1
|
de Jong JCBC, Attema BJ, van der Hoek MD, Verschuren L, Caspers MPM, Kleemann R, van der Leij FR, van den Hoek AM, Nieuwenhuizen AG, Keijer J. Sex differences in skeletal muscle-aging trajectory: same processes, but with a different ranking. GeroScience 2023; 45:2367-2386. [PMID: 36820956 PMCID: PMC10651666 DOI: 10.1007/s11357-023-00750-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Sex differences in muscle aging are poorly understood, but could be crucial for the optimization of sarcopenia-related interventions. To gain insight into potential sex differences in muscle aging, we recruited young (23 ± 2 years, 13 males and 13 females) and old (80 ± 3.5 years, 28 males and 26 females) participants. Males and females in both groups were highly matched, and vastus lateralis muscle parameters of old versus young participants were compared for each sex separately, focusing on gene expression. The overall gene expression profiles separated the sexes, but similar gene expression patterns separated old from young participants in males and females. Genes were indeed regulated in the same direction in both sexes during aging; however, the magnitude of differential expression was sex specific. In males, oxidative phosphorylation was the top-ranked differentially expressed process, and in females, this was cell growth mediated by AKT signaling. Findings from RNA-seq data were studied in greater detail using alternative approaches. In addition, we confirmed our data using publicly available data from three independent human studies. In conclusion, top-ranked pathways differ between males and females, but were present and altered in the same direction in both sexes. We conclude that the same processes are associated with skeletal muscle aging in males and females, but the differential expression of those processes in old vs. young participants is sex specific.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Brecht J Attema
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
| | - Marjanne D van der Hoek
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- MCL Academy, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Feike R van der Leij
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- Research and Innovation Centre Agri, Food & Life Sciences, Inholland University of Applied Sciences, Delft and Amsterdam, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, 6700AH, Wageningen, The Netherlands.
| |
Collapse
|
2
|
de Jong JCBC, Verschuren L, Caspers MPM, van der Hoek MD, van der Leij FR, Kleemann R, van den Hoek AM, Nieuwenhuizen AG, Keijer J. Evidence for sex-specific intramuscular changes associated to physical weakness in adults older than 75 years. Biol Sex Differ 2023; 14:45. [PMID: 37430322 DOI: 10.1186/s13293-023-00531-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/29/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Physical weakness is a key component of frailty, and is highly prevalent in older adults. While females have a higher prevalence and earlier onset, sex differences in the development of frailty-related physical weakness are hardly studied. Therefore, we investigated the intramuscular changes that differentiate between fit and weak older adults for each sex separately. METHODS Male (n = 28) and female (n = 26) older adults (75 + years) were grouped on the basis of their ranks according to three frailty-related physical performance criteria. Muscle biopsies taken from vastus lateralis muscle were used for transcriptome and histological examination. Pairwise comparisons were made between the fittest and weakest groups for each sex separately, and potential sex-specific effects were assessed. RESULTS Weak females were characterized by a higher expression of inflammatory pathways and infiltration of NOX2-expressing immune cells, concomitant with a higher VCAM1 expression. Weak males were characterized by a smaller diameter of type 2 (fast) myofibers and lower expression of PRKN. In addition, weakness-associated transcriptome changes in the muscle were distinct from aging, suggesting that the pathophysiology of frailty-associated physical weakness does not necessarily depend on aging. CONCLUSIONS We conclude that physical weakness-associated changes in muscle are sex-specific and recommend that sex differences are taken into account in research on frailty, as these differences may have a large impact on the development of (pharmaceutical) interventions against frailty. TRIAL REGISTRATION NUMBER The FITAAL study was registered in the Dutch Trial Register, with registration code NTR6124 on 14-11-2016 ( https://trialsearch.who.int/Trial2.aspx?TrialID=NTR6124 ). HIGHLIGHTS • In female, but not male older adults, physical weakness was associated with a higher expression of intramuscular markers for inflammation. • In male, but not female older adults, physical weakness was associated with a smaller diameter of type 2 (fast) myofibers and lower PRKN expression. • Fit older adults (of both sexes) maintained expression levels comparable to young participants of weakness related genes, differing from frail participants.
Collapse
Affiliation(s)
- Jelle C B C de Jong
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Lars Verschuren
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Martien P M Caspers
- Department of Microbiology and Systems Biology, The Netherlands Organization for Applied Scientific Research (TNO), Zeist, The Netherlands
| | - Marjanne D van der Hoek
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- MCL Academy, Medical Centre Leeuwarden, Leeuwarden, The Netherlands
| | - Feike R van der Leij
- Applied Research Centre Food and Dairy, Van Hall Larenstein University of Applied Sciences, Leeuwarden, The Netherlands
- Research and Innovation Centre Agri, Food and Life Sciences, Inholland University of Applied Sciences, Delft and Amsterdam, The Netherlands
| | - Robert Kleemann
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Anita M van den Hoek
- Department of Metabolic Health Research, The Netherlands Organization for Applied Scientific Research (TNO), Leiden, The Netherlands
| | - Arie G Nieuwenhuizen
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, P.O. Box 338, 6700AH, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Bloise A, Giorno E, Miriello D, Godbert N. Synthesis of Ni-Doped Tremolite Fibers to Help Clarify the Aetiology of the Cytotoxic Outcome of Asbestos. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1303. [PMID: 37110889 PMCID: PMC10142192 DOI: 10.3390/nano13081303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
Asbestos fibers act as complex crystal-chemical reservoirs susceptible of releasing potentially toxic elements (such as ions impurities) into the lung cellular environment during permanency and dissolution. To comprehend the exact pathological mechanisms that are triggered upon inhalation of asbestos fibers, in vitro studies on possible interactions between the mineral and the biological system have been carried out mostly by using natural asbestos. However, this latter comprises intrinsic impurities such as Fe2+/Fe3+ and Ni2+ ions, and other eventual traces of metallic pathogens. Furthermore, often, natural asbestos is characterized by the co-presence of several mineral phases, fiber dimensions of which are randomly distributed in width and in length. For these reasons, it is albeit challenging to precisely identify toxicity factors and to define the accurate role of each factor in the overall pathogenesis of asbestos. In this regard, the availability of synthetic asbestos fibers with accurate chemical composition and specific dimensions for in vitro screening tests would represent the perfect tool to correlate asbestos toxicity to its chemico-physical features. Herein, to palliate such drawbacks of natural asbestos, well-defined Ni-doped tremolite fibers were chemically synthesized in order to offer biologists adequate samples for testing the specific role of Ni2+ in asbestos toxicity. The experimental conditions (temperature, pressure, reaction time and water amount) were optimized to produce batches of asbestos fibers of the tremolite phase, with uniformly distributed shape and dimensions and a controlled content of Ni2+ metal ions.
Collapse
Affiliation(s)
- Andrea Bloise
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy
- University Museum System—SiMU, Section of Mineralogy and Petrography, University of Calabria, 87036 Arcavacata di Rende (CS), Italy
| | - Eugenia Giorno
- MAT-INLab Laboratory of Inorganic Molecular Materials, Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| | - Domenico Miriello
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende (CS), Italy
| | - Nicolas Godbert
- MAT-INLab Laboratory of Inorganic Molecular Materials, Department of Chemistry and Chemical Technologies, University of Calabria, 87036 Rende (CS), Italy
| |
Collapse
|
4
|
Ross L, McKelvie P, Reardon K, Wong H, Wicks I, Day J. Muscle biopsy practices in the evaluation of neuromuscular disease: A systematic literature review. Neuropathol Appl Neurobiol 2023; 49:e12888. [PMID: 36734037 PMCID: PMC10946625 DOI: 10.1111/nan.12888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/26/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023]
Abstract
AIMS Muscle biopsy techniques range from needle muscle biopsy (NMB) and conchotome biopsy to open surgical biopsy. It is unknown whether specific biopsy techniques offer superior diagnostic yield or differ in procedural complication rates. Therefore, we aimed to compare the diagnostic utility of NMB, conchotome and open muscle biopsies in the assessment of neuromuscular disorders. METHODS A systematic literature review of the EMBASE and Medline (Ovid) databases was performed to identify original, full-length research articles that described the muscle biopsy technique used to diagnose neuromuscular disease in both adult and paediatric patient populations. Studies of any design, excluding case reports, were eligible for inclusion. Data pertaining to biopsy technique, biopsy yield and procedural complications were extracted. RESULTS Sixty-four studies reporting the yield of a specific muscle biopsy technique and, or procedural complications were identified. Open surgical biopsies provided a larger tissue sample than any type of percutaneous muscle biopsy. Where anaesthetic details were reported, general anaesthesia was required in 60% of studies that reported open surgical biopsies. Percutaneous biopsies were most commonly performed under local anaesthesia and despite the smaller tissue yield, moderate- to large-gauge needle and conchotome muscle biopsies had an equivalent diagnostic utility to that of open surgical muscle biopsy. All types of muscle biopsy procedures were well tolerated with few adverse events and no scarring complications were reported with percutaneous sampling. CONCLUSIONS When a histological diagnosis of myopathy is required, moderate- to large-gauge NMB and the conchotome technique appear to have an equivalent diagnostic yield to that of an open surgical biopsy.
Collapse
Affiliation(s)
- Laura Ross
- Department of RheumatologySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
- Department of MedicineThe University of Melbourne at St Vincent's HospitalFitzroyVictoriaAustralia
| | - Penny McKelvie
- Department of Anatomical PathologySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Katrina Reardon
- Department of NeurologySt Vincent's Hospital MelbourneFitzroyVictoriaAustralia
| | - Huon Wong
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
| | - Ian Wicks
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| | - Jessica Day
- Inflammation DivisionWalter and Eliza Hall Institute of Medical ResearchParkvilleVictoriaAustralia
- Department of RheumatologyRoyal Melbourne HospitalParkvilleVictoriaAustralia
- Department of Medical BiologyUniversity of MelbourneParkvilleVictoriaAustralia
| |
Collapse
|
5
|
Newmire DE, Willoughby DS. The Skeletal Muscle Microbiopsy Method in Exercise and Sports Science Research: A Narrative and Methodological Review. Scand J Med Sci Sports 2022; 32:1550-1568. [PMID: 35904526 DOI: 10.1111/sms.14215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/27/2022] [Accepted: 07/24/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND The skeletal muscle microbiopsy protocol was introduced to the Exercise and Sports Science (ESS) research field in 1999 and has been used as a protocol to directly examine muscular structural and biochemical changes. There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-procedure for participant care and sample collection. The purpose of this narrative and methodological review is to compare the microbiopsy to the traditional Bergström protocol used in the ESS field, identify and summarize all related microbiopsy protocols used in previous ESS studies and determine the most frequently used microbiopsy protocols aspects and associated pre- and post-biopsy procedures; METHODS: A review of literature up to January, 2022 was used following the PRISMA and Cochrane Methodological Review Guide to determine frequently used methods that may facilitate optimal and potential recommendations for muscle microbiopsy needle gauge (G), concentration or dose (% or mL) and administration of local anesthetic, co-axial/cannula introducer gauge (G), muscle depth (cm), muscle sample size collected (mg), passes to collect samples, time points of muscle sampling, and promotion of participant compliance and minimization of adverse events; RESULTS: 85 articles were selected based on the inclusionary requirements related to the ESS field or methodological considerations. The most frequently reported aspects in previous research to suggest the location of the vastus lateralis is the midpoint between the patella and the greater trochanter of the femur or 1/3 or 2/3 the distance from the patella to anterior superior iliac spine, 14 G biopsy needle, subcutaneous injected lidocaine administration (2 mL; 1%), 13 G co-axial/cannula, 1-2 cm muscle depth, 10-20 mg of muscle sample, ~3-time points, 2-3 passes; DISCUSSION: There is much variation in the reporting of the microbiopsy protocol and its related pre-and post-biopsy procedures. Standardization in reporting may promote recommendations to optimize data integrity, participant safety, participant adherence to the study design, and increase reproducibility. Recommendations are made for the microbiopsy procedure based on frequently reported characteristics.
Collapse
Affiliation(s)
- Daniel E Newmire
- Exercise Physiology and Biochemistry Laboratory, Department of Kinesiology, Texas A&M University-Corpus Christi, Corpus Christi, TX, USA
| | - Darryn S Willoughby
- School of Health Professions, School of Exercise and Sport Science Mayborn College of Health Sciences, University of Mary Hardin-Baylor, Belton, TX, USA
| |
Collapse
|
6
|
Evans WS, Blumenthal JB, Heilman JM, Ryan AS, Prior SJ. Effects of exercise training with weight loss on skeletal muscle expression of angiogenic factors in overweight and obese older men. J Appl Physiol (1985) 2021; 131:56-63. [PMID: 34013746 PMCID: PMC8325618 DOI: 10.1152/japplphysiol.00084.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 01/21/2023] Open
Abstract
Low skeletal muscle capillarization is associated with impaired glucose tolerance (IGT); however, aerobic exercise training with weight loss (AEX + WL) increases skeletal muscle capillarization and improves glucose tolerance in adults with IGT. Given that the expression of angiogenic growth factors mediates skeletal muscle capillarization, we sought to determine whether angiogenic growth factor levels are associated with low capillarization in those with IGT versus normal glucose tolerance (NGT) or to the benefits of AEX + WL in both groups. Sixteen overweight or obese men 50-75 yr of age completed 6 mo of AEX + WL with oral glucose tolerance tests and vastus lateralis muscle biopsies for measurement of muscle vascular endothelial growth factor (VEGF), placental growth factor (PlGF), soluble fms-like tyrosine kinase receptor-1 (sFlt-1), and basic fibroblast growth factor (bFGF). At baseline, all growth factor levels were numerically lower in IGT than NGT, but these did not reach statistical significance (P = 0.06-0.33). Following AEX + WL, aerobic capacity [maximal oxygen consumption (V̇o2max)] increased by 16%, whereas body weight and 120-min postprandial glucose levels decreased by 10% and 15%, respectively (P ≤ 0.001 for all). There was a main effect of AEX + WL to increase VEGF (0.095 ± 0.016 vs. 0.114 ± 0.018 ng/µg, P < 0.05), PlGF (0.004 ± 0.001 vs. 0.005 ± 0.001 ng/µg, P < 0.05), and sFlt-1 (0.216 ± 0.029 vs. 0.264 ± 0.036 ng/µg, P < 0.01), with overall increases driven by the IGT group. These results suggest that 6 mo of AEX + WL increases skeletal muscle angiogenic growth factor levels in obese older adults with IGT and NGT, which may contribute to our previous findings that AEX + WL increases capillarization to improve glucose tolerance in those with IGT.NEW & NOTEWORTHY Skeletal muscle capillarization is lower in adults with impaired glucose tolerance than normal controls. This may, in part, be attributable to differential expression of angiogenic growth factors in skeletal muscle. Using a 6-mo aerobic exercise intervention with ∼10% body weight loss (AEX + WL), we show that the expression of angiogenic growth factors tends to be lower in adults with impaired glucose tolerance compared with normal controls and that AEX + WL increased expression of angiogenic growth factors in all participants.
Collapse
Affiliation(s)
- William S Evans
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Jacob B Blumenthal
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, Maryland
- Division of Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - James M Heilman
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
| | - Alice S Ryan
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, Maryland
- Division of Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, Maryland
- Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center and Research and Development Service, Baltimore, Maryland
- Division of Geriatrics and Palliative Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
7
|
Jensen JB, Møller AB, Just J, Mose M, de Paoli FV, Billeskov TB, Fred RG, Pers TH, Pedersen SB, Petersen KK, Bjerre M, Farup J, Jessen N. Isolation and characterization of muscle stem cells, fibro-adipogenic progenitors, and macrophages from human skeletal muscle biopsies. Am J Physiol Cell Physiol 2021; 321:C257-C268. [PMID: 34106790 DOI: 10.1152/ajpcell.00127.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Animal models clearly illustrate that the maintenance of skeletal muscle mass depends on the function and interaction of a heterogeneous population of resident and infiltrating mononuclear cells. Several lines of evidence suggest that mononuclear cells also play a role in muscle wasting in humans, and targeting these cells may open new treatment options for intervention or prevention in sarcopenia. Methodological and ethical constraints have perturbed exploration of the cellular characteristics and function of mononuclear cells in human skeletal muscle. Thus, investigations of cellular phenotypes often depend on immunohistochemical analysis of small tissue samples obtained by needle biopsies, which do not match the deep phenotyping of mononuclear cells obtained from animal models. Here, we have developed a protocol for fluorescence-activated cell sorting (FACS), based on single-cell RNA-sequencing data, for quantifying and characterizing mononuclear cell populations in human skeletal muscle. Muscle stem cells, fibro-adipogenic progenitors, and two subsets of macrophages (CD11c+/-) are present in needle biopsies in comparable quantities per milligram tissue to open surgical biopsies. We find that direct cell isolation is preferable due to a substantial shift in transcriptome when using preculture before the FACS procedure. Finally, in vitro validation of the cellular phenotype of muscle stem cells, fibro-adipogenic progenitors, and macrophages confirms population-specific traits. This study demonstrates that mononuclear cell populations can be quantified and subsequently analyzed from needle biopsy material and opens the perspective for future clinical studies of cellular mechanisms in muscle wasting.
Collapse
Affiliation(s)
- Jonas B Jensen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Andreas B Møller
- Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Jesper Just
- Center of Functionally Integrative Neuroscience, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Maike Mose
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Diabetes and Hormonal Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Frank V de Paoli
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Cardiothoracic and Vascular Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Tine B Billeskov
- Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Rikard G Fred
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Steen B Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark.,Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.,Diabetes and Hormonal Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Klaus K Petersen
- Department of Orthopedic Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Mette Bjerre
- Medical Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Jean Farup
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Niels Jessen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Research Laboratory for Biochemical Pathology, Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
8
|
Herbst A, Prior SJ, Lee CC, Aiken JM, McKenzie D, Hoang A, Liu N, Chen X, Xun P, Allison DB, Wanagat J. Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women. GeroScience 2021; 43:1253-1264. [PMID: 33740224 DOI: 10.1007/s11357-021-00351-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) quality and quantity relate to two hallmarks of aging-genomic instability and mitochondrial dysfunction. Physical performance relies on mitochondrial integrity and declines with age, yet the interactions between mtDNA quantity, quality, and physical performance are unclear. Using a validated digital PCR assay specific for mtDNA deletions, we tested the hypothesis that skeletal muscle mtDNA deletion mutation frequency (i.e., a measure of mtDNA quality) or mtDNA copy number predicts physical performance in older adults. Total DNA was isolated from vastus lateralis muscle biopsies and used to quantitate mtDNA copy number and mtDNA deletion frequency by digital PCR. The biopsies were obtained from a cross-sectional cohort of 53 adults aged 50 to 86 years. Before the biopsy procedure, physical performance measurements were collected, including VO2max, modified physical performance test score, 6-min walk distance, gait speed, grip strength, and total lean and leg mass. Linear regression models were used to evaluate the relationships between age, sex, and the outcomes. We found that mtDNA deletion mutation frequency increased exponentially with advancing age. On average from ages 50 to 86, deletion frequency increased from 0.008 to 0.15%, an 18-fold increase. Females may have lower deletion frequencies than males at older ages. We also measured declines in VO2max and mtDNA copy number with age in both sexes. The mtDNA deletion frequency measured from single skeletal muscle biopsies predicted 13.3% of the variation in VO2max. Copy number explained 22.6% of the variation in mtDNA deletion frequency and 10.4% of the lean mass variation. We found predictive relationships between age, mtDNA deletion mutation frequency, mtDNA copy number, and physical performance. These data are consistent with a role for mitochondrial function and genome integrity in maintaining physical performance with age. Analyses of mtDNA quality and quantity in larger cohorts and longitudinal studies could extend our understanding of the importance of mitochondrial DNA in human aging and longevity.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD, USA.,Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center, Baltimore, MD, USA
| | - Cathy C Lee
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA.
| |
Collapse
|
9
|
Jones R, Pabla P, Mallinson J, Nixon A, Taylor T, Bennett A, Tsintzas K. Two weeks of early time-restricted feeding (eTRF) improves skeletal muscle insulin and anabolic sensitivity in healthy men. Am J Clin Nutr 2020; 112:1015-1028. [PMID: 32729615 PMCID: PMC7528549 DOI: 10.1093/ajcn/nqaa192] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Altering the temporal distribution of energy intake (EI) and introducing periods of intermittent fasting (IF) exert important metabolic effects. Restricting EI to earlier in the day [early time-restricted feeding (eTRF)] is a novel type of IF. OBJECTIVES We assessed the chronic effects of eTRF compared with an energy-matched control on whole-body and skeletal muscle insulin and anabolic sensitivity. METHODS Sixteen healthy males (aged 23 ± 1 y; BMI 24.0 ± 0.6 kg·m-2) were assigned to 2 groups that underwent either 2 wk of eTRF (n = 8) or control/caloric restriction (CON:CR; n = 8) diet. The eTRF diet was consumed ad libitum and the intervention was conducted before the CON:CR, in which the diet was provided to match the reduction in EI and body weight observed in eTRF. During eTRF, daily EI was restricted to between 08:00 and 16:00, which prolonged the overnight fast by ∼5 h. The metabolic responses to a carbohydrate/protein drink were assessed pre- and post-interventions following a 12-h overnight fast. RESULTS When compared with CON:CR, eTRF improved whole-body insulin sensitivity [between-group difference (95% CI): 1.89 (0.18, 3.60); P = 0.03; η2p = 0.29] and skeletal muscle uptake of glucose [between-group difference (95% CI): 4266 (261, 8270) μmol·min-1·kg-1·180 min; P = 0.04; η2p = 0.31] and branched-chain amino acids (BCAAs) [between-group difference (95% CI): 266 (77, 455) nmol·min-1·kg-1·180 min; P = 0.01; η2p = 0.44]. eTRF caused a reduction in EI (∼400 kcal·d-1) and weight loss (-1.04 ± 0.25 kg; P = 0.01) that was matched in CON:CR (-1.24 ± 0.35 kg; P = 0.01). CONCLUSIONS Under free-living conditions, eTRF improves whole-body insulin sensitivity and increases skeletal muscle glucose and BCAA uptake. The metabolic benefits of eTRF are independent of its effects on weight loss and represent chronic adaptations rather than the effect of the last bout of overnight fast. This trial was registered at clinicaltrials.gov as NCT03969745.
Collapse
Affiliation(s)
- Robert Jones
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Pardeep Pabla
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Joanne Mallinson
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Aline Nixon
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Tariq Taylor
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | - Andrew Bennett
- School of Life Sciences, University of Nottingham Medical School, Nottingham, United Kingdom
| | | |
Collapse
|
10
|
Hoek MD, Nieuwenhuizen AG, Kuda O, Bos P, Paluchová V, Verschuren L, Hoek AM, Kleemann R, Veeger NJGM, Leij FR, Keijer J. Intramuscular short‐chain acylcarnitines in elderly people are decreased in (pre‐)frail females, but not in males. FASEB J 2020; 34:11658-11671. [DOI: 10.1096/fj.202000493r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 06/15/2020] [Indexed: 01/01/2023]
Affiliation(s)
- Marjanne D. Hoek
- Human and Animal Physiology Wageningen University Wageningen the Netherlands
- Applied Research Centre Food and Dairy Van Hall Larenstein University of Applied Sciences Leeuwarden the Netherlands
- MCL Academy, Medical Centre Leeuwarden Leeuwarden the Netherlands
| | | | - Ondřej Kuda
- Institute of Physiology Czech Academy of Sciences Prague Czech Republic
| | - Paul Bos
- MCL Academy, Medical Centre Leeuwarden Leeuwarden the Netherlands
| | | | - Lars Verschuren
- The Netherlands Organization for Applied Scientific Research (TNO) Department of Metabolic Health Research TNO Metabolic Health Research Leiden the Netherlands
| | - Anita M. Hoek
- The Netherlands Organization for Applied Scientific Research (TNO) Department of Metabolic Health Research TNO Metabolic Health Research Leiden the Netherlands
| | - Robert Kleemann
- The Netherlands Organization for Applied Scientific Research (TNO) Department of Metabolic Health Research TNO Metabolic Health Research Leiden the Netherlands
| | | | - Feike R. Leij
- Applied Research Centre Food and Dairy Van Hall Larenstein University of Applied Sciences Leeuwarden the Netherlands
- RIC‐AFL Inholland University of Applied Sciences Delft and Amsterdam the Netherlands
| | - Jaap Keijer
- Human and Animal Physiology Wageningen University Wageningen the Netherlands
| |
Collapse
|
11
|
Najjar SA, Smith AST, Long CJ, McAleer CW, Cai Y, Srinivasan B, Martin C, Vandenburgh HH, Hickman JJ. A multiplexed in vitro assay system for evaluating human skeletal muscle functionality in response to drug treatment. Biotechnol Bioeng 2019; 117:736-747. [PMID: 31758543 DOI: 10.1002/bit.27231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 11/07/2022]
Abstract
In vitro systems that mimic organ functionality have become increasingly important tools in drug development studies. Systems that measure the functional properties of skeletal muscle are beneficial to compound screening studies and also for integration into multiorgan devices. To date, no studies have investigated human skeletal muscle responses to drug treatments at the single myotube level in vitro. This report details a microscale cantilever chip-based assay system for culturing individual human myotubes. The cantilevers, along with a laser and photo-detector system, enable measurement of myotube contractions in response to broad-field electrical stimulation. This system was used to obtain baseline functional parameters for untreated human myotubes, including peak contractile force and time-to-fatigue data. The cultured myotubes were then treated with known myotoxic compounds and the resulting functional changes were compared to baseline measurements as well as known physiological responses in vivo. The collected data demonstrate the system's capacity for screening direct effects of compound action on individual human skeletal myotubes in a reliable, reproducible, and noninvasive manner. Furthermore, it has the potential to be utilized for high-content screening, disease modeling, and exercise studies of human skeletal muscle performance utilizing iPSCs derived from specific patient populations such as the muscular dystrophies.
Collapse
Affiliation(s)
- Sarah A Najjar
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Alexander S T Smith
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Christopher J Long
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | | | - Yunqing Cai
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Balaji Srinivasan
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Candace Martin
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| | - Herman H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - James J Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida
| |
Collapse
|
12
|
Chen X, Abbey S, Bharmal A, Harris S, Hudson E, Krinner L, Langan E, Maling A, Nijran J, Street H, Wooley C, Billeter R. Neurovascular structures in human vastus lateralis muscle and the ideal biopsy site. Scand J Med Sci Sports 2019; 29:504-514. [PMID: 30561846 DOI: 10.1111/sms.13369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 12/11/2018] [Indexed: 01/14/2023]
Abstract
A density model of neurovascular structures was generated from 28 human vastus lateralis muscles isolated from embalmed cadavers. The intramuscular portion of arteries, veins, and nerves was dissected, traced on transparencies, and digitized before adjustment to an average muscle shape using Procrustes analysis to generate density distributions for the relative positions of these structures. The course of arteries, veins, and nerves was highly variable between individual muscles. Nevertheless, a zone of lower average neurovascular density was found between the tributaries from the lateral circumflex femoral and the deep femoral arteries. While the area with the lowest density was covered by the iliotibial tract and would therefore not be suitable for biopsies, another low-density area was located in the distal portion of vastus lateralis. This was just anterior to the iliotibial tract, in a zone that has been described as a good needle biopsy site. The reported complication rates of needle biopsies (0.1%-4%) are in the range of expectations when simulated based on this model. It is concluded that the optimal human vastus lateralis biopsy site is in the distal portion of the muscle, between ½ and ¾ of the length from the greater trochanter to the lateral epicondyle, just anterior to the iliotibial band.
Collapse
Affiliation(s)
- Xin Chen
- School of Computer Science, University of Nottingham, Nottingham, UK
| | - Steven Abbey
- UK Foundation Programme, University Hospital Coventry & Warwickshire, Coventry, UK
| | - Adam Bharmal
- UK Foundation Programme, University College of London Hospital, London, UK
| | - Sophie Harris
- South East Scotland Deanery, NHS Lothian, NHS Scotland, Edinburgh, UK
| | | | - Lisa Krinner
- Department of Public Health Sciences, College of Health and Human Services, University of North Carolina at Charlotte, Charlotte, North Carolina
| | - Emma Langan
- UK Foundation Programme, Royal Derby Hospital, Derbyshire, UK
| | - Alexandra Maling
- Auckland City Hospital, Auckland District Health Board, Auckland, New Zealand
| | - Jagdip Nijran
- Wexham Park Hospital, Frimley Health Foundation Trust UK, Wrexham, UK
| | - Hannah Street
- Wythenshawe Hospital, South Manchester NHS Trust, Wythenshave, UK
| | | | - Rudolf Billeter
- School of Life Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
13
|
Fernandes AL, Hayashi AP, Jambassi-Filho JC, de Capitani MD, de Santana DA, Gualano B, Roschel H. Different protein and derivatives supplementation strategies combined with resistance training in pre-frail and frail elderly: Rationale and protocol for the "Pro-Elderly" Study. Nutr Health 2018; 23:251-260. [PMID: 29214924 DOI: 10.1177/0260106017737465] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Frailty is a multifactorial geriatric syndrome characterized by progressive decline in health and associated with decreased muscle mass, strength, and functional capacity. Resistance training (RT) combined with protein or amino acids supplementation has been shown to be promising for mitigating age-related impairments. AIM To investigate the chronic effects of different strategies of protein and derivatives supplementation in association with RT on selected health-related parameters in pre-frail and frail elderly. METHODS This is a series of double-blind, randomized, placebo-controlled, parallel-group clinical trials. Volunteers will be divided into nine groups, comprising four different sub-studies evaluating the effects of: isolated leucine supplementation (study 1); protein source (whey vs. soy - study 2); combination of whey protein and creatine (study 3); and sexual dimorphism on the response to protein intake and RT (males vs. females - study 4). Muscle cross-sectional area, fiber cross-sectional area, body composition, lower-limb maximal dynamic and isometric strength, functionality, lipid profile, biochemical parameters, renal function, quality of life, and nutritional status will be assessed before and after a 16-week intervention period. Data will be tested for normality and a mixed-model for repeated measures will be conducted to assess within- and between-group effects of the intervention on the dependent variables. Confidence intervals (95%), effect sizes, and relative changes will also be determined, with significance set at p < 0.05.
Collapse
Affiliation(s)
- Alan Lins Fernandes
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Ana Paula Hayashi
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - José Claudio Jambassi-Filho
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Mariana Dutilh de Capitani
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil
| | - Davi Alves de Santana
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - Bruno Gualano
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| | - Hamilton Roschel
- 1 Applied Physiology & Nutrition Research Group, School of Physical Education and Sport, University of Sao Paulo - Sao Paulo, Brazil.,2 Rheumatology Division, Faculty of Medicine, University of Sao Paulo - Sao Paulo, Brazil
| |
Collapse
|
14
|
Agten A, Verbrugghe J, Stevens S, Boomgaert L, O Eijnde B, Timmermans A, Vandenabeele F. Feasibility, accuracy and safety of a percutaneous fine-needle biopsy technique to obtain qualitative muscle samples of the lumbar multifidus and erector spinae muscle in persons with low back pain. J Anat 2018; 233:542-551. [PMID: 30033540 DOI: 10.1111/joa.12867] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2018] [Indexed: 12/12/2022] Open
Abstract
The lumbar muscular system, in particular the lumbar multifidus muscle (LM) and the erector spinae muscle (ES), plays an important role in stabilizing and mobilizing the lumbar spine. Based on the topography, the lumbar paraspinal muscles can be classified into local and global muscles. LM is part of the local system, whereas ES is part of the global system. Therefore, it is interesting to investigate the muscle fibre type composition in both muscles. There is accumulating evidence that nonspecific chronic low back pain is associated with lumbar muscle dysfunction. To further elucidate this lumbar paraspinal muscle dysfunction, it is important to understand the structural characteristics of individual muscle fibres of LM and ES. Muscle fibre type composition can be investigated in muscle tissue samples. So far, muscle samples are taken by using invasive procedures that are not well tolerated. The aim of this article was to evaluate the feasibility, accuracy and safety of a percutaneous fine-needle biopsy technique to obtain muscle samples from LM and ES in persons with nonspecific chronic low back pain and to evaluate the feasibility of performing immunofluorescence analysis of myosin heavy chain isoform expression to investigate muscle fibre type composition. Preliminary investigations in cadavers were performed to determine the optimal vertebral level and puncture site to obtain muscle samples of LM and ES through a single skin puncture. In 15 persons with nonspecific chronic low back pain, muscle samples of LM and ES were taken under local anaesthesia with the percutaneous fine-needle biopsy technique, preceded by determination of the puncture site with ultrasonography. Muscle fibre type composition was investigated using immunofluorescence analysis of myosin heavy chain expression. The subjects reported little or no pain and were willing to repeat the procedure. The obtained muscle tissue contained transverse-sectioned muscle fibres in which muscle fibre contractile characteristics of the paraspinal muscles could be evaluated with immunofluorescence analysis of the myosin heavy chains. We can conclude that percutaneous microbiopsy appears to be feasible and accurate, and safe to use to obtain muscle tissue from the paraspinal muscles. The use of ultrasonography to determine the puncture site is necessary to ensure biopsy of the correct muscles and to ensure the safety of the procedure.
Collapse
Affiliation(s)
- Anouk Agten
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Jonas Verbrugghe
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Sjoerd Stevens
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | | | - Bert O Eijnde
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Annick Timmermans
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium
| | - Frank Vandenabeele
- Rehabilitation Research Center, Faculty of Medicine and Life Sciences, BIOMED Biomedical Research Institute, UHasselt - Hasselt University, Diepenbeek, Belgium.,Department of Morphology, Faculty of Medicine and Life Sciences, UHasselt - Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
15
|
Colón A, Guo X, Akanda N, Cai Y, Hickman JJ. Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci Rep 2017; 7:17202. [PMID: 29222416 PMCID: PMC5722897 DOI: 10.1038/s41598-017-17382-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Investigation of neuromuscular deficits and diseases such as SMA, as well as for next generation prosthetics, utilizing in vitro phenotypic models would benefit from the development of a functional neuromuscular reflex arc. The neuromuscular reflex arc is the system that integrates the proprioceptive information for muscle length and activity (sensory afferent), to modify motoneuron output to achieve graded muscle contraction (actuation efferent). The sensory portion of the arc is composed of proprioceptive sensory neurons and the muscle spindle, which is embedded in the muscle tissue and composed of intrafusal fibers. The gamma motoneurons (γ-MNs) that innervate these fibers regulate the intrafusal fiber's stretch so that they retain proper tension and sensitivity during muscle contraction or relaxation. This mechanism is in place to maintain the sensitivity of proprioception during dynamic muscle activity and to prevent muscular damage. In this study, a co-culture system was developed for innervation of intrafusal fibers by human γ-MNs and demonstrated by morphological and immunocytochemical analysis, then validated by functional electrophysiological evaluation. This human-based fusimotor model and its incorporation into the reflex arc allows for a more accurate recapitulation of neuromuscular function for applications in disease investigations, drug discovery, prosthetic design and neuropathic pain investigations.
Collapse
Affiliation(s)
- A Colón
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - X Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - N Akanda
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Y Cai
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - J J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| |
Collapse
|
16
|
McGawley K, Juudas E, Kazior Z, Ström K, Blomstrand E, Hansson O, Holmberg HC. No Additional Benefits of Block- Over Evenly-Distributed High-Intensity Interval Training within a Polarized Microcycle. Front Physiol 2017; 8:413. [PMID: 28659826 PMCID: PMC5468439 DOI: 10.3389/fphys.2017.00413] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 05/30/2017] [Indexed: 12/31/2022] Open
Abstract
Introduction: The current study aimed to investigate the responses to block- versus evenly-distributed high-intensity interval training (HIT) within a polarized microcycle. Methods: Twenty well-trained junior cross-country skiers (10 males, age 17.6 ± 1.5 and 10 females, age 17.3 ± 1.5) completed two, 3-week periods of training (EVEN and BLOCK) in a randomized, crossover-design study. In EVEN, 3 HIT sessions (5 × 4-min of diagonal-stride roller-skiing) were completed at a maximal sustainable intensity each week while low-intensity training (LIT) was distributed evenly around the HIT. In BLOCK, the same 9 HIT sessions were completed in the second week while only LIT was completed in the first and third weeks. Heart rate (HR), session ratings of perceived exertion (sRPE), and perceived recovery (pREC) were recorded for all HIT and LIT sessions, while distance covered was recorded for each HIT interval. The recovery-stress questionnaire for athletes (RESTQ-Sport) was completed weekly. Before and after EVEN and BLOCK, resting saliva and muscle samples were collected and an incremental test and 600-m time-trial (TT) were completed. Results: Pre- to post-testing revealed no significant differences between EVEN and BLOCK for changes in resting salivary cortisol, testosterone, or IgA, or for changes in muscle capillary density, fiber area, fiber composition, enzyme activity (CS, HAD, and PFK) or the protein content of VEGF or PGC-1α. Neither were any differences observed in the changes in skiing economy, V˙O2max or 600-m time-trial performance between interventions. These findings were coupled with no significant differences between EVEN and BLOCK for distance covered during HIT, summated HR zone scores, total sRPE training load, overall pREC or overall recovery-stress state. However, 600-m TT performance improved from pre- to post-training, irrespective of intervention (P = 0.003), and a number of hormonal and muscle biopsy markers were also significantly altered post-training (P < 0.05). Discussion: The current study shows that well-trained junior cross-country skiers are able to complete 9 HIT sessions within 1 week without compromising total work done and without experiencing greater stress or reduced recovery over a 3-week polarized microcycle. However, the findings do not support block-distributed HIT as a superior method to a more even distribution of HIT in terms of enhancing physiological or performance adaptions.
Collapse
Affiliation(s)
- Kerry McGawley
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden
| | - Elisabeth Juudas
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden
| | - Zuzanna Kazior
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden.,Åstrand Laboratory, Swedish School of Sport and Health SciencesStockholm, Sweden
| | - Kristoffer Ström
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden.,Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Lund UniversityMalmö, Sweden
| | - Eva Blomstrand
- Åstrand Laboratory, Swedish School of Sport and Health SciencesStockholm, Sweden
| | - Ola Hansson
- Diabetes and Endocrinology, Department of Clinical Sciences, Lund University Diabetes Centre, Lund UniversityMalmö, Sweden
| | - Hans-Christer Holmberg
- Department of Health Sciences, Swedish Winter Sports Research Centre, Mid Sweden UniversityÖstersund, Sweden
| |
Collapse
|
17
|
Greene J, Louis J, Korostynska O, Mason A. State-of-the-Art Methods for Skeletal Muscle Glycogen Analysis in Athletes-The Need for Novel Non-Invasive Techniques. BIOSENSORS-BASEL 2017; 7:bios7010011. [PMID: 28241495 PMCID: PMC5371784 DOI: 10.3390/bios7010011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 02/16/2017] [Accepted: 02/19/2017] [Indexed: 11/16/2022]
Abstract
Muscle glycogen levels have a profound impact on an athlete’s sporting performance, thus measurement is vital. Carbohydrate manipulation is a fundamental component in an athlete’s lifestyle and is a critical part of elite performance, since it can provide necessary training adaptations. This paper provides a critical review of the current invasive and non-invasive methods for measuring skeletal muscle glycogen levels. These include the gold standard muscle biopsy, histochemical analysis, magnetic resonance spectroscopy, and musculoskeletal high frequency ultrasound, as well as pursuing future application of electromagnetic sensors in the pursuit of portable non-invasive quantification of muscle glycogen. This paper will be of interest to researchers who wish to understand the current and most appropriate techniques in measuring skeletal muscle glycogen. This will have applications both in the lab and in the field by improving the accuracy of research protocols and following the physiological adaptations to exercise.
Collapse
Affiliation(s)
- Jacob Greene
- Department of Built Environment, Faculty of Engineering and Technology, BEST Research Institute, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Julien Louis
- Faculty of Science, School of Sports and Exercise Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Olga Korostynska
- Department of Civil Engineering, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK.
| | - Alex Mason
- Animalia, Norwegian Meat and Poultry Research Centre, Økern 0513, Oslo, Norway.
- Department of Built Environment, Faculty of Engineering and Technology, Liverpool John Moores University, Liverpool L3 3AF, UK.
| |
Collapse
|
18
|
Guo X, Colon A, Akanda N, Spradling S, Stancescu M, Martin C, Hickman JJ. Tissue engineering the mechanosensory circuit of the stretch reflex arc with human stem cells: Sensory neuron innervation of intrafusal muscle fibers. Biomaterials 2017; 122:179-187. [PMID: 28129596 DOI: 10.1016/j.biomaterials.2017.01.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 12/28/2016] [Accepted: 01/03/2017] [Indexed: 12/28/2022]
Abstract
Muscle spindles are sensory organs embedded in the belly of skeletal muscles that serve as mechanoreceptors detecting static and dynamic information about muscle length and stretch. Through their connection with proprioceptive sensory neurons, sensation of axial body position and muscle movement are transmitted to the central nervous system. Impairment of this sensory circuit causes motor deficits and has been linked to a wide range of diseases. To date, no defined human-based in vitro model of the proprioceptive sensory circuit has been developed. The goal of this study was to develop a human-based in vitro muscle sensory circuit utilizing human stem cells. A serum-free medium was developed to drive the induction of intrafusal fibers from human satellite cells by actuation of a neuregulin signaling pathway. Both bag and chain intrafusal fibers were generated and subsequently validated by phase microscopy and immunocytochemistry. When co-cultured with proprioceptive sensory neurons derived from human neuroprogenitors, mechanosensory nerve terminal structural features with intrafusal fibers were demonstrated. Most importantly, patch-clamp electrophysiological analysis of the intrafusal fibers indicated repetitive firing of human intrafusal fibers, which has not been observed in human extrafusal fibers.
Collapse
Affiliation(s)
- Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Alisha Colon
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Nesar Akanda
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - Severo Spradling
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA
| | - Maria Stancescu
- Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| | - Candace Martin
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA
| | - James J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL 32826, USA; Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, 12722 Research Parkway, Orlando, FL 32826, USA; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA.
| |
Collapse
|
19
|
Layec G, Gifford JR, Trinity JD, Hart CR, Garten RS, Park SY, Le Fur Y, Jeong EK, Richardson RS. Accuracy and precision of quantitative 31P-MRS measurements of human skeletal muscle mitochondrial function. Am J Physiol Endocrinol Metab 2016; 311:E358-66. [PMID: 27302751 PMCID: PMC5005269 DOI: 10.1152/ajpendo.00028.2016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022]
Abstract
Although theoretically sound, the accuracy and precision of (31)P-magnetic resonance spectroscopy ((31)P-MRS) approaches to quantitatively estimate mitochondrial capacity are not well documented. Therefore, employing four differing models of respiratory control [linear, kinetic, and multipoint adenosine diphosphate (ADP) and phosphorylation potential], this study sought to determine the accuracy and precision of (31)P-MRS assessments of peak mitochondrial adenosine-triphosphate (ATP) synthesis rate utilizing directly measured peak respiration (State 3) in permeabilized skeletal muscle fibers. In 23 subjects of different fitness levels, (31)P-MRS during a 24-s maximal isometric knee extension and high-resolution respirometry in muscle fibers from the vastus lateralis was performed. Although significantly correlated with State 3 respiration (r = 0.72), both the linear (45 ± 13 mM/min) and phosphorylation potential (47 ± 16 mM/min) models grossly overestimated the calculated in vitro peak ATP synthesis rate (P < 0.05). Of the ADP models, the kinetic model was well correlated with State 3 respiration (r = 0.72, P < 0.05), but moderately overestimated ATP synthesis rate (P < 0.05), while the multipoint model, although being somewhat less well correlated with State 3 respiration (r = 0.55, P < 0.05), most accurately reflected peak ATP synthesis rate. Of note, the PCr recovery time constant (τ), a qualitative index of mitochondrial capacity, exhibited the strongest correlation with State 3 respiration (r = 0.80, P < 0.05). Therefore, this study reveals that each of the (31)P-MRS data analyses, including PCr τ, exhibit precision in terms of mitochondrial capacity. As only the multipoint ADP model did not overstimate the peak skeletal muscle mitochondrial ATP synthesis, the multipoint ADP model is the only quantitative approach to exhibit both accuracy and precision.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Jayson R Gifford
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Ryan S Garten
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Song Y Park
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, Centre national de la recherche scientifique, Center for Magnetic Resonance in Biology and Medicine, Unité Mixte de Recherche 7339, Marseille, France
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
20
|
Prior SJ, Ryan AS, Blumenthal JB, Watson JM, Katzel LI, Goldberg AP. Sarcopenia Is Associated With Lower Skeletal Muscle Capillarization and Exercise Capacity in Older Adults. J Gerontol A Biol Sci Med Sci 2016; 71:1096-101. [PMID: 26888434 DOI: 10.1093/gerona/glw017] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 01/24/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Skeletal muscle capillary rarefaction limits the transcapillary transport of nutrients and oxygen to muscle and may contribute to sarcopenia and functional impairment in older adults. We tested the hypothesis that skeletal muscle capillarization and exercise capacity (VO2max) are lower in sarcopenic than in nonsarcopenic older adults and that the degree of sarcopenia is related to lower skeletal muscle capillarization. METHODS Body composition, VO2max, and vastus lateralis capillarization were determined in 76 middle-aged and older men and women (age = 61±1 years, body mass index [BMI] = 30.7±0.5kg/m(2) [mean ± SEM]). Participants were classified as sarcopenic if appendicular lean mass divided by BMI (ALMBMI) was less than 0.789 for men or less than 0.512 for women. RESULTS Sarcopenic subjects (ALMBMI = 0.65±0.04, n = 16) had 20% lower capillary-to-fiber ratio, as well as 13% and 15% lower VO2max expressed as mL/kg/min or L/min, respectively, compared with sex-, race-, and age-matched participants without sarcopenia (ALMBMI = 0.81±0.05, n = 16; p < .05). In all 76 subjects, ALMBMI, thigh muscle cross-sectional area, and VO2max correlated directly with capillarization (r = .30-.37, p ≤ .05), after accounting for age, sex, and race. CONCLUSIONS These findings suggest that low skeletal muscle capillarization is one factor that may contribute to sarcopenia and reduced exercise capacity in older adults by limiting diffusion of substrates, oxygen, hormones, and nutrients. Strategies to prevent the aging-related decline in skeletal muscle capillarization may help to prevent or slow the progression of sarcopenia and its associated functional declines in generally healthy older adults.
Collapse
Affiliation(s)
- Steven J Prior
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore. Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, and Research and Development Service, Baltimore, Maryland.
| | - Alice S Ryan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore. Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, and Research and Development Service, Baltimore, Maryland
| | - Jacob B Blumenthal
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore. Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, and Research and Development Service, Baltimore, Maryland
| | - Jonathan M Watson
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore. Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, and Research and Development Service, Baltimore, Maryland
| | - Leslie I Katzel
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore. Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, and Research and Development Service, Baltimore, Maryland
| | - Andrew P Goldberg
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore. Baltimore Veterans Affairs Geriatric Research, Education and Clinical Center, and Research and Development Service, Baltimore, Maryland
| |
Collapse
|
21
|
Kazior Z, Willis SJ, Moberg M, Apró W, Calbet JAL, Holmberg HC, Blomstrand E. Endurance Exercise Enhances the Effect of Strength Training on Muscle Fiber Size and Protein Expression of Akt and mTOR. PLoS One 2016; 11:e0149082. [PMID: 26885978 PMCID: PMC4757413 DOI: 10.1371/journal.pone.0149082] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 01/26/2016] [Indexed: 12/21/2022] Open
Abstract
Reports concerning the effect of endurance exercise on the anabolic response to strength training have been contradictory. This study re-investigated this issue, focusing on training effects on indicators of protein synthesis and degradation. Two groups of male subjects performed 7 weeks of resistance exercise alone (R; n = 7) or in combination with preceding endurance exercise, including both continuous and interval cycling (ER; n = 9). Muscle biopsies were taken before and after the training period. Similar increases in leg-press 1 repetition maximum (30%; P<0.05) were observed in both groups, whereas maximal oxygen uptake was elevated (8%; P<0.05) only in the ER group. The ER training enlarged the areas of both type I and type II fibers, whereas the R protocol increased only the type II fibers. The mean fiber area increased by 28% (P<0.05) in the ER group, whereas no significant increase was observed in the R group. Moreover, expression of Akt and mTOR protein was enhanced in the ER group, whereas only the level of mTOR was elevated following R training. Training-induced alterations in the levels of both Akt and mTOR protein were correlated to changes in type I fiber area (r = 0.55-0.61, P<0.05), as well as mean fiber area (r = 0.55-0.61, P<0.05), reflecting the important role played by these proteins in connection with muscle hypertrophy. Both training regimes reduced the level of MAFbx protein (P<0.05) and tended to elevate that of MuRF-1. The present findings indicate that the larger hypertrophy observed in the ER group is due more to pronounced stimulation of anabolic rather than inhibition of catabolic processes.
Collapse
Affiliation(s)
- Zuzanna Kazior
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Sarah J. Willis
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Marcus Moberg
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - William Apró
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
| | - José A. L. Calbet
- Department of Physical Education, University of Las Palmas de Gran Canaria, Las Palmas de Gran Canaria, Spain
- Research Institute of Biomedical and Health Sciences (IUIBS), University of Las Palmas de Gran Canaria, Campus Universitario de Tafira s/n, Las Palmas de Gran Canaria, Canary Island, Spain
| | - Hans-Christer Holmberg
- Swedish Winter Sports Research Centre, Department of Health Sciences, Mid Sweden University, Östersund, Sweden
| | - Eva Blomstrand
- Swedish School of Sport and Health Sciences, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
22
|
Prior SJ, Goldberg AP, Ortmeyer HK, Chin ER, Chen D, Blumenthal JB, Ryan AS. Increased Skeletal Muscle Capillarization Independently Enhances Insulin Sensitivity in Older Adults After Exercise Training and Detraining. Diabetes 2015; 64:3386-95. [PMID: 26068543 PMCID: PMC4587640 DOI: 10.2337/db14-1771] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Accepted: 05/23/2015] [Indexed: 01/04/2023]
Abstract
Intramuscular signaling and glucose transport mechanisms contribute to improvements in insulin sensitivity after aerobic exercise training. This study tested the hypothesis that increases in skeletal muscle capillary density (CD) also contribute to exercise-induced improvements in whole-body insulin sensitivity (insulin-stimulated glucose uptake per unit plasma insulin [M/I]) independent of other mechanisms. The study design included a 6-month aerobic exercise training period followed by a 2-week detraining period to eliminate short-term effects of exercise on intramuscular signaling and glucose transport. Before and after exercise training and detraining, 12 previously sedentary older (65 ± 3 years) men and women underwent research tests, including hyperinsulinemic-euglycemic clamps and vastus lateralis biopsies. Exercise training increased Vo2max (2.2 ± 0.2 vs. 2.5 ± 0.2 L/min), CD (313 ± 13 vs. 349 ± 18 capillaries/mm(2)), and M/I (0.041 ± 0.005 vs. 0.051 ± 0.007 μmol/kg fat-free mass/min) (P < 0.05 for all). Exercise training also increased the insulin activation of glycogen synthase by 60%, GLUT4 expression by 16%, and 5' AMPK-α1 expression by 21%, but these reverted to baseline levels after detraining. Conversely, CD and M/I remained 15% and 18% higher after detraining, respectively (P < 0.05), and the changes in M/I (detraining minus baseline) correlated directly with changes in CD in regression analysis (partial r = 0.70; P = 0.02). These results suggest that an increase in CD is one mechanism contributing to sustained improvements in glucose metabolism after aerobic exercise training.
Collapse
Affiliation(s)
- Steven J Prior
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Baltimore Veterans Affairs Geriatric Research Education and Clinical Center and Research and Development Service, Baltimore, MD
| | - Andrew P Goldberg
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Baltimore Veterans Affairs Geriatric Research Education and Clinical Center and Research and Development Service, Baltimore, MD
| | - Heidi K Ortmeyer
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Baltimore Veterans Affairs Geriatric Research Education and Clinical Center and Research and Development Service, Baltimore, MD
| | - Eva R Chin
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD
| | - Dapeng Chen
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD
| | - Jacob B Blumenthal
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Baltimore Veterans Affairs Geriatric Research Education and Clinical Center and Research and Development Service, Baltimore, MD
| | - Alice S Ryan
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD Baltimore Veterans Affairs Geriatric Research Education and Clinical Center and Research and Development Service, Baltimore, MD
| |
Collapse
|
23
|
Kerksick CM, Roberts MD, Dalbo VJ, Sunderland KL. Intramuscular phosphagen status and the relationship to muscle performance across the age spectrum. Eur J Appl Physiol 2015; 116:115-27. [PMID: 26307531 DOI: 10.1007/s00421-015-3246-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 08/19/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To examine age-related differences in intramuscular concentrations of adenosine triphosphate (ATP), free creatine (FCr), phosphocreatine (PCr) and total creatine (TCr) and if these differences were related to muscle performance. METHODS Forty-two healthy, non-sedentary, males between 20 and 76 years provided muscle samples to determine [ATP], [FCr], [PCr], and [TCr]. Maximal strength and endurance were assessed and correlated with intramuscular variables. RESULTS Intramuscular [ATP] decreased by 13.5% (p = 0.013) in the older cohort (18.0 ± 0.6 mmol/kg dry wt) vs. the young cohort (20.8 ± 0.9 mmol/kg dry wt) and was significantly correlated to age (r = -0.38, p = 0.008). No other differences were observed between age groups for intramuscular [PCr], [FCr], [TCr], or [PCr]:[TCr] (p > 0.05). The older cohort consumed significantly less (p < 0.05) dietary protein when compared to the young cohort. Bivariate correlations were found for intramuscular [ATP] and lower body 1RM (r = 0.24, p = 0.066), leg press volume and free creatine (r = 0.325, p = 0.036) and leg press repetitions and free creatine (r = 0.373, p = 0.015). Partial correlations controlling for age eliminated the relationship between [ATP] and 1RM while intramuscular free creatine and leg press repetitions remained significant (p < 0.05) and leg press volume approached significance (p = 0.095). CONCLUSION These results expand upon previous observations indicative of age-related reductions in intramuscular [ATP] and dietary protein intake. The lack of change in other intramuscular PCr system markers are suggestive of dysfunctions at the mitochondrial level while the impact of neuromuscular changes, lean mass cross-sectional area and differences in physical activity are also important.
Collapse
Affiliation(s)
- Chad M Kerksick
- Department of Exercise Science, School of Sport, Recreation and Exercise Sciences, Lindenwood University, St. Charles, MO, 63301, USA.
| | | | - Vincent J Dalbo
- Clinical Biochemistry Laboratory, School of Medicine and Applied Sciences, Central Queensland University, Rockhampton, QLD, 4702, Australia
| | - Kyle L Sunderland
- Department of Exercise Science, High Point University, High Point, NC, 27262, USA
| |
Collapse
|
24
|
Faherty SL, Campbell CR, Larsen PA, Yoder AD. Evaluating whole transcriptome amplification for gene profiling experiments using RNA-Seq. BMC Biotechnol 2015; 15:65. [PMID: 26223446 PMCID: PMC4520150 DOI: 10.1186/s12896-015-0155-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 04/27/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND RNA-Seq has enabled high-throughput gene expression profiling to provide insight into the functional link between genotype and phenotype. Low quantities of starting RNA can be a severe hindrance for studies that aim to utilize RNA-Seq. To mitigate this bottleneck, whole transcriptome amplification (WTA) technologies have been developed to generate sufficient sequencing targets from minute amounts of RNA. Successful WTA requires accurate replication of transcript abundance without the loss or distortion of specific mRNAs. Here, we test the efficacy of NuGEN's Ovation RNA-Seq V2 system, which uses linear isothermal amplification with a unique chimeric primer for amplification, using white adipose tissue from standard laboratory rats (Rattus norvegicus). Our goal was to investigate potential biological artifacts introduced through WTA approaches by establishing comparisons between matched raw and amplified RNA libraries derived from biological replicates. RESULTS We found that 93% of expressed genes were identical between all unamplified versus matched amplified comparisons, also finding that gene density is similar across all comparisons. Our sequencing experiment and downstream bioinformatic analyses using the Tuxedo analysis pipeline resulted in the assembly of 25,543 high-quality transcripts. Libraries constructed from raw RNA and WTA samples averaged 15,298 and 15,253 expressed genes, respectively. Although significant differentially expressed genes (P < 0.05) were identified in all matched samples, each of these represents less than 0.15% of all shared genes for each comparison. CONCLUSIONS Transcriptome amplification is efficient at maintaining relative transcript frequencies with no significant bias when using this NuGEN linear isothermal amplification kit under ideal laboratory conditions as presented in this study. This methodology has broad applications, from clinical and diagnostic, to field-based studies when sample acquisition, or sample preservation, methods prove challenging.
Collapse
Affiliation(s)
| | - C Ryan Campbell
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Peter A Larsen
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
25
|
Shanely RA, Zwetsloot KA, Triplett NT, Meaney MP, Farris GE, Nieman DC. Human skeletal muscle biopsy procedures using the modified Bergström technique. J Vis Exp 2014:51812. [PMID: 25285722 DOI: 10.3791/51812] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The percutaneous biopsy technique enables researchers and clinicians to collect skeletal muscle tissue samples. The technique is safe and highly effective. This video describes the percutaneous biopsy technique using a modified Bergström needle to obtain skeletal muscle tissue samples from the vastus lateralis of human subjects. The Bergström needle consists of an outer cannula with a small opening ('window') at the side of the tip and an inner trocar with a cutting blade at the distal end. Under local anesthesia and aseptic conditions, the needle is advanced into the skeletal muscle through an incision in the skin, subcutaneous tissue, and fascia. Next, suction is applied to the inner trocar, the outer trocar is pulled back, skeletal muscle tissue is drawn into the window of the outer cannula by the suction, and the inner trocar is rapidly closed, thus cutting or clipping the skeletal muscle tissue sample. The needle is rotated 90° and another cut is made. This process may be repeated three more times. This multiple cutting technique typically produces a sample of 100-200 mg or more in healthy subjects and can be done immediately before, during, and after a bout of exercise or other intervention. Following post-biopsy dressing of the incision site, subjects typically resume their activities of daily living right away and can fully participate in vigorous physical activity within 48-72 hr. Subjects should avoid heavy resistance exercise for 48 hr to reduce the risk of herniation of the muscle through the incision in the fascia.
Collapse
Affiliation(s)
- R Andrew Shanely
- Human Performance Laboratory, North Carolina Research Campus, Appalacian State University; College of Health Sciences, Appalachian State University;
| | | | | | - Mary Pat Meaney
- Human Performance Laboratory, North Carolina Research Campus, Appalacian State University; College of Health Sciences, Appalachian State University
| | - Gerard E Farris
- Department of Emergency Medicine, Carolinas Medical Center NorthEast
| | - David C Nieman
- Human Performance Laboratory, North Carolina Research Campus, Appalacian State University; College of Health Sciences, Appalachian State University
| |
Collapse
|
26
|
Hill JC, Millán IS. Validation of musculoskeletal ultrasound to assess and quantify muscle glycogen content. A novel approach. PHYSICIAN SPORTSMED 2014; 42:45-52. [PMID: 25295766 DOI: 10.3810/psm.2014.09.2075] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
UNLABELLED Glycogen storage is essential for exercise performance. The ability to assess muscle glycogen levels should be an important advantage for performance. However, skeletal muscle glycogen assessment has only been available and validated through muscle biopsy. We have developed a new methodology using high-frequency ultrasound to assess skeletal muscle glycogen content in a rapid, portable, and noninvasive way using MuscleSound (MuscleSound, LCC, Denver, CO) technology. PURPOSE To validate the utilization of high-frequency musculoskeletal ultrasound for muscle glycogen assessment and correlate it with histochemical glycogen quantification through muscle biopsy. METHODS Twenty-two male competitive cyclists (categories: Pro, 1-4; average height, 183.7 ± 4.9 cm; average weight, 76.8 ± 7.8 kg) performed a steady-state test on a cyclergometer for 90 minutes at a moderate to high exercise intensity, eliciting a carbohydrate oxidation of 2-3 g·min⁻¹ and a blood lactate concentration of 2 to 3 mM. Pre- and post-exercise glycogen content from rectus femoris muscle was measured using histochemical analysis through muscle biopsy and through high-frequency ultrasound scans using MuscleSound technology. RESULTS Correlations between muscle biopsy glycogen histochemical quantification (mmol·kg⁻¹) and high-frequency ultrasound methodology through MuscleSound technology were r = 0.93 (P < 0.0001) pre-exercise and r = 0.94 (P < 0.0001) post-exercise. The correlation between muscle biopsy glycogen quantification and high-frequency ultrasound methodology for the change in glycogen from pre- and post-exercise was r = 0.81 (P < 0.0001). CONCLUSION These results demonstrate that skeletal muscle glycogen can be measured quickly and noninvasively through high-frequency ultrasound using MuscleSound technology.
Collapse
Affiliation(s)
- John C Hill
- University of Colorado School of Medicine, Aurora, CO.
| | | |
Collapse
|
27
|
Smith AST, Long CJ, Pirozzi K, Najjar S, McAleer C, Vandenburgh HH, Hickman JJ. A multiplexed chip-based assay system for investigating the functional development of human skeletal myotubes in vitro. J Biotechnol 2014; 185:15-8. [PMID: 24909944 DOI: 10.1016/j.jbiotec.2014.05.029] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 05/19/2014] [Accepted: 05/23/2014] [Indexed: 11/24/2022]
Abstract
This report details the development of a non-invasive in vitro assay system for investigating the functional maturation and performance of human skeletal myotubes. Data is presented demonstrating the survival and differentiation of human myotubes on microscale silicon cantilevers in a defined, serum-free system. These cultures can be stimulated electrically and the resulting contraction quantified using modified atomic force microscopy technology. This system provides a higher degree of sensitivity for investigating contractile waveforms than video-based analysis, and represents the first system capable of measuring the contractile activity of individual human muscle myotubes in a reliable, high-throughput and non-invasive manner. The development of such a technique is critical for the advancement of body-on-a-chip platforms toward application in pre-clinical drug development screens.
Collapse
Affiliation(s)
- A S T Smith
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - C J Long
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - K Pirozzi
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - S Najjar
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - C McAleer
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA
| | - H H Vandenburgh
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA
| | - J J Hickman
- NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Orlando, FL 32826, USA.
| |
Collapse
|
28
|
Prior SJ, Blumenthal JB, Katzel LI, Goldberg AP, Ryan AS. Increased skeletal muscle capillarization after aerobic exercise training and weight loss improves insulin sensitivity in adults with IGT. Diabetes Care 2014; 37:1469-75. [PMID: 24595633 PMCID: PMC3994928 DOI: 10.2337/dc13-2358] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Transcapillary transport of insulin is one determinant of glucose uptake by skeletal muscle; thus, a reduction in capillary density (CD) may worsen insulin sensitivity. Skeletal muscle CD is lower in older adults with impaired glucose tolerance (IGT) compared with those with normal glucose tolerance and may be modifiable through aerobic exercise training and weight loss (AEX+WL). We tested the hypothesis that 6-month AEX+WL would increase CD to improve insulin sensitivity and glucose tolerance in older adults with IGT. RESEARCH DESIGN AND METHODS Sixteen sedentary, overweight-obese (BMI 27-35 kg/m2), older (63 ± 2 years) men and women with IGT underwent hyperinsulinemic-euglycemic clamps to measure insulin sensitivity, oral glucose tolerance tests, exercise and body composition testing, and vastus lateralis muscle biopsies to determine CD before and after 6-month AEX+WL. RESULTS Insulin sensitivity (M) and 120-min postprandial glucose (G120) correlated with CD at baseline (r = 0.58 and r = -0.60, respectively, P < 0.05). AEX+WL increased maximal oxygen consumption (VO2max) 18% (P = 0.02) and reduced weight and fat mass 8% (P < 0.02). CD increased 15% (264 ± 11 vs. 304 ± 14 capillaries/mm(2), P = 0.01), M increased 21% (42.4 ± 4.0 vs. 51.4 ± 4.3 µmol/kg FFM/min, P < 0.05), and G120 decreased 16% (9.35 ± 0.5 vs. 7.85 ± 0.5 mmol/L, P = 0.008) after AEX+WL. Regression analyses showed that the AEX+WL-induced increase in CD independently predicted the increase in M (r = 0.74, P < 0.01) as well as the decrease in G120 (r = -0.55, P < 0.05). CONCLUSIONS Six-month AEX+WL increases skeletal muscle CD in older adults with IGT. This represents one mechanism by which AEX+WL improves insulin sensitivity in older adults with IGT.
Collapse
|
29
|
Guo X, Greene K, Akanda N, Smith A, Stancescu M, Lambert S, Vandenburgh H, Hickman J. In vitro Differentiation of Functional Human Skeletal Myotubes in a Defined System. Biomater Sci 2014; 2:131-138. [PMID: 24516722 DOI: 10.1039/c3bm60166h] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In vitro human skeletal muscle systems are valuable tools for the study of human muscular development, disease and treatment. However, published in vitro human muscle systems have so far only demonstrated limited differentiation capacities. Advanced differentiation features such as cross-striations and contractility have only been observed in co-cultures with motoneurons. Furthermore, it is commonly regarded that cultured human myotubes do not spontaneously contract, and any contraction has been considered to originate from innervation. This study developed a serum-free culture system in which human skeletal myotubes demonstrated advanced differentiation. Characterization by immunocytochemistry, electrophysiology and analysis of contractile function revealed these major features: A) well defined sarcomeric development, as demonstrated by the presence of cross-striations. B) finely developed excitation-contraction coupling apparatus characterized by the close apposition of dihydropyridine receptors on T-tubules and Ryanodine receptors on sarcoplasmic reticulum membranes. C) spontaneous and electrically controlled contractility. This report not only demonstrates an improved level of differentiation of cultured human skeletal myotubes, but also provides the first published evidence that such myotubes are capable of spontaneous contraction. Use of this functional in vitro human skeletal muscle system would advance studies concerning human skeletal muscle development and physiology, as well as muscle-related disease and therapy.
Collapse
Affiliation(s)
- Xiufang Guo
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Keshel Greene
- Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA
| | - Nesar Akanda
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Alec Smith
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA
| | - Maria Stancescu
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| | - Stephen Lambert
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; College of Medicine, University of Central Florida, 12201 Research Parkway, Suite 479, Room 463, Orlando, FL 32826, USA
| | - Herman Vandenburgh
- Brown University, Professor Emeritus, Department of Pathology and Lab Medicine, Providence, Rhode Island, 02913 USA ; Myomics, 148 West River Str, Providence, Rhode Island 02904
| | - James Hickman
- NanoScience Technology Center, University of Central Florida, Orlando, Florida 32826, USA ; Biomolecular Science Center, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, USA ; Department of Chemistry, 4000 Central Florida Blvd., Physical Sciences Building (PS) Room 255, University of Central Florida, Orlando, FL 32816-2366, USA
| |
Collapse
|
30
|
Croymans DM, Paparisto E, Lee MM, Brandt N, Le BK, Lohan D, Lee CC, Roberts CK. Resistance training improves indices of muscle insulin sensitivity and β-cell function in overweight/obese, sedentary young men. J Appl Physiol (1985) 2013; 115:1245-53. [PMID: 23970530 PMCID: PMC3841835 DOI: 10.1152/japplphysiol.00485.2013] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 08/18/2013] [Indexed: 12/30/2022] Open
Abstract
We examined the effects of RT on oral glucose tolerance test (OGTT)-derived indices of muscle insulin sensitivity, hepatic insulin resistance, β-cell function, and skeletal muscle proteins related to glucose transport in overweight/obese, sedentary young men. Twenty-eight participants [median body mass index (BMI) 30.9 kg/m(2); age 22 yr] completed 12 wk of RT (3 sessions/wk) and were assessed for changes in OGTT-derived indices, resting metabolic rate, body composition, serum adipokines, and skeletal muscle protein content [hexokinase 2 (HK2), glucose transporter type 4 (GLUT4), RAC-β serine/threonine-protein kinase (AKT2), glycogen synthase kinase 3β, and insulin receptor substrate 1]. Individualized responses to RT were also evaluated. RT significantly improved insulin and glucose area under the curve (both P < 0.03). With the use of OGTT indices of insulin action, we noted improved muscle insulin sensitivity index (mISI; P = 0.03) and oral disposition index (P = 0.03). BMI, lean body mass (LBM), and relative strength also increased (all P < 0.03), as did skeletal muscle protein content of HK2, GLUT4, and AKT2 (26-33%; all P < 0.02). Hepatic insulin resistance index, adiponectin, leptin, and total amylin did not change. Further analysis demonstrated the presence of highly individualized responsiveness to RT for glucose tolerance and other outcomes. RT improved oral indices of muscle insulin sensitivity and β-cell function but not hepatic insulin resistance in overweight/obese young men. In addition to the increase in LBM, the improvements in insulin action may be due, in part, to increases in key insulin signaling proteins.
Collapse
Affiliation(s)
- Daniel M Croymans
- David Geffen School of Medicine, University of California, Los Angeles, California
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Brunner R, Rinner W, Haberler C, Kitzberger R, Sycha T, Herkner H, Warszawska J, Madl C, Holzinger U. Early treatment with IgM-enriched intravenous immunoglobulin does not mitigate critical illness polyneuropathy and/or myopathy in patients with multiple organ failure and SIRS/sepsis: a prospective, randomized, placebo-controlled, double-blinded trial. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R213. [PMID: 24088271 PMCID: PMC4056097 DOI: 10.1186/cc13028] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 07/26/2013] [Indexed: 01/19/2023]
Abstract
Introduction Critical illness polyneuropathy and/or myopathy (CIPNM) is a severe complication of critical illness. Retrospective data suggest that early application of IgM-enriched intravenous immunoglobulin (IVIG) may prevent or mitigate CIPNM. Therefore, the primary objective was to assess the effect of early IgM-enriched IVIG versus placebo to mitigate CIPNM in a prospective setting. Methods In this prospective, randomized, double-blinded and placebo-controlled trial, 38 critically ill patients with multiple organ failure (MOF), systemic inflammatory response syndrome (SIRS)/sepsis, and early clinical signs of CIPNM were included. Patients were randomly assigned to be treated either with IgM-enriched IVIG or placebo over a period of three days. CIPNM was measured by the CIPNM severity sum score based on electrophysiological stimulation of the median, ulnar, and tibial nerves on days 0, 4, 7, 14 and on the histological evaluation of muscle biopsies on days 0 and 14 and ranged from 0 (no CIPNM) to 8 (very severe CIPNM). Results A total of 38 critically ill patients were included and randomized to receive either IgM-enriched IVIG (n = 19) or placebo (n = 19). Baseline characteristics were similar between the two groups. CIPNM could not be improved by IVIG treatment, represented by similar CIPNM severity sum scores on day 14 (IVIG vs. placebo: 4.8 ± 2.0 vs. 4.5 ± 1.8; P = 0.70). CIPNM severity sum score significantly increased from baseline to day 14 (3.5 ± 1.6 vs. 4.6 ± 1.9; P = 0.002). After an interim analysis the study was terminated early due to futility in reaching the primary endpoint. Conclusions Early treatment with IVIG did not mitigate CIPNM in critically ill patients with MOF and SIRS/sepsis. Trial registration Clinicaltrials.gov: NCT01867645
Collapse
|
32
|
Mikell CB, Chan AK, Stein GE, Tanji K, Winfree CJ. Muscle and nerve biopsies: techniques for the neurologist and neurosurgeon. Clin Neurol Neurosurg 2013; 115:1206-14. [PMID: 23769866 DOI: 10.1016/j.clineuro.2013.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 04/21/2013] [Accepted: 05/05/2013] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Muscle and nerve biopsies are commonly performed procedures for the diagnosis of neuromuscular disorders. Neurologists and neurosurgeons are often consulted to perform these procedures in clinical practice. We provide guidelines in the performance of muscle and nerve biopsies. METHODS We describe the technique for performance of muscle and nerve biopsy, and review the relevant literature. RESULTS The quadriceps muscle is the most typical biopsy site for most myopathies, whereas the sural nerve is the most common nerve biopsy site for most peripheral neuropathies. Other sites may be utilized depending upon the pattern of symptoms or the differential diagnosis. Motor nerves may be sampled in the setting of motor neuron disease, for example. We advocate the use of conduit repair to allow for sensory or motor recovery to occur following nerve biopsy. CONCLUSION The muscle biopsy and nerve biopsy may be performed with high yield, low morbidity, and rare complications.
Collapse
Affiliation(s)
- Charles B Mikell
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | | | | | |
Collapse
|
33
|
Prior SJ, Ryan AS. Low clonogenic potential of circulating angiogenic cells is associated with lower density of capillaries in skeletal muscle in patients with impaired glucose tolerance. Diabetes Metab Res Rev 2013; 29:319-25. [PMID: 23390082 PMCID: PMC3715125 DOI: 10.1002/dmrr.2398] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 12/12/2012] [Accepted: 01/03/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Reduced density of capillaries in skeletal muscle can limit insulin, glucose, and oxygen supply to the muscle, thereby contributing to worsening metabolism in older adults. The lower skeletal muscle capillarization in impaired glucose tolerance (IGT) may partially be due to circulating angiogenic cell dysfunction. Circulating angiogenic cells maintain the vasculature and promote angiogenesis, but circulating angiogenic cell number and function may be reduced in IGT. The goal of this study was to determine whether the clonogenic potential of circulating angiogenic cells is lower in IGT compared with normal-glucose-tolerant (NGT) controls and is associated with skeletal muscle capillarization. METHODS Glucose tolerance, endothelial cell colony-forming unit (CFU-EC) number, and vastus lateralis capillary density were measured in sedentary, older (62 ± 1 years, mean ± SEM) men and women with NGT (n = 16) and IGT (n = 12). RESULTS Adults with IGT had 43% lower CFU-EC number (11.4 ± 2.3 versus 20.1 ± 2.0 colonies, p < 0.01) and 12% lower capillary density (291 ± 11 versus 330 ± 9 capillaries/mm², p < 0.01) compared with those with NGT. In regression analyses, CFU-EC number inversely correlated with 120-min postprandial glucose in all subjects (r = -0.47, p < 0.05), and capillary density was directly associated with CFU-EC number (r = 0.53, p < 0.05). CONCLUSIONS We conclude that the clonogenic potential of circulating angiogenic cells is lower in sedentary older adults with IGT and is associated with lower skeletal muscle capillarization. Low circulating angiogenic cell clonogenic potential in IGT suggests a state of impaired angiogenesis occurring prior to overt type 2 diabetes that may mediate early microvascular changes in the development and progression of IGT to type 2 diabetes.
Collapse
Affiliation(s)
- Steven J Prior
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD, USA.
| | | |
Collapse
|
34
|
Guo X, Gonzalez M, Stancescu M, Vandenburgh HH, Hickman JJ. Neuromuscular junction formation between human stem cell-derived motoneurons and human skeletal muscle in a defined system. Biomaterials 2011; 32:9602-11. [PMID: 21944471 DOI: 10.1016/j.biomaterials.2011.09.014] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Accepted: 09/06/2011] [Indexed: 12/28/2022]
Abstract
Functional in vitro models composed of human cells will constitute an important platform in the next generation of system biology and drug discovery. This study reports a novel human-based in vitro Neuromuscular Junction (NMJ) system developed in a defined serum-free medium and on a patternable non-biological surface. The motoneurons and skeletal muscles were derived from fetal spinal stem cells and skeletal muscle stem cells. The motoneurons and skeletal myotubes were completely differentiated in the co-culture based on morphological analysis and electrophysiology. NMJ formation was demonstrated by phase contrast microscopy, immunocytochemistry and the observation of motoneuron-induced muscle contractions utilizing time-lapse recordings and their subsequent quenching by d-Tubocurarine. Generally, functional human based systems would eliminate the issue of species variability during the drug development process and its derivation from stem cells bypasses the restrictions inherent with utilization of primary human tissue. This defined human-based NMJ system is one of the first steps in creating functional in vitro systems and will play an important role in understanding NMJ development, in developing high information content drug screens and as test beds in preclinical studies for spinal or muscular diseases/injuries such as muscular dystrophy, Amyotrophic lateral sclerosis and spinal cord repair.
Collapse
Affiliation(s)
- Xiufang Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | | | | | | | | |
Collapse
|
35
|
Meola G, Bugiardini E, Cardani R. Muscle biopsy. J Neurol 2011; 259:601-10. [PMID: 21805256 DOI: 10.1007/s00415-011-6193-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 07/12/2011] [Accepted: 07/14/2011] [Indexed: 01/31/2023]
Affiliation(s)
- G Meola
- Department of Neurology, IRCCS Policlinico San Donato, University of Milan, Via Morandi, 30, 20097, San Donato Milanese, Milan, Italy.
| | | | | |
Collapse
|
36
|
Tarnopolsky MA, Pearce E, Smith K, Lach B. Suction-modified Bergström muscle biopsy technique: experience with 13,500 procedures. Muscle Nerve 2011; 43:717-25. [PMID: 21462204 DOI: 10.1002/mus.21945] [Citation(s) in RCA: 169] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2010] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Bergström needle muscle biopsies have been used by exercise physiologists for over 35 years but have been less accepted by neuromuscular clinicians due to size concerns. METHODS We retrospectively reviewed over 13,500 muscle Bergström needle biopsies done over a 21-year period to determine sampling success, patient/subject experience, and complications. We compared sample yield between two different needles (Bergström vs. UCH), with and without suction modifications. RESULTS Needle biopsies adequate for histology and enzymology were obtainable from the vastus lateralis, deltoid, biceps brachii, soleus, and medial gastrocnemius muscles, with a success rate of >99.9% and a minor complication rate of 0.15%. Approximately 450 muscle fibers were submitted for histologic assessment; suction modification and use of the Bergström vs. UCH needle were associated with larger sample size (P < 0.05). CONCLUSIONS The suction-modified Bergström needle muscle biopsy technique is safe and provides an adequate sample size for histologic, ultrastructural, DNA, and enzyme analysis.
Collapse
Affiliation(s)
- Mark A Tarnopolsky
- Department of Pediatrics, McMaster University, 1200 Main Street W, HSC-2H26, Hamilton, Ontario L8N 3Z5, Canada.
| | | | | | | |
Collapse
|
37
|
Neves M, Barreto G, Boobis L, Harris R, Roschel H, Tricoli V, Ugrinowitsch C, Negrão C, Gualano B. Incidence of adverse events associated with percutaneous muscular biopsy among healthy and diseased subjects. Scand J Med Sci Sports 2011; 22:175-8. [PMID: 21392121 DOI: 10.1111/j.1600-0838.2010.01264.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of the percutaneous muscle biopsy technique is recognized as one of the most important scientific contributions in advancing our understanding of skeletal muscle physiology. However, a concern that this procedure may be associated with adverse events still exists. We reported the incidence of adverse outcomes associated with percutaneous muscle biopsy in healthy and diseased subjects. Medical records of 274 volunteers (496 muscle biopsies) were reviewed. This included 168 healthy subjects (330 muscle biopsies) as well as 106 chronically ill patients (166 muscle biopsies). This latter group encompassed patients with type II diabetes (n=28), osteoarthritis (n=39), inclusion body myositis (n=4), polymyositis (n=4), and chronic heart failure (n=31). The most common occurrences were pain (1.27%), erythema (1.27%), and ecchymosis (1.27%). Panic episode, bleeding, and edema were also reported (0.21%, 0.42%, and 0.84%, respectively), while infection, hematoma, inflammation, denervation, numbness, atrophy, and abnormal scarring were not verified. The percent of incidents did not differ between healthy and ill individuals. In conclusion, the incidence of complications associated with percutaneous muscle biopsy is scarce and of minor clinical relevance. Additionally, the rate of adverse events is comparable between healthy and chronically ill subjects.
Collapse
Affiliation(s)
- M Neves
- Division of Rheumatology, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
IL-6 induced STAT3 signalling is associated with the proliferation of human muscle satellite cells following acute muscle damage. PLoS One 2011; 6:e17392. [PMID: 21408055 PMCID: PMC3052298 DOI: 10.1371/journal.pone.0017392] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2010] [Accepted: 02/02/2011] [Indexed: 12/03/2022] Open
Abstract
Background Although the satellite cell (SC) is a key regulator of muscle growth during development and muscle adaptation following exercise, the regulation of human muscle SC function remains largely unexplored. STAT3 signalling mediated via interleukin-6 (IL-6) has recently come to the forefront as a potential regulator of SC proliferation. The early response of the SC population in human muscle to muscle-lengthening contractions (MLC) as mediated by STAT3 has not been studied. Methodology/Principal Findings Twelve male subjects (21±2 y; 83±12 kg) performed 300 maximal MLC of the quadriceps femoris at 180°•s−1 over a 55° range of motion with muscle samples (vastus lateralis) and blood samples (antecubital vein) taken prior to exercise (PRE), 1 hour (T1), 3 hours (T3) and 24 hours (T24) post-exercise. Cytoplasmic and nuclear fractions of muscle biopsies were purified and analyzed for total and phosphorylated STAT3 (p-STAT3) by western blot. p-STAT3 was detected in cytoplasmic fractions across the time course peaking at T24 (p<0.01 vs. PRE). Nuclear total and p-STAT3 were not detected at appreciable levels. However, immunohistochemical analysis revealed a progressive increase in the proportion of SCs expressing p-STAT3 with ∼60% of all SCs positive for p-STAT3 at T24 (p<0.001 vs. PRE). Additionally, cMyc, a STAT3 downstream gene, was significantly up-regulated in SCs at T24 versus PRE (p<0.05). Whole muscle mRNA analysis revealed induction of the STAT3 target genes IL-6, SOCS3, cMyc (peaking at T3, p<0.05), IL-6Rα and GP130 (peaking at T24, p<0.05). In addition, Myf5 mRNA was up-regulated at T24 (p<0.05) with no appreciable change in MRF4 mRNA. Conclusions/Significant Findings We demonstrate that IL-6 induction of STAT3 signaling occurred exclusively in the nuclei of SCs in response to MLC. An increase in the number of cMyc+ SCs indicated that human SCs were induced to proliferate under the control of STAT3 signaling.
Collapse
|
39
|
Abbiss CR, Karagounis LG, Laursen PB, Peiffer JJ, Martin DT, Hawley JA, Fatehee NN, Martin JC. Single-leg cycle training is superior to double-leg cycling in improving the oxidative potential and metabolic profile of trained skeletal muscle. J Appl Physiol (1985) 2011; 110:1248-55. [PMID: 21330612 DOI: 10.1152/japplphysiol.01247.2010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Single-leg cycling may enhance the peripheral adaptations of skeletal muscle to a greater extent than double-leg cycling. The purpose of the current study was to determine the influence of 3 wk of high-intensity single- and double-leg cycle training on markers of oxidative potential and muscle metabolism and exercise performance. In a crossover design, nine trained cyclists (78 ± 7 kg body wt, 59 ± 5 ml·kg(-1)·min(-1) maximal O(2) consumption) performed an incremental cycling test and a 16-km cycling time trial before and after 3 wk of double-leg and counterweighted single-leg cycle training (2 training sessions per week). Training involved three (double) or six (single) maximal 4-min intervals with 6 min of recovery. Mean power output during the single-leg intervals was more than half that during the double-leg intervals (198 ± 29 vs. 344 ± 38 W, P < 0.05). Skeletal muscle biopsy samples from the vastus lateralis revealed a training-induced increase in Thr(172)-phosphorylated 5'-AMP-activated protein kinase α-subunit for both groups (P < 0.05). However, the increase in cytochrome c oxidase subunits II and IV and GLUT-4 protein concentration was greater following single- than double-leg cycling (P < 0.05). Training-induced improvements in maximal O(2) consumption (3.9 ± 6.2% vs. 0.6 ± 3.6%) and time-trial performance (1.3 ± 0.5% vs. 2.3 ± 4.2%) were similar following both interventions. We conclude that short-term high-intensity single-leg cycle training can elicit greater enhancement in the metabolic and oxidative potential of skeletal muscle than traditional double-leg cycling. Single-leg cycling may therefore provide a valuable training stimulus for trained and clinical populations.
Collapse
Affiliation(s)
- Chris R Abbiss
- School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
McKay BR, Toth KG, Tarnopolsky MA, Parise G. Satellite cell number and cell cycle kinetics in response to acute myotrauma in humans: immunohistochemistry versus flow cytometry. J Physiol 2010; 588:3307-20. [PMID: 20624792 DOI: 10.1113/jphysiol.2010.190876] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
In humans, muscle satellite cell (SC) enumeration is an important measurement used to determine the myogenic response to various stimuli. To date, the standard practice for enumeration is immunohistochemistry (IHC) using antibodies against common SC markers (Pax7, NCAM). Flow cytometry (FC) analysis may provide a more rapid and quantitative determination of changes in the SC pool with potential for additional analysis not easily achievable with standard IHC. In this study, FC analysis revealed that the number of Pax7(+) cells per milligram isolated from 50 mg of fresh tissue increased 36% 24 h after exercise-induced muscle injury (300 unilateral maximal eccentric contractions). IHC analysis of Pax7 and neural cell adhesion molecule (NCAM) appeared to sufficiently and similarly represent the expansion of SCs after injury (28-36% increase). IHC and FC data illustrated that Pax7 was the most widely expressed SC marker in muscle cross-sections and represented the majority of positive cells, while NCAM was expressed to a lesser degree. Moreover, FC and IHC demonstrated a similar percentage change 24 h after injury (36% increase, Pax7; 28% increase, NCAM). FC analysis of isolated SCs revealed that the number of Pax7(+) cells per milligram in G(2)/M phase of the cell cycle increased 202% 24 h after injury. Number of cells per milligram in G(0)/G(1) and cells in S-phase increased 32% and 59% respectively. Here we illustrate the use of FC as a method for enumerating SC number on a per milligram tissue basis, providing a more easily understandable relation to muscle mass (vs. percentage of myonuclei or per myofibre). Although IHC is a powerful tool for SC analysis, FC is a fast, reliable and effective method for SC quantification as well as a more informative method for cell cycle kinetics of the SC population in humans.
Collapse
Affiliation(s)
- Bryon R McKay
- Departments of Kinesiology and Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario, Canada L8S 4L8
| | | | | | | |
Collapse
|
41
|
Paoli A, Pacelli QF, Toniolo L, Miotti D, Reggiani C. Latissimus dorsi fine needle muscle biopsy: a novel and efficient approach to study proximal muscles of upper limbs. J Surg Res 2010; 164:e257-63. [PMID: 20869075 DOI: 10.1016/j.jss.2010.05.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 05/11/2010] [Accepted: 05/18/2010] [Indexed: 11/28/2022]
Abstract
BACKGROUND The muscle biopsy based on the Bergström needle has been widely used for more than 40 y for diagnosis and experimental studies on muscle. More recently, thinner needles and tru-cut needles have also been introduced. Such techniques have been largely tested on various muscles, including the quadriceps, with few studies on upper limb muscles like deltoid, and no studies on latissimus dorsi muscle (LDM). In this study, we implemented and validated a protocol to collect samples of LDM for experimental purposes, causing minimal discomfort to volunteers. Two main problems were considered: the anatomical localization of the biopsy site and the selection of an appropriate needle. MATERIAL AND METHODS A strict protocol of palpatory anatomy was adopted and validated with ultrasonography to localize the biopsy site in LDM in subjects with various degrees of muscle development. A 14 gauge tru-cut needle was selected as the smallest and still effective device for sampling. Biopsy sampling was performed in 18 subjects without any complications, or complains of pain or functional limitations. RESULTS Approximately 4 mg of tissue were recovered from each introduction of the inner notched cannula of the needle. With three consecutive samplings, an amount of tissue sufficient to prepare proteins for gel electrophoresis and Western blot and to dissect single fiber segment for functional experiments, was obtained. CONCLUSIONS Taken together, the results suggest that this biopsy technique opens to experimental studies muscles until now never considered accessible.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Anatomy and Physiology, University of Padova, Padova, Italy.
| | | | | | | | | |
Collapse
|
42
|
Barnes PD, Singh A, Fournier PA. Homogenization-dependent responses of acid-soluble and acid-insoluble glycogen to exercise and refeeding in human muscles. Metabolism 2009; 58:1832-9. [PMID: 19709696 DOI: 10.1016/j.metabol.2009.06.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 06/10/2009] [Accepted: 06/27/2009] [Indexed: 11/22/2022]
Abstract
Muscle glycogen exists as acid-insoluble (AIG) and acid-soluble (ASG) forms, with AIG levels reported in most recent studies in humans to be the most responsive to exercise and refeeding. Because the muscle samples in these studies were not homogenized to extract glycogen, such homogenization-free protocols might have resulted in a suboptimal yield of ASG. Our goal, therefore, was to determine whether similar findings can be achieved using homogenized muscle samples by comparing the effect of exercise and refeeding on ASG and AIG levels. Eight male participants cycled for 60 minutes at 70% Vo(2peak) before ingesting 10.9 +/- 0.6 g carbohydrate per kilogram body mass over 24 hours. Muscle biopsies were taken before exercise and after 0, 2, and 24 hours of recovery. Using a homogenization-dependent protocol to extract glycogen, 77% to 91% of it was extracted as ASG, compared with 11% to 24% with a homogenization-free protocol. In response to exercise, muscle glycogen levels fell from 366 +/- 24 to 184 +/- 46 mmol/kg dry weight and returned to 232 +/- 32 and 503 +/- 59 mmol/kg dry weight after 2 and 24 hours, respectively. Acid-soluble glycogen but not AIG accounted for all the changes in total glycogen during exercise and refeeding when extracted using a homogenization-dependent protocol, but AIG was the most responsive fraction when extracted using a homogenization-free protocol. In conclusion, the patterns of response of ASG and AIG levels to changes in glycogen concentrations in human muscles are highly dependent on the protocol used to acid-extract glycogen, with the physiologic significance of the many previous studies on AIG and ASG being in need of revision.
Collapse
Affiliation(s)
- Phillip D Barnes
- School of Sport Science, Exercise and Health, The University of Western Australia, Crawley, WA 6009, Australia
| | | | | |
Collapse
|
43
|
Association of interleukin-6 signalling with the muscle stem cell response following muscle-lengthening contractions in humans. PLoS One 2009; 4:e6027. [PMID: 19554087 PMCID: PMC2696599 DOI: 10.1371/journal.pone.0006027] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Accepted: 05/12/2009] [Indexed: 01/27/2023] Open
Abstract
Background The regulation of muscle stem cells in humans in response to muscle injury remains largely undefined. Recently, interleukin-6 (IL-6) has been implicated in muscle stem cell (satellite cell)-mediated muscle hypertrophy in animals; however, the role of IL-6 in the satellite cell (SC) response following muscle-lengthening contractions in humans has not been studied. Methodology/Principal Findings Eight subjects (age 22±1 y; 79±8 kg) performed 300 maximal unilateral lengthening contractions (3.14 rad.s−1) of the knee extensors. Blood and muscle samples were collected before and at 4, 24, 72, and 120 hours post intervention. IL-6, IL-6 receptor (IL-6Rα), cyclin D1, suppressor of cytokine signling-3 (SOCS3) mRNA were measured using quantitative RT-PCR and serum IL-6 protein was measured using an ELISA kit. JAK2 and STAT3 phosphorylated and total protein was measured using western blotting techniques. Immunohistochemical analysis of muscle cross-sections was performed for the quantification of SCs (Pax7+ cells) as well as the expression of phosphorylated STAT3, IL-6, IL-6Rα, and PCNA across all time-points. The SC response, as defined by an amplification of Pax7+ cells, was rapid, increasing by 24 h and peaking 72 h following the intervention. Muscle IL-6 mRNA increased following the intervention, which correlated strongly (R2 = 0.89, p<0.002) with an increase in serum IL-6 concentration. SC IL-6Rα protein was expressed on the fiber, but was also localized to the SC, and IL-6+ SC increased rapidly following muscle-lengthening contractions and returned to basal levels by 72 h post-intervention, demonstrating an acute temporal expression of IL-6 with SC. Phosphorylated STAT3 was evident in SCs 4 h after lengthening contraction, and the downstream genes, cyclin D1 and SOCS3 were significantly elevated 24 hours after the intervention. Conclusions/Significance The increased expression of STAT3 responsive genes and expression of IL-6 within SCs demonstrate that IL-6/STAT3 signaling occurred in SCs, correlating with an increase in SC proliferation, evidenced by increased Pax7+/PCNA+ cell number in the early stages of the time-course. Collectively, these data illustrate that IL-6 is an important signaling molecule associated with the SC response to acute muscle-lengthening contractions in humans.
Collapse
|
44
|
Prior SJ, McKenzie MJ, Joseph LJ, Ivey FM, Macko RF, Hafer-Macko CE, Ryan AS. Reduced skeletal muscle capillarization and glucose intolerance. Microcirculation 2009; 16:203-12. [PMID: 19225985 PMCID: PMC2990692 DOI: 10.1080/10739680802502423] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Reduced capillarization in hemiparetic skeletal muscle of chronic stroke patients can limit insulin, glucose, and oxygen supply to muscle, thereby contributing to impaired glucose metabolism and cardiovascular deconditioning. We hypothesized that compared to sedentary controls, stroke subjects have reduced skeletal muscle capillarization that is associated with glucose intolerance and reduced peak oxygen consumption (Vo(2peak)). METHODS Twelve chronic stroke subjects (ages, 62.1+/-2.8 years), and matched sedentary controls with impaired (n=12) or normal (n=12) glucose tolerance underwent oral glucose tolerance tests, exercise tests, and vastus lateralis biopsies. RESULTS Stroke subjects had lower capillarization in hemiparetic muscle than in nonparetic muscle and normal glucose tolerant controls ( approximately 22 and approximately 28%, respectively; P<0.05) and had similar bilateral capillarization, compared to controls with impaired glucose tolerance. Capillary density in hemiparetic muscle inversely correlated with 120-minute glucose (r=-0.70, P<0.01) and glucose area under the curve (r=-0.78, P<0.01). Vo(2peak) was approximately 40% lower in stroke subjects, compared to controls (P<0.001), but did not correlate with capillarization (P=n.s.). CONCLUSIONS Hemiparetic muscle capillarization is reduced after stroke, and reduced capillarization is associated with glucose intolerance in stroke and control subjects. Interventions to increase skeletal muscle capillarization may prove beneficial for improving glucose metabolism in chronic stroke patients.
Collapse
Affiliation(s)
- Steven J Prior
- Baltimore Geriatric Research, Education and Clinical Center, VA Maryland Health Care System, Baltimore, Maryland 21201, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
McKenzie MJ, Yu S, Prior SJ, Macko RF, Hafer-Macko CE. Hemiparetic stroke alters vastus lateralis myosin heavy chain profiles between the paretic and nonparetic muscles. Res Sports Med 2009; 17:17-27. [PMID: 19266390 PMCID: PMC2846402 DOI: 10.1080/15438620802678388] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Skeletal muscle phenotype alterations following hemiparetic stroke contribute to disabilities associated with stroke. The phenotypic response following stroke is undefined. This investigation examined the myosin heavy chain (MHC) composition of the vastus lateralis (VL) of stroke survivors in paretic (P) and nonparetic (NP) muscle. Protein obtained from VL of 10 stroke survivors was isolated and purified, and MHC gel electrophoresis was performed. The MHC bands were quantified, and a paired sample two-tailed T test with significance set at p < or = 0.05 was performed. MHC I expression was significantly less in P versus NP VL (.93 vs. 1.00 arbitrary units [AU]). Significantly more IIx MHC was found in the P versus NP VL (1.33 vs. 1.0). No significant differences in type IIa MHC (1.07 P vs. 1.00 NP) were found. These changes in MHC composition suggest an alteration in muscle function due to stroke or the altered activity patterns of muscle following stroke.
Collapse
Affiliation(s)
- Michael J McKenzie
- Department of Human Performance and Sport Sciences, Winston Salem State University, Winston Salem, North Carolina, USA
| | | | | | | | | |
Collapse
|
46
|
Thorrez L, Shansky J, Wang L, Fast L, VandenDriessche T, Chuah M, Mooney D, Vandenburgh H. Growth, differentiation, transplantation and survival of human skeletal myofibers on biodegradable scaffolds. Biomaterials 2008; 29:75-84. [PMID: 17928049 PMCID: PMC2275665 DOI: 10.1016/j.biomaterials.2007.09.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Accepted: 09/18/2007] [Indexed: 01/24/2023]
Abstract
Skeletal muscle transplantation strategies for muscle repair or gene therapy involve either the injection of proliferating myoblasts followed by fusion with host myofibers or implantation of ex vivo differentiated myofibers; however, both implant procedures are associated with significant cell loss. Biodegradable porous, gas-foamed poly-lactide-co-glycolide (PLG) scaffolds have desirable characteristics for cell transfer and were used to study attachment, growth, differentiation and survival of human myogenic cells. Primary human myoblasts suspended in clinical grade extracellular matrixes (ECMs) and adhered to PLG scaffolds differentiated in vitro into high-density tropomyosin positive myofibers. An immunodeficient non-obese diabetic/severe combined immunodeficiency (NOD/SCID) mouse implant model was used to study the transfer and in vivo survival of differentiated human myofibers on these scaffolds. Scaffold rigidity allowed the myofibers to be maintained under tension in vitro and following subcutaneous transplantation in vivo. Following implantation, myofiber density on the PLG scaffolds decreased linearly by 78% over a 4-week period. ECM composed of either Tisseel fibrin or Zyderm collagen type I did not significantly affect in vivo cell viability over the 4-week period. Varying PLG scaffold microsphere content (10-100%) also had little effect on cell survival in vivo. In contrast, when the residual NK cell population in the immunodeficient NOD/SCID mouse model was depleted with anti-asialo GM1 (ASGM1) antiserum, in vivo cell survival significantly increased from 22% to 34% after 4 weeks. With further improvements in cell survival, PLG scaffolds may prove useful for the implantation of primary human myofibers in future clinical applications.
Collapse
Affiliation(s)
- Lieven Thorrez
- Department of Pathology, Brown Medical School/The Miriam Hospital, 14 Third Street, Providence, RI 02906, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Melendez MM, Vosswinkel JA, Shapiro MJ, Gelato MC, Mynarcik D, Gavi S, Xu X, McNurlan M. Wall suction applied to needle muscle biopsy - a novel technique for increasing sample size. J Surg Res 2007; 142:301-3. [PMID: 17631900 DOI: 10.1016/j.jss.2007.03.043] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Revised: 03/14/2007] [Accepted: 03/14/2007] [Indexed: 10/23/2022]
Abstract
BACKGROUND The needle biopsy technique described by Bergström is the most commonly used technique to obtain samples to assess muscle metabolism. Sampling of muscle, particularly the vastus lateralis, has become an essential tool in biomedical and clinical research. Optimal sample size is critical for availability of tissue for processing. To evaluate the effectiveness of a novel technique to obtain adequate sample size using wall suction applied to needle muscle biopsy, we collected samples from subjects in on-going clinical studies for gene expression. MATERIALS AND METHODS Muscle biopsy samples of the vastus lateralis using 6 mm Bergström needles under local anesthesia were obtained from 55 subjects who had volunteered to participate in this research project. The vastus lateralis was biopsied according to the methods described by Bergström with a 6 mm biopsy needle. Wall suction was applied to the inner bore of the biopsy needle after the needle was inserted into the muscle. RESULTS The mean sample of biopsy taken using the 6 mm was 233 mg (n = 55). The wall suction (200 mm Hg) applied to the needle pulled the surrounding tissue into the central bore of the needle. The quality of the samples was adequate for all biochemical assays. The biopsy technique did not result in any complications due to infection or bleeding. CONCLUSIONS Using a novel technique of connecting a 6 mm Bergström biopsy needle to wall suction, we have obtained 200 to 300 mg muscle biopsy specimens uniformly, with ease, and minimal discomfort. An increase in sample size allows for a wider variety of biochemical and histopathological analysis.
Collapse
Affiliation(s)
- Mark M Melendez
- Department of Surgery, Stony Brook University Medical Center, State University of New York at Stony Brook, Stony Brook, New York 11794-8191, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Thorrez L, Vandenburgh H, Callewaert N, Mertens N, Shansky J, Wang L, Arnout J, Collen D, Chuah M, Vandendriessche T. Angiogenesis Enhances Factor IX Delivery and Persistence from Retrievable Human Bioengineered Muscle Implants. Mol Ther 2006; 14:442-51. [PMID: 16750937 DOI: 10.1016/j.ymthe.2006.03.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 02/27/2006] [Accepted: 03/01/2006] [Indexed: 10/24/2022] Open
Abstract
Human muscle progenitor cells transduced with lentiviral vectors secreted high levels of blood clotting factor IX (FIX). When bioengineered into postmitotic myofibers as human bioartificial muscles (HBAMs) and subcutaneously implanted into immunodeficient mice, they secreted FIX into the circulation for >3 months. The HBAM-derived FIX was biologically active, consistent with the cells' ability to conduct the necessary posttranslational modifications. These bioengineered muscle implants are retrievable, an inherent safety feature that distinguishes this "reversible" gene therapy approach from most other gene therapy strategies. When myofibers were bioengineered from human myoblasts expressing FIX and vascular endothelial growth factor, circulating FIX levels were increased and maintained long term within the therapeutic range, consistent with the generation of a vascular network around the HBAM. The present study implicates an important role for angiogenesis in the efficient delivery of therapeutic proteins using tissue engineered stem cell-based gene therapies.
Collapse
Affiliation(s)
- Lieven Thorrez
- Center for Transgene Technology and Gene Therapy, University of Leuven/Flanders Interuniversity Institute for Biotechnology, B-3000 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sinclair C, Gilchrist JM, Hennessey JV, Kandula M. Muscle carnitine in hypo- and hyperthyroidism. Muscle Nerve 2005; 32:357-9. [PMID: 15803480 DOI: 10.1002/mus.20336] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Weakness is common in both hyper- and hypothyroidism, and skeletal muscle L-carnitine may play a role in this regard, as suggested by studies indicating abnormal levels of carnitine in serum and urine of patients with thyroid dysfunction. Skeletal muscle samples were obtained for carnitine analysis from control subjects, and from hyperthyroid and hypothyroid patients before and after treatment. There was a significant reduction in carnitine, especially the esterified portion, in hyperthyroid individuals, with a return to normal as euthyroid status was regained. In hypothyroid patients, there was a trend for carnitine to be lower than normal and for improvement once euthyroid status was attained. Our data indicate that muscle carnitine levels are affected by both hypo- and hyperthyroidism. A decrease in muscle carnitine in both conditions may contribute to thyroid myopathy.
Collapse
Affiliation(s)
- Christopher Sinclair
- Department of Neurology, Rhode Island Hospital, Brown Medical School, Providence, Rhode Island 02903, USA
| | | | | | | |
Collapse
|
50
|
Mattern CO, Gutilla MJ, Bright DL, Kirby TE, Hinchcliff KW, Devor ST. Maximal lactate steady state declines during the aging process. J Appl Physiol (1985) 2003; 95:2576-82. [PMID: 12959962 DOI: 10.1152/japplphysiol.00298.2003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased participation of aged individuals in athletics warrants basic research focused on delineating age-related changes in performance variables. On the basis of potential age-related declines in aerobic enzyme activities and a shift in the expression of myosin heavy chain (MHC) isoforms, we hypothesized that maximal lactate steady-state (MLSS) exercise intensity would be altered as a function of age. Three age groups [young athletes (YA), 25.9 +/- 1.0 yr, middle-age athletes (MA), 43.2 +/- 1.0 yr, and older athletes (OA), 64.6 +/- 2.7 yr] of male, competitive cyclists and triathletes matched for training intensity and duration were studied. Subjects performed a maximal O2 consumption (V(o2 max)) test followed by a series of 30-min exercise trials to determine MLSS. A muscle biopsy of the vastus lateralis was procured on a separate visit. There were differences (P < 0.05) in V(o2 max) among all age groups (YA = 67.7 +/- 1.2 ml x kg-1x min-1, MA = 56.0 +/- 2.6 ml x kg-1x min-1, OA = 47.0 +/- 2.6 ml x kg-1 x min-1). When expressed as a percentage of V(o2 max), there was also an age-related decrease (P < 0.05) in the relative MLSS exercise intensity (YA = 80.8 +/- 0.9%, MA = 76.1 +/- 1.4%, OA = 69.9 +/- 1.5%). There were no significant age-related changes in citrate synthase activity or MHC isoform profile. The hypothesis is supported as there is an age-related decline in MLSS exercise intensity in athletes matched for training intensity and duration. Although type I MHC isoform, combined with age, is helpful in predicting (r = 0.76, P < 0.05) relative MLSS intensity, it does not explain the age-related decline in MLSS.
Collapse
Affiliation(s)
- Craig O Mattern
- Sport and Exercise Science Program, The Ohio State University, Columbus, OH 43210-1284, USA
| | | | | | | | | | | |
Collapse
|