1
|
Hsieh BY, Kao YCJ, Zhou N, Lin YP, Mei YY, Chu SY, Wu DC. Vascular responses of penetrating vessels during cortical spreading depolarization with ultrasound dynamic ultrafast Doppler imaging. Front Neurosci 2022; 16:1015843. [PMID: 36466181 PMCID: PMC9714680 DOI: 10.3389/fnins.2022.1015843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/25/2022] [Indexed: 11/06/2023] Open
Abstract
The dynamic vascular responses during cortical spreading depolarization (CSD) are causally related to pathophysiological consequences in numerous neurovascular conditions, including ischemia, traumatic brain injury, cerebral hemorrhage, and migraine. Monitoring of the hemodynamic responses of cerebral penetrating vessels during CSD is motivated to understand the mechanism of CSD and related neurological disorders. Six SD rats were used, and craniotomy surgery was performed before imaging. CSDs were induced by topical KCl application. Ultrasound dynamic ultrafast Doppler was used to access hemodynamic changes, including cerebral blood volume (CBV) and flow velocity during CSD, and further analyzed those in a single penetrating arteriole or venule. The CSD-induced hemodynamic changes with typical duration and propagation speed were detected by ultrafast Doppler in the cerebral cortex ipsilateral to the induction site. The hemodynamics typically showed triphasic changes, including initial hypoperfusion and prominent hyperperfusion peak, followed by a long-period depression in CBV. Moreover, different hemodynamics between individual penetrating arterioles and venules were proposed by quantification of CBV and flow velocity. The negative correlation between the basal CBV and CSD-induced change was also reported in penetrating vessels. These results indicate specific vascular dynamics of cerebral penetrating vessels and possibly different contributions of penetrating arterioles and venules to the CSD-related pathological vascular consequences. We proposed using ultrasound dynamic ultrafast Doppler imaging to investigate CSD-induced cerebral vascular responses. With this imaging platform, it has the potential to monitor the hemodynamics of cortical penetrating vessels during brain injuries to understand the mechanism of CSD in advance.
Collapse
Affiliation(s)
- Bao-Yu Hsieh
- Department of Medical Imaging and Radiological Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Yu-Chieh Jill Kao
- Department of Biomedical Imaging and Radiological Sciences, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ning Zhou
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Yi-Pei Lin
- Department of Biomedical Imaging and Radiological Science, College of Medicine, China Medical University, Taichung, Taiwan
| | - Yu-Ying Mei
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| | - Sung-Yu Chu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Dong-Chuan Wu
- Graduate Institute of Biomedical Sciences, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Petzold GC, Dreier JP. Spreading depolarization evoked by endothelin-1 is inhibited by octanol but not by carbenoxolone. BRAIN HEMORRHAGES 2021. [DOI: 10.1016/j.hest.2020.08.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
3
|
Frederiksen SD, Haanes KA, Warfvinge K, Edvinsson L. Perivascular neurotransmitters: Regulation of cerebral blood flow and role in primary headaches. J Cereb Blood Flow Metab 2019; 39:610-632. [PMID: 29251523 PMCID: PMC6446417 DOI: 10.1177/0271678x17747188] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/17/2022]
Abstract
In order to understand the nature of the relationship between cerebral blood flow (CBF) and primary headaches, we have conducted a literature review with particular emphasis on the role of perivascular neurotransmitters. Primary headaches are in general considered complex polygenic disorders (genetic and environmental influence) with pathophysiological neurovascular alterations. Identified candidate headache genes are associated with neuro- and gliogenesis, vascular development and diseases, and regulation of vascular tone. These findings support a role for the vasculature in primary headache disorders. Moreover, neuronal hyperexcitability and other abnormalities have been observed in primary headaches and related to changes in hemodynamic factors. In particular, this relates to migraine aura and spreading depression. During headache attacks, ganglia such as trigeminal and sphenopalatine (located outside the blood-brain barrier) are variably activated and sensitized which gives rise to vasoactive neurotransmitter release. Sympathetic, parasympathetic and sensory nerves to the cerebral vasculature are activated. During migraine attacks, altered CBF has been observed in brain regions such as the somatosensory cortex, brainstem and thalamus. In regulation of CBF, the individual roles of neurotransmitters are partly known, but much needs to be unraveled with respect to headache disorders.
Collapse
Affiliation(s)
- Simona D Frederiksen
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Kristian A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
| | - Karin Warfvinge
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Lars Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, Glostrup, Denmark
- Division of Experimental Vascular Research, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
4
|
Kawauchi S, Okuda W, Nawashiro H, Sato S, Nishidate I. Multispectral imaging of cortical vascular and hemodynamic responses to a shock wave: observation of spreading depolarization and oxygen supply-demand mismatch. JOURNAL OF BIOMEDICAL OPTICS 2019; 24:1-17. [PMID: 30851013 PMCID: PMC6975192 DOI: 10.1117/1.jbo.24.3.035005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Blast-induced traumatic brain injury has been a recent major concern in neurotraumatology. However, its pathophysiology and mechanism are not understood partly due to insufficient information on the brain pathophysiology during/immediately after shock wave exposure. We transcranially applied a laser-induced shock wave (LISW, ∼19 Pa · s) to the left frontal region in a rat and performed multispectral imaging of the ipsilateral cortex through a cranial window (n = 4). For the spectral data obtained, we conducted multiple regression analysis aided by Monte Carlo simulation to evaluate vascular diameters, regional hemoglobin concentration (rCHb), tissue oxygen saturation (StO2), oxygen extraction fraction, and light-scattering signals as a signature of cortical spreading depolarization (CSD). Immediately after LISW exposure, rCHb and StO2 were significantly decreased with distinct venular constriction. CSD was then generated and was accompanied by distinct hyperemia/hyperoxemia. This was followed by oligemia with arteriolar constriction, but it soon recovered (within ∼20 min). However, severe hypoxemia was persistently observed during the post-CSD period (∼1 h). These observations indicate that inadequate oxygen supply and/or excessive oxygen consumption continued even after blood supply was restored in the cortex. Such a hypoxemic state and/or a hypermetabolic state might be associated with brain damage caused by a shock wave.
Collapse
Affiliation(s)
- Satoko Kawauchi
- National Defense Medical College Research Institute, Division of Bioinformation and Therapeutic Systems, Tokorozawa, Japan
| | - Wataru Okuda
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Applications and Systems Engineering, Tokyo, Japan
| | - Hiroshi Nawashiro
- Tokorozawa Central Hospital, Division of Neurosurgery, Tokorozawa, Japan
| | - Shunichi Sato
- National Defense Medical College Research Institute, Division of Bioinformation and Therapeutic Systems, Tokorozawa, Japan
| | - Izumi Nishidate
- Tokyo University of Agriculture and Technology, Graduate School of Bio-Applications and Systems Engineering, Tokyo, Japan
| |
Collapse
|
5
|
Ayata C, Lauritzen M. Spreading Depression, Spreading Depolarizations, and the Cerebral Vasculature. Physiol Rev 2015; 95:953-93. [PMID: 26133935 DOI: 10.1152/physrev.00027.2014] [Citation(s) in RCA: 386] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Spreading depression (SD) is a transient wave of near-complete neuronal and glial depolarization associated with massive transmembrane ionic and water shifts. It is evolutionarily conserved in the central nervous systems of a wide variety of species from locust to human. The depolarization spreads slowly at a rate of only millimeters per minute by way of grey matter contiguity, irrespective of functional or vascular divisions, and lasts up to a minute in otherwise normal tissue. As such, SD is a radically different breed of electrophysiological activity compared with everyday neural activity, such as action potentials and synaptic transmission. Seventy years after its discovery by Leão, the mechanisms of SD and its profound metabolic and hemodynamic effects are still debated. What we did learn of consequence, however, is that SD plays a central role in the pathophysiology of a number of diseases including migraine, ischemic stroke, intracranial hemorrhage, and traumatic brain injury. An intriguing overlap among them is that they are all neurovascular disorders. Therefore, the interplay between neurons and vascular elements is critical for our understanding of the impact of this homeostatic breakdown in patients. The challenges of translating experimental data into human pathophysiology notwithstanding, this review provides a detailed account of bidirectional interactions between brain parenchyma and the cerebral vasculature during SD and puts this in the context of neurovascular diseases.
Collapse
Affiliation(s)
- Cenk Ayata
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| | - Martin Lauritzen
- Neurovascular Research Laboratory, Department of Radiology, and Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts; Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, Copenhagen, Denmark; and Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup, Denmark
| |
Collapse
|
6
|
Sun N, Luo W, Li LZ, Luo Q. Monitoring hemodynamic and metabolic alterations during severe hemorrhagic shock in rat brains. Acad Radiol 2014; 21:175-84. [PMID: 24439331 DOI: 10.1016/j.acra.2013.11.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/26/2013] [Accepted: 11/26/2013] [Indexed: 10/25/2022]
Abstract
RATIONALE AND OBJECTIVES Our long-term goals are to identify imaging biomarkers for hemorrhagic shock and to understand how the preservation of cerebral microcirculation works. We also seek to understand how the damage occurs to the cerebral hemodynamics and the mitochondrial metabolism during severe hemorrhagic shock. MATERIALS AND METHODS We used a multimodal cerebral cortex optical imaging system to obtain 4-hour observations of cerebral hemodynamic and metabolic alterations in exposed rat cortexes during severe hemorrhagic shock. We monitored the mean arterial pressure, heart rate, cerebral blood flow (CBF), functional vascular density (FVD), vascular perfusion and diameter, blood oxygenation, and mitochondrial reduced nicotinamide adenine dinucleotide (NADH) signals. RESULTS During the rapid bleeding and compensatory stage, cerebral parenchymal circulation was protected by inhibiting the perfusion of dural vessels. During the compensatory stage, although the brain parenchymal CBF and FVD decreased rapidly, the NADH signal did not show a significant increase. During the decompensatory stage, FVD and CBF maintained the same low level and the NADH signal remained unchanged. However, the NADH signal showed a significant increase after the rapid blood infusion. FVD and CBF rebounded to the baseline after the resuscitation and then declined again. CONCLUSIONS We present for the first time simultaneous imaging of cerebral hemodynamics and NADH signals in vivo during the process of hemorrhagic shock. This novel multimodal method demonstrated clearly that severe hemorrhagic shock imparts irreversible tissue damage that is not compensated by the autoregulatory mechanism. Hemodynamic and metabolic signatures including CBF, FVD, and NADH may be further developed to provide sensitive biomarkers for stage transitions in hemorrhagic shock.
Collapse
|
7
|
Shitara H, Shinozaki T, Takagishi K, Honda M, Hanakawa T. Movement and afferent representations in human motor areas: a simultaneous neuroimaging and transcranial magnetic/peripheral nerve-stimulation study. Front Hum Neurosci 2013; 7:554. [PMID: 24062660 PMCID: PMC3774999 DOI: 10.3389/fnhum.2013.00554] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 08/21/2013] [Indexed: 12/03/2022] Open
Abstract
Neuroimaging combined with transcranial magnetic stimulation (TMS) to primary motor cortex (M1) is an emerging technique that can examine motor-system functionality through evoked activity. However, because sensory afferents from twitching muscles are widely represented in motor areas the amount of evoked activity directly resulting from TMS remains unclear. We delivered suprathreshold TMS to left M1 or gave electrical right median nerve stimulation (MNS) in 18 healthy volunteers while simultaneously conducting functional magnetic resonance imaging and monitoring with electromyography (EMG). We examined in detail the localization of TMS-, muscle afferent- and superficial afferent-induced activity in M1 subdivisions. Muscle afferent- and TMS-evoked activity occurred mainly in rostral M1, while superficial afferents generated a slightly different activation distribution. In 12 participants who yielded quantifiable EMG, differences in brain activity ascribed to differences in movement-size were adjusted using integrated information from the EMGs. Sensory components only explained 10–20% of the suprathreshold TMS-induced activity, indicating that locally and remotely evoked activity in motor areas mostly resulted from the recruitment of neural and synaptic activity. The present study appears to justify the use of fMRI combined with suprathreshold TMS to M1 for evoked motor network imaging.
Collapse
Affiliation(s)
- H Shitara
- Department of Functional Brain Research, National Center of Neurology and Psychiatry, National Institute of Neuroscience Kodaira, Japan ; Department of Orthopedic Surgery, Gunma University Graduate School of Medicine Maebashi, Japan
| | | | | | | | | |
Collapse
|
8
|
Quantifying optical microangiography images obtained from a spectral domain optical coherence tomography system. Int J Biomed Imaging 2012; 2012:509783. [PMID: 22792084 PMCID: PMC3389716 DOI: 10.1155/2012/509783] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 04/13/2012] [Indexed: 02/07/2023] Open
Abstract
The blood vessel morphology is known to correlate with several diseases, such as cancer, and is important for describing several tissue physiological processes, like angiogenesis. Therefore, a quantitative method for characterizing the angiography obtained from medical images would have several clinical applications. Optical microangiography (OMAG) is a method for obtaining three-dimensional images of blood vessels within a volume of tissue. In this study we propose to quantify OMAG images obtained with a spectral domain optical coherence tomography system. A technique for determining three measureable parameters (the fractal dimension, the vessel length fraction, and the vessel area density) is proposed and validated. Finally, the repeatability for acquiring OMAG images is determined, and a new method for analyzing small areas from these images is proposed.
Collapse
|
9
|
UNEKAWA MIYUKI, TOMITA MINORU, TOMITA YUTAKA, TORIUMI HARUKI, SUZUKI NORIHIRO. Sustained Decrease and Remarkable Increase in Red Blood Cell Velocity in Intraparenchymal Capillaries Associated With Potassium-Induced Cortical Spreading Depression. Microcirculation 2012; 19:166-74. [DOI: 10.1111/j.1549-8719.2011.00143.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Sun X, Wang Y, Chen S, Luo W, Li P, Luo Q. Simultaneous monitoring of intracellular pH changes and hemodynamic response during cortical spreading depression by fluorescence-corrected multimodal optical imaging. Neuroimage 2011; 57:873-84. [PMID: 21624475 DOI: 10.1016/j.neuroimage.2011.05.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Revised: 05/09/2011] [Accepted: 05/14/2011] [Indexed: 11/30/2022] Open
Abstract
Cortical spreading depression (CSD) plays an important role in trauma, migraine and ischemia. CSD could induce pronounced hemodynamic changes and the disturbance of pH homeostasis which has been postulated to contribute to cell death following ischemia. In this study, we described a fluorescence-corrected multimodal optical imaging system to simultaneously monitor CSD associated intracellular pH (pH(i)) changes and hemodynamic response including hemoglobin concentrations and cerebral blood flow (CBF). CSD was elicited by application of KCl on rat cortex and direct current (DC) potential was recorded as a typical characteristic of CSD. The pH(i) shift was mapped by neutral red (NR) fluorescence which was excited at 516-556 nm and emitted at 625 nm. The changes in hemoglobin concentrations were determined by dual-wavelength optical intrinsic signal imaging (OISI) at 550 nm and 625 nm. Integration of fluorescence imaging and dual-wavelength OISI was achieved by a time-sharing camera equipped with a liquid crystal tunable filter (LCTF). CBF was visualized by laser speckle contrast imaging (LSCI) through a separate camera. Besides, based on the dual-wavelength optical intrinsic signals (OISs) obtained from our system, NR fluorescence was corrected according to our method of fluorescence correction. We found that a transient intracellular acidification followed by a small alkalization occurred during CSD. After CSD, there was a prolonged intracellular acidification and the recovery of pH(i) from CSD took much longer time than those of hemodynamic response. Our results suggested that the new multimodal optical imaging system had the potential to advance our knowledge of CSD and might work as a useful tool to exploit neurovascular coupling under physiological and pathological conditions.
Collapse
Affiliation(s)
- Xiaoli Sun
- Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
11
|
Jia Y, Wang RK. Optical micro-angiography images structural and functional cerebral blood perfusion in mice with cranium left intact. JOURNAL OF BIOPHOTONICS 2011; 4:57-63. [PMID: 20183828 PMCID: PMC2891374 DOI: 10.1002/jbio.201000001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/02/2010] [Revised: 02/02/2010] [Accepted: 02/03/2010] [Indexed: 05/21/2023]
Abstract
Alteration in regional cerebral blood flow (CBF) is the direct result of changes in neuronal activity. It is crucial to monitor the spatio-temporal characteristics of cerebro-vascular blood perfusion in the studies of cerebral diseases. Optical micro-angiography (OMAG) is a recently developed imaging technique capable of resolving 3D distribution of dynamic blood perfusion at a capillary level resolution within microcirculatory beds in vivo. The authors report the applications of OMAG in mouse ischemic stroke model. The study demonstrates that OMAG is a useful method capable of providing in vivo serial assessment of 3D cerebro-vascular pathophysiology with high sensitivity, and therefore, has the potential for use in the study of brain disorders and repairs.
Collapse
Affiliation(s)
- Yali Jia
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland OR97239, USA
| | - Ruikang K. Wang
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland OR97239, USA
| |
Collapse
|
12
|
Sun X, Li P, Luo W, Chen S, Feng N, Wang J, Luo Q. Investigating the effects of dimethylsulfoxide on hemodynamics during cortical spreading depression by combining laser speckle imaging with optical intrinsic signal imaging. Lasers Surg Med 2010; 42:649-55. [DOI: 10.1002/lsm.20975] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Abstract
The microcirculation plays an essential role in health and disease. Microvascular perfusion can be assessed directly using laser Doppler flowmetry and various imaging techniques or indirectly using regional capnometry and measurement of indicators of mismatch between oxygen delivery and oxygen consumption or indices of disturbed cellular oxygen utilization. Assessment of microvascular oxygen availability implies measurement of oxygen pressure or measurement of hemoglobin oxygen saturation. Microvascular function is assessed using other methods, including venous plethysmography. In this paper, I review current knowledge concerning assessment of the microcirculation with special emphasis on methods that could be used at the bedside.
Collapse
Affiliation(s)
- Yasser Sakr
- Department of Anesthesiology and Intensive Care, Friedrich Schiller University Hospital, Erlanger Allee 101, Jena 07743, Germany.
| |
Collapse
|
14
|
Abstract
Since its original extensive description by Leao in 1944, thousands of publications have characterized the phenomenon of cortical spreading depression (CSD). Despite the attention that CSD has received over more than six decades, however, many fundamental questions regarding its initiation, propagation, functional consequences, and relationship to migraine and other human disorders remain unanswered. Advances in genetics and cellular imaging have led to important insights into the basic mechanisms of CSD, with increasing attention focused on specific neuronal ion channels, neurotransmitters and neuromodulators. In addition, there is growing recognition that astrocytes and the vasculature may play an active, rather than simply a passive or reactive role in CSD. Several recent descriptions of CSD in humans in the setting of brain injury provide definitive evidence that this phenomenon can occur and have important functional consequences in the human brain. Although the exact role of CSD in migraine has yet to be conclusively established, there is strong evidence that the investigation of CSD in animal models can provide meaningful information about migraine that can be translated into the clinical setting. This review will briefly address the extensive work that has been done on CSD over more than half a century, but focus primarily on more recent studies with a particular emphasis on relevance to migraine.
Collapse
Affiliation(s)
- A Charles
- Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.
| | | |
Collapse
|
15
|
Deák G, Meszlényi I, Szalay I. [New perspectives in studies of the urogenital tract microcirculation--a decade of experience in Szeged, Hungary]. Magy Seb 2009; 62:125-130. [PMID: 19525178 DOI: 10.1556/maseb.62.2009.3.4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Investigations in microcirculation are an essential way to understand basic pathologic mechanisms and detect early signs of various diseases. Up until the last decade there was only limited amount of information available in the field of urological microcirculation. Due to advanced technologies, new methods and international cooperation of the research team of University of Szeged, promising new data became available in this interesting field.
Collapse
Affiliation(s)
- Gábor Deák
- Szegedi Tudományegyetem Urológiai Klinika 6725 Szeged Kálvária sgt. 57.
| | | | | |
Collapse
|
16
|
Busija DW, Bari F, Domoki F, Horiguchi T, Shimizu K. Mechanisms involved in the cerebrovascular dilator effects of cortical spreading depression. Prog Neurobiol 2008; 86:379-95. [PMID: 18835324 PMCID: PMC2615412 DOI: 10.1016/j.pneurobio.2008.09.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 05/23/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
Cortical spreading depression (CSD) leads to dramatic changes in cerebral hemodynamics. However, mechanisms involved in promoting and counteracting cerebral vasodilator responses are unclear. Here we review the development and current status of this important field of research especially with respect to the role of perivascular nerves and nitric oxide (NO). It appears that neurotransmitters released from the sensory and the parasympathetic nerves associated with cerebral arteries, and NO released from perivascular nerves and/or parenchyma, promote cerebral hyperemia during CSD. However, the relative contributions of each of these factors vary according to species studied. Related to CSD, axonal and reflex responses involving trigeminal afferents on the pial surface lead to increased blood flow and inflammation of the overlying dura mater. Counteracting the cerebral vascular dilation is the production and release of constrictor prostaglandins, at least in some species, and other possibly yet unknown agents from the vascular wall. The cerebral blood flow response in healthy human cortex has not been determined, and thus it is unclear whether the cerebral oligemia associated with migraines represents the normal physiological response to a CSD-like event or represents a pathological response. In addition to promoting cerebral hyperemia, NO produced during CSD appears to initiate signaling events which lead to protection of the brain against subsequent ischemic insults. In summary, the cerebrovascular response to CSD involves multiple dilator and constrictor factors produced and released by diverse cells within the neurovascular unit, with the contribution of each of these factors varying according to the species examined.
Collapse
Affiliation(s)
- David W Busija
- Department of Physiology and Pharmacology, Wake Forest University Health Sciences, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | |
Collapse
|
17
|
Chen S, Li P, Gong H, Luo W, Zeng S, Luo Q. Cortical spreading depression in rats. IEEE ENGINEERING IN MEDICINE AND BIOLOGY MAGAZINE : THE QUARTERLY MAGAZINE OF THE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY 2008; 27:29-35. [PMID: 18799387 DOI: 10.1109/memb.2008.929418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Shangbin Chen
- Huazhong University of Science and Technology, Wuhan 430074, China
| | | | | | | | | | | |
Collapse
|
18
|
Schlosser HG, Guldin W, Fritzsche D, Clarke AH. Transcranial Doppler ultrasound during galvanic labyrinth polarization depicts central vestibular processing, demonstrating bilateral vestibular projection. Eur J Neurosci 2008; 28:372-8. [DOI: 10.1111/j.1460-9568.2008.06331.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
|
20
|
Wang RK, Hurst S. Mapping of cerebro-vascular blood perfusion in mice with skin and skull intact by Optical Micro-AngioGraphy at 1.3 mum wavelength. OPTICS EXPRESS 2007; 15:11402-12. [PMID: 19547498 DOI: 10.1364/oe.15.011402] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Optical micro-angiography (OMAG) was developed to achieve volumetric imaging of the microstructures and dynamic cerebrovascular blood perfusion in mice with capillary level resolution and high signal-to-background ratio. In this paper, we present a high-speed and high-sensitivity OMAG imaging system by using an InGaAs line scan camera and broadband light source at 1.3 mum wavelength for enhanced imaging depth in tissue. We show that high quality imaging of cerebrovascular blood perfusion down to capillary level resolution with the intact skin and cranium are obtained in vivo with OMAG, without the interference from the blood perfusion in the overlaying skin. The results demonstrate the potential of 1.3 mum OMAG for high-speed and high-sensitivity imaging of blood perfusion in human and small animal studies.
Collapse
|
21
|
Huppert TJ, Allen MS, Benav H, Jones PB, Boas DA. A multicompartment vascular model for inferring baseline and functional changes in cerebral oxygen metabolism and arterial dilation. J Cereb Blood Flow Metab 2007; 27:1262-79. [PMID: 17200678 PMCID: PMC2586902 DOI: 10.1038/sj.jcbfm.9600435] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Functional hemodynamic responses are the composite results of underlying variations in cerebral oxygen consumption and the dilation of arterial vessels after neuronal activity. The development of biophysically based models of the cerebral vasculature allows the separation of the neuro-metabolic and neuro-vascular influences on measurable hemodynamic signals such as functional magnetic resonance imaging or optical imaging. We describe a multicompartment model of the vascular and oxygen transport dynamics associated with stimulus-driven neuronal activation. Our model offers several unique features compared with previous formulations such as the ability to estimate baseline blood flow, volume, and oxygen consumption from functional data. In addition, we introduce a capillary compliance model, arterial and venous oxygen permeability, and model the dynamics of extravascular tissue oxygenation. We apply this model to multimodal optical spectroscopic and laser speckle imaging of the rat somato-sensory cortex during nine conditions of whisker stimulation. By fitting the model using a psuedo-Bayesian framework to incorporate multimodal observations, we estimate baseline blood flow to be 94 (+/-15) mL/100 g min and baseline oxygen consumption to be 6.7 (+/-1.3) mL O(2)/100 g min. We calculate parametric, linear increases in arterial dilation (R(2)=0.96) and CMRO(2) (R(2)=0.87) responses over the nine conditions. Other parameters estimated by the model include vascular transit time and volume reserve, oxygen content, saturation, diffusivity rate constants, and partial pressure of oxygen in the vascular compartments and in the extravascular tissue. Finally, we compare this model to earlier work and find that the multicompartment model more accurately describes the observed oxygenation changes when compared with a single compartment version.
Collapse
Affiliation(s)
- Theodore J Huppert
- Athinoula A Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.
| | | | | | | | | |
Collapse
|
22
|
Chuquet J, Hollender L, Nimchinsky EA. High-resolution in vivo imaging of the neurovascular unit during spreading depression. J Neurosci 2007; 27:4036-44. [PMID: 17428981 PMCID: PMC6672520 DOI: 10.1523/jneurosci.0721-07.2007] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2006] [Revised: 03/09/2007] [Accepted: 03/10/2007] [Indexed: 11/21/2022] Open
Abstract
Spreading depression (SD) is a propagating wave of neuronal depolarization and ionic shifts, seen in stroke and migraine. In vitro, SD is associated with astrocytic [Ca2+] waves, but it is unclear what role they play and whether they influence cerebral blood flow, which is altered in SD. Here we show that SD in vivo is associated with [Ca2+] waves in astrocytes and neurons and with constriction of intracortical arterioles severe enough to result in arrest of capillary perfusion. The vasoconstriction is correlated with fast astrocytic [Ca2+] waves and is inhibited when they are reduced. [Ca2+] waves appear in neurons before astrocytes, and inhibition of astrocytic [Ca2+] waves does not depress SD propagation. This suggests that astrocytes do not drive SD propagation but are responsible for the hemodynamic failure seen deep in the cortex. Similar waves occur in anoxic depolarizations (AD), supporting the notion that SD and AD are related processes.
Collapse
Affiliation(s)
- Julien Chuquet
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Liad Hollender
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| | - Esther A. Nimchinsky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102
| |
Collapse
|
23
|
Zhou C, Yu G, Furuya D, Greenberg J, Yodh A, Durduran T. Diffuse optical correlation tomography of cerebral blood flow during cortical spreading depression in rat brain. OPTICS EXPRESS 2006; 14:1125-44. [PMID: 19503435 DOI: 10.1364/oe.14.001125] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Diffuse optical correlation methods were adapted for three-dimensional (3D) tomography of cerebral blood flow (CBF) in small animal models. The image reconstruction was optimized using a noise model for diffuse correlation tomography which enabled better data selection and regularization. The tomographic approach was demonstrated with simulated data and during in-vivo cortical spreading depression (CSD) in rat brain. Three-dimensional images of CBF were obtained through intact skull in tissues(~4mm) deep below the cortex.
Collapse
|
24
|
Tomita M, Schiszler I, Tomita Y, Tanahashi N, Takeda H, Osada T, Suzuki N. Initial oligemia with capillary flow stop followed by hyperemia during K+-induced cortical spreading depression in rats. J Cereb Blood Flow Metab 2005; 25:742-7. [PMID: 15729294 DOI: 10.1038/sj.jcbfm.9600074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Local cerebral blood volume (CBV) and capillary flow changes in regions of depolarizing neurons during K(+)-induced cortical spreading depression (CSD) in the cerebral cortex of alpha-chloralose-urethane-anesthetized rats were examined employing a transillumination (550 nm) video system. Capillary flow was calculated as the reciprocal of mean transit times of blood in pixels of 40 microm x 40 microm, each of which contains a few capillaries. Potassium microinjection into the cortex evoked repetitive wave-ring spreads of oligemia at a speed of ca. 2.33 +/- 0.48 mm/min. During the spread of CSD, tracer (either saline or carbon black) was injected into the internal carotid artery. Colocated with the oligemic wave, we detected capillary flow stop as evidenced by disappearance of the hemodilution curves. At any location in the region of interest within the cerebral cortex, we observed cyclic changes of capillary flow stop/hyperperfusion in synchrony with oligemia/hyperemia fluctuations. The initial flow stop and oligemia were ascribed to capillary compression by astroglial cell swelling, presumably at the pericapillary endfeet, since the oligemia occurred before larger vessel changes. We conclude that local depolarizing neurons can decrease adjacent capillary flow directly and immediately, most likely via astroglial cell swelling, and that the flow stop triggers upstream arteriolar dilatation for capillary hyperperfusion.
Collapse
Affiliation(s)
- Minoru Tomita
- Department of Neurology, School of Medicine, Keio University, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
25
|
Ayata C, Dunn AK, Gursoy-OZdemir Y, Huang Z, Boas DA, Moskowitz MA. Laser speckle flowmetry for the study of cerebrovascular physiology in normal and ischemic mouse cortex. J Cereb Blood Flow Metab 2004; 24:744-55. [PMID: 15241182 DOI: 10.1097/01.wcb.0000122745.72175.d5] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Laser speckle flowmetry (LSF) is useful to assess noninvasively two-dimensional cerebral blood flow (CBF) with high temporal and spatial resolution. The authors show that LSF can image the spatiotemporal dynamics of CBF changes in mice through an intact skull. When measured by LSF, peak CBF increases during whisker stimulation closely correlated with simultaneous laser-Doppler flowmetry (LDF) measurements, and were greater within the branches of the middle cerebral artery supplying barrel cortex than within barrel cortex capillary bed itself. When LSF was used to study the response to inhaled CO2 (5%), the flow increase was similar to the response reported using LDF. For the upper and lower limits of autoregulation, mean arterial pressure values were 110 and 40 mm Hg, respectively. They also show a linear relationship between absolute resting CBF, as determined by [C]iodoamphetamine technique, and 1/tau(c) values obtained using LSF, and used 1/tau(c) values to compare resting CBF between different animals. Finally, the authors studied CBF changes after distal middle cerebral artery ligation, and developed a model to investigate the spatial distribution and hemodynamics of moderate to severely ischemic cortex. In summary, LSF has distinct advantages over LDF for CBF monitoring because of high spatial resolution.
Collapse
Affiliation(s)
- Cenk Ayata
- Stroke and Neurovascular Regulation Laboratory, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA.
| | | | | | | | | | | |
Collapse
|
26
|
Durduran T, Burnett MG, Yu G, Zhou C, Furuya D, Yodh AG, Detre JA, Greenberg JH. Spatiotemporal quantification of cerebral blood flow during functional activation in rat somatosensory cortex using laser-speckle flowmetry. J Cereb Blood Flow Metab 2004; 24:518-25. [PMID: 15129183 DOI: 10.1097/00004647-200405000-00005] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Laser-speckle flowmetry was used to characterize activation flow coupling after electrical somatosensory stimulation of forepaw and hindpaw in the rat. Quantification of functional activation was made with high transverse spatial (microm) and temporal (msec) resolution. Different activation levels and duration of stimulation were quantitatively investigated, and were in good agreement with previous laser-Doppler measurements. Interestingly, the magnitude but not the overall shape of the response was found to scale with stimulus amplitude and the distance from the activation centroid. The results provide new insights about the spatial characteristics of cerebral blood flow response to functional activation, and the method should lead to improved understanding of the coupling of neuronal activity and hemodynamics under normal and pathologic conditions.
Collapse
Affiliation(s)
- Turgut Durduran
- Departments of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
Projections from the trigeminocerebellar pathway and the somatosensory cortex coincide spatially in the granule cell layer of Crus I/II of the cerebellar hemisphere. A biphasic field potential was seen: one peak at 10 ms (trigeminal input) and another at 20 ms (somatosensory input). Linear correlation analysis revealed only a weak coupling between somatosensory input and cerebellar blood flow responses to infraorbital nerve stimulation. In separate experiments, cortical spreading depression attenuated the field potential peak at 20 ms while blood flow responses remained unaltered. Thus, trigeminocerebellar activity explained the evoked blood flow responses. Our data provide further evidence that activity-dependent blood flow responses are context-sensitive and that interaction between excitatory neuronal circuits targeting the same cells may occlude vascular responses.
Collapse
Affiliation(s)
- Henning Piilgaard
- Department of Medical Physiology, Panum Institute, University of Copenhagen, Blegdamsvej 3, DK-2200 Copenhagen N, Denmark.
| | | |
Collapse
|
28
|
Culver JP, Durduran T, Furuya D, Cheung C, Greenberg JH, Yodh AG. Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia. J Cereb Blood Flow Metab 2003; 23:911-24. [PMID: 12902835 DOI: 10.1097/01.wcb.0000076703.71231.bb] [Citation(s) in RCA: 255] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Diffuse optical tomography (DOT) is an attractive approach for evaluating stroke physiology. It provides hemodynamic and metabolic imaging with unique potential for continuous noninvasive bedside imaging in humans. To date there have been few quantitative spatial-temporal studies of stroke pathophysiology based on diffuse optical signatures. The authors report DOT images of hemodynamic and metabolic contrasts using a rat middle cerebral artery occlusion (MCAO) stroke model. This study used a novel DOT device that concurrently obtains coregistered images of relative cerebral blood volume (rCBV), tissue-averaged hemoglobin oxygen saturation (Sto(2)), and relative cerebral blood flow (rCBF). The authors demonstrate how these hemodynamic measures can be synthesized to calculate an index of the oxygen extraction fraction (OEF) and the cerebral metabolic rate of oxygen consumption (CMRo(2)). Temporary (60-minute) MCAO was performed on five rats. Ischemic changes, averaged over the 60 minutes of occlusion, were as follows: rCBF = 0.42 +/- 0.04, rCBV = 1.02 +/- 0.04, DeltaSto(2) = -11 +/- 2%, rOEF = 1.39 +/- 0.06 and rCMRo(2) = 0.59 +/- 0.07. Although rOEF increased in response to decreased blood flow, rCMRo(2) decreased. The sensitivity of this method of DOT analysis is discussed in terms of assumptions about baseline physiology, and the diffuse optical results are compared with positron emission tomography, magnetic resonance imaging, and histology observations in the literature.
Collapse
Affiliation(s)
- Joseph P Culver
- Department of Physics and Astronomy, Cerebrovascular Research Center, University of Pennsylvania, Philadelphia, Pennsylvania, U.S.A.
| | | | | | | | | | | |
Collapse
|
29
|
Tomita Y, Tomita M, Schiszler I, Amano T, Tanahashi N, Kobari M, Takeda H, Ohtomo M, Fukuuchi Y. Moment analysis of microflow histogram in focal ischemic lesion to evaluate microvascular derangement after small pial arterial occlusion in rats. J Cereb Blood Flow Metab 2002; 22:663-9. [PMID: 12045664 DOI: 10.1097/00004647-200206000-00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The authors' high-spatial-resolution optical method was used to examine microvascular derangement in a focal cerebral cortex lesion in 12 Sprague-Dawley rats anesthetized with alpha-chloralose-urethane. A pial artery (approximately 40- to 50 microm diameter) was occluded by laser-beam cauterization (n = 6). Diluted carbon black suspension was injected into the internal carotid artery, and images in a 2-mm x 2-mm region of interest during tissue dye-dilution were recorded. Sequential frames were analyzed with Matlab software to evaluate blood distribution and mean transit time, affording a two-dimensional microflow map and histogram with first, second, third, and fourth moments. In the early phase of ischemia, blood distribution and average flow decreased (both P < 0.01), and the second moment (microflow heterogeneity) and third moment (skew to the left owing to increase in low-flow components) increased (P < 0.05 and P < 0.01, respectively). At approximately 2 hours, blood distribution decreased further in 3 cases, apparently because capillary stasis prevented carbon black filling. However, average microflow unexpectedly increased in 4 of 5 rats, presumably due to exclusion of unperfused (low flow at the earlier stage) channels from the calculation. The authors conclude that flow in ischemic tissue is quite heterogeneous and that an averaged flow value tends to smear important information about ischemic microvascular derangement.
Collapse
Affiliation(s)
- Yutaka Tomita
- Department of Neurology, Saitama Municipal Hospital, Saitama-city, Saitama, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Laser Doppler velocimetry uses the frequency shift produced by the Doppler effect to measure velocity. It can be used to monitor blood flow or other tissue movement in the body. Laser speckle is a random interference effect that gives a grainy appearance to objects illuminated by laser light. If the object consists of individual moving scatterers (such as blood cells), the speckle pattern fluctuates. These fluctuations provide information about the velocity distribution of the scatterers. It can be shown that the speckle and Doppler approaches are different ways of looking at the same phenomenon. Both these techniques measure at a single point. If a map of the velocity distribution is required, some form of scanning must be introduced. This has been done for both time-varying speckle and laser Doppler. However, with the speckle technique it is also possible to devise a full-field technique that gives an instantaneous map of velocities in real time. This review article presents the theory and practice of these techniques using a tutorial approach and compares the relative merits of the scanning and full-field approaches to velocity map imaging. The article concludes with a review of reported applications of these techniques to blood perfusion mapping and imaging.
Collapse
Affiliation(s)
- J D Briers
- Kingston University, Kingston-upon-Thames, UK.
| |
Collapse
|
31
|
Norup Nielsen A, Lauritzen M. Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex. J Physiol 2001; 533:773-85. [PMID: 11410634 PMCID: PMC2278665 DOI: 10.1111/j.1469-7793.2001.00773.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
1. Electrical stimulation of the infraorbital nerve was used to examine the coupling between neuronal activity and cerebral blood flow (CBF) in rat somatosensory cortex by laser Doppler flowmetry and extracellular recordings of field potentials. 2. The relationship between field potential (FP) and CBF amplitudes was examined as a function of the stimulus intensity (0--2.0 mA) at fixed frequency (3 Hz). FP amplitudes up to 2.0-2.5 mV were unaccompanied by increases of CBF. Above this threshold, CBF and FP amplitudes increased proportionally. 3. At fixed stimulus intensity of 1.5 mA, CBF increases were highly correlated to FP amplitudes at low frequencies of stimulation (< 2 Hz), but uncoupling was observed at stimulation frequencies of 2--5 Hz. The evoked responses were independent of stimulus duration (8--32 s). 4. The first rise in CBF occurred within the first 0.2 s after onset of stimulation in the upper 0--250 microm of the cortex. Latencies were longer (1.0--1.2 s) in lower cortical layers in which CBF and FP amplitudes were larger. 5. Local AMPA receptor blockade attenuated CBF and FP amplitudes proportionally. 6. This study showed that activity-dependent increases in neuronal activity and CBF were linearly coupled under defined conditions, but neuronal activity was well developed before CBF started to increase. Consequently, the absence of a rise in CBF does not exclude the presence of significant neuronal activity. The CBF increase in upper cortical layers preceded the rise in lower layers suggesting that vessels close to or at the brain surface are the first to react to neuronal activity. The activity-dependent rise in CBF was explained by postsynaptic activity in glutamatergic neurons.
Collapse
Affiliation(s)
- A Norup Nielsen
- Department of Medical Physiology, University of Copenhagen, Copenhagen, Denmark.
| | | |
Collapse
|
32
|
De Backer D, Dubois MJ. Assessment of the microcirculatory flow in patients in the intensive care unit. Curr Opin Crit Care 2001; 7:200-3. [PMID: 11436528 DOI: 10.1097/00075198-200106000-00010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Various techniques have been used at bedside to assess the microcirculation of critically ill patients, including nailfold videomicroscopy, laser doppler techniques, and orthogonal polarization spectral imaging. Nailfold videomicroscopy was introduced first, but its value may be limited by the extreme sensitivity of nailfold microcirculation to external temperature or vasoconstrictive agents. Laser Doppler techniques can measure gastric or jejunal mucosal blood flow as well as skin and muscle blood flow, but do not take into account blood flow heterogeneity, a major parameter of microcirculation. The recent introduction of orthogonal polarization spectral imaging techniques allows direct visualization of microcirculation in critically ill patients, opening a new area for the investigation of the pathophysiologic processes involved in the hemodynamic alterations of shock states.
Collapse
Affiliation(s)
- D De Backer
- Department of Intensive Care, Erasme University Hospital, Free University of Brussels, Route de Lennik, 808 B-1070 Brussels, Belgium.
| | | |
Collapse
|