of ALS patients that were not visible on standard magnetic resonance imaging. • The diagnostic accuracy of the amide peak was superior to that of diffusion imaging.
Collapse
Affiliation(s)
- Zhuozhi Dai
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Sanjay Kalra
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Dennell Mah
- Department of Medicine (Neurology), University of Alberta, Edmonton, Alberta, T6G 2S2, Canada
| | - Peter Seres
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada
| | - Hongfu Sun
- School of Information Technology and Electrical Engineering, University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Renhua Wu
- Department of Radiology, 2nd Affiliated Hospital of Shantou University Medical College, Shantou, 515041, Guangdong, China.
| | - Alan H Wilman
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, T6G 2V2, Canada.
| |
Collapse
|
5
|
MR spectroscopy and imaging-derived measurements in the supplementary motor area for biomarkers of amyotrophic lateral sclerosis. Neurol Sci 2021; 42:4257-4263. [PMID: 33594539 DOI: 10.1007/s10072-021-05107-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
The diagnosis of amyotrophic lateral sclerosis (ALS) requires both upper and lower motor neuron signs. However, quite a few patients with ALS lack the upper motor neuron sign during the disease. This study sought to investigate whether metabolites, including glutamate (Glu), N-acetyl aspartate (NAA), and gamma aminobutyric acid (GABA), in the supplementary motor area (SMA) measured by magnetic resonance spectroscopy (MRS), could be a surrogate biomarker for ALS. Twenty-five patients with ALS and 12 controls underwent 3.0-T MR scanning, which measured Glu, NAA, and GABA. Finally, receiver operating characteristic (ROC) curves were created and the area under curve (AUC) was calculated to assess the diagnostic power. Logistic regression analysis revealed the usefulness of both Glu and NAA for the differentiation of ALS from controls (Glu, P = 0.009; NAA, P = 0.033). The ratio of Glu to NAA or GABA was significantly increased in patients with ALS (Glu/NAA, P = 0.027; Glu/GABA, P = 0.003). Both the AUCs were more than 0.7, with high specificity but low sensitivity. The present findings might indicate that both the Glu/NAA and the Glu/GABA ratios in the SMA could be potential biomarkers for the diagnosis of ALS.
Collapse
|
6
|
Dean KE, Shen B, Askin G, Schweitzer AD, Shahbazi M, Wang Y, Lange D, Tsiouris AJ. A specific biomarker for amyotrophic lateral sclerosis: Quantitative susceptibility mapping. Clin Imaging 2021; 75:125-130. [PMID: 33548870 DOI: 10.1016/j.clinimag.2020.12.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/09/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Accurate and timely diagnosis of amyotrophic lateral sclerosis (ALS) is a diagnostic challenge given the lack of specific diagnostic and imaging biomarkers as well as the significant clinic overlap with mimic syndromes. We hypothesize that MR quantitative susceptibility mapping (QSM) can help differentiate ALS from mimic diagnoses. METHODS In a blinded retrospective study of MRIs with QSM from 2015 to 2018, we compared motor cortex susceptibility along the hand and face homunculi in ALS patients and patients with similar clinical presentations. Inclusion required a confirmed ALS or a mimic diagnosis. Comparative groups included age-matched patients with MRIs performed for non-motor neuron symptoms that were reported as normal or demonstrated leukoaraiosis. Quantitative susceptibility values were compared with ANOVA and Tukey-Kramer (post-hoc). ROC analysis and Youden's index were used to identify optimal cutoff values. RESULTS Fifty ALS, 35 mimic, and 70 non-motor neuron symptom patients (35 normal, 35 leukoaraiosis) were included. Hand and face homunculus mean susceptibility values were significantly higher in the ALS group compared to the mimic (p=0.001, p=0.004), leukoaraiosis (p<0.001, p=0.003), and normal (p<0.001, p<0.001) groups. ROC curve analysis comparing ALS to mimics resulted in an area under the curve of 0.71 and 0.67 for the hand and face homunculus measurements, respectively. In differentiating ALS from mimics, Youden's index showed 100% specificity and 36% sensitivity for hand homunculus measurements. CONCLUSIONS QSM has diagnostic potential in the assessment of suspected ALS patients, demonstrating very high specificity in differentiating ALS from mimic diagnoses.
Collapse
Affiliation(s)
- Kathryn E Dean
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA.
| | - Beiyi Shen
- Department of Radiology, Stony Brook Medicine, Stony Brook, NY, USA
| | - Gulce Askin
- Department of Healthcare Policy & Research, Division of Biostatistics and Epidemiology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew D Schweitzer
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Mona Shahbazi
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
| | - Yi Wang
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| | - Dale Lange
- Department of Neurology, Hospital for Special Surgery, New York, NY, USA
| | - Apostolos John Tsiouris
- Department of Radiology, NewYork-Presbyterian Hospital - Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
7
|
Andronesi OC, Nicholson K, Jafari-Khouzani K, Bogner W, Wang J, Chan J, Macklin EA, Levine-Weinberg M, Breen C, Schwarzschild MA, Cudkowicz M, Rosen BR, Paganoni S, Ratai EM. Imaging Neurochemistry and Brain Structure Tracks Clinical Decline and Mechanisms of ALS in Patients. Front Neurol 2020; 11:590573. [PMID: 33343494 PMCID: PMC7744722 DOI: 10.3389/fneur.2020.590573] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 11/03/2020] [Indexed: 12/27/2022] Open
Abstract
Background: Oxidative stress and protein aggregation are key mechanisms in amyotrophic lateral sclerosis (ALS) disease. Reduced glutathione (GSH) is the most important intracellular antioxidant that protects neurons from reactive oxygen species. We hypothesized that levels of GSH measured by MR spectroscopic imaging (MRSI) in the motor cortex and corticospinal tract are linked to clinical trajectory of ALS patients. Objectives: Investigate the value of GSH imaging to probe clinical decline of ALS patients in combination with other neurochemical and structural parameters. Methods: Twenty-four ALS patients were imaged at 3 T with an advanced MR protocol. Mapping GSH levels in the brain is challenging, and for this purpose, we used an optimized spectral-edited 3D MRSI sequence with real-time motion and field correction to image glutathione and other brain metabolites. In addition, our imaging protocol included (i) an adiabatic T1ρ sequence to image macromolecular fraction of brain parenchyma, (ii) diffusion tensor imaging (DTI) for white matter tractography, and (iii) high-resolution anatomical imaging. Results: We found GSH in motor cortex (r = −0.431, p = 0.04) and corticospinal tract (r = −0.497, p = 0.016) inversely correlated with time between diagnosis and imaging. N-Acetyl-aspartate (NAA) in motor cortex inversely correlated (r = −0.416, p = 0.049), while mean water diffusivity (r = 0.437, p = 0.033) and T1ρ (r = 0.482, p = 0.019) positively correlated with disease progression measured by imputed change in revised ALS Functional Rating Scale. There is more decrease in the motor cortex than in the white matter for GSH compared to NAA, glutamate, and glutamine. Conclusions: Our study suggests that a panel of biochemical and structural imaging biomarkers defines a brain endophenotype, which can be used to time biological events and clinical progression in ALS patients. Such a quantitative brain endophenotype may stratify ALS patients into more homogeneous groups for therapeutic interventions compared to clinical criteria.
Collapse
Affiliation(s)
- Ovidiu C Andronesi
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Katharine Nicholson
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | - Kourosh Jafari-Khouzani
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Wolfgang Bogner
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Jing Wang
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States.,Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - James Chan
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States
| | - Eric A Macklin
- Biostatistics Center, Massachusetts General Hospital, Boston, MA, United States
| | - Mark Levine-Weinberg
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | - Christopher Breen
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | | | - Merit Cudkowicz
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States
| | - Bruce R Rosen
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Sabrina Paganoni
- Neurological Clinical Research Institute (NCRI), Massachusetts General Hospital, Boston, MA, United States.,Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Eva-Maria Ratai
- Department of Radiology, A. A. Martinos Center for Biomedical Imaging, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
8
|
Blicher JU, Eskildsen SF, Stærmose TG, Møller AT, Figlewski K, Near J. Short echo-time Magnetic Resonance Spectroscopy in ALS, simultaneous quantification of glutamate and GABA at 3 T. Sci Rep 2019; 9:17593. [PMID: 31772352 PMCID: PMC6879471 DOI: 10.1038/s41598-019-53009-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/21/2019] [Indexed: 12/11/2022] Open
Abstract
Cortical hyperexcitability has been found in early Amyotrophic Lateral Sclerosis (ALS) and is hypothesized to be a key factor in pathogenesis. The current pilot study aimed to investigate cortical inhibitory/excitatory balance in ALS using short-echo Magnetic Resonance Spectroscopy (MRS). Patients suffering from ALS were scanned on a 3 T Trio Siemens MR scanner using Spin Echo Full Intensity Acquired Localized (SPECIAL) Magnetic Resonance Spectroscopy in primary motor cortex and the occipital lobe. Data was compared to a group of healthy subjects. Nine patients completed the scan. MRS data was of an excellent quality allowing for quantification of a range of metabolites of interest in ALS. In motor cortex, patients had Glutamate/GABA and GABA/Cr- ratios comparable to healthy subjects. However, Glutamate/Cr (p = 0.002) and the neuronal marker N-acetyl-aspartate (NAA/Cr) (p = 0.034) were low, possibly due to grey-matter atrophy, whereas Glutathione/Cr (p = 0.04) was elevated. In patients, NAA levels correlated significantly with both hand strength (p = 0.027) and disease severity (p = 0.016). In summary SPECIAL MRS at 3 T allows of reliable quantification of a range of metabolites of interest in ALS, including both excitatory and inhibitory neurotransmitters. The method is a promising new technique as a biomarker for future studies on ALS pathophysiology and monitoring of disease progression.
Collapse
Affiliation(s)
- J U Blicher
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark. .,Department of Neurology, Aarhus University Hospital, Aarhus, Denmark.
| | - S F Eskildsen
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - T G Stærmose
- Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Aarhus, Denmark
| | - A T Møller
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - K Figlewski
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - J Near
- Department of Psychiatry, McGill University, Montreal, Canada
| |
Collapse
|
9
|
Lei H, Dirren E, Poitry-Yamate C, Schneider BL, Gruetter R, Aebischer P. Evolution of the neurochemical profiles in the G93A-SOD1 mouse model of amyotrophic lateral sclerosis. J Cereb Blood Flow Metab 2019; 39:1283-1298. [PMID: 29400109 PMCID: PMC6668519 DOI: 10.1177/0271678x18756499] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
In vivo 1H magnetic resonance spectroscopy (1H-MRS) investigations of amyotrophic lateral sclerosis (ALS) mouse brain may provide neurochemical profiles and alterations in association with ALS disease progression. We aimed to longitudinally follow neurochemical evolutions of striatum, brainstem and motor cortex of mice transgenic for G93A mutant human superoxide dismutase type-1 (G93A-SOD1), an ALS model. Region-specific neurochemical alterations were detected in asymptomatic G93A-SOD1 mice, particularly in lactate (-19%) and glutamate (+8%) of brainstem, along with γ-amino-butyric acid (-30%), N-acetyl-aspartate (-5%) and ascorbate (+51%) of motor cortex. With disease progression towards the end-stage, increased numbers of metabolic changes of G93A-SOD1 mice were observed (e.g. glutamine levels increased in the brainstem (>+66%) and motor cortex (>+54%)). Through ALS disease progression, an overall increase of glutamine/glutamate in G93A-SOD1 mice was observed in the striatum (p < 0.01) and even more so in two motor neuron enriched regions, the brainstem and motor cortex (p < 0.0001). These 1H-MRS data underscore a pattern of neurochemical alterations that are specific to brain regions and to disease stages of the G93A-SOD1 mouse model. These neurochemical changes may contribute to early diagnosis and disease monitoring in ALS patients.
Collapse
Affiliation(s)
- Hongxia Lei
- 1 Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,2 Department of Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Elisabeth Dirren
- 3 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carole Poitry-Yamate
- 4 Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,5 Positron Emission Tomography Core, Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Bernard L Schneider
- 3 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Rolf Gruetter
- 1 Animal Imaging and Technology Core (AIT), Center for Biomedical Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,2 Department of Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,4 Laboratory for Functional and Metabolic Imaging, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,6 Department of Radiology, Faculty of Medicine, University of Lausanne, Lausanne, Switzerland
| | - Patrick Aebischer
- 3 Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Abstract
Proton magnetic resonance spectroscopy (MRS) provides a means of measuring cerebral metabolites relevant to neurodegeneration in vivo. In amyotrophic lateral sclerosis (ALS), neurochemical changes reflecting neuronal loss or dysfunction (decreased N-actylaspartate [NAA]) is most significant in the motor cortex and corticospinal tracts. Other neurochemical changes observed include increased myo-inositol (mIns), a putative marker of gliosis. MRS confirmation of involvement of non-motor regions such as the frontal lobes, thalamus, basal ganglia, and cingulum are consistent with the multi-system facet of motor neuron disease with ALS being part of a MND-FTD spectrum. MRS-derived markers exhibit an encouraging discriminatory ability to identify patients from healthy controls, however more data is needed to determine its ability to assist with the diagnosis in early stages when upper motor neuron signs are limited, and in distinguishing from disease mimics. Longitudinal change of NAA and mIns do not appear to be reliable in monitoring disease progression. Technological advances in hardware and high field scanning are increasing the number of accessible metabolites available for interrogation.
Collapse
Affiliation(s)
- Sanjay Kalra
- Division of Neurology, Department of Medicine, Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
11
|
Verber NS, Shepheard SR, Sassani M, McDonough HE, Moore SA, Alix JJP, Wilkinson ID, Jenkins TM, Shaw PJ. Biomarkers in Motor Neuron Disease: A State of the Art Review. Front Neurol 2019; 10:291. [PMID: 31001186 PMCID: PMC6456669 DOI: 10.3389/fneur.2019.00291] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 03/06/2019] [Indexed: 12/17/2022] Open
Abstract
Motor neuron disease can be viewed as an umbrella term describing a heterogeneous group of conditions, all of which are relentlessly progressive and ultimately fatal. The average life expectancy is 2 years, but with a broad range of months to decades. Biomarker research deepens disease understanding through exploration of pathophysiological mechanisms which, in turn, highlights targets for novel therapies. It also allows differentiation of the disease population into sub-groups, which serves two general purposes: (a) provides clinicians with information to better guide their patients in terms of disease progression, and (b) guides clinical trial design so that an intervention may be shown to be effective if population variation is controlled for. Biomarkers also have the potential to provide monitoring during clinical trials to ensure target engagement. This review highlights biomarkers that have emerged from the fields of systemic measurements including biochemistry (blood, cerebrospinal fluid, and urine analysis); imaging and electrophysiology, and gives examples of how a combinatorial approach may yield the best results. We emphasize the importance of systematic sample collection and analysis, and the need to correlate biomarker findings with detailed phenotype and genotype data.
Collapse
Affiliation(s)
- Nick S Verber
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Stephanie R Shepheard
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Matilde Sassani
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Harry E McDonough
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Sophie A Moore
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - James J P Alix
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Iain D Wilkinson
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Tom M Jenkins
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| | - Pamela J Shaw
- Department of Neuroscience, Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Mazón M, Vázquez Costa JF, Ten-Esteve A, Martí-Bonmatí L. Imaging Biomarkers for the Diagnosis and Prognosis of Neurodegenerative Diseases. The Example of Amyotrophic Lateral Sclerosis. Front Neurosci 2018; 12:784. [PMID: 30410433 PMCID: PMC6209630 DOI: 10.3389/fnins.2018.00784] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/10/2018] [Indexed: 12/17/2022] Open
Abstract
The term amyotrophic lateral sclerosis (ALS) comprises a heterogeneous group of fatal neurodegenerative disorders of largely unknown etiology characterized by the upper motor neurons (UMN) and/or lower motor neurons (LMN) degeneration. The development of brain imaging biomarkers is essential to advance in the diagnosis, stratification and monitoring of ALS, both in the clinical practice and clinical trials. In this review, the characteristics of an optimal imaging biomarker and common pitfalls in biomarkers evaluation will be discussed. Moreover, the development and application of the most promising brain magnetic resonance (MR) imaging biomarkers will be reviewed. Finally, the integration of both qualitative and quantitative multimodal brain MR biomarkers in a structured report will be proposed as a support tool for ALS diagnosis and stratification.
Collapse
Affiliation(s)
- Miguel Mazón
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Juan Francisco Vázquez Costa
- Neuromuscular Research Unit, Instituto de Investigación Sanitaria la Fe (IIS La Fe), Valencia, Spain
- ALS Unit, Department of Neurology, Hospital Universitario y Politécnico La Fe, Valencia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Valencia, Spain
| | - Amadeo Ten-Esteve
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| | - Luis Martí-Bonmatí
- Radiology and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, Valencia, Spain
| |
Collapse
|
13
|
Reischauer C, Gutzeit A, Neuwirth C, Fuchs A, Sartoretti-Schefer S, Weber M, Czell D. In-vivo evaluation of neuronal and glial changes in amyotrophic lateral sclerosis with diffusion tensor spectroscopy. Neuroimage Clin 2018; 20:993-1000. [PMID: 30317156 PMCID: PMC6190601 DOI: 10.1016/j.nicl.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 08/21/2018] [Accepted: 10/02/2018] [Indexed: 02/08/2023]
Abstract
Diffusion tensor spectroscopy (DTS) combines features of magnetic resonance spectroscopy and diffusion tensor imaging and permits evaluating cell-type specific properties of microstructure by probing the diffusion of intracellular metabolites. This exploratory study investigates for the first time microstructural changes in the neuronal and glial compartments of the brain of patients with amyotrophic lateral sclerosis (ALS) using DTS. To this end, the diffusion properties of the neuronal metabolite tNAA (N-acetylaspartate + N-acetylaspartylglutamate) and the predominantly glial metabolites tCr (creatine + phosphocreatine) and tCho (choline-containing compounds) were evaluated in the primary motor cortex of 24 ALS patients and 27 healthy controls. Significantly increased values in the diffusivities of all three metabolites were found in ALS patients relative to controls. Further analysis revealed more pronounced microstructural alterations in ALS patients with limb onset than with bulbar onset relative to controls. This observation may be related to the fact that the spectroscopic voxel was positioned in the part of the motor cortex where the motor functions of the limbs are represented. The higher diffusivities of tNAA may reflect neuronal damage and/or may be a consequence of mitochondrial dysfunction in ALS. Increased diffusivities of tCr and tCho are in line with reactive microglia and astrocytes surrounding degenerating motor neurons in the primary motor cortex of ALS patients. This pilot study demonstrates for the first time that cell-type specific microstructural alterations in the brain of ALS patients may be explored in vivo and non-invasively with DTS. In conjunction with other microstructural magnetic resonance imaging techniques, DTS may provide further insights into the pathogenic mechanisms that underlie neurodegeneration in ALS.
Collapse
Affiliation(s)
- Carolin Reischauer
- Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Hirslanden Hospital St. Anna, Lucerne, Switzerland; Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland.
| | - Andreas Gutzeit
- Institute of Radiology and Nuclear Medicine, Clinical Research Unit, Hirslanden Hospital St. Anna, Lucerne, Switzerland; Department of Chemistry and Applied Biosciences, ETH Zurich, Zurich, Switzerland; Department of Radiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Christoph Neuwirth
- Neuromoscular Disease Unit, ALS Clinic, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - Alexander Fuchs
- Institute for Biomedical Engineering, ETH and University of Zurich, Zurich, Switzerland
| | | | - Markus Weber
- Neuromoscular Disease Unit, ALS Clinic, Cantonal Hospital St. Gallen, St. Gallen, Switzerland
| | - David Czell
- Department of Neurology, Cantonal Hospital Winterthur, Winterthur, Switzerland; Department of Neurology, Spital Linth, Uznach, Switzerland
| |
Collapse
|
14
|
CSF cystatin C and diffusion tensor imaging parameters as biomarkers of upper motor neuron degeneration in amyotrophic lateral sclerosis. Clin Neurol Neurosurg 2018; 172:162-168. [PMID: 30016754 DOI: 10.1016/j.clineuro.2018.07.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 07/04/2018] [Accepted: 07/09/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVES The establishment of biomarkers for amyotrophic lateral sclerosis (ALS) will be useful for early diagnosis and may provide evidence about pathogenesis. To elucidate whether high-field magnetic resonance (MR) findings and multimodal analysis of cerebrospinal fluid (CSF) levels of cystatin C could be indicators of upper motor neuron (UMN) involvement in ALS. PATIENTS AND METHODS Patients with ALS (n = 20), multiple sclerosis (n = 15), immune mediated chronic polyneuropathy (n = 17), and acute polyneuropathy (n = 12) were included in this retrospective study. Clinical indices including UMN signs were assessed, and 3.0-Tesla diffusion tensor imaging and MR spectroscopy were performed in patients with ALS. CSF levels of cystatin C were measured using enzyme-linked immunosorbent assay. RESULTS MR findings indicated that decreased anisotropy, increased diffusion, and increased myo-inositol/creatine ratio were also significantly correlated with UMN involvement in patients with ALS. The CSF cystatin C levels were significantly lower in patients with ALS than in the other three groups. The reduction of CSF cystatin C levels was significantly correlated with clinical UMN involvement (r = -0.505, p = 0.023). CONCLUSIONS Reduced cystatin C in CSF can reflect UMN involvement as shown in high-field MR of ALS, potentially providing a new biomarker for UMN degeneration in ALS.
Collapse
|
15
|
Stämpfli P, Sommer S, Czell D, Kozerke S, Neuwirth C, Weber M, Sartoretti-Schefer S, Seifritz E, Gutzeit A, Reischauer C. Investigation of Neurodegenerative Processes in Amyotrophic Lateral Sclerosis Using White Matter Fiber Density. Clin Neuroradiol 2018; 29:493-503. [DOI: 10.1007/s00062-018-0670-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/19/2018] [Indexed: 12/20/2022]
|
16
|
Melhem ER. MR Imaging Biomarkers in Amyotrophic Lateral Sclerosis. Acad Radiol 2017; 24:1185-1186. [PMID: 28822630 DOI: 10.1016/j.acra.2017.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 07/19/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Elias R Melhem
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, 22 South Greene Street, Baltimore, MD 21201.
| |
Collapse
|
17
|
Atassi N, Xu M, Triantafyllou C, Keil B, Lawson R, Cernasov P, Ratti E, Long CJ, Paganoni S, Murphy A, Salibi N, Seethamraju R, Rosen B, Ratai EM. Ultra high-field (7tesla) magnetic resonance spectroscopy in Amyotrophic Lateral Sclerosis. PLoS One 2017; 12:e0177680. [PMID: 28498852 PMCID: PMC5428977 DOI: 10.1371/journal.pone.0177680] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/01/2017] [Indexed: 12/11/2022] Open
Abstract
The main objective of this study was to utilize high field (7T) in vivo proton magnetic resonance imaging to increase the ability to detect metabolite changes in people with ALS, specifically, to quantify levels of glutamine and glutamine separately. The second objective of this study was to correlate metabolic markers with clinical outcomes of disease progression. 13 ALS participants and 12 age-matched healthy controls (HC) underwent 7 Tesla MRI and MRS. Single voxel MR spectra were acquired from the left precentral gyrus using a very short echo time (TE = 5 ms) STEAM sequence. MRS data was quantified using LCModel and correlated to clinical outcome markers. N-acetylaspartate (NAA) and total NAA (tNA, NAA + NAAG) were decreased by 17% in people with ALS compared to HC (P = 0.004 and P = 0.005, respectively) indicating neuronal injury and/or loss in the precentral gyrus. tNA correlated with disease progression as measured by forced vital capacity (FVC) (P = 0.014; Rρ = 0.66) and tNA/tCr correlated with overall functional decline as measured by worsening of the ALS Functional Rating Scale-Revised (ALSFRS-R) (P = 0.004; Rρ = -0.74). These findings underscore the importance of NAA as a reliable biomarker for neuronal injury and disease progression in ALS. Glutamate (Glu) was 15% decreased in people with ALS compared to HC (P = 0.02) while glutamine (Gln) concentrations were similar between the two groups. Furthermore, the decrease in Glu correlated with the decrease in FVC (P = 0.013; Rρ = 0.66), a clinical marker of disease progression. The decrease in Glu is most likely driven by intracellular Glu loss due to neuronal loss and degeneration. Neither choline containing components (Cho), a marker for cell membrane turnover, nor myo-Inositol (mI), a suspected marker for neuroinflammation, showed significant differences between the two groups. However, mI/tNA was correlated with upper motor neuron burden (P = 0.004, Rρ = 0.74), which may reflect a relative increase of activated microglia around motor neurons. In summary, 7T 1H MRS is a powerful non-invasive imaging technique to study molecular changes related to neuronal injury and/or loss in people with ALS.
Collapse
Grants
- Harvard NeuroDiscovery Center, Muscular Dystrophy Association Clinical Research Training Grant, Research fellowship from the American Academy of Neurology, and the Anne B. Young neuroscience translational medicine fellowship
- Harvard NeuroDiscovery Center
- Siemens Healthcare GmbH provided support in the form of salaries for author CT, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Siemens Healthcare GmbH provided support in the form of salaries for author NS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Siemens Healthcare GmbH provided support in the form of salaries for author RS, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Biogen provided support in the form of salaries for author ER, but did not have any additional role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript
- Harvard NeuroDiscovery Center and the Amyotrophic Lateral Sclerosis Association (ALSA), National Institute of Neurological Disorders and Stroke (NINDS), R25NS065743, title: Neuroscience resident research program, and the Dr. Anne B. Young Neuroscience Translational Medicine Fellowship (Massachusetts General Hospital Neurology and Biogen).
Collapse
Affiliation(s)
- Nazem Atassi
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Maosheng Xu
- Department of Radiology, First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, P.R. China
| | - Christina Triantafyllou
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Boris Keil
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Robert Lawson
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Paul Cernasov
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Elena Ratti
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Christopher J. Long
- Massachusetts Institute of Technology, Sloan School of Management, Cambridge, Massachusetts, United States of America
| | - Sabrina Paganoni
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Charlestown, Massachusetts, United States of America
| | - Alyssa Murphy
- Neurological Clinical Research Institute (NCRI), Department of Neurology, Massachusetts General Hospital, and Harvard Medical School, Boston, Massachusetts, United States of America
| | - Nouha Salibi
- Siemens Healthineers, MR R&D, Siemens, Auburn, Alabama, United States of America
| | - Ravi Seethamraju
- Siemens Healthineers, MR R&D, Siemens, Charlestown, Massachusetts, United States of America
| | - Bruce Rosen
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
| | - Eva-Maria Ratai
- Department of Radiology, Massachusetts General Hospital, Athinoula A. Martinos Center for Biomedical Imaging, and Harvard Medical School, Charlestown, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
18
|
Wang Y, Li X, Chen W, Wang Z, Xu Y, Luo J, Lin H, Sun G. Detecting neuronal dysfunction of hand motor cortex in ALS: A MRSI study. Somatosens Mot Res 2017; 34:15-20. [PMID: 28114839 DOI: 10.1080/08990220.2016.1275544] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Although hand motor cortex (HMC) has been constantly used for identification of primary motor cortex in magnetic resonance spectroscopy (MRS) studies of amyotrophic lateral sclerosis (ALS), neurochemical profiles of HMC have never been assessed independently. As HMC has a constant location and the clinic-anatomic correlation between hand motor function and HMC has been established, we hypothesize that HMC may serve as a promising region of interest in diagnosing ALS. PATIENTS AND METHODS Fourteen ALS patients and 14 age- and gender-matched healthy controls (HC) were recruited in this study. An optimized magnetic resonance spectroscopic imaging (MRSI) method was developed and for each subject bilateral HMC areas were scanned separately (two-dimensional multi-voxel MRSI, voxel size 0.56 cm3). N-acetyl aspartate (NAA)-creatine (Cr) ratio was measured from HMC and the adjacent postcentral gyrus. RESULTS Compared with HC, NAA/Cr ratios from HMC and the postcentral gyrus were significantly reduced in ALS. However, in each group the difference of NAA/Cr ratios between HMC and the postcentral gyrus was not significant. Limb predominance of HMC was not found in either ALS or HC. In ALS, there was a significant difference in NAA/Cr ratio between the most affected HMC and the less affected HMC. A positive relationship between NAA/Cr ratio of HMC and the severity of hand strength (assessed by finger tapping speed) was demonstrated. CONCLUSION Neuronal dysfunction of HMC can differentiate ALS patients from HC when represented as reduced NAA/Cr ratio. Postcentral gyrus could not serve as normal internal reference tissue in diagnosing ALS. Asymmetrical NAA/Cr ratios from bilateral HMC may serve as a promising diagnostic biomarker of ALS at the individual level.
Collapse
Affiliation(s)
- Yuzhou Wang
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Xiaodi Li
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Wenming Chen
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Zhanhang Wang
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Yan Xu
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Jingpan Luo
- a Department of Neurology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Hanbo Lin
- b Department of Neuroradiology , Guangdong 999 Brain Hospital , Guangzhou , China
| | - Guijun Sun
- b Department of Neuroradiology , Guangdong 999 Brain Hospital , Guangzhou , China
| |
Collapse
|
19
|
Sarica A, Cerasa A, Valentino P, Yeatman J, Trotta M, Barone S, Granata A, Nisticò R, Perrotta P, Pucci F, Quattrone A. The corticospinal tract profile in amyotrophic lateral sclerosis. Hum Brain Mapp 2016; 38:727-739. [PMID: 27659483 DOI: 10.1002/hbm.23412] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/09/2016] [Accepted: 09/15/2016] [Indexed: 01/18/2023] Open
Abstract
This work evaluates the potential in diagnostic application of a new advanced neuroimaging method, which delineates the profile of tissue properties along the corticospinal tract (CST) in amyotrophic lateral sclerosis (ALS), by means of diffusion tensor imaging (DTI). Twenty-four ALS patients and twenty-four demographically matched healthy subjects were enrolled in this study. The Automated Fiber Quantification (AFQ), a tool for the automatic reconstruction of white matter tract profiles, based on a deterministic tractography algorithm to automatically identify the CST and quantify its diffusion properties, was used. At a group level, the highest non-overlapping DTI-related differences were detected in the cerebral peduncle, posterior limb of the internal capsule, and primary motor cortex. Fractional anisotropy (FA) decrease and mean diffusivity (MD) and radial diffusivity (RD) increases were detected when comparing ALS patients to controls. The machine learning approach used to assess the clinical utility of this DTI tool revealed that, by combining all DTI metrics measured along tract between the cerebral peduncle and the corona radiata, a mean 5-fold cross validation accuracy of 80% was reached in discriminating ALS from controls. Our study provides a useful new neuroimaging tool to characterize ALS-related neurodegenerative processes by means of CST profile. We demonstrated that specific microstructural changes in the upper part of the brainstem might be considered as a valid biomarker. With further validations this method has the potential to be considered a promising step toward the diagnostic utility of DTI measures in ALS. Hum Brain Mapp 38:727-739, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alessia Sarica
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Antonio Cerasa
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Paola Valentino
- Institute of Neurology, University Magna Graecia of Catanzaro, Germaneto, Catanzaro, Italy
| | - Jason Yeatman
- Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences, University of Washington, Seattle, Washington
| | - Maria Trotta
- Institute of Neurology, University Magna Graecia of Catanzaro, Germaneto, Catanzaro, Italy
| | - Stefania Barone
- Institute of Neurology, University Magna Graecia of Catanzaro, Germaneto, Catanzaro, Italy
| | - Alfredo Granata
- Institute of Neurology, University Magna Graecia of Catanzaro, Germaneto, Catanzaro, Italy
| | - Rita Nisticò
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Paolo Perrotta
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Franco Pucci
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy
| | - Aldo Quattrone
- Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council, Catanzaro, Italy.,Institute of Neurology, University Magna Graecia of Catanzaro, Germaneto, Catanzaro, Italy
| |
Collapse
|
20
|
Vora M, Kumar S, Sharma S, Sharma S, Makhaik S, Sood RG. Advanced magnetic resonance neuroimaging in bulbar and limb onset early amyotrophic lateral sclerosis. J Neurosci Rural Pract 2016; 7:102-8. [PMID: 26933355 PMCID: PMC4750305 DOI: 10.4103/0976-3147.165423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Introduction: Amyotrophic lateral sclerosis (ALS) is a fatal and most common motor neuron disease, caused by progressive loss of motor neurons. Diffusion tensor imaging (DTI) and magnetic resonance spectroscopic (MRS) studies detect pathological changes in neuronal fibers in vivo. We evaluated the role of DTI and MRS in early course of the disease, which may prove beneficial in the early diagnosis and better management. Materials and Methods: Twenty-one patients with ALS and 13 age-matched controls received 1.5T DTI and three-dimensional multi-voxel MRS. Fractional anisotropy (FA), apparent diffusion coefficient, N-acetyl aspartate (NAA)/Creatine (Cr), and NAA/Choline (Ch) ratios were analyzed in various regions of the brain and compared with healthy controls. ALS patients were classified as definite, possible, and probable category, and patients were also studied in limb versus bulbar onset. Results: Decreased FA and increase mean diffusivity values in regions of corticospinal tract (CST) and corpus callosum (CC) was consistent finding in definite and probable disease category (P < 0.05). In possible disease, CC involvement was not significant. NAA/Cr and NAA/Ch ratios were lower in CC and regions of CST. However, in possible disease, CC involvement was not significant, while regions of CST were showing significant reduction in NAA/Cr and NAA/Ch ratios (P < 0.05). Conclusion: DTI and MRS detect changes associated with ALS even in the early phase of the disease. Bulbar onset and limb onset ALS patients show different pattern of involvement. Extramotor involvement suggested by CC involvement is a feature seen in bulbar onset patient and can suggest poor outcome in such patients. The present findings may be helpful for designing further studies in the direction of more early diagnosis of disease and its management.
Collapse
Affiliation(s)
- Maulik Vora
- Department of Radiodiagnosis and Imaging, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Suresh Kumar
- Department of Radiodiagnosis and Imaging, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Sanjiv Sharma
- Department of Radiodiagnosis and Imaging, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Sudhir Sharma
- Department of Neurology, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - Sushma Makhaik
- Department of Radiodiagnosis and Imaging, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| | - R G Sood
- Department of Radiodiagnosis and Imaging, Indira Gandhi Medical College, Shimla, Himachal Pradesh, India
| |
Collapse
|
21
|
Trotter BB, Robinson ME, Milberg WP, McGlinchey RE, Salat DH. Military blast exposure, ageing and white matter integrity. Brain 2015; 138:2278-92. [PMID: 26033970 PMCID: PMC4840948 DOI: 10.1093/brain/awv139] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/23/2015] [Accepted: 03/30/2015] [Indexed: 12/31/2022] Open
Abstract
Mild traumatic brain injury, or concussion, is associated with a range of neural changes including altered white matter structure. There is emerging evidence that blast exposure-one of the most pervasive causes of casualties in the recent overseas conflicts in Iraq and Afghanistan-is accompanied by a range of neurobiological events that may result in pathological changes to brain structure and function that occur independently of overt concussion symptoms. The potential effects of brain injury due to blast exposure are of great concern as a history of mild traumatic brain injury has been identified as a risk factor for age-associated neurodegenerative disease. The present study used diffusion tensor imaging to investigate whether military-associated blast exposure influences the association between age and white matter tissue structure integrity in a large sample of veterans of the recent conflicts (n = 190 blast-exposed; 59 without exposure) between the ages of 19 and 62 years. Tract-based spatial statistics revealed a significant blast exposure × age interaction on diffusion parameters with blast-exposed individuals exhibiting a more rapid cross-sectional age trajectory towards reduced tissue integrity. Both distinct and overlapping voxel clusters demonstrating the interaction were observed among the examined diffusion contrast measures (e.g. fractional anisotropy and radial diffusivity). The regions showing the effect on fractional anisotropy included voxels both within and beyond the boundaries of the regions exhibiting a significant negative association between fractional anisotropy and age in the entire cohort. The regional effect was sensitive to the degree of blast exposure, suggesting a 'dose-response' relationship between the number of blast exposures and white matter integrity. Additionally, there was an age-independent negative association between fractional anisotropy and years since most severe blast exposure in a subset of the blast-exposed group, suggesting a specific influence of time since exposure on tissue structure, and this effect was also independent of post-traumatic stress symptoms. Overall, these data suggest that blast exposure may negatively affect brain-ageing trajectories at the microstructural tissue level. Additional work examining longitudinal changes in brain tissue integrity in individuals exposed to military blast forces will be an important future direction to the initial findings presented here.
Collapse
Affiliation(s)
- Benjamin B Trotter
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 2 VA Boston Healthcare System Neuroimaging Research for Veterans Center, Boston, Massachusetts, USA
| | - Meghan E Robinson
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 2 VA Boston Healthcare System Neuroimaging Research for Veterans Center, Boston, Massachusetts, USA
| | - William P Milberg
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 3 Harvard Medical School, Boston, Massachusetts, USA
| | - Regina E McGlinchey
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 3 Harvard Medical School, Boston, Massachusetts, USA
| | - David H Salat
- 1 VA Boston Healthcare System, Translational Research Center for Traumatic Brain Injury and Stress Disorders, RR&D TBI Center of Excellence, Boston, Massachusetts USA and Geriatric Research, Education, and Clinical Center, VA Boston Healthcare System, Boston, Massachusetts, USA 2 VA Boston Healthcare System Neuroimaging Research for Veterans Center, Boston, Massachusetts, USA 3 Harvard Medical School, Boston, Massachusetts, USA 4 The Athinoula A. Martinos Center For Biomedical Imaging, Charlestown, Massachusetts, USA
| |
Collapse
|
22
|
Goveas J, O'Dwyer L, Mascalchi M, Cosottini M, Diciotti S, De Santis S, Passamonti L, Tessa C, Toschi N, Giannelli M. Diffusion-MRI in neurodegenerative disorders. Magn Reson Imaging 2015; 33:853-76. [PMID: 25917917 DOI: 10.1016/j.mri.2015.04.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 04/18/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
The ability to image the whole brain through ever more subtle and specific methods/contrasts has come to play a key role in understanding the basis of brain abnormalities in several diseases. In magnetic resonance imaging (MRI), "diffusion" (i.e. the random, thermally-induced displacements of water molecules over time) represents an extraordinarily sensitive contrast mechanism, and the exquisite structural detail it affords has proven useful in a vast number of clinical as well as research applications. Since diffusion-MRI is a truly quantitative imaging technique, the indices it provides can serve as potential imaging biomarkers which could allow early detection of pathological alterations as well as tracking and possibly predicting subtle changes in follow-up examinations and clinical trials. Accordingly, diffusion-MRI has proven useful in obtaining information to better understand the microstructural changes and neurophysiological mechanisms underlying various neurodegenerative disorders. In this review article, we summarize and explore the main applications, findings, perspectives as well as challenges and future research of diffusion-MRI in various neurodegenerative disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, Huntington's disease and degenerative ataxias.
Collapse
Affiliation(s)
- Joseph Goveas
- Department of Psychiatry and Behavioral Medicine, and Institute for Health and Society, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Laurence O'Dwyer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, Goethe University, Frankfurt, Germany
| | - Mario Mascalchi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence, Italy; Quantitative and Functional Neuroradiology Research Program at Meyer Children and Careggi Hospitals of Florence, Florence, Italy
| | - Mirco Cosottini
- Department of Translational Research and New Surgical and Medical Technologies, University of Pisa, Pisa, Italy; Unit of Neuroradiology, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy
| | - Stefano Diciotti
- Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, Cesena, Italy
| | - Silvia De Santis
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Luca Passamonti
- Institute of Bioimaging and Molecular Physiology, National Research Council, Catanzaro, Italy; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Carlo Tessa
- Division of Radiology, "Versilia" Hospital, AUSL 12 Viareggio, Lido di Camaiore, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, Medical Physics Section, University of Rome "Tor Vergata", Rome, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Marco Giannelli
- Unit of Medical Physics, Pisa University Hospital "Azienda Ospedaliero-Universitaria Pisana", Pisa, Italy.
| |
Collapse
|
23
|
Apparent diffusion coefficients distinguish amyotrophic lateral sclerosis from cervical spondylotic myelopathy. Clin Neurol Neurosurg 2015; 132:33-6. [PMID: 25746320 DOI: 10.1016/j.clineuro.2015.02.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 02/03/2015] [Accepted: 02/09/2015] [Indexed: 11/24/2022]
Abstract
OBJECTIVE Fifty percent of patients with amyotrophic lateral sclerosis (ALS) have cervical spondylotic myelopathy (CSM) as a complication. Because patients with ALS do not develop bulbar signs and symptoms at onset, differentiating them from patients with CSM is sometimes difficult. We aimed to determine whether the apparent diffusion coefficients (ADCs) of intracranial corticospinal tracts can be used to distinguish between patients with ALS and those with CSM. METHODS We evaluated 19 consecutive patients with ALS who did not have CSM by cervical MRI, 16 patients with CSM, and 11 healthy controls. We examined the mean ADCs in the precentral gyrus, the corona radiata, the posterior limbs of the internal capsule (PLIC), and the cerebral peduncle by 3T magnetic resonance imaging (MRI). The mean ADCs in the intracranial corticospinal tracts in patients with ALS were compared with those in patients with CSM. RESULTS The mean ADCs in the intracranial corticospinal tracts in patients with ALS were compared with those in patients with CSM (p<0.05). Additionally, the mean ADCs in the precentral gyrus, the PLIC, and the cerebral peduncle in the patients with ALS, including the patients who were initially diagnosed as having clinically possible ALS on the basis of the revised El Escorial criteria and did not develop bulbar symptoms at onset, were also higher than those in patients with CSM (p<0.05). CONCLUSIONS Elevated ADCs in the intracranial corticospinal tracts might be useful for distinguishing ALS from CSM in the early stage of the disease.
Collapse
|
24
|
Hussain A, Utz MJ, Tian W, Liu X, Ekholm S. Imaging and Diseases of the Ascending and Descending Pathways. Semin Ultrasound CT MR 2014; 35:474-86. [DOI: 10.1053/j.sult.2014.06.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
25
|
Woo JH, Wang S, Melhem ER, Gee JC, Cucchiara A, McCluskey L, Elman L. Linear associations between clinically assessed upper motor neuron disease and diffusion tensor imaging metrics in amyotrophic lateral sclerosis. PLoS One 2014; 9:e105753. [PMID: 25144708 PMCID: PMC4140827 DOI: 10.1371/journal.pone.0105753] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Accepted: 07/28/2014] [Indexed: 12/02/2022] Open
Abstract
Objective To assess the relationship between clinically assessed Upper Motor Neuron (UMN) disease in Amyotrophic Lateral Sclerosis (ALS) and local diffusion alterations measured in the brain corticospinal tract (CST) by a tractography-driven template-space region-of-interest (ROI) analysis of Diffusion Tensor Imaging (DTI). Methods This cross-sectional study included 34 patients with ALS, on whom DTI was performed. Clinical measures were separately obtained including the Penn UMN Score, a summary metric based upon standard clinical methods. After normalizing all DTI data to a population-specific template, tractography was performed to determine a region-of-interest (ROI) outlining the CST, in which average Mean Diffusivity (MD) and Fractional Anisotropy (FA) were estimated. Linear regression analyses were used to investigate associations of DTI metrics (MD, FA) with clinical measures (Penn UMN Score, ALSFRS-R, duration-of-disease), along with age, sex, handedness, and El Escorial category as covariates. Results For MD, the regression model was significant (p = 0.02), and the only significant predictors were the Penn UMN Score (p = 0.005) and age (p = 0.03). The FA regression model was also significant (p = 0.02); the only significant predictor was the Penn UMN Score (p = 0.003). Conclusions Measured by the template-space ROI method, both MD and FA were linearly associated with the Penn UMN Score, supporting the hypothesis that DTI alterations reflect UMN pathology as assessed by the clinical examination.
Collapse
Affiliation(s)
- John H. Woo
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Philadelphia Veterans Affairs Medical Center, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| | - Sumei Wang
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elias R. Melhem
- Department of Radiology, University of Maryland, Baltimore, Maryland, United States of America
| | - James C. Gee
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Andrew Cucchiara
- Department of Biostatistics and Epidemiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Leo McCluskey
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Lauren Elman
- Department of Neurology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
26
|
Weiduschat N, Mao X, Hupf J, Armstrong N, Kang G, Lange DJ, Mitsumoto H, Shungu DC. Motor cortex glutathione deficit in ALS measured in vivo with the J-editing technique. Neurosci Lett 2014; 570:102-7. [PMID: 24769125 DOI: 10.1016/j.neulet.2014.04.020] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 03/27/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
This study compared in vivo levels of the antioxidant glutathione (GSH) in the motor cortex of 11 ALS patients with those in 11 age-matched healthy volunteers (HV). Using the standard J-edited spin-echo difference MRS technique, GSH spectra were recorded on a 3.0 T GE MR system from a single precentral gyrus voxel. GSH levels expressed as ratios to the unsuppressed voxel tissue water (W) were 31% lower in ALS patients than in HV (p=.005), and 36% lower in ALS than in HV (p=.02) when expressed as ratios to the total creatine peak (tCr), supporting a role for oxidative stress in ALS. Levels of the putative neuronal marker N-acetylaspartate (NAA) relative to W did not differ between ALS and HV (p=.26), but were lower by 9% in ALS than in HV (p=.013) when expressed as ratios relative to tCr. This discrepancy is attributed to small but opposite changes in NAA and tCr in ALS that, as a ratio, resulted in a statistically significant group difference, further suggesting caution in using tCr as an internal reference under pathological conditions.
Collapse
Affiliation(s)
- N Weiduschat
- Department of Radiology, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, United States
| | - X Mao
- Department of Radiology, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, United States
| | - J Hupf
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, United States
| | - N Armstrong
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, United States
| | - G Kang
- Department of Radiology, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, United States
| | - D J Lange
- Department of Neurology, Hospital of Special Surgery, 525 East 71st Street, New York, NY 10021, United States
| | - H Mitsumoto
- Department of Neurology, Columbia University, 710 West 168th Street, New York, NY 10032, United States
| | - D C Shungu
- Department of Radiology, Weill Cornell Medical College, 516 East 72nd Street, New York, NY 10021, United States.
| |
Collapse
|
27
|
Grapperon AM, Verschueren A, Duclos Y, Confort-Gouny S, Soulier E, Loundou AD, Guye M, Cozzone PJ, Pouget J, Ranjeva JP, Attarian S. Association between structural and functional corticospinal involvement in amyotrophic lateral sclerosis assessed by diffusion tensor MRI and triple stimulation technique. Muscle Nerve 2014; 49:551-7. [DOI: 10.1002/mus.23957] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 06/15/2013] [Accepted: 07/09/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Aude-Marie Grapperon
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Annie Verschueren
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Yann Duclos
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Sylviane Confort-Gouny
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Elisabeth Soulier
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Anderson D. Loundou
- Department of Methodological Aid to Clinical Research; CHU La Timone; Marseilles France
| | - Maxime Guye
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Patrick J. Cozzone
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Jean Pouget
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| | - Jean-Philippe Ranjeva
- Biological and Medical Magnetic Resonance Center (CRMBM) and Center for Metabolic Exploration using Magnetic Resonance (CEMEREM) (UMR 7339); CHU La Timone; Marseilles France
| | - Shahram Attarian
- Department of Neurology and Neuromuscular Diseases; CHU La Timone; 264 rue Saint-Pierre 13385 Marseille France
| |
Collapse
|
28
|
Foerster BR, Carlos RC, Dwamena BA, Callaghan BC, Petrou M, Edden RAE, Mohamed MA, Welsh RC, Barker PB, Feldman EL, Pomper MG. Multimodal MRI as a diagnostic biomarker for amyotrophic lateral sclerosis. Ann Clin Transl Neurol 2014; 1:107-14. [PMID: 25356389 PMCID: PMC4212480 DOI: 10.1002/acn3.30] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Revised: 12/16/2013] [Accepted: 12/17/2013] [Indexed: 02/03/2023] Open
Abstract
OBJECTIVE Reliable biomarkers for amyotrophic lateral sclerosis (ALS) are needed, given the clinical heterogeneity of the disease. Here, we provide proof-of-concept for using multimodal magnetic resonance imaging (MRI) as a diagnostic biomarker for ALS. Specifically, we evaluated the added diagnostic utility of proton magnetic resonance spectroscopy (MRS) to diffusion tensor imaging (DTI). METHODS Twenty-nine patients with ALS and 30 age- and gender-matched healthy controls underwent brain MRI which used proton MRS including spectral editing techniques to measure γ-aminobutyric acid (GABA) and DTI to measure fractional anisotropy of the corticospinal tract. Data were analyzed using logistic regression, t-tests, and generalized linear models with leave-one-out analysis to generate and compare the resulting receiver operating characteristic (ROC) curves. RESULTS The diagnostic accuracy is significantly improved when the MRS data were combined with the DTI data as compared to the DTI data only (area under the ROC curves (AUC) = 0.93 vs. AUC = 0.81; P = 0.05). The combined MRS and DTI data resulted in sensitivity of 0.93, specificity of 0.85, positive likelihood ratio of 6.20, and negative likelihood ratio of 0.08 whereas the DTI data only resulted in sensitivity of 0.86, specificity of 0.70, positive likelihood ratio of 2.87, and negative likelihood ratio of 0.20. INTERPRETATION Combining multiple advanced neuroimaging modalities significantly improves disease discrimination between ALS patients and healthy controls. These results provide an important step toward advancing a multimodal MRI approach along the diagnostic test development pathway for ALS.
Collapse
Affiliation(s)
- Bradley R Foerster
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, Maryland ; Department of Radiology, University of Michigan Ann Arbor, Michigan ; Ann Arbor VA Healthcare System Ann Arbor, Michigan
| | - Ruth C Carlos
- Department of Radiology, University of Michigan Ann Arbor, Michigan
| | - Ben A Dwamena
- Department of Radiology, University of Michigan Ann Arbor, Michigan ; Ann Arbor VA Healthcare System Ann Arbor, Michigan
| | | | - Myria Petrou
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, Maryland ; Department of Radiology, University of Michigan Ann Arbor, Michigan
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, Maryland ; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore, Maryland
| | - Mona A Mohamed
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, Maryland ; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore, Maryland
| | - Robert C Welsh
- Department of Radiology, University of Michigan Ann Arbor, Michigan ; Department of Psychiatry, University of Michigan Ann Arbor, Michigan
| | - Peter B Barker
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, Maryland ; F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute Baltimore, Maryland
| | - Eva L Feldman
- Department of Neurology, University of Michigan Ann Arbor, Michigan
| | - Martin G Pomper
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine Baltimore, Maryland
| |
Collapse
|
29
|
Sarica A, Cerasa A, Vasta R, Perrotta P, Valentino P, Mangone G, Guzzi PH, Rocca F, Nonnis M, Cannataro M, Quattrone A. Tractography in amyotrophic lateral sclerosis using a novel probabilistic tool: a study with tract-based reconstruction compared to voxel-based approach. J Neurosci Methods 2014; 224:79-87. [PMID: 24406465 DOI: 10.1016/j.jneumeth.2013.12.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 11/19/2013] [Accepted: 12/30/2013] [Indexed: 12/11/2022]
Abstract
BACKGROUND Diffusion tensor imaging (DTI) is one of the most sensitive MRI tools for detecting subtle cerebral white matter abnormalities in amyotrophic lateral sclerosis (ALS). Nowadays a plethora of DTI tools have been proposed, but very few methods have been translated into clinical practice. NEW METHOD The aim of this study is to validate the objective measurement of fiber tracts as provided by a new unbiased and automated tractography reconstruction tool named as TRActs Constrained by UnderLying Anatomy (TRACULA). The reliability of this tract-based approach was evaluated on a dataset of 14 patients with definite ALS compared with 14 age/sex-matched healthy controls. To further corroborate these measurements, we used a well-known voxelwise approach, called tract-based spatial statistics (TBSS), on the same dataset. RESULTS TRACULA showed specific significant alterations of several DTI parameters in the corticospinal tract of the ALS group with respect to controls. COMPARISON WITH EXISTING METHOD The same finding was detected using the well-known TBSS analysis. Similarly, both methods depicted also additional microstructural changes in the cingulum. CONCLUSIONS DTI tractography metrics provided by TRACULA perfectly agree with those previously reported in several post-mortem and DTI studies, thus demonstrating the accuracy of this method in characterizing the microstructural changes occurring in ALS. With further validation (i.e. considering the heterogeneity of other clinical phenotypes), this method has the potential to become useful for clinical practice providing objective measurements that might aid radiologists in the interpretation of MR images and improve diagnostic accuracy of ALS.
Collapse
Affiliation(s)
- Alessia Sarica
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Antonio Cerasa
- IBFM, National Research Council, Germaneto, Catanzaro, Italy; Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy.
| | - Roberta Vasta
- IBFM, National Research Council, Germaneto, Catanzaro, Italy
| | - Paolo Perrotta
- IBFM, National Research Council, Germaneto, Catanzaro, Italy
| | - Paola Valentino
- Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy
| | | | - Pietro H Guzzi
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Federico Rocca
- IBFM, National Research Council, Germaneto, Catanzaro, Italy
| | - Matteo Nonnis
- IBFM, National Research Council, Germaneto, Catanzaro, Italy
| | - Mario Cannataro
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Italy
| | - Aldo Quattrone
- IBFM, National Research Council, Germaneto, Catanzaro, Italy; Institute of Neurology, University "Magna Graecia", Germaneto, Catanzaro, Italy
| |
Collapse
|
30
|
Caiazzo G, Corbo D, Trojsi F, Piccirillo G, Cirillo M, Monsurrò MR, Esposito F, Tedeschi G. Distributed corpus callosum involvement in amyotrophic lateral sclerosis: a deterministic tractography study using q-ball imaging. J Neurol 2013; 261:27-36. [DOI: 10.1007/s00415-013-7144-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 10/01/2013] [Accepted: 10/04/2013] [Indexed: 12/14/2022]
|
31
|
Diagnostic accuracy of diffusion tensor imaging in amyotrophic lateral sclerosis: a systematic review and individual patient data meta-analysis. Acad Radiol 2013; 20:1099-106. [PMID: 23931423 DOI: 10.1016/j.acra.2013.03.017] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/20/2013] [Accepted: 03/25/2013] [Indexed: 11/22/2022]
Abstract
RATIONALE AND OBJECTIVES There have been a large number of case-control studies using diffusion tensor imaging (DTI) in amyotrophic lateral sclerosis (ALS). The objective of this study was to perform an individual patient data (IPD) meta-analysis for the estimation of the diagnostic accuracy measures of DTI in the diagnosis of ALS using corticospinal tract data. MATERIALS AND METHODS MEDLINE, EMBASE, CINAHL, and Cochrane databases (1966-April 2011) were searched. Studies were included if they used DTI region of interest or tractography techniques to compare mean cerebral corticospinal tract fractional anisotropy values between ALS subjects and healthy controls. Corresponding authors from the identified articles were contacted to collect individual patient data. IPD meta-analysis and meta-regression were performed using Stata. Meta-regression covariate analysis included age, gender, disease duration, and Revised Amyotrophic Lateral Sclerosis Functional Rating Scale scores. RESULTS Of 30 identified studies, 11 corresponding authors provided IPD and 221 ALS patients and 187 healthy control subjects were available for study. Pooled area under the receiver operating characteristic curve (AUC) was 0.75 (95% CI: 0.66-0.83), pooled sensitivity was 0.68 (95% CI: 0.62-0.75), and pooled specificity was 0.73 (95% CI: 0.66-0.80). Meta-regression showed no significant differences in pooled AUC for each of the covariates. There was moderate to high heterogeneity of pooled AUC estimates. Study quality was generally high. Data from 19 of the 30 eligible studies were not ascertained, raising possibility of selection bias. CONCLUSION Using corticospinal tract individual patient data, the diagnostic accuracy of DTI appears to lack sufficient discrimination in isolation. Additional research efforts and a multimodal approach that also includes ALS mimics will be required to make neuroimaging a critical component in the workup of ALS.
Collapse
|
32
|
Foerster BR, Welsh RC, Feldman EL. 25 years of neuroimaging in amyotrophic lateral sclerosis. Nat Rev Neurol 2013; 9:513-24. [PMID: 23917850 DOI: 10.1038/nrneurol.2013.153] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal motor neuron disease for which a precise cause has not yet been identified. Standard CT or MRI evaluation does not demonstrate gross structural nervous system changes in ALS, so conventional neuroimaging techniques have provided little insight into the pathophysiology of this disease. Advanced neuroimaging techniques--such as structural MRI, diffusion tensor imaging and proton magnetic resonance spectroscopy--allow evaluation of alterations of the nervous system in ALS. These alterations include focal loss of grey and white matter and reductions in white matter tract integrity, as well as changes in neural networks and in the chemistry, metabolism and receptor distribution in the brain. Given their potential for investigation of both brain structure and function, advanced neuroimaging methods offer important opportunities to improve diagnosis, guide prognosis, and direct future treatment strategies in ALS. In this article, we review the contributions made by various advanced neuroimaging techniques to our understanding of the impact of ALS on different brain regions, and the potential role of such measures in biomarker development.
Collapse
Affiliation(s)
- Bradley R Foerster
- Department of Radiology, University of Michigan, 1500 East Medical Center Drive, Ann Arbor, MI 48109, USA.
| | | | | |
Collapse
|
33
|
Chapman MC, Jelsone-Swain L, Johnson TD, Gruis KL, Welsh RC. Diffusion tensor MRI of the corpus callosum in amyotrophic lateral sclerosis. J Magn Reson Imaging 2013; 39:641-7. [PMID: 23843179 DOI: 10.1002/jmri.24218] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/18/2013] [Indexed: 12/11/2022] Open
Abstract
PURPOSE To determine if decline in corpus callosum (CC) white matter integrity in patients with amyotrophic lateral sclerosis (ALS) is localized to motor-related areas. MATERIALS AND METHODS Twenty-one ALS patients and 21 controls participated. Diffusion tensor images (DTI) were acquired using 3 Tesla (T) MRI. Tract-based spatial statistics were used to examine whole-brain white matter damage. A segmentation schema was used to define CC volumes-of-interest (VOI). Fractional anisotropy (FA) and radial- and axial-diffusivity (RD, AD) were extracted from VOIs and compared between groups. DTI measurements in motor-related Area III were tested for correlation with symptoms and disease duration. RESULTS Extracted FA values from CC VOIs were reduced in ALS patients (P≤0.0001), particularly in Areas II and III (P≤0.01). Reduced FA in Area III correlated with disease symptomology (P≤0.05) and duration (P≤0.02). Between-group whole-brain comparisons (P≤0.05, corrected) showed reduced FA and increased RD throughout white matter regions including the CC, corona radiata, and internal capsule. AD was increased in the left corona radiata and internal and external capsules. CONCLUSION FA in motor-related regions of the CC is more affected than other CC areas in ALS patients. Microstructural pathology of transcallosal fiber tracts may represent a future component of an imaging biomarker for ALS.
Collapse
Affiliation(s)
- Molly C Chapman
- Medical School, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
34
|
Kim JH, Song SK. Diffusion tensor imaging of the mouse brainstem and cervical spinal cord. Nat Protoc 2013; 8:409-17. [PMID: 23424749 DOI: 10.1038/nprot.2013.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Concurrent and/or progressive degeneration of upper and lower motor neurons (LMNs) causes neurological symptoms and dysfunctions in motor neuron diseases (MNDs) such as amyotrophic lateral sclerosis (ALS). Although brain lesions are readily detected, magnetic resonance imaging of the brainstem and cervical spinal cord lesions resulting from damage to LMNs has proven to be difficult. With the development of mouse models of MNDs, a noninvasive neuroimaging modality capable of detecting lesions resulting from axonal and neuronal injury in mouse brainstem and cervical spinal cord could improve our understanding of the underlying mechanism of MNDs and aid in the development of effective treatments. Here we present a protocol that allows the concomitant acquisition of high-quality in vivo full-diffusion tensor magnetic resonance images from the mouse brainstem and cervical spinal cord using the actively decoupled, anatomically shaped pair of coils--the surface-receive coil and the minimized volume-transmit coil. To improve the data quality, we used a custom-made nose cone to monitor respiratory motion for synchronizing data acquisition and assuring physiological stability of mice under examination. The protocol allows the acquisition of in vivo diffusion tensor imaging of the mouse brainstem and cervical spinal cord at 117 μm × 117 μm in-plane resolution with a 500-μm slice thickness in 1 h on a 4.7-T horizontal small animal imaging scanner equipped with an actively shielded gradient coil capable of pulsed gradient strengths up to 18 G cm(−1) with a gradient rise time of ≤295 μs.
Collapse
Affiliation(s)
- Joong Hee Kim
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
35
|
Jenkins TM, Burness C, Connolly DJ, Rao DG, Hoggard N, Mawson S, McDermott CJ, Wilkinson ID, Shaw PJ. A prospective pilot study measuring muscle volumetric change in amyotrophic lateral sclerosis. Amyotroph Lateral Scler Frontotemporal Degener 2013; 14:414-23. [PMID: 23705876 DOI: 10.3109/21678421.2013.795597] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Our objective was to investigate the potential of muscle volume, measured with magnetic resonance (MR), as a biomarker to quantify disease progression in patients with amyotrophic lateral sclerosis (ALS). In this longitudinal pilot study, we first sought to determine the stability of volumetric muscle MR measurements in 11 control subjects at two time-points. We assessed feasibility of detecting atrophy in four patients with ALS, followed at three-month intervals for 12 months. Muscle power and MR volume were measured in thenar eminence (TEm), first dorsal interosseous (1DIO), tibialis anterior (TA) and tongue. Changes over time were assessed using linear regression models and t-tests. Results demonstrated that, in controls, no volumetric MR changes were seen (mean volume variation in all muscles < 5%, p > 0.1). In patients, between-subject heterogeneity was identified. Trends for volume loss were found in TEm (mean, - 26.84%, p = 0.056) and TA (- 8.29%, p = 0.077), but not in 1DIO (- 18.47%, p = 0.121) or tongue (< 5%, p = 0.367). In conclusion, volumetric muscle MR appears a stable measure in controls, and progressive volume loss was demonstrable in individuals with ALS in whom clinical weakness progressed. In this small study, subclinical atrophy was not demonstrable using muscle MR. Clinico-radiological discordance between muscle weakness and MR atrophy could reflect a contribution of upper motor neuron pathology.
Collapse
Affiliation(s)
- Thomas M Jenkins
- Sheffield Institute for Translational Neuroscience (SITraN), 385a Glossop Road, Sheffield, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ignjatović A, Stević Z, Lavrnić S, Daković M, Bačić G. Brain iron MRI: a biomarker for amyotrophic lateral sclerosis. J Magn Reson Imaging 2013; 38:1472-9. [PMID: 23564606 DOI: 10.1002/jmri.24121] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 02/20/2013] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To evaluate the usefulness of MRI detection of hypointensity areas (iron deposits) in the brain using a dedicated MRI technique in patients with ALS in establishing this sign as a potential surrogate biomarker that correlates with the severity of disease. MATERIALS AND METHODS Forty-six ALS patients and 26 age-matched controls were examined by MRI. The ALS Functional Rating Scale (ALSFRS) score was determined before the first MRI examination. The sub-set of 25 ALS patients was re-examined around 6 months after the first MRI examination. The MRI examination consisted of routine T1W, T2W, and FLAIR sequences with the addition of a thin slice heavily T2* weighted sequence to accentuate magnetic susceptibility artifacts. RESULTS T2*W sequence is superior to any other MRI sequence in detecting hypointensities in the brain of ALS patients. Hypointensities were found only in the precentral gyruses gray matter (PGGM) and were detected in 42 patients. The extent of hypointensities was measured and scored (0-3) and correlated with ALSFRS (r = -0.545). Twenty-five patients were re-examined 6 months later, and the majority of them showed the shift toward higher MRI scores. No control subjects had hypointensities in PGGM. CONCLUSION The detection of hypointensities in PGGM appears to be a very promising surrogate MRI biomarker for ALS due to its simplicity, high sensitivity and specificity, suitability for longitudinal studies, and relationship with the pathogenesis of the disease.
Collapse
|
37
|
Kumar A, Ghosh D, Singh RL. Amyotrophic Lateral Sclerosis and Metabolomics: Clinical Implication and Therapeutic Approach. J Biomark 2013; 2013:538765. [PMID: 26317018 PMCID: PMC4437352 DOI: 10.1155/2013/538765] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 02/02/2013] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is one of the most common motor neurodegenerative disorders, primarily affecting upper and lower motor neurons in the brain, brainstem, and spinal cord, resulting in paralysis due to muscle weakness and atrophy. The majority of patients die within 3-5 years of symptom onset as a consequence of respiratory failure. Due to relatively fast progression of the disease, early diagnosis is essential. Metabolomics offer a unique opportunity to understand the spatiotemporal metabolic crosstalks through the assessment of body fluids and tissue. So far, one of the most challenging issues related to ALS is to understand the variation of metabolites in body fluids and CNS with the progression of disease. In this paper we will review the changes in metabolic profile in response to disease progression condition and also see the therapeutic implication of various drugs in ALS patients.
Collapse
Affiliation(s)
- Alok Kumar
- Center for Shock, Trauma and Anesthesiology Research (STAR) and the Department of Anesthesiology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Devlina Ghosh
- Department of Pharmacology and Molecular Sciences, The Johns Hopkins University School of Medicine, 733 N. Broadway, Baltimore, MD 21205, USA
| | - R. L. Singh
- Department of Biochemistry, Dr. Ram Manohar Lohia Avadh University, Faizabad 224001, India
| |
Collapse
|
38
|
Stagg CJ, Knight S, Talbot K, Jenkinson M, Maudsley AA, Turner MR. Whole-brain magnetic resonance spectroscopic imaging measures are related to disability in ALS. Neurology 2013; 80:610-5. [PMID: 23325907 PMCID: PMC3590062 DOI: 10.1212/wnl.0b013e318281ccec] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/26/2012] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To demonstrate the sensitivity of a recently developed whole-brain magnetic resonance spectroscopic imaging (MRSI) sequence to cerebral pathology and disability in amyotrophic lateral sclerosis (ALS), and compare with measures derived from diffusion tensor imaging. METHODS Whole-brain MRSI and diffusion tensor imaging were undertaken in 13 patients and 14 age-similar healthy controls. Mean N-acetylaspartate (NAA), fractional anisotropy, and mean diffusivity were extracted from the corticospinal tract, compared between groups, and then in relation to disability in the patient group. RESULTS Significant reductions in NAA were found along the course of the corticospinal tracts on whole-brain MRSI. There were also significant changes in fractional anisotropy (decreased) and mean diffusivity (increased) in the patient group, but only NAA showed a significant relationship with disability (r = 0.65, p = 0.01). CONCLUSION Whole-brain MRSI has potential as a quantifiable neuroimaging marker of disability in ALS. It offers renewed hope for a neuroimaging outcome measure with the potential for harmonization across multiple sites in the context of a therapeutic trial.
Collapse
Affiliation(s)
- Charlotte J Stagg
- Centre for Functional Magnetic Resonance of the Brain, University of Oxford, UK
| | | | | | | | | | | |
Collapse
|
39
|
Verma G, Woo JH, Chawla S, Wang S, Sheriff S, Elman LB, McCluskey LF, Grossman M, Melhem ER, Maudsley AA, Poptani H. Whole-brain analysis of amyotrophic lateral sclerosis by using echo-planar spectroscopic imaging. Radiology 2013; 267:851-7. [PMID: 23360740 DOI: 10.1148/radiol.13121148] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE To detect regional metabolic differences in amyotrophic lateral sclerosis (ALS) with whole-brain echo-planar spectroscopic imaging. MATERIALS AND METHODS Sixteen patients with ALS (nine men, seven women; mean age, 56.6 years), five persons suspected of having ALS (four men, one woman; mean age, 62.6 years), and 10 healthy control subjects (five men, five women; mean age, 56.1 years) underwent echo-planar spectroscopic imaging after providing informed consent. The study was approved by the institutional review board and complied with HIPAA. Data were analyzed with the Metabolic Imaging and Data Analysis System software, and processed metabolite maps were coregistered and normalized to a standard brain template. Metabolite maps of creatine (Cr), choline (Cho), and N-acetylaspartate (NAA) were segmented into 81 regions with Automated Anatomical Labeling software to measure metabolic changes throughout the brains of patients with ALS. Statistical analysis involved an unpaired, uncorrected, two-sided Student t test. RESULTS The NAA/Cho ratio across six regions was significantly lower by a mean of 23% (P ≤ .01) in patients with ALS than in control subjects. These regions included the caudate, lingual gyrus, supramarginal gyrus, and right and left superior and right inferior occipital lobes. The NAA/Cr ratio was significantly lower (P ≤ .01) in eight regions in the patient group, by a mean of 16%. These included the caudate, cuneus, frontal inferior operculum, Heschl gyrus, precentral gyrus, rolandic operculum, and superior and inferior occipital lobes. The Cho/Cr ratio did not significantly differ in any region between patient and control groups. CONCLUSION Whole-brain echo-planar spectroscopic imaging permits detection of regional metabolic abnormalities in ALS, including not only the motor cortex but also several other regions implicated in ALS pathophysiologic findings.
Collapse
Affiliation(s)
- Gaurav Verma
- Department of Radiology, Hospital of the University of Pennsylvania, B6 Blockley Hall, 423 Guardian Dr, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Turner MR, Agosta F, Bede P, Govind V, Lulé D, Verstraete E. Neuroimaging in amyotrophic lateral sclerosis. Biomark Med 2012; 6:319-37. [PMID: 22731907 DOI: 10.2217/bmm.12.26] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The catastrophic system failure in amyotrophic lateral sclerosis is characterized by progressive neurodegeneration within the corticospinal tracts, brainstem nuclei and spinal cord anterior horns, with an extra-motor pathology that has overlap with frontotemporal dementia. The development of computed tomography and, even more so, MRI has brought insights into neurological disease, previously only available through post-mortem study. Although largely research-based, radionuclide imaging has continued to provide mechanistic insights into neurodegenerative disorders. The evolution of MRI to use advanced sequences highly sensitive to cortical and white matter structure, parenchymal metabolites and blood flow, many of which are now applicable to the spinal cord as well as the brain, make it a uniquely valuable tool for the study of a multisystem disorder such as amyotrophic lateral sclerosis. This comprehensive review considers the full range of neuroimaging techniques applied to amyotrophic lateral sclerosis over the last 25 years, the biomarkers they have revealed and future developments.
Collapse
Affiliation(s)
- Martin R Turner
- Nuffield Department of Clinical Neurosciences, Oxford University, UK.
| | | | | | | | | | | |
Collapse
|
41
|
Diagnostic accuracy using diffusion tensor imaging in the diagnosis of ALS: a meta-analysis. Acad Radiol 2012; 19:1075-86. [PMID: 22749050 DOI: 10.1016/j.acra.2012.04.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 11/20/2022]
Abstract
RATIONALE AND OBJECTIVES A number of studies have reported decreases in fractional anistropy (FA) in amyotrophic lateral sclerosis using diffusion tensor imaging (DTI). The purpose of this study was to perform a meta-analysis in order to estimate the diagnostic test accuracy measures of DTI for the diagnosis of amyotrophic lateral sclerosis (ALS). MATERIALS AND METHODS We searched MEDLINE (1966-April 2011), EMBASE (1999-April 2011), CINAHL (1999-April 2011), and Cochrane (2005-April 2011) databases to identify studies that measured FA in ALS subjects. Human, single-center studies using a DTI region of interest (ROI) or tractography techniques were used to compare FA values along the brain corticospinal tracts between ALS subjects and healthy controls. There were no language restrictions. Independent extraction of articles by 2 authors using predefined data fields including study quality indicators. We identified 30 case-control studies that used region of interest or tractography DTI techniques. We applied binormal receiver operative characteristic (ROC) curve analysis to assign specificity and sensitivity for each study. We applied the bivariate mixed-effects regression model using the Markov Chain Monte Carlo Simulation to calculate summary estimates for the sensitivity and specificity. We used the metan module in Stata, version 11.0, to calculate the area under the ROC curve, diagnostic odds ratio and the test effectiveness summary estimates. RESULTS The pooled sensitivity was 0.65 (95% CI 0.61-0.69); the pooled specificity, 0.67 (95% CI 0.63-0.72); the pooled diagnostic odds ratio, 1.88 (95% CI 1.46-2.30); the pooled test effectiveness, 1.04 (95% CI 0.81-1.27); and the pooled area under the ROC curve, 0.76 (95% CI 0.71-0.81). Subanalyses comparing magnetic resonance imaging (MRI) field strength (1.5T vs. 3.0T) and brain location (corticospinal tract average vs. internal capsule) revealed no significant differences in the test accuracy measures. Reference standard used for the diagnosis of ALS was the El Escorial criteria. There was at least moderate heterogeneity between the studies. True study quality is uncertain. CONCLUSION The discriminatory capability of DTI to make a diagnosis of ALS is only modest. There were no significant differences in the diagnostic test accuracy summary estimates with respect to MRI field strength or brain location.
Collapse
|
42
|
Quinn C, Elman L, McCluskey L, Hoskins K, Karam C, Woo JH, Poptani H, Wang S, Chawla S, Kasner SE, Grossman M. Frontal lobe abnormalities on MRS correlate with poor letter fluency in ALS. Neurology 2012; 79:583-8. [PMID: 22843269 DOI: 10.1212/wnl.0b013e3182635720] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To examine whether frontal lobe abnormalities on magnetic resonance spectroscopy (MRS) in amyotrophic lateral sclerosis (ALS) correlate with poor letter fluency (LF). METHODS Twenty-five patients with ALS (20 with definite, probable, or possible ALS and 5 with progressive muscular atrophy) performed an LF task, involving F word generation in 1 minute, and underwent MRS. Comparisons were made between patients with ALS with impaired LF and unimpaired LF based on an empirically derived cutoff score. A Spearman correlation was performed between the patient's N-acetyl acetate/creatinine-phosphocreatinine ratio (NAA/Cr) and the number of F words generated. RESULTS LF was impaired in 50% of patients with ALS. Patients with impaired LF had reduced NAA/Cr in the DLPFC compared with those with unimpaired LF (p = 0.007). There was a significant correlation between LF and NAA/Cr in the DLPFC (r = 0.51, p = 0.0009). The ALS Functional Rating Scale score, clinical region of motor onset, and disease category had no effect on LF or NAA/Cr in the DLPFC. CONCLUSIONS A reduced NAA/Cr in the DLPFC of patients with ALS is a marker of neuronal dysfunction and correlates with impaired performance on a clinical measure of executive function.
Collapse
Affiliation(s)
- Colin Quinn
- Department of Neurology, University of Pennsylvania, PA, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Magnetic resonance imaging in amyotrophic lateral sclerosis. Neurol Res Int 2012; 2012:608501. [PMID: 22848820 PMCID: PMC3400399 DOI: 10.1155/2012/608501] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Accepted: 06/05/2012] [Indexed: 11/17/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disorder which is incurable to date. As there are many ongoing studies with therapeutic candidates, it is of major interest to develop biomarkers not only to facilitate early diagnosis but also as a monitoring tool to predict disease progression and to enable correct randomization of patients in clinical trials. Magnetic resonance imaging (MRI) has made substantial progress over the last three decades and is a practical, noninvasive method to gain insights into the pathology of the disease. Disease-specific MRI changes therefore represent potential biomarkers for ALS. In this paper we give an overview of structural and functional MRI alterations in ALS with the focus on task-free resting-state investigations to detect cortical network failures.
Collapse
|
44
|
Rocha AJD, Maia Júnior ACM. Is magnetic resonance imaging a plausible biomarker for upper motor neuron degeneration in amyotrophic lateral sclerosis/primary lateral sclerosis or merely a useful paraclinical tool to exclude mimic syndromes? A critical review of imaging applicability in clinical routine. ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:532-9. [DOI: 10.1590/s0004-282x2012000700012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/02/2012] [Indexed: 11/22/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that affects motor neurons in the cerebral cortex, brainstem, and spinal cord, brain regions in which conventional magnetic resonance imaging is often uninformative. Although the mean time from symptom onset to diagnosis is estimated to be about one year, the current criteria only prescribe magnetic resonance imaging to exclude "ALS mimic syndromes". Extensive application of non-conventional magnetic resonance imaging (MRI) to the study of ALS has improved our understanding of the in vivo pathological mechanisms involved in the disease. These modern imaging techniques have recently been added to the list of potential ALS biomarkers to aid in both diagnosis and monitoring of disease progression. This article provides a comprehensive review of the clinical applicability of the neuroimaging progress that has been made over the past two decades towards establishing suitable diagnostic tools for upper motor neuron (UMN) degeneration in ALS.
Collapse
|
45
|
The neurochemical profile quantified by in vivo 1H NMR spectroscopy. Neuroimage 2012; 61:342-62. [DOI: 10.1016/j.neuroimage.2011.12.038] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Accepted: 12/15/2011] [Indexed: 12/13/2022] Open
|
46
|
Cirillo M, Esposito F, Tedeschi G, Caiazzo G, Sagnelli A, Piccirillo G, Conforti R, Tortora F, Monsurrò MR, Cirillo S, Trojsi F. Widespread microstructural white matter involvement in amyotrophic lateral sclerosis: a whole-brain DTI study. AJNR Am J Neuroradiol 2012; 33:1102-8. [PMID: 22300932 PMCID: PMC8013257 DOI: 10.3174/ajnr.a2918] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 09/23/2011] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE The extensive application of advanced MR imaging techniques to the study of ALS has undoubtedly improved our knowledge of disease pathophysiology, even if the actual spread of the neurodegenerative process throughout the central nervous system is not fully understood. The present study aimed to detect WM patterns of microstructural abnormalities to better investigate the pathologic process in ALS, within but also beyond CSTs, in a whole-brain analysis. MATERIALS AND METHODS DTI was performed in 19 patients with ALS and 20 matched healthy controls, by using whole-brain TBSS and VOI analyses. RESULTS We observed a significant decrease of FA in the body of CC of the ALS group (P < .05). At the VOI level, both FA decrease and RD increase in the body of CC significantly correlated with the UMN score (P = .003 and P = .02). Additionally, significant voxelwise positive correlations between FA and the ALSFRS-R were detected in the WM tracts underneath the left premotor cortex (P < .05). CONCLUSIONS The correlations between reduction of FA and increase of RD in the body of CC with the UMN score indicate that the WM degeneration in the CC is strictly related to the ALS pyramidal impairment, while the correlation between FA and ALSFRS-R in the associative tracts underneath the left premotor cortex might reflect the progressive spread of the disease from the motor toward the extramotor areas.
Collapse
Affiliation(s)
- M Cirillo
- Department of Neurological Sciences, Second University of Naples, Naples, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Govind V, Sharma KR, Maudsley AA, Arheart KL, Saigal G, Sheriff S. Comprehensive evaluation of corticospinal tract metabolites in amyotrophic lateral sclerosis using whole-brain 1H MR spectroscopy. PLoS One 2012; 7:e35607. [PMID: 22539984 PMCID: PMC3335096 DOI: 10.1371/journal.pone.0035607] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Accepted: 03/20/2012] [Indexed: 11/19/2022] Open
Abstract
Changes in the distribution of the proton magnetic resonance spectroscopy (MRS) observed metabolites N-acetyl aspartate (NAA), total-choline (Cho), and total-creatine (Cre) in the entire intracranial corticospinal tract (CST) including the primary motor cortex were evaluated in patients with amyotrophic lateral sclerosis (ALS). The study included 38 sporadic definite-ALS subjects and 70 age-matched control subjects. All received whole-brain MR imaging and spectroscopic imaging scans at 3T and clinical neurological assessments including percentage maximum forced vital capacity (FVC) and upper motor neuron (UMN) function. Differences in each individual metabolite and its ratio distributions were evaluated in the entire intracranial CST and in five segments along the length of the CST (at the levels of precentral gyrus (PCG), centrum semiovale (CS), corona radiata (CR), posterior limb of internal capsule (PLIC) and cerebral peduncle (CP)). Major findings included significantly decreased NAA and increased Cho and Cho/NAA in the entire intracranial CST, with the largest differences for Cho/NAA in all the groups. Significant correlations between Cho/NAA in the entire intracranial CST and the right finger tap rate were noted. Of the ten bilateral CST segments, significantly decreased NAA in 4 segments, increased Cho in 5 segments and increased Cho/NAA in all the segments were found. Significant left versus right CST asymmetries were found only in ALS for Cho/NAA in the CS. Among the significant correlations found between Cho/NAA and the clinical assessments included the left-PCG versus FVC and right finger tap rate, left -CR versus FVC and right finger tap rate, and left PLIC versus FVC and right foot tap rate. These results demonstrate that a significant and bilaterally asymmetric alteration of metabolites occurs along the length of the entire intracranial CST in ALS, and the MRS metrics in the segments correlate with measures of disease severity and UMN function.
Collapse
Affiliation(s)
- Varan Govind
- Department of Radiology, University of Miami School of Medicine, Miami, Florida, United States of America.
| | | | | | | | | | | |
Collapse
|
48
|
White matter pathology in ALS and lower motor neuron ALS variants: a diffusion tensor imaging study using tract-based spatial statistics. J Neurol 2012; 259:1848-59. [PMID: 22349938 DOI: 10.1007/s00415-012-6420-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 10/28/2022]
Abstract
The aim of this work was to investigate white-matter microstructural changes within and outside the corticospinal tract in classical amyotrophic lateral sclerosis (ALS) and in lower motor neuron (LMN) ALS variants by means of diffusion tensor imaging (DTI). We investigated 22 ALS patients and 21 age-matched controls utilizing a whole-brain approach with a 1.5-T scanner for DTI. The patient group was comprised of 15 classical ALS- and seven LMN ALS-variant patients (progressive muscular atrophy, flail arm and flail leg syndrome). Disease severity was measured by the revised version of the functional rating scale. White matter fractional anisotropy (FA) was assessed using tract-based spatial statistics (TBSS) and a region of interest (ROI) approach. We found significant FA reductions in motor and extra-motor cerebral fiber tracts in classical ALS and in the LMN ALS-variant patients compared to controls. The voxel-based TBSS results were confirmed by the ROI findings. The white matter damage correlated with the disease severity in the patient group and was found in a similar distribution, but to a lesser extent, among the LMN ALS-variant subgroup. ALS and LMN ALS variants are multisystem degenerations. DTI shows the potential to determine an earlier diagnosis, particularly in LMN ALS variants. The statistically identical findings of white matter lesions in classical ALS and LMN variants as ascertained by DTI further underline that these variants should be regarded as part of the ALS spectrum.
Collapse
|
49
|
Kumar Dundamadappa S, Cauley K. Vertebral Artery Ostial Stenosis: Prevalence by Digital Subtraction Angiography, MR Angiography, and CT Angiography. J Neuroimaging 2012; 23:360-7. [DOI: 10.1111/j.1552-6569.2011.00692.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
50
|
Abstract
From their origin as simple techniques primarily used for detecting acute cerebral ischemia, diffusion MR imaging techniques have rapidly evolved into a versatile set of tools that provide the only noninvasive means of characterizing brain microstructure and connectivity, becoming a mainstay of both clinical and investigational brain MR imaging. In this article, the basic principles required for understanding diffusion MR imaging techniques are reviewed with clinical neuroradiologists in mind.
Collapse
Affiliation(s)
- Edward Yang
- Division of Neuroradiology, Department of Radiology, University of Pennsylvania School of Medicine, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|