1
|
Tanaka Y, Oki E, Nakanishi R, Kawazoe T, Kudo K, Zaitsu Y, Hisamatsu Y, Ando K, Oda Y, Yoshizumi T. Polo-Like Kinase 1 Expression in Colorectal Cancer: Association With RAS Mutations. Cancer Sci 2025. [PMID: 40317631 DOI: 10.1111/cas.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/16/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
Polo-like kinase 1 (PLK1) controls mitotic spindle formation and cytokinesis. However, its role as a predictive biomarker for treatment outcomes in colorectal cancer (CRC) remains underexplored, particularly in the context of RAS mutations. We retrospectively analyzed the relationships among PLK1 expression, clinicopathological factors, and survival in 225 patients who underwent CRC surgery. We also analyzed the relationship between PLK1 expression and survival after adjuvant chemotherapy and how RAS mutation influenced the prognosis. We found that PLK1 expression was significantly correlated with histopathology (p < 0.0001) and perineural invasion (p = 0.005). The high PLK1 expression group tended to have a worse prognosis in terms of relapse-free survival than the low expression group for all patients (p = 0.060) and patients with stage III disease (p = 0.055). In patients who received adjuvant chemotherapy for stage III CRC, high PLK1 expression was the only poor prognostic factor for relapse-free survival (p = 0.01), and those with mutated RAS had a significantly poorer prognosis than those with wild-type RAS (p = 0.027). In patients with CRC, high PLK1 expression was associated with poor survival after adjuvant chemotherapy, and there was potential involvement of the RAS mutation.
Collapse
Affiliation(s)
- Yasushi Tanaka
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryota Nakanishi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuro Kawazoe
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kensuke Kudo
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoko Zaitsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Hisamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
2
|
Wang MW, Li Z, Chen LH, Wang N, Hu JM, Du J, Pang LJ, Qi Y. Polo-like kinase 1 as a potential therapeutic target and prognostic factor for various human malignancies: A systematic review and meta-analysis. Front Oncol 2022; 12:917366. [DOI: 10.3389/fonc.2022.917366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
ObjectiveThe overexpression of polo-like kinase 1 (PLK-1) has been found in a broad spectrum of human tumors, making it an attractive prognostic tumor biomarker. Nowadays, PLK-1 is considered a cancer therapeutic target with clinical therapeutic value. The aim of the present study was to systematically review the prognostic and therapeutic value of PLK-1 in different malignant neoplasms.MethodsA systematic literature search of the Cochrane Library, PubMed, Web of Science, and China National Knowledge Internet (CNKI) databases was conducted between December 2018 and September 2022. In total, 41 published studies were screened, comprising 5,301 patients. We calculated the pooled odds ratios (ORs) and corresponding 95%CIs for the clinical parameters of patients included in these studies, as well as the pooled hazard ratios (HRs) and corresponding 95% CIs for 5-year overall survival (OS).ResultsOur analysis included 41 eligible studies, representing a total of 5,301 patients. The results showed that overexpression of PLK-1 was significantly associated with poor OS (HR, 1.57; 95% CI, 1.18–2.08) and inferior 5-year disease-free survival/relapse-free survival ((HR, 1.89; 95% CI, 1.47–2.44). The pooled analysis showed that PLK-1 overexpression was significantly associated with lymph node metastasis, histological grade, clinical stages (p < 0.001 respectively), and tumor grade (p < 0.001). In digestive system neoplasms, PLK-1 overexpression was significantly associated with histopathological classification, primary tumor grade, histological grade, and clinical stages (p = 0.002, p = 0.001, p < 0.0001, respectively). In breast cancer, PLK-1 was significantly associated with 5-year overall survival, histological grade, and lymph node metastasis (p < 0.001, p = 0.003, p < 0.001, respectively). In the female reproductive system, PLK-1 was significantly associated with clinical stage (p = 0.011). In the respiratory system, PLK-1 was significantly associated with clinical stage (p = 0.021).ConclusionOur analysis indicates that high PLK-1 expression is associated with aggressiveness and poor prognosis in malignant neoplasms. Therefore, PLK-1 may be a clinically valuable target for cancer treatment.
Collapse
|
3
|
Qian Y, Li Y, Chen K, Liu N, Hong X, Wu D, Xu Z, Zhou L, Xu L, Jia R, Ge YZ. Pan-Cancer Transcriptomic Analysis Identifies PLK1 Crucial for the Tumorigenesis of Clear Cell Renal Cell Carcinoma. J Inflamm Res 2022; 15:1099-1116. [PMID: 35210814 PMCID: PMC8859474 DOI: 10.2147/jir.s347732] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 02/02/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yiguan Qian
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yang Li
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ke Chen
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ning Liu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xi Hong
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Di Wu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Zheng Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Liuhua Zhou
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Luwei Xu
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Ruipeng Jia
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Correspondence: Ruipeng Jia; Yu-Zheng Ge, Department of Urology, Nanjing First Hospital, Nanjing Medical UniversityNanjing, Jiangsu, People’s Republic of China, Tel +86-15850675660, Email ;
| | - Yu-Zheng Ge
- Department of Urology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
4
|
Liao X, Qian X, Zhang Z, Tao Y, Li Z, Zhang Q, Liang H, Li X, Xie Y, Zhuo R, Chen Y, Jiang Y, Cao H, Niu J, Xue C, Ni J, Pan J, Cui D. ARV-825 Demonstrates Antitumor Activity in Gastric Cancer via MYC-Targets and G2M-Checkpoint Signaling Pathways. Front Oncol 2021; 11:753119. [PMID: 34733788 PMCID: PMC8559897 DOI: 10.3389/fonc.2021.753119] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/27/2021] [Indexed: 01/20/2023] Open
Abstract
Objective Suppression of bromodomain and extra terminal (BET) proteins has a bright prospect to treat MYC-driven tumors. Bromodomain containing 4 (BRD4) is one of the BET proteins. ARV-825, consisting of a BRD4 inhibitor conjugated with a cereblon ligand using proteolysis-targeting chimera (PROTAC) technology, was proven to decrease the tumor growth effectively and continuously. Nevertheless, the efficacy and mechanisms of ARV-825 in gastric cancer are still poorly understood. Methods Cell counting kit 8 assay, lentivirus infection, Western blotting analysis, Annexin V/propidium iodide (PI) staining, RNA sequencing, a xenograft model, and immunohistochemistry were used to assess the efficacy of ARV-825 in cell level and animal model. Results The messenger RNA (mRNA) expression of BRD4 in gastric cancer raised significantly than those in normal tissues, which suggested poor outcome of patients with gastric cancer. ARV-825 displayed higher anticancer efficiency in gastric cancer cells than OTX015 and JQ1. ARV-825 could inhibit cell growth, inducing cell cycle block and apoptosis in vitro. ARV-825 induced degradation of BRD4, BRD2, BRD3, c-MYC, and polo-like kinase 1 (PLK1) proteins in four gastric cancer cell lines. In addition, cleavage of caspase 3 and poly-ADP-ribose polymerase (PARP) was elevated. Knockdown or overexpression CRBN could increase or decrease, respectively, the ARV-825 IC50 of gastric cancer cells. ARV-825 reduced MYC and PLK1 expression in gastric cancer cells. ARV-825 treatment significantly reduced tumor growth without toxic side effects and downregulated the expression of BRD4 in vivo. Conclusions High mRNA expression of BRD4 in gastric cancer indicated poor prognosis. ARV-825, a BRD4 inhibitor, could effectively suppress the growth and elevate the apoptosis of gastric cancer cells via transcription downregulation of c-MYC and PLK1. These results implied that ARV-825 could be a good therapeutic strategy to treat gastric cancer.
Collapse
Affiliation(s)
- Xinmei Liao
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoqing Qian
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Zimu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanfang Tao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Zhiheng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Qian Zhang
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Liang
- Institute of Nanomedicine, National Engineering Research Centre for Nanotechnology, Shanghai, China
| | - Xiaolu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Yanling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - You Jiang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Haibo Cao
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Jiaqi Niu
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Cuili Xue
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Ni
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, Shanghai Engineering Research Centre for Intelligent Diagnosis and Treatment Instrument, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Institute of Nanomedicine, National Engineering Research Centre for Nanotechnology, Shanghai, China
| |
Collapse
|
5
|
Kobayashi Y, Masuda T, Fujii A, Shimizu D, Sato K, Kitagawa A, Tobo T, Ozato Y, Saito H, Kuramitsu S, Noda M, Otsu H, Mizushima T, Doki Y, Eguchi H, Mori M, Mimori K. Mitotic checkpoint regulator RAE1 promotes tumor growth in colorectal cancer. Cancer Sci 2021; 112:3173-3189. [PMID: 34008277 PMCID: PMC8353924 DOI: 10.1111/cas.14969] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/19/2022] Open
Abstract
Microtubules are among the most successful targets for anticancer therapy because they play important roles in cell proliferation as they constitute the mitotic spindle, which is critical for chromosome segregation during mitosis. Hence, identifying new therapeutic targets encoding proteins that regulate microtubule assembly and function specifically in cancer cells is critical. In the present study, we identified a candidate gene that promotes tumor progression, ribonucleic acid export 1 (RAE1), a mitotic checkpoint regulator, on chromosome 20q through a bioinformatics approach using datasets of colorectal cancer (CRC), including The Cancer Genome Atlas (TCGA). RAE1 was ubiquitously amplified and overexpressed in tumor cells. High expression of RAE1 in tumor tissues was positively associated with distant metastasis and was an independent poor prognostic factor in CRC. In vitro and in vivo analysis showed that RAE1 promoted tumor growth, inhibited apoptosis, and promoted cell cycle progression, possibly with a decreased proportion of multipolar spindle cells in CRC. Furthermore, RAE1 induced chemoresistance through its anti-apoptotic effect. In addition, overexpression of RAE1 and significant effects on survival were observed in various types of cancer, including CRC. In conclusion, we identified RAE1 as a novel gene that facilitates tumor growth in part by inhibiting apoptosis and promoting cell cycle progression through stabilizing spindle bipolarity and facilitating tumor growth. We suggest that it is a potential therapeutic target to overcome therapeutic resistance of CRC.
Collapse
Affiliation(s)
- Yuta Kobayashi
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takaaki Masuda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Atsushi Fujii
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Dai Shimizu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Kuniaki Sato
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Akihiro Kitagawa
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taro Tobo
- Department of Clinical Laboratory Medicine, Kyushu University Beppu Hospital, Oita, Japan
| | - Yuki Ozato
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan.,Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hideyuki Saito
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Shotaro Kuramitsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Miwa Noda
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Hajime Otsu
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| | - Tsunekazu Mizushima
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Koshi Mimori
- Department of Surgery, Kyushu University Beppu Hospital, Oita, Japan
| |
Collapse
|
6
|
Serrano-Del Valle A, Reina-Ortiz C, Benedi A, Anel A, Naval J, Marzo I. Future prospects for mitosis-targeted antitumor therapies. Biochem Pharmacol 2021; 190:114655. [PMID: 34129859 DOI: 10.1016/j.bcp.2021.114655] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/17/2022]
Abstract
Dysregulation of cell cycle progression is a hallmark of cancer cells. In recent years, efforts have been devoted to the development of new therapies that target proteins involved in cell cycle regulation and mitosis. Novel targeted antimitotic drugs include inhibitors of aurora kinase family, polo-like kinase 1, Mps1, Eg5, CENP-5 and the APC/cyclosome complex. While certain new inhibitors reached the clinical trial stage, most were discontinued due to negative results. However, these therapies should not be readily dismissed. Based on recent advances concerning their mechanisms of action, new strategies could be devised to increase their efficacy and promote further clinical trials. Here we discuss three main lines of action to empower these therapeutic approaches: increasing cell death signals during mitotic arrest, targeting senescent cells and facilitating antitumor immune response through immunogenic cell death (ICD).
Collapse
Affiliation(s)
| | - Chantal Reina-Ortiz
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Andrea Benedi
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Alberto Anel
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Javier Naval
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain
| | - Isabel Marzo
- Dept. Biochemistry, Molecular and Cell Biology, University of Zaragoza and IIS Aragón, Spain.
| |
Collapse
|
7
|
Huang J, Wen F, Huang W, Bai Y, Lu X, Shu P. Identification of hub genes and discovery of promising compounds in gastric cancer based on bioinformatics analysis. Biomark Med 2020; 14:1069-1084. [PMID: 32969243 DOI: 10.2217/bmm-2019-0608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To explore the mechanism of gastric carcinogenesis by mining potential hub genes and to search for promising small-molecular compounds for gastric cancer (GC). Materials & methods: The microarray datasets were downloaded from Gene Expression Omnibus database and the genes and compounds were analyzed by bioinformatics-related tools and software. Results: Six hub genes (MKI67, PLK1, COL1A1, TPX2, COL1A2 and SPP1) related to the prognosis of GC were confirmed to be upregulated in GC and their high expression was correlated with poor overall survival rate in GC patients. In addition, eight candidate compounds with potential anti-GC activity were identified, among which resveratrol was closely correlated with six hub genes. Conclusion: Six hub genes identified in the present study may contribute to a more comprehensive understanding of the mechanism of gastric carcinogenesis and the predicted potential of resveratrol may provide valuable clues for the future development of targeted anti-GC inhibitors.
Collapse
Affiliation(s)
- Jiani Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Fang Wen
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Wenjie Huang
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Yingfeng Bai
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- College of Traditional ChineseMedicine, College of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaona Lu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| | - Peng Shu
- Nanjing University of Chinese Medicine, Nanjing210029, Jiangsu Province, China
- Department of Oncology, Affiliated Hospital ofNanjing University of Chinese Medicine, Nanjing 210029, Jiangsu Province, China
- Department of Oncology, Jiangsu Province Hospitalof Chinese Medicine, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
8
|
Chen E, Pei R. BI6727, a polo-like kinase 1 inhibitor with promising efficacy on Burkitt lymphoma cells. J Int Med Res 2020; 48:300060520926093. [PMID: 32468878 PMCID: PMC7263168 DOI: 10.1177/0300060520926093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/22/2020] [Indexed: 11/26/2022] Open
Abstract
OBJECTIVE BI6727, an ATP-competitive PLK1 inhibitor, has been shown to cause cell death in multi-tumors. This study aimed to investigate the anti-tumor effect and potential molecular mechanism of BI6727 in human Burkitt lymphoma (BL) cell lines. METHODS We assessed polo-like kinase 1 (PLK1) expression in BL patient tissues and cells, also investigated the cytotoxic effect using CCK8 assay and flow cytometry. In addition, western blotting and real-time polymerase chain reaction (RT-PCR) assays were used to explore the molecular mechanisms of BI6727 in human BL cell lines. RESULTS PLK1 was overexpressed in BL cells compared with normal cells. The PLK1 inhibitor BI6727 reduced activated PLK1 expression and caused mitotic arrest in BL cells. Additionally, BI6727 suppressed cellular proliferation and induced apoptosis in BL cell lines. BI6727 treatment also decreased C-MYC protein and mRNA expression, blocked the PI3K/AKT/mTOR signaling pathway, and stabilized the FBXW7 protein. CONCLUSIONS Our findings explained a potential molecular mechanism of BI6727 in BL cells and suggested that BI6727 might be a new therapeutic agent for BL in the future.
Collapse
Affiliation(s)
- Er Chen
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Hematology, Yinzhou People’s Hospital, Ningbo, Zhejiang, P.R. China
| | - Renzhi Pei
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
- Department of Hematology, Yinzhou People’s Hospital, Ningbo, Zhejiang, P.R. China
| |
Collapse
|
9
|
Phosphoproteomics Enables Molecular Subtyping and Nomination of Kinase Candidates for Individual Patients of Diffuse-Type Gastric Cancer. iScience 2019; 22:44-57. [PMID: 31751824 PMCID: PMC6931223 DOI: 10.1016/j.isci.2019.11.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 09/25/2019] [Accepted: 11/01/2019] [Indexed: 12/17/2022] Open
Abstract
The diffuse-type gastric cancer (DGC) constitutes a subgroup of gastric cancer with poor prognosis and no effective molecular therapies. Here, we report a phosphoproteomic landscape of DGC derived from 83 tumors together with their nearby tissues. Based on phosphorylation, DGC could be classified into three molecular subtypes with distinct overall survival (OS) and chemosensitivity. We identified 16 kinases whose activities were associated with poor OS. These activated kinases covered several cancer hallmark pathways, with the MTOR signaling network being the most frequently activated. We proposed a patient-specific strategy based on the hierarchy of clinically actionable kinases for prioritization of kinases for further clinical evaluation. Our global data analysis indicates that in addition to finding activated kinase pathways in DGC, large-scale phosphoproteomics could be used to classify DGCs into subtypes that are associated with distinct clinical outcomes as well as nomination of kinase targets that may be inhibited for cancer treatments.
Collapse
|
10
|
Maehara Y, Soejima Y, Yoshizumi T, Kawahara N, Oki E, Saeki H, Akahoshi T, Ikegami T, Yamashita YI, Furuyama T, Sugimachi K, Harada N, Tagawa T, Harimoto N, Itoh S, Sonoda H, Ando K, Nakashima Y, Nagao Y, Yamashita N, Kasagi Y, Yukaya T, Kurihara T, Tsutsumi R, Takamori S, Sasaki S, Ikeda T, Yonemitsu Y, Fukuhara T, Kitao H, Iimori M, Kataoka Y, Wakasa T, Suzuki M, Teraishi K, Yoshida Y, Mori M. The evolution of surgical treatment for gastrointestinal cancers. Int J Clin Oncol 2019; 24:1333-1349. [PMID: 31522313 DOI: 10.1007/s10147-019-01499-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Accepted: 06/22/2019] [Indexed: 01/28/2023]
Abstract
INTRODUCTION According to the latest Japanese nationwide estimates, over a million Japanese people are newly diagnosed with cancer each year. Since gastrointestinal cancers account for more than 40% of all cancer-related deaths, it is imperative to formulate effective strategies to control them. MATERIALS AND METHODS, AND RESULTS Basic drug discovery research Our research has revealed that the abnormal expression of regulators of chromosomal stability is a cause of cancers and identified an effective compound against cancers with chromosomal instability. We revealed the molecular mechanism of peritoneal dissemination of cancer cells via the CXCR4/CXCL12 axis to CAR-like cells and identified an MEK inhibitor effective against these tumors. Residual tumor cells after chemotherapy in colorectal cancer are LGR5-positive cancer stem cells and their ability to eliminate reactive oxygen species is elevated. The development of surgical procedures and devices In cases of gastric tube reconstruction for esophageal cancer, we determined the anastomotic line for evaluating the blood flow using ICG angiography and measuring the tissue O2 metabolism. We established a novel gastric reconstruction method (book-binding technique) for gastric cancer and a new rectal reconstruction method focusing on the intra-intestinal pressure resistance for rectal cancer. We established a novel tissue fusion method, which allows contact-free local heating and retains tissue viability with very little damage, and developed an understanding of the collagen-related processes that underpin laser-induced tissue fusion. Strategy to prevent carcinogenesis We succeeded in cleaving hepatitis B virus DNA integrated into the nucleus of hepatocytes using genome editing tools. The development of HCC from non-alcoholic steatohepatitis (NASH) may be prevented by metabolic surgery. CONCLUSION We believe that these efforts will help to significantly improve the gastrointestinal cancer treatment and survival.
Collapse
Affiliation(s)
- Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan.
| | - Yuji Soejima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tomoharu Yoshizumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Naoyuki Kawahara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Tomohiko Akahoshi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Advanced Medical Initiatives, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Toru Ikegami
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yo-Ichi Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Gastroenterological Surgery, Kumamoto University Graduate School of Medical Sciences, Kumamoto, Japan
| | - Tadashi Furuyama
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Keishi Sugimachi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Hepatobiliary-Pancreatic Surgery, National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Noboru Harada
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Norifumi Harimoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Gunma, Japan
| | - Shinji Itoh
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hideto Sonoda
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Imari Arita Kyoritsu Hospital, Saga, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiro Nagao
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuta Kasagi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Fukuoka Higashi Medical Center, Fukuoka, Japan
| | - Takafumi Yukaya
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
- Department of Surgery, Iizuka Hospital, Iizuka, Fukuoka, Japan
| | - Takeshi Kurihara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Ryosuke Tsutsumi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinkichi Takamori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shun Sasaki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuo Ikeda
- Endoscopy and Endoscopic Surgery, Fukuoka Dental College, Fukuoka, Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharma-Ceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Takasuke Fukuhara
- Department of Molecular Virology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Hiroyuki Kitao
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuki Kataoka
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Taiho Pharmaceutical Co. Ltd., Tokyo, Japan
| | - Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
- Taiho Pharmaceutical Co. Ltd., Tokyo, Japan
| | | | - Koji Teraishi
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharma-Ceutical Sciences, Kyushu University, Fukuoka, Japan
- Ono Pharmaceutical Co., Ltd., Osaka, Japan
| | | | - Masaki Mori
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
11
|
Chen X, Yu X, Shen E. Overexpression of CDKN2B is involved in poor gastric cancer prognosis. J Cell Biochem 2019; 120:19825-19831. [PMID: 31297846 DOI: 10.1002/jcb.29287] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022]
Abstract
The objective of this investigation is to elucidate the clinical significance of cyclin-dependent kinase inhibitor 2B (CDKN2B) expression regarding gastric cancer (GC), as well as to detect the involvement of CDKN2B expression in the clinicopathological indexes and prognosis of GC. Immunohistochemical analysis was used for identification of CDKN2B expression in GC specimens. Chi-square (χ2 ) test was applied to detect the association of CDKN2B expression and clinicopathological parameters of GC. The involvement of CDKN2B expression in the prognosis was analyzed via univariate and multivariate analysis. It was indicated that relative to the corresponding para-carcinoma tissues, CDKN2B expression was notably upregulated in GC specimens. Moreover, the expression of CDKN2B was strongly correlated with the differentiation (r = -0.182; P = .015), invasion (r = -0.157; P = .038), distant metastases (r = -0.196; P = .004), and TNM stage (r = -0.204; P = .005). Nevertheless, no remarkable variance was related to age, tumor loci, or sex. Kaplan-Meier survival curve and univariate analysis showed that CDKN2B overexpression predicted poorer disease-free survival (P = .007) and overall survival (P = .005) in those with GC. In addition, Cox proportional hazards regression model revealed that CDKN2B was an isolated biomarker of disease-free survival and overall survival in patients with GC. Taken together, our data demonstrated that the overexpression of CDKN2B could be an isolated factor for GC prognostic in patients. CDKN2B gene may be a useful target and new treatment for improving the prognosis of GC.
Collapse
Affiliation(s)
- Xi Chen
- Department of Pathology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Xingtong Yu
- Department of Pathology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| | - Enjian Shen
- Department of Pathology, Taizhou Municipal Hospital, Taizhou, Zhejiang, China
| |
Collapse
|
12
|
Yang W, Zhao X, Han Y, Duan L, Lu X, Wang X, Zhang Y, Zhou W, Liu J, Zhang H, Zhao Q, Hong L, Fan D. Identification of hub genes and therapeutic drugs in esophageal squamous cell carcinoma based on integrated bioinformatics strategy. Cancer Cell Int 2019; 19:142. [PMID: 31139019 PMCID: PMC6530124 DOI: 10.1186/s12935-019-0854-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of leading malignant cancers of gastrointestinal tract worldwide. Until now, the involved mechanisms during the development of ESCC are largely unknown. This study aims to explore the driven-genes and biological pathways in ESCC. Methods mRNA expression datasets of GSE29001, GSE20347, GSE100942, and GSE38129, containing 63 pairs of ESCC and non-tumor tissues data, were integrated and deeply analyzed. The bioinformatics approaches include identification of differentially expressed genes (DEGs) and hub genes, gene ontology (GO) terms analysis and biological pathway enrichment analysis, construction and analysis of protein-protein interaction (PPI) network, and miRNA-gene network construction. Subsequently, GEPIA2 database and qPCR assay were utilized to validate the expression of hub genes. DGIdb database was performed to search the candidate drugs for ESCC. Results Finally, 120 upregulated and 26 downregulated DEGs were identified. The functional enrichment of DEGs in ESCC were mainly correlated with cell cycle, DNA replication, deleted in colorectal cancer (DCC) mediated attractive signaling pathway, and Netrin-1 signaling pathway. The PPI network was constructed using STRING software with 146 nodes and 2392 edges. The most significant three modules in PPI were filtered and analyzed. Totally ten genes were selected and considered as the hub genes and nuclear division cycle 80 (NDC80) was closely related to the survival of ESCC patients. DGIdb database predicted 33 small molecules as the possible drugs for treating ESCC. Conclusions In summary, the data may provide new insights into ESCC pathogenesis and treatments. The candidate drugs may improve the efficiency of personalized therapy in future.
Collapse
Affiliation(s)
- Wanli Yang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xinhui Zhao
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yu Han
- 2Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Lili Duan
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Xin Lu
- 3The School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoqian Wang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yujie Zhang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Wei Zhou
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Jinqiang Liu
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Hongwei Zhang
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Qingchuan Zhao
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Liu Hong
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- 1State Key Laboratory of Cancer Biology, National Clinical Research Center for Digestive Diseases, and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Liu X, Chen Y, Li Y, Petersen RB, Huang K. Targeting mitosis exit: A brake for cancer cell proliferation. Biochim Biophys Acta Rev Cancer 2019; 1871:179-191. [PMID: 30611728 DOI: 10.1016/j.bbcan.2018.12.007] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/03/2018] [Accepted: 12/03/2018] [Indexed: 12/16/2022]
Abstract
The transition from mitosis to interphase, referred to as mitotic exit, is a critical mitotic process which involves activation and inactivation of multiple mitotic kinases and counteracting protein phosphatases. Loss of mitotic exit checkpoints is a common feature of cancer cells, leading to mitotic dysregulation and confers cancer cells with oncogenic characteristics, such as aberrant proliferation and microtubule-targeting agent (MTA) resistance. Since MTA resistance results from cancer cells prematurely exiting mitosis (mitotic slippage), blocking mitotic exit is believed to be a promising anticancer strategy. Moreover, based on this theory, simultaneous inhibition of mitotic exit and additional cell cycle phases would likely achieve synergistic antitumor effects. In this review, we divide the molecular regulators of mitotic exit into four categories based on their different regulatory functions: 1) the anaphase-promoting complex/cyclosome (APC/C, a ubiquitin ligase), 2) cyclin B, 3) mitotic kinases and phosphatases, 4) kinesins and microtubule-binding proteins. We also review the regulators of mitotic exit and propose prospective anticancer strategies targeting mitotic exit, including their strengths and possible challenges to their use.
Collapse
Affiliation(s)
- Xinran Liu
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China
| | - Yangkai Li
- Tongji Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan 430030, China
| | - Robert B Petersen
- Foundational Sciences, Central Michigan University College of Medicine, Mt. Pleasant, MI 48858, USA
| | - Kun Huang
- Tongji School of Pharmacy, Huazhong University of Science & Technology, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Shu S, Iimori M, Wakasa T, Ando K, Saeki H, Oda Y, Oki E, Maehara Y. The balance of forces generated by kinesins controls spindle polarity and chromosomal heterogeneity in tetraploid cells. J Cell Sci 2019; 132:jcs.231530. [DOI: 10.1242/jcs.231530] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/18/2019] [Indexed: 12/16/2022] Open
Abstract
Chromosomal instability, one of the most prominent features of tumour cells, causes aneuploidy. Tetraploidy is thought to be an intermediate on the path to aneuploidy, but the mechanistic relationship between the two states is poorly understood. Here, we show that spindle polarity (e.g., bipolarity or multipolarity) in tetraploid cells depends on the level of functional phospho-Eg5, a mitotic kinesin, localised at the spindle. Multipolar spindles are formed in cells with high levels of phospho-Eg5. This process is suppressed by inhibition of Eg5 or expression of a non-phosphorylatable Eg5 mutant, as well as by changing the balance between opposing forces required for centrosome separation. Tetraploid cells with high levels of functional Eg5 give rise to a heterogeneous aneuploid population via multipolar division, whereas those with low levels of functional Eg5 continue to undergo bipolar division and remain tetraploid. Furthermore, Eg5 expression levels correlate with ploidy status in tumour specimens. We provide a novel explanation for the tetraploid intermediate model: spindle polarity and subsequent tetraploid cell behaviour are determined by the balance of forces generated by mitotic kinesins at the spindle.
Collapse
Affiliation(s)
- Sei Shu
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Product Research Department, Medical Affairs Division, Chugai Pharmaceutical Co. Ltd., 200 Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Makoto Iimori
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takeshi Wakasa
- Department of Molecular Cancer Biology, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Taiho Pharmaceutical Co. Ltd., 1-27 Kandanishiki-cho, Chiyoda-ku, Tokyo 101-8444, Japan
| | - Koji Ando
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Hiroshi Saeki
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Eiji Oki
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yoshihiko Maehara
- Departments of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, 3-23-1 Shiobaru, Minami-ku, Fukuoka, 815-8588, Japan
| |
Collapse
|
15
|
Xu W, Huang Y, Yang Z, Hu Y, Shu X, Xie C, He C, Zhu Y, Lu N. Helicobacter pylori promotes gastric epithelial cell survival through the PLK1/PI3K/Akt pathway. Onco Targets Ther 2018; 11:5703-5713. [PMID: 30254463 PMCID: PMC6140703 DOI: 10.2147/ott.s164749] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Helicobacter pylori (H. pylori) infection plays a critical role in the process of gastric carcinogenesis. However, the complicated pathogenic mechanism is still unclear. Polo-like kinase 1 (PLK1) is involved in the development of multiple human malignancies, including gastric cancer. Therefore, this study aimed to elucidate the role of PLK1 in H. pylori-induced gastric carcinogenesis and the underlying signaling mechanism. Materials and methods We detected the expression of PLK1 in 166 patients in different stages of gastric carcinogenesis as well as the established Mongolian gerbil model with H. pylori infection by immunohistochemistry. Cell Counting Kit-8 was used to estimate the survival of gastric cancer cells. Results We found that PLK1 expression in gastric cancer tissues was significantly higher than that of paired adjacent mucosa. PLK1 expression was increased in intestinal metaplasia, dysplasia, and gastric cancer tissues compared to chronic non-atrophic gastritis tissues. Notably, PLK1 expression was much lower in H. pylori-negative tissues than in H. pylori-positive tissues at intestinal metaplasia stage. In addition, H. pylori infection increased PLK1 expression in the gastric epithelial cells of the Mongolian gerbil model, which was positively related to the duration of H. pylori infection. Inhibition of PLK1 significantly reduced H. pylori-induced cell proliferation. Furthermore, incubation of MKN-28 cells with H. pylori resulted in a significant increase in PLK1, p-PTEN, and the downstream PI3K/Akt pathway, and pretreatment with a PLK1 inhibitor reversed these molecular changes. Conclusion PLK1 is involved in H. pylori-induced gastric carcinogenesis at the early stage by activating the PI3K/Akt signaling pathway. These results may contribute to the development of new control strategies for H. pylori infection-related gastric cancer.
Collapse
Affiliation(s)
- Wenting Xu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Ying Huang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Zhen Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Yi Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Xu Shu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Chuan Xie
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Cong He
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Yin Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| | - Nonghua Lu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, China, ;
| |
Collapse
|
16
|
Lian G, Li L, Shi Y, Jing C, Liu J, Guo X, Zhang Q, Dai T, Ye F, Wang Y, Chen M. BI2536, a potent and selective inhibitor of polo-like kinase 1, in combination with cisplatin exerts synergistic effects on gastric cancer cells. Int J Oncol 2018; 52:804-814. [PMID: 29393385 PMCID: PMC5807034 DOI: 10.3892/ijo.2018.4255] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 12/15/2017] [Indexed: 01/08/2023] Open
Abstract
BI2536 is a highly selective and potent inhibitor of polo-like kinase 1 (PLK1). In this study, we aimed to determine whether BI2536 and cisplatin can synergistically inhibit the malignant behavior of gastric cancer cells. For this purpose, the expression of PLK1 in gastric cancer cells was determined. The effects of BI2536, cisplatin, and the combination of BI2536 and cisplatin on gastric cancer cell viability, invasion, cell cycle arrest and apoptosis were assessed. Furthermore, the expression of cell cycle-regulated proteins was examined. Moreover, the differentially expressed proteins between the SGC-7901 and SGC-7901/DDP (cisplatin-resistant) cells, and the enriched signaling pathways were analyzed by protein pathway array following treatment with BI2536 (IC50) for 48 h. Our results revealed that PLK1 was upregulated in the SGC-7901/DDP (cisplatin-resistant) gastric cancer cells compared with the SGC-7901 cells. BI2536 enhanced the inhibitory effect of cisplatin on SGC-7901 cell viability and invasion. BI2536 induced G2/M arrest in SGC-7901 and SGC-7901/DDP cells. BI2536 promoted cisplatin-induced gastric cancer SGC-7901/DDP cell apoptosis. It also induced the differential expression of 68 proteins between the SGC-7901 and SGC-7901/DDP cells, and these differentially expressed proteins were involved in a number of cellular functions and signaling pathways, such as cell death, cell development, tumorigenesis, the cell cycle, DNA duplication/recombination/repair, cellular movement, and the Wnt/β-catenin and mitogen-activated protein kinase (MEK)/extracellular signal-regulated kinase (ERK)/ribosomal S6 kinase 1 (RSK1) signaling pathways. On the whole, our findings suggest that BI2536 and cisplatin synergistically inhibit the malignant behavior of SGC-7901/DDP (cisplatin‑resistant) gastric cancer cells.
Collapse
Affiliation(s)
| | - Leping Li
- Department of Gastrointestinal Surgery
| | | | | | | | | | - Qingqing Zhang
- Statistics and Medical Record Management Section, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021
| | - Tianyu Dai
- Clinical Medical College of Jining Medical University, Jining, Shandong 272067, P.R. China
| | - Fei Ye
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yanyan Wang
- Biological Engineering School of Dalian Polytechnic University, Dalian, Liaoning 116034
| | - Man Chen
- Department of Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
17
|
Weiss GJ, Jameson G, Von Hoff DD, Valsasina B, Davite C, Di Giulio C, Fiorentini F, Alzani R, Carpinelli P, Di Sanzo A, Galvani A, Isacchi A, Ramanathan RK. Phase I dose escalation study of NMS-1286937, an orally available Polo-Like Kinase 1 inhibitor, in patients with advanced or metastatic solid tumors. Invest New Drugs 2018; 36:85-95. [PMID: 28726132 DOI: 10.1007/s10637-017-0491-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/07/2017] [Indexed: 12/21/2022]
Abstract
Background Pharmacological inhibition of polo-like kinase 1 (PLK1) represents a new approach for the treatment of solid tumors. This study was aimed at determining the first cycle dose-limiting toxicities (DLTs) and related maximum tolerated dose (MTD) of NMS-1286937, a selective ATP-competitive PLK1-specific inhibitor. Secondary objectives included evaluation of its safety and pharmacokinetic (PK) profile in plasma, its antitumor activity, and its ability to modulate intracellular targets in biopsied tissue. Methods This was a Phase I, open-label, dose-escalation trial in patients with advanced/metastatic solid tumors. A treatment cycle comprised 5 days of oral administration followed by 16 days of rest, for a total of 21 days (3-week cycle). Results Nineteen of 21 enrolled patients with confirmed metastatic disease received study medication. No DLTs occurred at the first 3 dose levels (6, 12, and 24 mg/m2/day). At the subsequent dose level (48 mg/m2/day), 2 of 3 patients developed DLTs. An intermediate level of 36 mg/m2/day was therefore investigated. Four patients were treated and two DLTs were observed. After further cohort expansion, the MTD and recommended phase II dose (RP2D) were determined to be 24 mg/m2/day. Disease stabilization, observed in several patients, was the best treatment response observed. Hematological toxicity (mostly thrombocytopenia and neutropenia) was the major DLT. Systemic exposure to NMS-1286937 increased with dose and was comparable between two cycles of treatment following oral administration of the drug. Conclusions This study successfully identified the MTD and DLTs for NMS-1286937 and characterized its safety profile.
Collapse
Affiliation(s)
- Glen J Weiss
- Western Regional Medical Center, Cancer Treatment Centers of America, 14200 W Celebrate Life Way, Goodyear, AZ, 85338, USA.
- Virginia G. Piper Cancer Centers at Scottsdale Healthcare, Scottsdale, AZ, USA.
| | - Gayle Jameson
- Virginia G. Piper Cancer Centers at Scottsdale Healthcare, Scottsdale, AZ, USA
| | - Daniel D Von Hoff
- Virginia G. Piper Cancer Centers at Scottsdale Healthcare, Scottsdale, AZ, USA
| | | | - Cristina Davite
- CLInical Organization for Strategies and Solutions (CLIOSS) S.r.l, Mayo Scottsdale, Nerviano, Italy
| | - Claudia Di Giulio
- CLInical Organization for Strategies and Solutions (CLIOSS) S.r.l, Mayo Scottsdale, Nerviano, Italy
| | | | | | | | - Alessandro Di Sanzo
- CLInical Organization for Strategies and Solutions (CLIOSS) S.r.l, Mayo Scottsdale, Nerviano, Italy
| | | | | | - Ramesh K Ramanathan
- Virginia G. Piper Cancer Centers at Scottsdale Healthcare, Scottsdale, AZ, USA
| |
Collapse
|
18
|
Schukken KM, Foijer F. CIN and Aneuploidy: Different Concepts, Different Consequences. Bioessays 2017; 40. [PMID: 29160563 DOI: 10.1002/bies.201700147] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/10/2017] [Indexed: 12/19/2022]
Abstract
Chromosomal instability (CIN) and aneuploidy are similar concepts but not synonymous. CIN is the process that leads to chromosome copy number alterations, and aneuploidy is the result. While CIN and resulting aneuploidy often cause growth defects, they are also selected for in cancer cells. Although such contradicting fates may seem paradoxical at first, they can be better understood when CIN and aneuploidy are assessed separately, taking into account the in vitro or in vivo context, the rate of CIN, and severity of the aneuploid karyotype. As CIN can only be measured in living cells, which proves to be technically challenging in vivo, aneuploidy is more frequently quantified. However, CIN rates might be more predictive for tumor outcome than assessing aneuploidy rates alone. In reviewing the literature, we therefore conclude that there is an urgent need for new models in which we can monitor chromosome mis-segregation and its consequences in vivo. Also see the video abstract here: https://youtu.be/fL3LxZduchg.
Collapse
Affiliation(s)
- Klaske M Schukken
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| | - Floris Foijer
- European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, 9713 AV, Groningen, The Netherlands
| |
Collapse
|
19
|
Lin P, Xiong DD, Dang YW, Yang H, He Y, Wen DY, Qin XG, Chen G. The anticipating value of PLK1 for diagnosis, progress and prognosis and its prospective mechanism in gastric cancer: a comprehensive investigation based on high-throughput data and immunohistochemical validation. Oncotarget 2017; 8:92497-92521. [PMID: 29190933 PMCID: PMC5696199 DOI: 10.18632/oncotarget.21438] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 08/23/2017] [Indexed: 12/26/2022] Open
Abstract
Polo-like kinase 1 (PLK1) is a multi-functional protein and its aberrant expression is a driver of cancerous transformation and progression. To increase our understanding of the clinical value and potential molecular mechanism of PLK1 in gastric cancer (GC), we performed this comprehensive investigation. A total of 25 datasets and 12 publications were finally incorporated. Additional immunohistochemistry was conducted to validate the expression pattern of PLK1 in GC. The pooled standard mean deviation (SMD) indicated that PLK1 mRNA was up-regulated in GC (SMD=1.21, 95% CI: 0.65-1.77, P< 0.001). Similarly, the pooled odds ratio (OR) revealed that PLK1 protein was overexpressed in GC compared with normal gastric tissue (OR=12.12, 95% CI: 5.41-27.16, P<0.001). The area under the curve (AUC) of the summary receiver operating characteristic (SROC) curve was 0.86. Furthermore, our results demonstrated that GC patients with PLK1 overexpression were significantly associated with unfavorable overall survival (HR =1.54, 95% CI: 1.30–1.83, P<0.001), lymph node metastasis (OR = 1.78, 95% CI: 1.13–2.80, P=0.013) and advanced TNM stage (OR=1.48, 95% CI: 1.02-2.15, P=0.038). Altogether, 100 similar genes were identified by Gene Expression Profiling Interactive Analysis (GEPIA) and further with gene-set enrichment analysis. These genes were related to gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways relevant to the cell cycle. Gene set enrichment analysis (GSEA) indicated that PLK1 is associated with various cancer-related pathways. Collectively, this study suggests that PLK1 overexpression could play vital roles in the carcinogenesis and deterioration of GC via regulating tumor-related pathways.
Collapse
Affiliation(s)
- Peng Lin
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dan-Dan Xiong
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Yun He
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Xin-Gan Qin
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P. R. China
| |
Collapse
|
20
|
Nishimura S, Oki E, Ando K, Iimori M, Nakaji Y, Nakashima Y, Saeki H, Oda Y, Maehara Y. High ubiquitin-specific protease 44 expression induces DNA aneuploidy and provides independent prognostic information in gastric cancer. Cancer Med 2017; 6:1453-1464. [PMID: 28544703 PMCID: PMC5463085 DOI: 10.1002/cam4.1090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/03/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022] Open
Abstract
Chromosomal instability (CIN), characterized by aneuploidy, is a major molecular subtype of gastric cancer. The deubiquitinase USP44 is an important regulator of APC activation in the spindle checkpoint and leads to proper chromosome separation to prevent aneuploidy. Aberrant expression of USP44 leads CIN in cells; however, the correlation between USP44 and DNA aneuploidy in gastric cancer is largely unknown. We analyzed USP44 expression in 207 patients with gastric cancer by immunohistochemistry and found that the proportion of USP44 expression was higher in gastric cancer tumors (mean, 39.6%) than in gastric normal mucosa (mean, 14.6%) (P < 0.0001). DNA aneuploidy was observed in 124 gastric cancer cases and high USP44 expression in cancer strongly correlated with DNA aneuploidy (P = 0.0005). The overall survival was significantly poorer in the high USP44 expression group compared with the low USP44 group (P = 0.033). Notably, USP44 expression had no prognostic impact in the diploid subgroup; however, high USP44 expression was a strong poor prognostic factor for progression‐free survival (P = 0.018) and overall survival (P = 0.036) in the aneuploid subgroup. We also confirmed that stable overexpression of USP44 induced somatic copy‐number aberrations in hTERT‐RPE‐1 cells (50.6%) in comparison with controls (6.6%) (P < 0.0001). Collectively, our data show USP44 has clinical impact on the induction of DNA aneuploidy and poor prognosis in the CIN gastric cancer subtype.
Collapse
Affiliation(s)
- Sho Nishimura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koji Ando
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Makoto Iimori
- Department of Molecular Oncology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yu Nakaji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichiro Nakashima
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroshi Saeki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
21
|
Augmented expression of polo-like kinase 1 indicates poor clinical outcome for breast patients: a systematic review and meta-analysis. Oncotarget 2017; 8:57723-57732. [PMID: 28915707 PMCID: PMC5593679 DOI: 10.18632/oncotarget.17301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Polo-like kinases 1 (PLK1), a key regulator of mitosis, plays an essential role in maintaining genomic stability. Up-regulation of PLK1 was found in tumorigenesis and tumor progression of diverse cancers. However, the clinicopathological and prognostic implications of PLK1 in breast cancer (BC) have yet to be unveiled. Therefore, using PubMed, Web of Science, Embase, and Chinese databases, we conducted a meta-analysis to define the potential clinical value of PLK1 in BC. Eleven eligible articles with 2481 patients enrolled were included in the present meta-analysis, of which eight studies reported on the relationship between PLK1 expression and clinicopathological features, and nine studies provided survival data in BC patients. Furthermore, the results revealed that high PLK1 levels were significantly associated with larger tumor size (OR=1.703, 95%CIs: 1.315-2.205, P<0.001), higher pathological grading (OR=6.028, 95%CIs: 2.639-13.772, P<0.001), and lymph node metastasis (OR= 1.524, 95%CIs: 1.192-1.950, P=0.001). Moreover, PLK1 was found to be a valuable factor for distinguishing lobular BC from ductal BC with the pooled OR=0.215(95%CIs: 0.083-0.557, P=0.002). Analysis of included data showed that high PLK1 expression significantly indicated worse overall survival for BC patients (HR= 3.438, 95%CIs: 2.293-5.154, P<0.001), as well as worse cancer specific survival and disease-free survival (HR=2.414, 95%CIs: 1.633-3.567, P<0.001 and HR= 2.261, 95%CIs: 1.796-2.951, P<0.001, respectively). This quantitative meta-analysis suggests that high PLK1 expression is a credible indicator for the progression of BC and confirms a higher risk of a worse survival rate in patients with BC.
Collapse
|
22
|
Abstract
Gastric cancer (GC) is one of the most common malignant tumors, with high morbidity and mortality. Early detection, diagnosis and treatment are the key to improve the curative effect and prolong the survival of the patients. At present, tumor cell DNA detection technology has been used for the assistant diagnosis of a variety of common tumors and can improve the early detection rate of benign and malignant tumors. In the process of malignant transformation of cells, changes in genetic material such as DNA are earlier than the morphological changes of cells. Therefore, the DNA image cytometry of cells can be used to find early malignant cells with genetic material abnormalities. Being able to detect GC earlier, DNA image cytometry can increase the detection rate of early GC and improve the treatment and prognosis of patients.This article reviews the application of DNA image cytometry in the diagnosis of early GC.
Collapse
|
23
|
Zhu X, Tian X, Yu C, Shen C, Yan T, Hong J, Wang Z, Fang JY, Chen H. A long non-coding RNA signature to improve prognosis prediction of gastric cancer. Mol Cancer 2016; 15:60. [PMID: 27647437 PMCID: PMC5029104 DOI: 10.1186/s12943-016-0544-0] [Citation(s) in RCA: 143] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Increasing evidence suggests long non-coding RNAs (lncRNAs) are frequently aberrantly expressed in cancers, however, few related lncRNA signatures have been established for prediction of cancer prognosis. We aimed at developing alncRNA signature to improve prognosis prediction of gastric cancer (GC). METHODS Using a lncRNA-mining approach, we performed lncRNA expression profiling in large GC cohorts from Gene Expression Ominus (GEO), including GSE62254 data set (N = 300) and GSE15459 data set (N = 192). We established a set of 24-lncRNAs that were significantly associated with the disease free survival (DFS) in the test series. RESULTS Based on this 24-lncRNA signature, the test series patients could be classified into high-risk or low-risk subgroup with significantly different DFS (HR = 1.19, 95 % CI = 1.13-1.25, P < 0.0001). The prognostic value of this 24-lncRNA signature was confirmed in the internal validation series and another external validation series, respectively. Further analysis revealed that the prognostic value of this signature was independent of lymph node ratio (LNR) and postoperative chemotherapy. Gene set enrichment analysis (GSEA) indicated that high risk score group was associated with several cancer recurrence and metastasis associated pathways. CONCLUSIONS The identification of the prognostic lncRNAs indicates the potential roles of lncRNAs in GC biogenesis. Our results may provide an efficient classification tool for clinical prognosis evaluation of GC.
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Xianglong Tian
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Chenyang Yu
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Chaoqin Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Tingting Yan
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Zheng Wang
- Department of gastrointestinal surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001 China
| |
Collapse
|