1
|
Philip JL, Caneba CA, Caggiano LR, Prakash N, Cheng TC, Barlow KA, Mustafa T, Tabima DM, Hacker TA, Masters KS, Chesler NC. Hypoxia modulates human pulmonary arterial adventitial fibroblast phenotype through HIF-1α activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.27.635152. [PMID: 39975245 PMCID: PMC11838261 DOI: 10.1101/2025.01.27.635152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Hypoxic pulmonary hypertension (HPH) develops in association with diseases characterized by low oxygen levels leading to pulmonary artery (PA) narrowing and death. Hypoxia has been linked to increased PA collagen and changes in PA adventitial fibroblast (PAAF) metabolism. However, the mechanisms by which hypoxia regulates PAAF function are unknown. Hypoxia-inducible factor-1α (HIF-1α) is a subunit of a transcription factor that is degraded in normoxia but stabilized in hypoxia and is involved in extracellular matrix remodeling by fibroblasts. We examined the role of hypoxia and HIF-1α in regulating PAAF function. Human PAAF (HPAAF) were cultured in normoxic and hypoxic conditions. Cells were further treated with HIF1-α inhibitor or no drug. Protein expression, mRNA expression, enzyme activity, and metabolite concentration were examined. Male C57BL6/J mice were exposed to 0 or 10 days of hypoxia after which right ventricular hemodynamics and tissue metabolism were assessed. Hypoxia led to an increase in collagen content and decrease in matrix metalloproteinase-2 (MMP2) activity. HIF-1α inhibition limited collagen accumulation and restored MMP2 activity. HPAAF demonstrated elevated lactic acid concentration and decreased ATP in hypoxia. HIF-1α inhibition blunted these effects. Mice exposed to hypoxia developed significant elevation in right ventricle systolic pressures and had decreased ATP levels in pulmonary tissue. This study investigated the mechanisms by which hypoxia drives HPAAF-mediated collagen accumulation and metabolic changes. We identify the key role of HIF-1α in regulating changes. These findings provide important insights into understanding HPAAF-mediated PA remodeling and help identify possible novel therapeutic targets.
Collapse
|
2
|
Choudhury FK. Mitochondrial Redox Metabolism: The Epicenter of Metabolism during Cancer Progression. Antioxidants (Basel) 2021; 10:antiox10111838. [PMID: 34829708 PMCID: PMC8615124 DOI: 10.3390/antiox10111838] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial redox metabolism is the central component in the cellular metabolic landscape, where anabolic and catabolic pathways are reprogrammed to maintain optimum redox homeostasis. During different stages of cancer, the mitochondrial redox status plays an active role in navigating cancer cells’ progression and regulating metabolic adaptation according to the constraints of each stage. Mitochondrial reactive oxygen species (ROS) accumulation induces malignant transformation. Once vigorous cell proliferation renders the core of the solid tumor hypoxic, the mitochondrial electron transport chain mediates ROS signaling for bringing about cellular adaptation to hypoxia. Highly aggressive cells are selected in this process, which are capable of progressing through the enhanced oxidative stress encountered during different stages of metastasis for distant colonization. Mitochondrial oxidative metabolism is suppressed to lower ROS generation, and the overall cellular metabolism is reprogrammed to maintain the optimum NADPH level in the mitochondria required for redox homeostasis. After reaching the distant organ, the intrinsic metabolic limitations of that organ dictate the success of colonization and flexibility of the mitochondrial metabolism of cancer cells plays a pivotal role in their adaptation to the new environment.
Collapse
Affiliation(s)
- Feroza K Choudhury
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, CA 94080, USA
| |
Collapse
|
3
|
Yang C, Zhong ZF, Wang SP, Vong CT, Yu B, Wang YT. HIF-1: structure, biology and natural modulators. Chin J Nat Med 2021; 19:521-527. [PMID: 34247775 DOI: 10.1016/s1875-5364(21)60051-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Indexed: 12/12/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1), as a main transcriptional regulator of metabolic adaptation to changes in the oxygen environment, participates in many physiological and pathological processes in the body, and is closely related to the pathogenesis of many diseases. This review outlines the mechanisms of HIF-1 activation, its signaling pathways, natural inhibitors, and its roles in diseases. This article can provide new insights in the diagnosis and treatment of human diseases, and recent progress on the development of HIF-1 inhibitors.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation and Application, Zhejiang Ocean University, Zhoushan 316022, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Zhang-Feng Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Chi-Teng Vong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Bin Yu
- School of Pharmaceutical Sciences and Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Yi-Tao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
4
|
Wang YY, Chen YK, Lo S, Chi TC, Chen YH, Hu SCS, Chen YW, Jiang SS, Tsai FY, Liu W, Li RN, Hsieh YC, Huang CJ, Yuan SSF. MRE11 promotes oral cancer progression through RUNX2/CXCR4/AKT/FOXA2 signaling in a nuclease-independent manner. Oncogene 2021; 40:3510-3532. [PMID: 33927349 PMCID: PMC8134045 DOI: 10.1038/s41388-021-01698-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 01/28/2021] [Accepted: 02/04/2021] [Indexed: 01/23/2023]
Abstract
MRE11, the nuclease component of RAD50/MRE11/NBS1 DNA repair complex which is essential for repair of DNA double-strand-breaks in normal cells, has recently garnered attention as a critical factor in solid tumor development. Herein we report the crucial role of MRE11 in oral cancer progression in a nuclease-independent manner and delineate its key downstream effectors including CXCR4. MRE11 expression in oral cancer samples was positively associated with tumor size, cancer stage and lymph node metastasis, and was predictive of poorer patient survival and radiotherapy resistance. MRE11 promoted cell proliferation/migration/invasion in a nuclease-independent manner but enhanced radioresistance via a nuclease-dependent pathway. The nuclease independent promotion of EMT and metastasis was mediated by RUNX2, CXCR4, AKT, and FOXA2, while CXCR4 neutralizing antibody mitigated these effects in vitro and in vivo. Collectively, MRE11 may serve as a crucial prognostic factor and therapeutic target in oral cancer, displaying dual nuclease dependent and independent roles that permit separate targeting of tumor vulnerabilities in oral cancer treatment.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Oral Pathology & Maxillofacial Radiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Oral & Maxillofacial Imaging Center, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Steven Lo
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Tsung-Chen Chi
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yi-Hua Chen
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Stephen Chu-Sung Hu
- Department of Dermatology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ya-Wen Chen
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Shih Sheng Jiang
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Fang-Yu Tsai
- National Institute of Cancer Research, National Health Research Institutes, Miaoli, Taiwan
| | - Wangta Liu
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Biotechnology, College of Life Science, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ruei-Nian Li
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ya-Ching Hsieh
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Chih-Jen Huang
- Department of Radiation Oncology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Shyng-Shiou F Yuan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan. .,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Biological Science and Technology, College of Biological Science and Technology, National ChiaoTung University, Hsinchu, Taiwan. .,Center For Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan.
| |
Collapse
|
5
|
Laubach JP, Liu CJ, Raje NS, Yee AJ, Armand P, Schlossman RL, Rosenblatt J, Hedlund J, Martin M, Reynolds C, Shain KH, Zackon I, Stampleman L, Henrick P, Rivotto B, Hornburg KTV, Dumke HJ, Chuma S, Savell A, Handisides DR, Kroll S, Anderson KC, Richardson PG, Ghobrial IM. A Phase I/II Study of Evofosfamide, A Hypoxia-activated Prodrug with or without Bortezomib in Subjects with Relapsed/Refractory Multiple Myeloma. Clin Cancer Res 2018; 25:478-486. [PMID: 30279233 DOI: 10.1158/1078-0432.ccr-18-1325] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 08/12/2018] [Accepted: 09/26/2018] [Indexed: 01/07/2023]
Abstract
PURPOSE The presence of hypoxia in the diseased bone marrow presents a new therapeutic target for multiple myeloma. Evofosfamide (formerly TH-302) is a 2-nitroimidazole prodrug of the DNA alkylator, bromo-isophosphoramide mustard, which is selectively activated under hypoxia. This trial was designed as a phase I/II study investigating evofosfamide in combination with dexamethasone, and in combination with bortezomib and dexamethasone in relapsed/refractory multiple myeloma. PATIENTS AND METHODS Fifty-nine patients initiated therapy, 31 received the combination of evofosfamide and dexamethasone, and 28 received the combination of evofosfamide, bortezomib, and dexamethasone. Patients were heavily pretreated with a median number of prior therapies of 7 (range: 2-15). All had previously received bortezomib and immunomodulators. The MTD, treatment toxicity, and efficacy were determined. RESULTS The MTD was established at 340 mg/m2 evofosfamide + dexamethasone with dose-limiting mucositis at higher doses. For the combination of evofosfamide, bortezomib, and dexamethasone, no patient had a dose-limiting toxicity (DLT) and the recommended phase II dose was established at 340 mg/m2. The most common ≥grade 3 adverse events (AE) were thrombocytopenia (25 patients), anemia (24 patients), neutropenia (15 patients), and leukopenia (9 patients). Skin toxicity was reported in 42 (71%) patients. Responses included 1 very good partial response (VGPR), 3 partial response (PR), 2 minor response (MR), 20 stable disease (SD), and 4 progressive disease (PD) for evofosfamide + dexamethasone and 1 complete response (CR), 2 PR, 1 MR, 18 SD, and 5 PD for evofosfamide + bortezomib + dexamethasone. Disease stabilization was observed in over 80% and this was reflective of the prolonged overall survival of 11.2 months. CONCLUSIONS Evofosfamide can be administered at 340 mg/m2 twice a week with or without bortezomib. Clinical activity has been noted in patients with heavily pretreated relapsed refractory multiple myeloma.
Collapse
Affiliation(s)
- Jacob P Laubach
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Chia-Jen Liu
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Noopur S Raje
- Massachusetts General Hospital, Boston, Massachusetts
| | - Andrew J Yee
- Massachusetts General Hospital, Boston, Massachusetts
| | - Philippe Armand
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Robert L Schlossman
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Jacalyn Rosenblatt
- Blood Cancer Research Partnership (BCRP), Boston, Massachusetts.,Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Jacquelyn Hedlund
- Blood Cancer Research Partnership (BCRP), Boston, Massachusetts.,Maine Center For Cancer Medicine, Scarborough, Maine
| | - Michael Martin
- Blood Cancer Research Partnership (BCRP), Boston, Massachusetts.,The West Clinic, Memphis, Tennessee
| | - Craig Reynolds
- Blood Cancer Research Partnership (BCRP), Boston, Massachusetts.,Ocala Oncology Center, Ocala, Florida
| | | | - Ira Zackon
- Blood Cancer Research Partnership (BCRP), Boston, Massachusetts.,New York Oncology Hematology, Albany, New York
| | - Laura Stampleman
- Blood Cancer Research Partnership (BCRP), Boston, Massachusetts.,Pacific Cancer Care, Salinas, California
| | - Patrick Henrick
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Bradley Rivotto
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kalvis T V Hornburg
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Henry J Dumke
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Stacey Chuma
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Alexandra Savell
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | | | - Stew Kroll
- Threshold Pharmaceuticals, South San Francisco, California
| | - Kenneth C Anderson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts.,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Paul G Richardson
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. .,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| | - Irene M Ghobrial
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts. .,Blood Cancer Research Partnership (BCRP), Boston, Massachusetts
| |
Collapse
|
6
|
Yeh YH, Hsiao HF, Yeh YC, Chen TW, Li TK. Inflammatory interferon activates HIF-1α-mediated epithelial-to-mesenchymal transition via PI3K/AKT/mTOR pathway. J Exp Clin Cancer Res 2018; 37:70. [PMID: 29587825 PMCID: PMC5870508 DOI: 10.1186/s13046-018-0730-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 03/09/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Tumor microenvironments (TMEs) activate various axes/pathways, predominantly inflammatory and hypoxic responses, impact tumorigenesis, metastasis and therapeutic resistance significantly. Although molecular pathways of individual TME are extensively studied, evidence showing interaction and crosstalk between hypoxia and inflammation remain unclear. Thus, we examined whether interferon (IFN) could modulate both inflammatory and hypoxic responses under normoxia and its relation with cancer development. METHODS IFN was used to induce inflammation response and HIF-1α expression in various cancer cell lines. Corresponding signaling pathways were then analyzed by a combination of pharmacological inhibitors, immunoblotting, GST-Raf pull-down assays, dominant-negative and short-hairpin RNA-mediated knockdown approaches. Specifically, roles of functional HIF-1α in the IFN-induced epithelial-mesenchymal transition (EMT) and other tumorigenic propensities were examined by knockdown, pharmacological inhibition, luciferase reporter, clonogenic, anchorage-independent growth, wound-healing, vasculogenic mimicry, invasion and sphere-formation assays as well as cellular morphology observation. RESULTS We showed for the first time that IFN induced functional HIF-1α expression in a time- and dose- dependent manner in various cancer cell lines under both hypoxic and normoxic conditions, and then leading to an activated HIF-1α pathway in an IFN-mediated pro-inflammatory TME. IFN regulates anti-apoptosis activity, cellular metastasis, EMT and vasculogenic mimicry by a novel mechanism through mainly the activation of PI3K/AKT/mTOR axis. Subsequently, pharmacological and genetic modulations of HIF-1α, JAK, PI3K/AKT/mTOR or p38 pathways efficiently abrogate above IFN-induced tumorigenic propensities. Moreover, HIF-1α is required for the IFN-induced invasiveness, tumorigenesis and vasculogenic mimicry. Further supports for the HIF-1α-dependent tumorigenesis were obtained from results of xenograft mouse model and sphere-formation assay. CONCLUSIONS Our mechanistic study showed an induction of HIF-1α and EMT ability in an IFN-mediated inflammatory TME and thus demonstrating a novel interaction between inflammatory and hypoxic TMEs. Moreover, targeting HIF-1α may be a potential target for inhibiting tumor tumorigenesis and EMT by decreasing cancer cells wound healing and anchorage-independent colony growth. Our results also lead to rationale guidance for developing new therapeutic strategies to prevent relapse via targeting TME-providing IFN signaling and HIF-1α programming.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Ho-Fu Hsiao
- Department of Emergency Medicine, Sijhih Cathay General Hospital, New Taipei City, Taiwan, Republic of China
| | - Yen-Cheng Yeh
- Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Republic of China
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, Taipei, Taiwan, Republic of China.
- Center for Biotechnology, National Taiwan University, Taipei, Taiwan, Republic of China.
- Center for Genomic Medicine, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
7
|
Sun L, Lin P, Qin Z, Liu Y, Deng LL, Lu C. Hypoxia promotes HO-8910PM ovarian cancer cell invasion via Snail-mediated MT1-MMP upregulation. Exp Biol Med (Maywood) 2015; 240:1434-45. [PMID: 25681470 DOI: 10.1177/1535370215570205] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 11/25/2014] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms of ovarian cancer cell invasion under hypoxia remain unclear. Here we employed a 3D collagen model and chick chorioallantoic membrane (CAM) invasion assay to explore the influence of hypoxia on ovarian cancer cell invasion. Hypoxia (both 1% O2 and CoCl2 150 and 250 µM) induced HO-8910PM ovarian cancer cell invasion in 3D collagen and collagenolysis determined by hydroxyproline. Pretreatment with a hypoxia inducible factor-1α inhibitor, YC-1, or MMP inhibitor, GM6001, significantly inhibited 3D collagen invasion and degradation and cell proliferation. Hypoxia stimulated both mRNA and protein expressions of membrane-type 1 matrix metalloproteinase (MT1-MMP) and promoted MT1-MMP translocation to the cell surface in an YC-1 sensitive manner. MT1-siRNA transfection inhibited hypoxia-induced invasion, proliferation, and collagen degradation of cells in 3D collagen. Hypoxia stimulated Snail mRNA and protein expression as well as translocation to nucleus in an YC-1 sensitive manner. Overexpression of Snail with a recombinant plasmid in HO-8910PM cells resulted in an enhanced invasion in 3D collagen. Transfection with Snail-specific siRNA significantly decreased MT1-MMP expression and 3D collagen invasion. Hypoxia-treated cells significantly broke the upper CAM surface of 11-day-old chick embryos and infiltrated interstitial tissue, completely blocked in the presence of YC-1 or GM6001, or after MT1-MMP siRNA or Snail siRNA transfection. Together, these data suggest that hypoxia promotes HO-8910PM ovarian cancer cell traffic through 3D matrix via Snail-mediated MT1-MMP upregulation, a possible molecular mechanism of ovarian cancer cell invasion under hypoxia.
Collapse
Affiliation(s)
- Lijun Sun
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Ping Lin
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Zhuo Qin
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Yusi Liu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| | - Li-Li Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, P. R. China
| | - Changlian Lu
- Department of Biopharmaceutical Sciences, College of Pharmacy, Harbin Medical University,Harbin, Heilongjiang 150081, P. R. China
| |
Collapse
|
8
|
Fan M, Sethuraman A, Brown M, Sun W, Pfeffer LM. Systematic analysis of metastasis-associated genes identifies miR-17-5p as a metastatic suppressor of basal-like breast cancer. Breast Cancer Res Treat 2014; 146:487-502. [PMID: 25001613 DOI: 10.1007/s10549-014-3040-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 06/18/2014] [Indexed: 12/21/2022]
Abstract
The purpose of this study is to identify metastasis-associated genes/signaling pathways in basal-like breast tumors. Kaplan-Meier analysis of two public meta-datasets and functional classification was used to identify genes/signaling pathways significantly associated with distant metastasis free survival. Integrated analysis of expression correlation and interaction between mRNAs and miRNAs was used to identify miRNAs that potentially regulate the expression of metastasis-associated genes. The novel metastatic suppressive role of miR-17-5p was examined by in vitro and in vivo experiments. Over 4,000 genes previously linked to breast tumor progression were examined, leading to identification of 61 and 69 genes significantly associated with shorter and longer DMFS intervals of patients with basal-like tumors, respectively. Functional annotation linked most of the pro-metastatic genes to epithelial mesenchymal transition (EMT) process and three intertwining EMT-driving pathways (hypoxia, TGFB and Wnt), whereas most of the anti-metastatic genes to interferon signaling pathway. Members of three miRNA families (i.e., miR-17, miR-200 and miR-96) were identified as potential regulators of the pro-metastatic genes. The novel anti-metastatic function of miR-17-5p was confirmed by in vitro and in vivo experiments. We demonstrated that miR-17-5p inhibition in breast cancer cells enhanced expression of multiple pro-metastatic genes, rendered cells metastatic properties, and accelerated lung metastasis from orthotopic xenografts. In contrast, intratumoral administration of miR-17-5p mimic significantly reduced lung metastasis. These results provide evidence supporting that EMT activation and IFN pathway inactivation are markers of metastatic progression of basal-like tumors, and members of miR-17, miR-200, and miR-96 families play a role in suppressing EMT and metastasis. The metastasis-associated genes identified in this study have potential prognostic values and functional implications, thus, can be exploited as therapeutic targets to prevent metastasis of basal-like breast tumors.
Collapse
Affiliation(s)
- Meiyun Fan
- Department of Pathology and Laboratory Medicine, 19 South Manassas Street, Memphis, TN, 38163, USA,
| | | | | | | | | |
Collapse
|