1
|
Gissibl T, Stengel L, Tarnowski D, Maier LS, Wagner S, Feder AL, Sag CM. The inotropic and arrhythmogenic effects of acutely increased late I Na are associated with elevated ROS but not oxidation of PKARIα. Front Cardiovasc Med 2024; 11:1379930. [PMID: 39077112 PMCID: PMC11284163 DOI: 10.3389/fcvm.2024.1379930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024] Open
Abstract
Background Acute stimulation of the late sodium current (INaL) as pharmacologically induced by Anemonia toxin II (ATX-II) results in Na+-dependent Ca2+ overload and enhanced formation of reactive oxygen species (ROS). This is accompanied by an acute increase in the amplitude of the systolic Ca2+ transient. Ca2+ transient amplitude is determined by L-type Ca2+-mediated transsarcolemmal Ca2+ influx (ICa) into the cytosol and by systolic Ca2+ release from the sarcoplasmic reticulum (SR). Type-1 protein kinase A (PKARIα) becomes activated upon increased ROS and is capable of stimulating ICa, thereby sustaining the amplitude of the systolic Ca2+ transient upon oxidative stress. Objectives We aimed to investigate whether the increase of the systolic Ca2+ transient as acutely induced by INaL (by ATX-II) may involve stimulation of ICa through oxidized PKARIα. Methods We used a transgenic mouse model in which PKARIα was made resistant to oxidative activation by homozygous knock-in replacement of redox-sensitive Cysteine 17 with Serine within the regulatory subunits of PKARIα (KI). ATX-II (at 1 nmol/L) was used to acutely enhance INaL in freshly isolated ventricular myocytes from KI and wild-type (WT) control mice. Epifluorescence and confocal imaging were used to assess intracellular Ca2+ handling and ROS formation. A ruptured-patch whole-cell voltage-clamp was used to measure INaL and ICa. The impact of acutely enhanced INaL on RIα dimer formation and PKA target structures was studied using Western blot analysis. Results ATX-II increased INaL to a similar extent in KI and WT cells, which was associated with significant cytosolic and mitochondrial ROS formation in both genotypes. Acutely activated Ca2+ handling in terms of increased Ca2+ transient amplitudes and elevated SR Ca2+ load was equally present in KI and WT cells. Likewise, cellular arrhythmias as approximated by non-triggered Ca2+ elevations during Ca2+ transient decay and by diastolic SR Ca2+-spark frequency occurred in a comparable manner in both genotypes. Most importantly and in contrast to our initial hypothesis, ATX-II did not alter the magnitude or inactivation kinetics of ICa in neither WT nor KI cells and did not result in PKARIα dimerization (i.e., oxidation) despite a clear prooxidant intracellular environment. Conclusions The inotropic and arrhythmogenic effects of acutely increased INaL are associated with elevated ROS, but do not involve oxidation of PKARIα.
Collapse
|
2
|
Bernas T, Seo J, Wilson ZT, Tan BH, Deschenes I, Carter C, Liu J, Tseng GN. Persistent PKA activation redistributes NaV1.5 to the cell surface of adult rat ventricular myocytes. J Gen Physiol 2024; 156:e202313436. [PMID: 38226948 PMCID: PMC10791559 DOI: 10.1085/jgp.202313436] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/15/2023] [Accepted: 12/08/2023] [Indexed: 01/17/2024] Open
Abstract
During chronic stress, persistent activation of cAMP-dependent protein kinase (PKA) occurs, which can contribute to protective or maladaptive changes in the heart. We sought to understand the effect of persistent PKA activation on NaV1.5 channel distribution and function in cardiomyocytes using adult rat ventricular myocytes as the main model. PKA activation with 8CPT-cAMP and okadaic acid (phosphatase inhibitor) caused an increase in Na+ current amplitude without altering the total NaV1.5 protein level, suggesting a redistribution of NaV1.5 to the myocytes' surface. Biotinylation experiments in HEK293 cells showed that inhibiting protein trafficking from intracellular compartments to the plasma membrane prevented the PKA-induced increase in cell surface NaV1.5. Additionally, PKA activation induced a time-dependent increase in microtubule plus-end binding protein 1 (EB1) and clustering of EB1 at myocytes' peripheral surface and intercalated discs (ICDs). This was accompanied by a decrease in stable interfibrillar microtubules but an increase in dynamic microtubules along the myocyte surface. Imaging and coimmunoprecipitation experiments revealed that NaV1.5 interacted with EB1 and β-tubulin, and both interactions were enhanced by PKA activation. We propose that persistent PKA activation promotes NaV1.5 trafficking to the peripheral surface of myocytes and ICDs by providing dynamic microtubule tracks and enhanced guidance by EB1. Our proposal is consistent with an increase in the correlative distribution of NaV1.5, EB1, and β-tubulin at these subcellular domains in PKA-activated myocytes. Our study suggests that persistent PKA activation, at least during the initial phase, can protect impulse propagation in a chronically stressed heart by increasing NaV1.5 at ICDs.
Collapse
Affiliation(s)
- Tytus Bernas
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, USA
| | - John Seo
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Zachary T. Wilson
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| | - Bi-hua Tan
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Isabelle Deschenes
- Department of Physiology and Cell Biology, The Ohio State University, Columbus, OH, USA
| | - Christiane Carter
- Massey Center Bioinformatics Shared Resource, Virginia Commonwealth University, Richmond, VA, USA
| | - Jinze Liu
- Massey Center Bioinformatics Shared Resource, Virginia Commonwealth University, Richmond, VA, USA
| | - Gea-Ny Tseng
- Department of Physiology and Biophysics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Semino F, Darche FF, Bruehl C, Koenen M, Skladny H, Katus HA, Frey N, Draguhn A, Schweizer PA. GPD1L-A306del modifies sodium current in a family carrying the dysfunctional SCN5A-G1661R mutation associated with Brugada syndrome. Pflugers Arch 2024; 476:229-242. [PMID: 38036776 DOI: 10.1007/s00424-023-02882-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023]
Abstract
Loss-of-function variants of SCN5A, encoding the sodium channel alpha subunit Nav1.5 are associated with high phenotypic variability and multiple cardiac presentations, while underlying mechanisms are incompletely understood. Here we investigated a family with individuals affected by Brugada Syndrome (BrS) of different severity and aimed to unravel the underlying genetic and electrophysiological basis.Next-generation sequencing was used to identify the genetic variants carried by family members. The index patient, who was severely affected by arrhythmogenic BrS, carried previously uncharacterized variants of Nav1.5 (SCN5A-G1661R) and glycerol-3-phosphate dehydrogenase-1-like protein (GPD1L-A306del) in a double heterozygous conformation. Family members exclusively carrying SCN5A-G1661R showed asymptomatic Brugada ECG patterns, while another patient solely carrying GPD1L-A306del lacked any clinical phenotype.To assess functional mechanisms, Nav1.5 channels were transiently expressed in HEK-293 cells in the presence and absence of GPD1L. Whole-cell patch-clamp recordings revealed loss of sodium currents after homozygous expression of SCN5A-G1661R, and reduction of current amplitude to ~ 50% in cells transfected with equal amounts of wildtype and mutant Nav1.5. Co-expression of wildtype Nav1.5 and GPD1L showed a trend towards increased sodium current amplitudes and a hyperpolarizing shift in steady-state activation and -inactivation compared to sole SCN5A expression. Application of the GPD1L-A306del variant shifted steady-state activation to more hyperpolarized and inactivation to more depolarized potentials.In conclusion, SCN5A-G1661R produces dysfunctional channels and associates with BrS. SCN5A mediated currents are modulated by co-expression of GDP1L and this interaction is altered by mutations in both proteins. Thus, additive genetic burden may aggravate disease severity, explaining higher arrhythmogenicity in double mutation carriers.
Collapse
Affiliation(s)
- Francesca Semino
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Fabrice F Darche
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
| | - Claus Bruehl
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Michael Koenen
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Heyko Skladny
- SYNLAB MVZ Humangenetik Mannheim GmbH, Mannheim, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Heidelberg, Germany
| | - Patrick A Schweizer
- Department of Cardiology, Medical University Hospital Heidelberg, Heidelberg, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
4
|
Raposo-Garcia S, Cao A, Costas C, Louzao MC, Vilariño N, Vale C, Botana LM. Mouse N2a Neuroblastoma Assay: Uncertainties and Comparison with Alternative Cell-Based Assays for Ciguatoxin Detection. Mar Drugs 2023; 21:590. [PMID: 37999414 PMCID: PMC10672529 DOI: 10.3390/md21110590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/25/2023] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
The growing concern about ciguatera fish poisoning (CF) due to the expansion of the microorganisms producing ciguatoxins (CTXs) increased the need to develop a reliable and fast method for ciguatoxin detection to guarantee food safety. Cytotoxicity assay on the N2a cells sensitized with ouabain (O) and veratridine (V) is routinely used in ciguatoxin detection; however, this method has not been standardized yet. This study demonstrated the low availability of sodium channels in the N2a cells, the great O/V damage to the cells and the cell detachment when the cell viability is evaluated by the classical cytotoxicity assay and confirmed the absence of toxic effects caused by CTXs alone when using the methods that do not require medium removal such as lactate dehydrogenase (LDH) and Alamar blue assays. Different cell lines were evaluated as alternatives, such as human neuroblastoma, which was not suitable for the CTX detection due to the greater sensitivity to O/V and low availability of sodium channels. However, the HEK293 Nav cell line expressing the α1.6 subunit of sodium channels was sensitive to the ciguatoxin without the sensitization with O/V due to its expression of sodium channels. In the case of sensitizing the cells with O/V, it was possible to detect the presence of the ciguatoxin by the classical cytotoxicity MTT method at concentrations as low as 0.0001 nM CTX3C, providing an alternative cell line for the detection of compounds that act on the sodium channels.
Collapse
Affiliation(s)
| | | | | | | | | | - Carmen Vale
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| | - Luis M. Botana
- Departamento de Farmacología, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (S.R.-G.); (A.C.); (C.C.); (M.C.L.); (N.V.)
| |
Collapse
|
5
|
Horváth B, Szentandrássy N, Almássy J, Dienes C, Kovács ZM, Nánási PP, Banyasz T. Late Sodium Current of the Heart: Where Do We Stand and Where Are We Going? Pharmaceuticals (Basel) 2022; 15:ph15020231. [PMID: 35215342 PMCID: PMC8879921 DOI: 10.3390/ph15020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/05/2023] Open
Abstract
Late sodium current has long been linked to dysrhythmia and contractile malfunction in the heart. Despite the increasing body of accumulating information on the subject, our understanding of its role in normal or pathologic states is not complete. Even though the role of late sodium current in shaping action potential under physiologic circumstances is debated, it’s unquestioned role in arrhythmogenesis keeps it in the focus of research. Transgenic mouse models and isoform-specific pharmacological tools have proved useful in understanding the mechanism of late sodium current in health and disease. This review will outline the mechanism and function of cardiac late sodium current with special focus on the recent advances of the area.
Collapse
Affiliation(s)
- Balázs Horváth
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Norbert Szentandrássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Basic Medical Sciences, Faculty of Dentistry, University of Debrecen, 4032 Debrecen, Hungary
| | - János Almássy
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Csaba Dienes
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Zsigmond Máté Kovács
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
| | - Péter P. Nánási
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Department of Dental Physiology and Pharmacology, University of Debrecen, 4032 Debrecen, Hungary
| | - Tamas Banyasz
- Department of Physiology, University of Debrecen, 4032 Debrecen, Hungary; (B.H.); (N.S.); (J.A.); (C.D.); (Z.M.K.); (P.P.N.)
- Correspondence: ; Tel.: +36-(52)-255-575; Fax: +36-(52)-255-116
| |
Collapse
|
6
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
7
|
Lin Q, Zuo W, Liu Y, Wu K, Liu Q. NAD + and cardiovascular diseases. Clin Chim Acta 2021; 515:104-110. [PMID: 33485900 DOI: 10.1016/j.cca.2021.01.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 12/12/2022]
Abstract
Nicotinamide adenine dinucleotide (NAD) plays pivotal roles in controlling many biochemical processes. 'NAD' refers to the chemical backbone irrespective of charge, whereas 'NAD+' and 'NADH' refers to oxidized and reduced forms, respectively. NAD+/NADH ratio is essential for maintaining cellular reduction-oxidation (redox) homeostasis and for modulating energy metabolism. As a sensing or consuming enzyme of the poly (ADP-ribose) polymerase 1 (PARP1), the cyclic ADP-ribose (cADPR) synthases (CD38 and CD157), and sirtuin protein deacetylases (sirtuins, SIRTs), NAD+ participates in several key processes in cardiovascular disease. For example, NAD+ protects against metabolic syndrome, heart failure, ischemia-reperfusion (IR) injury, arrhythmia and hypertension. Accordingly, the subsequent loss of NAD+ in aging or during stress results in altered metabolic status and potentially increased disease susceptibility. Therefore, it is essential to maintain NAD+ or reduce loss in the heart. This review focuses on the involvement of NAD+ in the pathogenesis of cardiovascular disease and explores the effects of NAD+ boosting strategies in cardiovascular health.
Collapse
Affiliation(s)
- Qiuzhen Lin
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Wanyun Zuo
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Yaozhong Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Keke Wu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China
| | - Qiming Liu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, PR China; Research Institute of Blood Lipid and Atherosclerosis, Central South University, PR China; Modern Cardiovascular Disease Clinical Technology Research Center of Hunan Province, PR China; Cardiovascular Disease Research Center of Hunan Province, Changsha Hunan 410011, PR China.
| |
Collapse
|
8
|
The Potential Benefit of Beta-Blockers for the Management of COVID-19 Protocol Therapy-Induced QT Prolongation: A Literature Review. Sci Pharm 2020. [DOI: 10.3390/scipharm88040055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The World Health Organization (WHO) officially announced coronavirus disease 2019 (COVID-19) as a pandemic in March 2020. Unfortunately, there are still no approved drugs for either the treatment or the prevention of COVID-19. Many studies have focused on repurposing established antimalarial therapies, especially those that showed prior efficacy against Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrome Coronavirus (MERS-CoV), such as chloroquine and hydroxychloroquine, against COVID-19 combined with azithromycin. These classes of drugs potentially induce prolongation of the QT interval, which might lead to lethal arrhythmia. Beta-blockers, as a β-adrenergic receptor (β-AR) antagonist, can prevent an increase in the sympathetic tone, which is the most important arrhythmia trigger. In this literature review, we aimed to find the effect of administering azithromycin, chloroquine, and hydroxychloroquine on cardiac rhythm disorders and our findings show that bisoprolol, as a cardio-selective beta-blocker, is effective for the management of the QT (i.e., the start of the Q wave to the end of the T wave) interval prolongation in COVID-19 patients.
Collapse
|
9
|
Zaitsev AV, Warren M. "Heart Oddity": Intrinsically Reduced Excitability in the Right Ventricle Requires Compensation by Regionally Specific Stress Kinase Function. Front Physiol 2020; 11:86. [PMID: 32132931 PMCID: PMC7040197 DOI: 10.3389/fphys.2020.00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/27/2020] [Indexed: 11/13/2022] Open
Abstract
The traditional view of ventricular excitation and conduction is an all-or-nothing response mediated by a regenerative activation of the inward sodium channel, which gives rise to an essentially constant conduction velocity (CV). However, whereas there is no obvious biological need to tune-up ventricular conduction, the principal molecular components determining CV, such as sodium channels, inward-rectifier potassium channels, and gap junctional channels, are known targets of the “stress” protein kinases PKA and calcium/calmodulin dependent protein kinase II (CaMKII), and are thus regulatable by signal pathways converging on these kinases. In this mini-review we will expose deficiencies and controversies in our current understanding of how ventricular conduction is regulated by stress kinases, with a special focus on the chamber-specific dimension in this regulation. In particular, we will highlight an odd property of cardiac physiology: uniform CV in ventricles requires co-existence of mutually opposing gradients in cardiac excitability and stress kinase function. While the biological advantage of this peculiar feature remains obscure, it is important to recognize the clinical implications of this phenomenon pertinent to inherited or acquired conduction diseases and therapeutic interventions modulating activity of PKA or CaMKII.
Collapse
Affiliation(s)
- Alexey V Zaitsev
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| | - Mark Warren
- Nora Eccles Harrison Cardiovascular Research and Training Institute, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
10
|
Grandi E, Ripplinger CM. Antiarrhythmic mechanisms of beta blocker therapy. Pharmacol Res 2019; 146:104274. [PMID: 31100336 DOI: 10.1016/j.phrs.2019.104274] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Sympathetic activity plays an important role in modulation of cardiac rhythm. Indeed, while exerting positive tropic effects in response to physiologic and pathologic stressors, β-adrenergic stimulation influences cardiac electrophysiology and can lead to disturbances of the heart rhythm and potentially lethal arrhythmias, particularly in pathological settings. For this reason, β-blockers are widely utilized clinically as antiarrhythmics. In this review, the molecular mechanisms of β-adrenergic action in the heart, the cellular and tissue level cardiac responses to β-adrenergic stimulation, and the clinical use of β-blockers as antiarrhythmic agents are reviewed. We emphasize the complex interaction between cardiomyocyte signaling, contraction, and electrophysiology occurring over multiple time- and spatial-scales during pathophysiological responses to β-adrenergic stimulation. An integrated understanding of this complex system is essential for optimizing therapies aimed at preventing arrhythmias.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, United States.
| | | |
Collapse
|
11
|
Menon A, Hong L, Savio-Galimberti E, Sridhar A, Youn SW, Zhang M, Kor K, Blair M, Kupershmidt S, Darbar D. Electrophysiologic and molecular mechanisms of a frameshift NPPA mutation linked with familial atrial fibrillation. J Mol Cell Cardiol 2019; 132:24-35. [PMID: 31077706 DOI: 10.1016/j.yjmcc.2019.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/01/2019] [Accepted: 05/03/2019] [Indexed: 11/28/2022]
Abstract
A frameshift (fs) mutation in the natriuretic peptide precursor A (NPPA) gene, encoding a mutant atrial natriuretic peptide (Mut-ANP), has been linked with familial atrial fibrillation (AF) but the underlying mechanisms by which the mutation causes AF remain unclear. We engineered 2 transgenic (TG) mouse lines expressing the wild-type (WT)-NPPA gene (H-WT-NPPA) and the human fs-Mut-NPPA gene (H-fsMut-NPPA) to test the hypothesis that mice overexpressing the human NPPA mutation are more susceptible to AF and elucidate the underlying electrophysiologic and molecular mechanisms. Transthoracic echocardiography and surface electrocardiography (ECG) were performed in H-fsMut-NPPA, H-WT-NPPA, and Non-TG mice. Invasive electrophysiology, immunohistochemistry, Western blotting and patch clamping of membrane potentials were performed. To examine the role of the Mut-ANP in ion channel remodeling, we measured plasma cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) levels and protein kinase A (PKA) activity in the 3 groups of mice. In H-fsMut-NPPA mice mean arterial pressure (MAP) was reduced when compared to H-WT-NPPA and Non-TG mice. Furthermore, injection of synthetic fs-Mut-ANP lowered the MAP in H-WT-NPPA and Non-TG mice while synthetic WT-ANP had no effect on MAP in the 3 groups of mice. ECG characterization revealed significantly prolonged QRS duration in H-fsMut-NPPA mice when compared to the other two groups. Trans-Esophageal (TE) atrial pacing of H-fsMut-NPPA mice showed increased AF burden and AF episodes when compared with H-WT-NPPA or Non-TG mice. The cardiac Na+ (NaV1.5) and Ca2+ (CaV1.2/CaV1.3) channel expression and currents (INa, ICaL) and action potential durations (APD90/APD50/APD20) were significantly reduced in H-fsMut-NPPA mice while the rectifier K+ channel current (IKs) was markedly increased when compared to the other 2 groups of mice. In addition, plasma cGMP levels were only increased in H-fsMut-NPPA mice with a corresponding reduction in plasma cAMP levels and PKA activity. In summary, we showed that mice overexpressing an AF-linked NPPA mutation are more prone to develop AF and this risk is mediated in part by remodeling of the cardiac Na+, Ca2+ and K+ channels creating an electrophysiologic substrate for reentrant AF.
Collapse
Affiliation(s)
- Ambili Menon
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Liang Hong
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Eleonora Savio-Galimberti
- Department of Biomedical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States of America
| | - Arvind Sridhar
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Seock-Won Youn
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America; Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Meihong Zhang
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America
| | - Kaylen Kor
- Department of Pharmacology, Vanderbilt University Medical Center, United States of America
| | - Marcia Blair
- Department of Pharmacology, Vanderbilt University Medical Center, United States of America
| | - Sabina Kupershmidt
- Department of Nursing, University of South Dakota Sioux Falls, SD, United States of America
| | - Dawood Darbar
- Departments of Medicine, University of Illinois at Chicago, Chicago, IL, United States of America; Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, United States of America; Pharmacology, University of Illinois at Chicago, Chicago, IL, United States of America.
| |
Collapse
|
12
|
Iqbal SM, Lemmens‐Gruber R. Phosphorylation of cardiac voltage-gated sodium channel: Potential players with multiple dimensions. Acta Physiol (Oxf) 2019; 225:e13210. [PMID: 30362642 PMCID: PMC6590314 DOI: 10.1111/apha.13210] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 10/14/2018] [Accepted: 10/14/2018] [Indexed: 12/11/2022]
Abstract
Cardiomyocytes are highly coordinated cells with multiple proteins organized in micro domains. Minor changes or interference in subcellular proteins can cause major disturbances in physiology. The cardiac sodium channel (NaV1.5) is an important determinant of correct electrical activity in cardiomyocytes which are localized at intercalated discs, T‐tubules and lateral membranes in the form of a macromolecular complex with multiple interacting protein partners. The channel is tightly regulated by post‐translational modifications for smooth conduction and propagation of action potentials. Among regulatory mechanisms, phosphorylation is an enzymatic and reversible process which modulates NaV1.5 channel function by attaching phosphate groups to serine, threonine or tyrosine residues. Phosphorylation of NaV1.5 is implicated in both normal physiological and pathological processes and is carried out by multiple kinases. In this review, we discuss and summarize recent literature about the (a) structure of NaV1.5 channel, (b) formation and subcellular localization of NaV1.5 channel macromolecular complex, (c) post‐translational phosphorylation and regulation of NaV1.5 channel, and (d) how these phosphorylation events of NaV1.5 channel alter the biophysical properties and affect the channel during disease status. We expect, by reviewing these aspects will greatly improve our understanding of NaV1.5 channel biology, physiology and pathology, which will also provide an insight into the mechanism of arrythmogenesis at molecular level.
Collapse
Affiliation(s)
- Shahid M. Iqbal
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
- Drugs Regulatory Authority of Pakistan Telecom Foundation (TF) Complex Islamabad Pakistan
| | - Rosa Lemmens‐Gruber
- Department of Pharmacology and Toxicology University of Vienna Vienna Austria
| |
Collapse
|
13
|
Hegyi B, Bányász T, Izu LT, Belardinelli L, Bers DM, Chen-Izu Y. β-adrenergic regulation of late Na + current during cardiac action potential is mediated by both PKA and CaMKII. J Mol Cell Cardiol 2018; 123:168-179. [PMID: 30240676 DOI: 10.1016/j.yjmcc.2018.09.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/28/2018] [Accepted: 09/16/2018] [Indexed: 12/12/2022]
Abstract
Late Na+ current (INaL) significantly contributes to shaping cardiac action potentials (APs) and increased INaL is associated with cardiac arrhythmias. β-adrenergic receptor (βAR) stimulation and its downstream signaling via protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII) pathways are known to regulate INaL. However, it remains unclear how each of these pathways regulates INaL during the AP under physiological conditions. Here we performed AP-clamp experiments in rabbit ventricular myocytes to delineate the impact of each signaling pathway on INaL at different AP phases to understand the arrhythmogenic potential. During the physiological AP (2 Hz, 37 °C) we found that INaL had a basal level current independent of PKA, but partially dependent on CaMKII. βAR activation (10 nM isoproterenol, ISO) further enhanced INaL via both PKA and CaMKII pathways. However, PKA predominantly increased INaL early during the AP plateau, whereas CaMKII mainly increased INaL later in the plateau and during rapid repolarization. We also tested the role of key signaling pathways through exchange protein activated by cAMP (Epac), nitric oxide synthase (NOS) and reactive oxygen species (ROS). Direct Epac stimulation enhanced INaL similar to the βAR-induced CaMKII effect, while NOS inhibition prevented the βAR-induced CaMKII-dependent INaL enhancement. ROS generated by NADPH oxidase 2 (NOX2) also contributed to the ISO-induced INaL activation early in the AP. Taken together, our data reveal differential modulations of INaL by PKA and CaMKII signaling pathways at different AP phases. This nuanced and comprehensive view on the changes in INaL during AP deepens our understanding of the important role of INaL in reshaping the cardiac AP and arrhythmogenic potential under elevated sympathetic stimulation, which is relevant for designing therapeutic treatment of arrhythmias under pathological conditions.
Collapse
Affiliation(s)
- Bence Hegyi
- Department of Pharmacology, University of California, Davis, CA, USA.
| | - Tamás Bányász
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Physiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Leighton T Izu
- Department of Pharmacology, University of California, Davis, CA, USA
| | | | - Donald M Bers
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Ye Chen-Izu
- Department of Pharmacology, University of California, Davis, CA, USA; Department of Biomedical Engineering, University of California, Davis, CA, USA; Department of Internal Medicine/Cardiology, University of California, Davis, CA, USA.
| |
Collapse
|
14
|
Ponce-Balbuena D, Guerrero-Serna G, Valdivia CR, Caballero R, Diez-Guerra FJ, Jiménez-Vázquez EN, Ramírez RJ, Monteiro da Rocha A, Herron TJ, Campbell KF, Willis BC, Alvarado FJ, Zarzoso M, Kaur K, Pérez-Hernández M, Matamoros M, Valdivia HH, Delpón E, Jalife J. Cardiac Kir2.1 and Na V1.5 Channels Traffic Together to the Sarcolemma to Control Excitability. Circ Res 2018. [PMID: 29514831 DOI: 10.1161/circresaha.117.311872] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
RATIONALE In cardiomyocytes, NaV1.5 and Kir2.1 channels interact dynamically as part of membrane bound macromolecular complexes. OBJECTIVE The objective of this study was to test whether NaV1.5 and Kir2.1 preassemble during early forward trafficking and travel together to common membrane microdomains. METHODS AND RESULTS In patch-clamp experiments, coexpression of trafficking-deficient mutants Kir2.1Δ314-315 or Kir2.1R44A/R46A with wild-type (WT) NaV1.5WT in heterologous cells reduced inward sodium current compared with NaV1.5WT alone or coexpressed with Kir2.1WT. In cell surface biotinylation experiments, expression of Kir2.1Δ314-315 reduced NaV1.5 channel surface expression. Glycosylation analysis suggested that NaV1.5WT and Kir2.1WT channels associate early in their biosynthetic pathway, and fluorescence recovery after photobleaching experiments demonstrated that coexpression with Kir2.1 increased cytoplasmic mobility of NaV1.5WT, and vice versa, whereas coexpression with Kir2.1Δ314-315 reduced mobility of both channels. Viral gene transfer of Kir2.1Δ314-315 in adult rat ventricular myocytes and human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current and inward sodium current, maximum diastolic potential and action potential depolarization rate, and increased action potential duration. On immunostaining, the AP1 (adaptor protein complex 1) colocalized with NaV1.5WT and Kir2.1WT within areas corresponding to t-tubules and intercalated discs. Like Kir2.1WT, NaV1.5WT coimmunoprecipitated with AP1. Site-directed mutagenesis revealed that NaV1.5WT channels interact with AP1 through the NaV1.5Y1810 residue, suggesting that, like for Kir2.1WT, AP1 can mark NaV1.5 channels for incorporation into clathrin-coated vesicles at the trans-Golgi. Silencing the AP1 ϒ-adaptin subunit in human induced pluripotent stem cell-derived cardiomyocytes reduced inward rectifier potassium current, inward sodium current, and maximum diastolic potential and impaired rate-dependent action potential duration adaptation. CONCLUSIONS The NaV1.5-Kir2.1 macromolecular complex pre-assembles early in the forward trafficking pathway. Therefore, disruption of Kir2.1 trafficking in cardiomyocytes affects trafficking of NaV1.5, which may have important implications in the mechanisms of arrhythmias in inheritable cardiac diseases.
Collapse
Affiliation(s)
- Daniela Ponce-Balbuena
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Guadalupe Guerrero-Serna
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Carmen R Valdivia
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Ricardo Caballero
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - F Javier Diez-Guerra
- Departamento de Biología Molecular and Centro de Biología Molecular Severo Ochoa (UAM-CSIC), Universidad Autónoma de Madrid, Spain (F.J.D.-G.)
| | - Eric N Jiménez-Vázquez
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Rafael J Ramírez
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - André Monteiro da Rocha
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Todd J Herron
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Katherine F Campbell
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - B Cicero Willis
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | | | - Manuel Zarzoso
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Kuljeet Kaur
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.)
| | - Marta Pérez-Hernández
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - Marcos Matamoros
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - Héctor H Valdivia
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.).,Department of Molecular and Integrative Physiology (F.J.A., H.H.V.)
| | - Eva Delpón
- Department of Pharmacology, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.).,Instituto de Investigación Sanitaria Gregorio Marañón, School of Medicine, Universidad Complutense, Madrid, Spain (R.C., M.P.-H., M.M., E.D.)
| | - José Jalife
- From the Department of Internal Medicine and Center for Arrhythmia Research (D.P.-B., G.G.-S., C.R.V., E.N.J.-V., R.J.R., A.M.d.R., T.J.H., K.F.C., B.C.W., M.Z., K.K., H.H.V., J.J.) .,University of Michigan, Ann Arbor; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain (J.J.).,CIBERV, Madrid, Spain (J.J.)
| |
Collapse
|
15
|
Thompson E, Eldstrom J, Westhoff M, McAfee D, Balse E, Fedida D. cAMP-dependent regulation of IKs single-channel kinetics. J Gen Physiol 2017; 149:781-798. [PMID: 28687606 PMCID: PMC5560775 DOI: 10.1085/jgp.201611734] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
The delayed potassium rectifier current, IKs , is composed of KCNQ1 and KCNE1 subunits and plays an important role in cardiac action potential repolarization. During β-adrenergic stimulation, 3'-5'-cyclic adenosine monophosphate (cAMP)-dependent protein kinase A (PKA) phosphorylates KCNQ1, producing an increase in IKs current and a shortening of the action potential. Here, using cell-attached macropatches and single-channel recordings, we investigate the microscopic mechanisms underlying the cAMP-dependent increase in IKs current. A membrane-permeable cAMP analog, 8-(4-chlorophenylthio)-cAMP (8-CPT-cAMP), causes a marked leftward shift of the conductance-voltage relation in macropatches, with or without an increase in current size. Single channels exhibit fewer silent sweeps, reduced first latency to opening (control, 1.61 ± 0.13 s; cAMP, 1.06 ± 0.11 s), and increased higher-subconductance-level occupancy in the presence of cAMP. The E160R/R237E and S209F KCNQ1 mutants, which show fixed and enhanced voltage sensor activation, respectively, largely abolish the effect of cAMP. The phosphomimetic KCNQ1 mutations, S27D and S27D/S92D, are much less and not at all responsive, respectively, to the effects of PKA phosphorylation (first latency of S27D + KCNE1 channels: control, 1.81 ± 0.1 s; 8-CPT-cAMP, 1.44 ± 0.1 s, P < 0.05; latency of S27D/S92D + KCNE1: control, 1.62 ± 0.1 s; cAMP, 1.43 ± 0.1 s, nonsignificant). Using total internal reflection fluorescence microscopy, we find no overall increase in surface expression of the channel during exposure to 8-CPT-cAMP. Our data suggest that the cAMP-dependent increase in IKs current is caused by an increase in the likelihood of channel opening, combined with faster openings and greater occupancy of higher subconductance levels, and is mediated by enhanced voltage sensor activation.
Collapse
Affiliation(s)
- Emely Thompson
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Jodene Eldstrom
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Maartje Westhoff
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Donald McAfee
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| | - Elise Balse
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMR_S 1166, Unité de recherche sur les maladies cardiovasculaires, le métabolisme et la nutrition, Faculté de Médecine, Site Pitié-Salpêtrière, Paris, France
| | - David Fedida
- Department of Anesthesiology, Pharmacology, and Therapeutics, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
16
|
β1-Adrenergic receptor Arg389Gly polymorphism affects the antiarrhythmic efficacy of flecainide in patients with coadministration of β-blockers. Pharmacogenet Genomics 2017; 26:481-5. [PMID: 27500822 DOI: 10.1097/fpc.0000000000000239] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE β1-Adrenergic receptor (β1-AR) stimulation modulates the antiarrhythmic activities of sodium channel blockers. The β1-AR Gly389 variant shows a marked decrease in agonist-stimulated cyclic AMP production compared with that of the wild-type Arg389 in vitro. We investigated whether the Arg389Gly polymorphism affects the efficacy of flecainide, a typical sodium channel blocker, in patients with or without coadministration of β-blockers. METHODS The effects of the β1-AR Arg389Gly polymorphism on the antiarrhythmic efficacy of flecainide were compared between with and without coadministered β-blockers in 159 patients with supraventricular tachyarrhythmia. The antiarrhythmic efficacy of flecainide was assessed for at least 2 months by evaluating symptomatology, 12-lead ECGs, and Holter monitoring results. RESULTS Genetic differences in the antiarrhythmic efficacy of flecainide were observed in patients with coadministration of β-blockers. Tachyarrhythmia was well controlled in 60% of Arg389-homozygotes, 30% of Gly389-heterozygotes, and 0% of Gly389-homozygotes (P=0.001). In contrast, no difference in the antiarrhythmic efficacy was observed among the three genotypes in the patients without coadministration of β-blockers (64, 70, and 60%, respectively). Heart rate in tachyarrhythmia in patients treated with flecainide was significantly higher in Gly389 carriers than in Arg389-homozygotes (P=0.013). CONCLUSION The Gly389 polymorphism decreased the antiarrhythmic efficacy of flecainide when coadministered with β-blockers. The results indicate that the Arg389Gly polymorphism may play an important role in predicting the efficacy of flecainide in patients with coadministration of β-blockers.
Collapse
|
17
|
Aromolaran AS, Chahine M, Boutjdir M. Regulation of Cardiac Voltage-Gated Sodium Channel by Kinases: Roles of Protein Kinases A and C. Handb Exp Pharmacol 2017; 246:161-184. [PMID: 29032483 DOI: 10.1007/164_2017_53] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the heart, voltage-gated sodium (Nav) channel (Nav1.5) is defined by its pore-forming α-subunit and its auxiliary β-subunits, both of which are important for its critical contribution to the initiation and maintenance of the cardiac action potential (AP) that underlie normal heart rhythm. The physiological relevance of Nav1.5 is further marked by the fact that inherited or congenital mutations in Nav1.5 channel gene SCN5A lead to altered functional expression (including expression, trafficking, and current density), and are generally manifested in the form of distinct cardiac arrhythmic events, epilepsy, neuropathic pain, migraine, and neuromuscular disorders. However, despite significant advances in defining the pathophysiology of Nav1.5, the molecular mechanisms that underlie its regulation and contribution to cardiac disorders are poorly understood. It is rapidly becoming evident that the functional expression (localization, trafficking and gating) of Nav1.5 may be under modulation by post-translational modifications that are associated with phosphorylation. We review here the molecular basis of cardiac Na channel regulation by kinases (PKA and PKC) and the resulting functional consequences. Specifically, we discuss: (1) recent literature on the structural, molecular, and functional properties of cardiac Nav1.5 channels; (2) how these properties may be altered by phosphorylation in disease states underlain by congenital mutations in Nav1.5 channel and/or subunits such as long QT and Brugada syndromes. Our expectation is that understanding the roles of these distinct and complex phosphorylation processes on the functional expression of Nav1.5 is likely to provide crucial mechanistic insights into Na channel associated arrhythmogenic events and will facilitate the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ademuyiwa S Aromolaran
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA
| | - Mohamed Chahine
- CERVO Brain Research Center, Institut Universitaire en Santé Mentale de Québec, Quebec City, QC, Canada
- Department of Medicine, Université Laval, Quebec City, QC, Canada
| | - Mohamed Boutjdir
- Cardiovascular Research Program, VA New York Harbor Healthcare System, Brooklyn, NY, USA.
- Departments of Medicine, Cell Biology and Pharmacology, State University of New York Downstate Medical Center, Brooklyn, NY, USA.
- Department of Medicine, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
18
|
Abstract
Cardiac arrhythmias can follow disruption of the normal cellular electrophysiological processes underlying excitable activity and their tissue propagation as coherent wavefronts from the primary sinoatrial node pacemaker, through the atria, conducting structures and ventricular myocardium. These physiological events are driven by interacting, voltage-dependent, processes of activation, inactivation, and recovery in the ion channels present in cardiomyocyte membranes. Generation and conduction of these events are further modulated by intracellular Ca2+ homeostasis, and metabolic and structural change. This review describes experimental studies on murine models for known clinical arrhythmic conditions in which these mechanisms were modified by genetic, physiological, or pharmacological manipulation. These exemplars yielded molecular, physiological, and structural phenotypes often directly translatable to their corresponding clinical conditions, which could be investigated at the molecular, cellular, tissue, organ, and whole animal levels. Arrhythmogenesis could be explored during normal pacing activity, regular stimulation, following imposed extra-stimuli, or during progressively incremented steady pacing frequencies. Arrhythmic substrate was identified with temporal and spatial functional heterogeneities predisposing to reentrant excitation phenomena. These could arise from abnormalities in cardiac pacing function, tissue electrical connectivity, and cellular excitation and recovery. Triggering events during or following recovery from action potential excitation could thereby lead to sustained arrhythmia. These surface membrane processes were modified by alterations in cellular Ca2+ homeostasis and energetics, as well as cellular and tissue structural change. Study of murine systems thus offers major insights into both our understanding of normal cardiac activity and its propagation, and their relationship to mechanisms generating clinical arrhythmias.
Collapse
Affiliation(s)
- Christopher L-H Huang
- Physiological Laboratory and the Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
19
|
Fu H, Li G, Liu C, Li J, Cheng L, Yang W, Tse G, Zhao J, Liu T. Probucol prevents atrial ion channel remodeling in an alloxan-induced diabetes rabbit model. Oncotarget 2016; 7:83850-83858. [PMID: 27863381 PMCID: PMC5356629 DOI: 10.18632/oncotarget.13339] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 11/09/2016] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) increases the risk of developing atrial fibrillation (AF), but the molecular mechanisms of diabetes-induced atrial remodeling processes have not been fully characterized. The aim of this study was to examine the mechanisms underlying atrial ion channel remodeling in alloxan-induced diabetes model in rabbits. A total of 40 Japanese rabbits were randomly assigned to a control group (C), alloxan-induced diabetic group (DM), probucol-treated control group (Control-P), and probucol-treated diabetic group (DM-P). Using whole-cell voltage-clamp techniques, ICa,L, INa and action potential durations (APDs) were measured in cardiomyocytes isolated from the left atria in the four groups, respectively. In the DM group, increased Ica,L and decreased INa currents were reflected in prolonged APD90 and APD50 values. These changes were reversed in the DM-P group. In conclusion, probucol cured AF by alleviating the ion channel remodeling of atrial myocytes in the setting of diabetes and the promising therapeutic potential of anti-oxidative compounds in the treatment of AF warrants further study.
Collapse
Affiliation(s)
- Huaying Fu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Changle Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Jian Li
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Lijun Cheng
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Wansong Yang
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
- Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
| | - Jichao Zhao
- Auckland Bioengineering Institute, The University of Auckland, New Zealand
| | - Tong Liu
- Department of Cardiology, Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular disease, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, People's Republic of China
| |
Collapse
|
20
|
Liu M, Yang KC, Dudley SC. Cardiac Sodium Channel Mutations: Why so Many Phenotypes? CURRENT TOPICS IN MEMBRANES 2016; 78:513-59. [PMID: 27586294 DOI: 10.1016/bs.ctm.2015.12.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The cardiac Na(+) channel (Nav1.5) conducts a depolarizing inward Na(+) current that is responsible for the generation of the upstroke Phase 0 of the action potential. In heart tissue, changes in Na(+) currents can affect conduction velocity and impulse propagation. The cardiac Nav1.5 is also involved in determination of the action potential duration, since some channels may reopen during the plateau phase, generating a persistent or late inward current. Mutations of cardiac Nav1.5 can induce gain or loss of channel function because of an increased late current or a decrease of peak current, respectively. Gain-of-function mutations cause Long QT syndrome type 3 and possibly atrial fibrillation, while loss-of-function channel mutations are associated with a wider variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, dilated cardiomyopathy, and sick sinus node syndrome. The penetrance and phenotypes resulting from Nav1.5 mutations also vary with age, gender, body temperature, circadian rhythm, and between regions of the heart. This phenotypic variability makes it difficult to correlate genotype-phenotype. We propose that mutations are only one contributor to the phenotype and additional modifications on Nav1.5 lead to the phenotypic variability. Possible modifiers include other genetic variations and alterations in the life cycle of Nav1.5 such as gene transcription, RNA processing, translation, posttranslational modifications, trafficking, complex assembly, and degradation. In this chapter, we summarize potential modifiers of cardiac Nav1.5 that could help explain the clinically observed phenotypic variability. Consideration of these modifiers could help improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- M Liu
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - K-C Yang
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| | - S C Dudley
- The Warren Alpert Medical School of Brown University, Providence, RI, United States
| |
Collapse
|
21
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
22
|
Laedermann CJ, Abriel H, Decosterd I. Post-translational modifications of voltage-gated sodium channels in chronic pain syndromes. Front Pharmacol 2015; 6:263. [PMID: 26594175 PMCID: PMC4633509 DOI: 10.3389/fphar.2015.00263] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 10/23/2015] [Indexed: 02/06/2023] Open
Abstract
In the peripheral sensory nervous system the neuronal expression of voltage-gated sodium channels (Navs) is very important for the transmission of nociceptive information since they give rise to the upstroke of the action potential (AP). Navs are composed of nine different isoforms with distinct biophysical properties. Studying the mutations associated with the increase or absence of pain sensitivity in humans, as well as other expression studies, have highlighted Nav1.7, Nav1.8, and Nav1.9 as being the most important contributors to the control of nociceptive neuronal electrogenesis. Modulating their expression and/or function can impact the shape of the AP and consequently modify nociceptive transmission, a process that is observed in persistent pain conditions. Post-translational modification (PTM) of Navs is a well-known process that modifies their expression and function. In chronic pain syndromes, the release of inflammatory molecules into the direct environment of dorsal root ganglia (DRG) sensory neurons leads to an abnormal activation of enzymes that induce Navs PTM. The addition of small molecules, i.e., peptides, phosphoryl groups, ubiquitin moieties and/or carbohydrates, can modify the function of Navs in two different ways: via direct physical interference with Nav gating, or via the control of Nav trafficking. Both mechanisms have a profound impact on neuronal excitability. In this review we will discuss the role of Protein Kinase A, B, and C, Mitogen Activated Protein Kinases and Ca++/Calmodulin-dependent Kinase II in peripheral chronic pain syndromes. We will also discuss more recent findings that the ubiquitination of Nav1.7 by Nedd4-2 and the effect of methylglyoxal on Nav1.8 are also implicated in the development of experimental neuropathic pain. We will address the potential roles of other PTMs in chronic pain and highlight the need for further investigation of PTMs of Navs in order to develop new pharmacological tools to alleviate pain.
Collapse
Affiliation(s)
- Cedric J. Laedermann
- F.M. Kirby Neurobiology Research Center, Boston Children’s Hospital, Harvard Medical School, BostonMA, USA
| | - Hugues Abriel
- Department of Clinical Research, University of BernBern, Switzerland
| | - Isabelle Decosterd
- Pain Center, Department of Anesthesiology, Lausanne University Hospital (CHUV) and University of LausanneLausanne, Switzerland
- Department of Fundamental Neurosciences, University of LausanneLausanne, Switzerland
| |
Collapse
|
23
|
Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol 2015; 82:36-47. [PMID: 25748040 DOI: 10.1016/j.yjmcc.2015.02.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 01/28/2015] [Accepted: 02/17/2015] [Indexed: 02/07/2023]
Abstract
The cardiac voltage-gated Na(+) channel, Na(V)1.5, is responsible for the upstroke of the action potential in cardiomyocytes and for efficient propagation of the electrical impulse in the myocardium. Even subtle alterations of Na(V)1.5 function, as caused by mutations in its gene SCN5A, may lead to many different arrhythmic phenotypes in carrier patients. In addition, acquired malfunctions of Na(V)1.5 that are secondary to cardiac disorders such as heart failure and cardiomyopathies, may also play significant roles in arrhythmogenesis. While it is clear that the regulation of Na(V)1.5 protein expression and function tightly depends on genetic mechanisms, recent studies have demonstrated that Na(V)1.5 is the target of various post-translational modifications that are pivotal not only in physiological conditions, but also in disease. In this review, we examine the recent literature demonstrating glycosylation, phosphorylation by Protein Kinases A and C, Ca(2+)/Calmodulin-dependent protein Kinase II, Phosphatidylinositol 3-Kinase, Serum- and Glucocorticoid-inducible Kinases, Fyn and Adenosine Monophosphate-activated Protein Kinase, methylation, acetylation, redox modifications, and ubiquitylation of Na(V)1.5. Modern and sensitive mass spectrometry approaches, applied directly to channel proteins that were purified from native cardiac tissues, have enabled the determination of the precise location of post-translational modification sites, thus providing essential information for understanding the mechanistic details of these regulations. The current challenge is first, to understand the roles of these modifications on the expression and the function of Na(V)1.5, and second, to further identify other chemical modifications. It is postulated that the diversity of phenotypes observed with Na(V)1.5-dependent disorders may partially arise from the complex post-translational modifications of channel protein components.
Collapse
|
24
|
Abstract
Mutations of the cardiac sodium channel (Nav1.5) can induce gain or loss of channel function. Gain-of-function mutations can cause long QT syndrome type 3 and possibly atrial fibrillation, whereas loss-of-function mutations are associated with a variety of phenotypes, such as Brugada syndrome, cardiac conduction disease, sick sinus syndrome, and possibly dilated cardiomyopathy. The phenotypes produced by Nav1.5 mutations vary according to the direct effect of the mutation on channel biophysics, but also with age, sex, body temperature, and between regions of the heart. This phenotypic variability makes genotype-phenotype correlations difficult. In this Perspectives article, we propose that phenotypic variability not ascribed to mutation-dependent changes in channel function might be the result of additional modifiers of channel behaviour, such as other genetic variation and alterations in transcription, RNA processing, translation, post-translational modifications, and protein degradation. Consideration of these modifiers might help to improve genotype-phenotype correlations and lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Man Liu
- Warren Alpert Medical School, Brown University, 593 Eddy Street, APC730, Providence, RI 02903, USA
| | - Kai-Chien Yang
- Warren Alpert Medical School, Brown University, 593 Eddy Street, APC730, Providence, RI 02903, USA
| | - Samuel C Dudley
- Warren Alpert Medical School, Brown University, 593 Eddy Street, APC730, Providence, RI 02903, USA
| |
Collapse
|
25
|
Edwards AG, Grandi E, Hake JE, Patel S, Li P, Miyamoto S, Omens JH, Heller Brown J, Bers DM, McCulloch AD. Nonequilibrium reactivation of Na+ current drives early afterdepolarizations in mouse ventricle. Circ Arrhythm Electrophysiol 2014; 7:1205-13. [PMID: 25236710 DOI: 10.1161/circep.113.001666] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Early afterdepolarizations (EADs) are triggers of cardiac arrhythmia driven by L-type Ca(2+) current (ICaL) reactivation or sarcoplasmic reticulum Ca(2+) release and Na(+)/Ca(2+) exchange. In large mammals the positive action potential plateau promotes ICaL reactivation, and the current paradigm holds that cardiac EAD dynamics are dominated by interaction between ICaL and the repolarizing K(+) currents. However, EADs are also frequent in the rapidly repolarizing mouse action potential, which should not readily permit ICaL reactivation. This suggests that murine EADs exhibit unique dynamics, which are key for interpreting arrhythmia mechanisms in this ubiquitous model organism. We investigated these dynamics in myocytes from arrhythmia-susceptible calcium calmodulin-dependent protein kinase II delta C (CaMKIIδC)-overexpressing mice (Tg), and via computational simulations. METHODS AND RESULTS In Tg myocytes, β-adrenergic challenge slowed late repolarization, potentiated sarcoplasmic reticulum Ca(2+) release, and initiated EADs below the ICaL activation range (-47 ± 0.7 mV). These EADs were abolished by caffeine and tetrodotoxin (but not ranolazine), suggesting that sarcoplasmic reticulum Ca(2+) release and Na(+) current (INa), but not late INa, are required for EAD initiation. Simulations suggest that potentiated sarcoplasmic reticulum Ca(2+) release and Na(+)/Ca(2+) exchange shape late action potential repolarization to favor nonequilibrium reactivation of INa and thereby drive the EAD upstroke. Action potential clamp experiments suggest that lidocaine eliminates virtually all inward current elicited by EADs, and that this effect occurs at concentrations (40-60 μmol/L) for which lidocaine remains specific for inactivated Na(+) channels. This strongly suggests that previously inactive channels are recruited during the EAD upstroke, and that nonequilibrium INa dynamics underlie murine EADs. CONCLUSIONS Nonequilibrium reactivation of INa drives murine EADs.
Collapse
Affiliation(s)
- Andrew G Edwards
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.).
| | - Eleonora Grandi
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Johan E Hake
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Sonia Patel
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Pan Li
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Shigeki Miyamoto
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Jeffrey H Omens
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Joan Heller Brown
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Donald M Bers
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| | - Andrew D McCulloch
- From the Department of Bioengineering (A.G.E., S.P., J.H.O., A.D.M.), Department of Pharmacology (S.M., J.H.B.), University of California, San Diego, La Jolla; Department of Pharmacology, University of California, Davis (E.G., D.M.B.); and Simula Research Laboratory, Center for Biomedical Computing, Lysaker, Oslo, Norway (J.E.H., P.L.)
| |
Collapse
|
26
|
Dybkova N, Wagner S, Backs J, Hund TJ, Mohler PJ, Sowa T, Nikolaev VO, Maier LS. Tubulin polymerization disrupts cardiac β-adrenergic regulation of late INa. Cardiovasc Res 2014; 103:168-77. [PMID: 24812278 DOI: 10.1093/cvr/cvu120] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
AIMS The anticancer drug paclitaxel (TXL) that polymerizes microtubules is associated with arrhythmias and sinus node dysfunction. TXL can alter membrane expression of Na channels (NaV1.5) and Na current (INa), but the mechanisms are unknown. Calcium/calmodulin-dependent protein kinase II (CaMKII) can be activated by β-adrenergic stimulation and regulates INa gating. We tested whether TXL interferes with isoproterenol (ISO)-induced activation of CaMKII and consequent INa regulation. METHODS AND RESULTS In wild-type mouse myocytes, the addition of ISO (1 µmol/L) resulted in increased CaMKII auto-phosphorylation (western blotting). This increase was completely abolished after pre-treatment with TXL (100 µmol/L, 1.5 h). The mechanism was further investigated in human embryonic kidney cells. TXL inhibited the ISO-induced β-arrestin translocation. Interestingly, both knockdown of β-arrestin2 expression using small interfering RNA and inhibition of exchange protein directly activated by cAMP (Epac) blocked the ISO-induced CaMKII auto-phosphorylation similar to TXL. The generation of cAMP, however, was unaltered (Epac1-camps). CaMKII-dependent Na channel function was measured using patch-clamp technique in isolated cardiomyoctes. ISO stimulation failed to induce CaMKII-dependent enhancement of late INa and Na channel inactivation (negative voltage shift in steady-state activation and enhanced intermediate inactivation) after pre-incubation with TXL. Consistent with this, TXL also inhibited ISO-induced CaMKII-specific Na channel phosphorylation (at serine 571 of NaV1.5). CONCLUSION Pre-incubation with TXL disrupts the ISO-dependent CaMKII activation and consequent Na channel regulation. This may be important for patients receiving TXL treatments, but also relevant for conditions of increased CaMKII expression and enhanced β-adrenergic stimulation like in heart failure.
Collapse
Affiliation(s)
- Nataliya Dybkova
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Stefan Wagner
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| | - Johannes Backs
- Department of Cardiology, Angiology and Pneumology, Ruprecht Karls University Heidelberg, Heidelberg, Germany DZHK, Partner Site Heidelberg, Heidelberg, Germany
| | - Thomas J Hund
- Davis Heart and Lung Research Institute, Department of Internal Medicine and Physiology and Cell Biology, Ohio State University Medical Center, Columbus, OH, USA
| | - Peter J Mohler
- Davis Heart and Lung Research Institute, Department of Internal Medicine and Physiology and Cell Biology, Ohio State University Medical Center, Columbus, OH, USA
| | - Thomas Sowa
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Viacheslav O Nikolaev
- Clinic for Cardiology and Pneumology, Georg-August-University Göttingen, Göttingen, Germany DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Lars S Maier
- Department of Internal Medicine II, University Hospital Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg 93053, Germany
| |
Collapse
|
27
|
Grandi E, Herren AW. CaMKII-dependent regulation of cardiac Na(+) homeostasis. Front Pharmacol 2014; 5:41. [PMID: 24653702 PMCID: PMC3948048 DOI: 10.3389/fphar.2014.00041] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 02/21/2014] [Indexed: 01/01/2023] Open
Abstract
Na+ homeostasis is a key regulator of cardiac excitation and contraction. The cardiac voltage-gated Na+ channel, NaV1.5, critically controls cell excitability, and altered channel gating has been implicated in both inherited and acquired arrhythmias. Ca2+/calmodulin-dependent protein kinase II (CaMKII), a serine/threonine kinase important in cardiac physiology and disease, phosphorylates NaV1.5 at multiple sites within the first intracellular linker loop to regulate channel gating. Although CaMKII sites on the channel have been identified (S516, T594, S571), the relative role of each of these phospho-sites in channel gating properties remains unclear, whereby both loss-of-function (reduced availability) and gain-of-function (late Na+ current, INaL) effects have been reported. Our review highlights investigating the complex multi-site phospho-regulation of NaV1.5 gating is crucial to understanding the genesis of acquired arrhythmias in heart failure (HF) and CaMKII activated conditions. In addition, the increased Na+ influx accompanying INaL may also indirectly contribute to arrhythmia by promoting Ca2+ overload. While the precise mechanisms of Na+ loading during HF remain unclear, and quantitative analyses of the contribution of INaL are lacking, disrupted Na+ homeostasis is a consistent feature of HF. Computational and experimental observations suggest that both increased diastolic Na+ influx and action potential prolongation due to systolic INaL contribute to disruption of Ca2+ handling in failing hearts. Furthermore, simulations reveal a synergistic interaction between perturbed Na+ fluxes and CaMKII, and confirm recent experimental findings of an arrhythmogenic feedback loop, whereby CaMKII activation is at once a cause and a consequence of Na+ loading.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California at Davis Davis, CA, USA
| | - Anthony W Herren
- Department of Pharmacology, University of California at Davis Davis, CA, USA
| |
Collapse
|
28
|
Bondarenko VE. A compartmentalized mathematical model of the β1-adrenergic signaling system in mouse ventricular myocytes. PLoS One 2014; 9:e89113. [PMID: 24586529 PMCID: PMC3931689 DOI: 10.1371/journal.pone.0089113] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2013] [Accepted: 01/14/2014] [Indexed: 01/08/2023] Open
Abstract
The β1-adrenergic signaling system plays an important role in the functioning of cardiac cells. Experimental data shows that the activation of this system produces inotropy, lusitropy, and chronotropy in the heart, such as increased magnitude and relaxation rates of [Ca2+]i transients and contraction force, and increased heart rhythm. However, excessive stimulation of β1-adrenergic receptors leads to heart dysfunction and heart failure. In this paper, a comprehensive, experimentally based mathematical model of the β1-adrenergic signaling system for mouse ventricular myocytes is developed, which includes major subcellular functional compartments (caveolae, extracaveolae, and cytosol). The model describes biochemical reactions that occur during stimulation of β1-adrenoceptors, changes in ionic currents, and modifications of Ca2+ handling system. Simulations describe the dynamics of major signaling molecules, such as cyclic AMP and protein kinase A, in different subcellular compartments; the effects of inhibition of phosphodiesterases on cAMP production; kinetics and magnitudes of phosphorylation of ion channels, transporters, and Ca2+ handling proteins; modifications of action potential shape and duration; magnitudes and relaxation rates of [Ca2+]i transients; changes in intracellular and transmembrane Ca2+ fluxes; and [Na+]i fluxes and dynamics. The model elucidates complex interactions of ionic currents upon activation of β1-adrenoceptors at different stimulation frequencies, which ultimately lead to a relatively modest increase in action potential duration and significant increase in [Ca2+]i transients. In particular, the model includes two subpopulations of the L-type Ca2+ channels, in caveolae and extracaveolae compartments, and their effects on the action potential and [Ca2+]i transients are investigated. The presented model can be used by researchers for the interpretation of experimental data and for the developments of mathematical models for other species or for pathological conditions.
Collapse
Affiliation(s)
- Vladimir E. Bondarenko
- Department of Mathematics and Statistics and Neuroscience Institute, Georgia State University, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
29
|
Liu ZR, Zhang H, Wu JQ, Zhou JJ, Ji YH. PKA phosphorylation reshapes the pharmacological kinetics of BmK AS, a unique site-4 sodium channel-specific modulator. Sci Rep 2014; 4:3721. [PMID: 24430351 PMCID: PMC5379197 DOI: 10.1038/srep03721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/19/2013] [Indexed: 01/14/2023] Open
Abstract
Although modulation of the activity of voltage-gated sodium channels (VGSCs) by protein kinase A (PKA) phosphorylation has been investigated in multiple preparations, the pharmacological sensitivity of VGSCs to scorpion toxins after PKA phosphorylation has rarely been approached. In this study, the effects of BmK AS, a sodium channel-specific modulator from Chinese scorpion Buthus martensi Karsch, on the voltage-dependent activation and inactivation of Nav1.2 were examined before and after PKA activation. After PKA phosphorylation, the pattern of dose-dependent modulation of BmK AS, on both Nav1.2α and Nav1.2 (α + β1) was reshaped. Meanwhile, the shifts in voltage-dependency of activation and inactivation induced by BmK AS were attenuated. The results suggested that PKA might play a role in different patterns how β-like toxins such as BmK AS modulate gating properties and peak currents of VGSCs.
Collapse
Affiliation(s)
- Z R Liu
- 1] Department of Pharmacology, Institute of Medical Science, Shanghai Jiao Tong University School of Medicine, South Chongqing Road 280, Shanghai 200025, P.R.China [2] Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - H Zhang
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - J Q Wu
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - J J Zhou
- Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China
| | - Y H Ji
- 1] Lab of Neuropharmacology and Neurotoxicology, Shanghai University, Nanchen Road 333, Shanghai 200436, P.R. China [2] Shanghai Chongmin Xinhua Translational Institute of Cancer Pain, Nanmen Road 25, Shanghai 202151, P.R. China
| |
Collapse
|
30
|
Abstract
The pseudounipolar sensory neurons of the dorsal root ganglia (DRG) give rise to peripheral branches that convert thermal, mechanical, and chemical stimuli into electrical signals that are transmitted via central branches to the spinal cord. These neurons express unique combinations of tetrodotoxin-sensitive (TTX-S) and tetrodotoxin-resistant (TTX-R) Na(+) channels that contribute to the resting membrane potential, action potential threshold, and regulate neuronal firing frequency. The small-diameter neurons (<25 μm) isolated from the DRG represent the cell bodies of C-fiber nociceptors that express both TTX-S and TTX-R Na(+) currents. The large-diameter neurons (>35 μm) are typically low-threshold A-fibers that predominately express TTX-S Na(+) currents. Peripheral nerve damage, inflammation, and metabolic diseases alter the expression and function of these Na(+) channels leading to increases in neuronal excitability and pain. The Na(+) channels expressed in these neurons are the target of intracellular signaling cascades that regulate the trafficking, cell surface expression, and gating properties of these channels. Post-translational regulation of Na(+) channels by protein kinases (PKA, PKC, MAPK) alter the expression and function of the channels. Injury-induced changes in these signaling pathways have been linked to sensory neuron hyperexcitability and pain. This review examines the signaling pathways and regulatory mechanisms that modulate the voltage-gated Na(+) channels of sensory neurons.
Collapse
Affiliation(s)
- Mohamed Chahine
- Centre de recherche, Institut en santé mentale de Québec, Local F-6539, 2601, chemin de la Canardière, QC City, QC, Canada, G1J 2G3,
| | | |
Collapse
|
31
|
Sag CM, Wagner S, Maier LS. Role of oxidants on calcium and sodium movement in healthy and diseased cardiac myocytes. Free Radic Biol Med 2013; 63:338-49. [PMID: 23732518 DOI: 10.1016/j.freeradbiomed.2013.05.035] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 12/19/2022]
Abstract
In this review article we give an overview of current knowledge with respect to redox-sensitive alterations in Na(+) and Ca(2+) handling in the heart. In particular, we focus on redox-activated protein kinases including cAMP-dependent protein kinase A (PKA), protein kinase C (PKC), and Ca/calmodulin-dependent protein kinase II (CaMKII), as well as on redox-regulated downstream targets such as Na(+) and Ca(2+) transporters and channels. We highlight the pathological and physiological relevance of reactive oxygen species and some of its sources (such as NADPH oxidases, NOXes) for excitation-contraction coupling (ECC). A short outlook with respect to the clinical relevance of redox-dependent Na(+) and Ca(2+) imbalance will be given.
Collapse
Affiliation(s)
- Can M Sag
- Cardiovascular Division, The James Black Centre, King's College London, UK
| | | | | |
Collapse
|
32
|
Jagu B, Charpentier F, Toumaniantz G. Identifying potential functional impact of mutations and polymorphisms: linking heart failure, increased risk of arrhythmias and sudden cardiac death. Front Physiol 2013; 4:254. [PMID: 24065925 PMCID: PMC3778269 DOI: 10.3389/fphys.2013.00254] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 08/29/2013] [Indexed: 01/22/2023] Open
Abstract
Researchers and clinicians have discovered several important concepts regarding the mechanisms responsible for increased risk of arrhythmias, heart failure, and sudden cardiac death. One major step in defining the molecular basis of normal and abnormal cardiac electrical behavior has been the identification of single mutations that greatly increase the risk for arrhythmias and sudden cardiac death by changing channel-gating characteristics. Indeed, mutations in several genes encoding ion channels, such as SCN5A, which encodes the major cardiac Na+ channel, have emerged as the basis for a variety of inherited cardiac arrhythmias such as long QT syndrome, Brugada syndrome, progressive cardiac conduction disorder, sinus node dysfunction, or sudden infant death syndrome. In addition, genes encoding ion channel accessory proteins, like anchoring or chaperone proteins, which modify the expression, the regulation of endocytosis, and the degradation of ion channel a-subunits have also been reported as susceptibility genes for arrhythmic syndromes. The regulation of ion channel protein expression also depends on a fine-tuned balance among different other mechanisms, such as gene transcription, RNA processing, post-transcriptional control of gene expression by miRNA, protein synthesis, assembly and post-translational modification and trafficking. The aim of this review is to inventory, through the description of few representative examples, the role of these different biogenic mechanisms in arrhythmogenesis, HF and SCD in order to help the researcher to identify all the processes that could lead to arrhythmias. Identification of novel targets for drug intervention should result from further understanding of these fundamental mechanisms.
Collapse
Affiliation(s)
- Benoît Jagu
- INSERM, UMR1087, l'institut du thorax, IRS-UN Nantes, France ; CNRS, UMR6291 Nantes, France ; Faculté de Médecine, Université de Nantes Nantes, France
| | | | | |
Collapse
|
33
|
Herren AW, Bers DM, Grandi E. Post-translational modifications of the cardiac Na channel: contribution of CaMKII-dependent phosphorylation to acquired arrhythmias. Am J Physiol Heart Circ Physiol 2013; 305:H431-45. [PMID: 23771687 DOI: 10.1152/ajpheart.00306.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The voltage-gated Na channel isoform 1.5 (NaV1.5) is the pore forming α-subunit of the voltage-gated cardiac Na channel, which is responsible for the initiation and propagation of cardiac action potentials. Mutations in the SCN5A gene encoding NaV1.5 have been linked to changes in the Na current leading to a variety of arrhythmogenic phenotypes, and alterations in the NaV1.5 expression level, Na current density, and/or gating have been observed in acquired cardiac disorders, including heart failure. The precise mechanisms underlying these abnormalities have not been fully elucidated. However, several recent studies have made it clear that NaV1.5 forms a macromolecular complex with a number of proteins that modulate its expression levels, localization, and gating and is the target of extensive post-translational modifications, which may also influence all these properties. We review here the molecular aspects of cardiac Na channel regulation and their functional consequences. In particular, we focus on the molecular and functional aspects of Na channel phosphorylation by the Ca/calmodulin-dependent protein kinase II, which is hyperactive in heart failure and has been causally linked to cardiac arrhythmia. Understanding the mechanisms of altered NaV1.5 expression and function is crucial for gaining insight into arrhythmogenesis and developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Anthony W Herren
- Department of Pharmacology, University of California Davis, Davis, California
| | | | | |
Collapse
|
34
|
Abstract
Reactive oxygen species (ROS) have been associated with various human diseases, and considerable attention has been paid to investigate their physiological effects. Various ROS are synthesized in the mitochondria and accumulate in the cytoplasm if the cellular antioxidant defense mechanism fails. The critical balance of this ROS synthesis and antioxidant defense systems is termed the redox system of the cell. Various cardiovascular diseases have also been affected by redox to different degrees. ROS have been indicated as both detrimental and protective, via different cellular pathways, for cardiac myocyte functions, electrophysiology, and pharmacology. Mostly, the ROS functions depend on the type and amount of ROS synthesized. While the literature clearly indicates ROS effects on cardiac contractility, their effects on cardiac excitability are relatively under appreciated. Cardiac excitability depends on the functions of various cardiac sarcolemal or mitochondrial ion channels carrying various depolarizing or repolarizing currents that also maintain cellular ionic homeostasis. ROS alter the functions of these ion channels to various degrees to determine excitability by affecting the cellular resting potential and the morphology of the cardiac action potential. Thus, redox balance regulates cardiac excitability, and under pathological regulation, may alter action potential propagation to cause arrhythmia. Understanding how redox affects cellular excitability may lead to potential prophylaxis or treatment for various arrhythmias. This review will focus on the studies of redox and cardiac excitation.
Collapse
Affiliation(s)
- Nitin T Aggarwal
- Division of Cardiovascular Medicine, Department of Medicine, University of Wisconsin, Madison, WI 53792, USA
| | | |
Collapse
|
35
|
Marionneau C, Lichti CF, Lindenbaum P, Charpentier F, Nerbonne JM, Townsend RR, Mérot J. Mass spectrometry-based identification of native cardiac Nav1.5 channel α subunit phosphorylation sites. J Proteome Res 2012; 11:5994-6007. [PMID: 23092124 DOI: 10.1021/pr300702c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiac voltage-gated Na+ (Nav) channels are key determinants of action potential waveforms, refractoriness and propagation, and Nav1.5 is the main Nav pore-forming (α) subunit in the mammalian heart. Although direct phosphorylation of the Nav1.5 protein has been suggested to modulate various aspects of Nav channel physiology and pathophysiology, native Nav1.5 phosphorylation sites have not been identified. In the experiments here, a mass spectrometry (MS)-based proteomic approach was developed to identify native Nav1.5 phosphorylation sites directly. Using an anti-NavPAN antibody, Nav channel complexes were immunoprecipitated from adult mouse cardiac ventricles. The MS analyses revealed that this antibody immunoprecipitates several Nav α subunits in addition to Nav1.5, as well as several previously identified Nav channel associated/regulatory proteins. Label-free comparative and data-driven phosphoproteomic analyses of purified cardiac Nav1.5 protein identified 11 phosphorylation sites, 8 of which are novel. All the phosphorylation sites identified except one in the N-terminus are in the first intracellular linker loop, suggesting critical roles for this region in phosphorylation-dependent cardiac Nav channel regulation. Interestingly, commonly used prediction algorithms did not reliably predict these newly identified in situ phosphorylation sites. Taken together, the results presented provide the first in situ map of basal phosphorylation sites on the mouse cardiac Nav1.5 α subunit.
Collapse
|
36
|
Das S, Aiba T, Rosenberg M, Hessler K, Xiao C, Quintero PA, Ottaviano FG, Knight AC, Graham EL, Boström P, Morissette MR, del Monte F, Begley MJ, Cantley LC, Ellinor PT, Tomaselli GF, Rosenzweig A. Pathological role of serum- and glucocorticoid-regulated kinase 1 in adverse ventricular remodeling. Circulation 2012; 126:2208-19. [PMID: 23019294 DOI: 10.1161/circulationaha.112.115592] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is a growing cause of morbidity and mortality. Cardiac phosphatidylinositol 3-kinase signaling promotes cardiomyocyte survival and function, but it is paradoxically activated in heart failure, suggesting that chronic activation of this pathway may become maladaptive. Here, we investigated the downstream phosphatidylinositol 3-kinase effector, serum- and glucocorticoid-regulated kinase-1 (SGK1), in heart failure and its complications. METHODS AND RESULTS We found that cardiac SGK1 is activated in human and murine heart failure. We investigated the role of SGK1 in the heart by using cardiac-specific expression of constitutively active or dominant-negative SGK1. Cardiac-specific activation of SGK1 in mice increased mortality, cardiac dysfunction, and ventricular arrhythmias. The proarrhythmic effects of SGK1 were linked to biochemical and functional changes in the cardiac sodium channel and could be reversed by treatment with ranolazine, a blocker of the late sodium current. Conversely, cardiac-specific inhibition of SGK1 protected mice after hemodynamic stress from fibrosis, heart failure, and sodium channel alterations. CONCLUSIONS SGK1 appears both necessary and sufficient for key features of adverse ventricular remodeling and may provide a novel therapeutic target in cardiac disease.
Collapse
Affiliation(s)
- Saumya Das
- Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Hallaq H, Wang DW, Kunic JD, George AL, Wells KS, Murray KT. Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am J Physiol Heart Circ Physiol 2012; 302:H782-9. [PMID: 22101522 PMCID: PMC3353784 DOI: 10.1152/ajpheart.00817.2010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 11/11/2011] [Indexed: 01/08/2023]
Abstract
Na(+) current derived from expression of the cardiac isoform SCN5A is reduced by receptor-mediated or direct activation of protein kinase C (PKC). Previous work has suggested a possible role for loss of Na(+) channels at the plasma membrane in this effect, but the results are controversial. In this study, we tested the hypothesis that PKC activation acutely modulates the intracellular distribution of SCN5A channels and that this effect can be visualized in living cells. In human embryonic kidney cells that stably expressed SCN5A with green fluorescent protein (GFP) fused to the channel COOH-terminus (SCN5A-GFP), Na(+) currents were suppressed by an exposure to PKC activation. Using confocal microscopy, colocalization of SCN5A-GFP channels with the plasma membrane under control and stimulated conditions was quantified. A separate population of SCN5A channels containing an extracellular epitope was immunolabeled to permit temporally stable labeling of the plasma membrane. Our results demonstrated that Na(+) channels were preferentially trafficked away from the plasma membrane by PKC activation, with a major contribution by Ca(2+)-sensitive or conventional PKC isoforms, whereas stimulation of protein kinase A (PKA) had the opposite effect. Removal of the conserved PKC site Ser(1503) or exposure to the NADPH oxidase inhibitor apocynin eliminated the PKC-mediated effect to alter channel trafficking, indicating that both channel phosphorylation and ROS were required. Experiments using fluorescence recovery after photobleaching demonstrated that both PKC and PKA also modified channel mobility in a manner consistent with the dynamics of channel distribution. These results demonstrate that the activation of protein kinases can acutely regulate the intracellular distribution and molecular mobility of cardiac Na(+) channels in living cells.
Collapse
Affiliation(s)
- Haifa Hallaq
- Departments of Medicine and Pharmacology Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | | | | |
Collapse
|
38
|
Jeong EM, Liu M, Sturdy M, Gao G, Varghese ST, Sovari AA, Dudley SC. Metabolic stress, reactive oxygen species, and arrhythmia. J Mol Cell Cardiol 2011; 52:454-63. [PMID: 21978629 DOI: 10.1016/j.yjmcc.2011.09.018] [Citation(s) in RCA: 175] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 08/20/2011] [Accepted: 09/19/2011] [Indexed: 02/07/2023]
Abstract
Cardiac arrhythmias can cause sudden cardiac death (SCD) and add to the current heart failure (HF) health crisis. Nevertheless, the pathological processes underlying arrhythmias are unclear. Arrhythmic conditions are associated with systemic and cardiac oxidative stress caused by reactive oxygen species (ROS). In excitable cardiac cells, ROS regulate both cellular metabolism and ion homeostasis. Increasing evidence suggests that elevated cellular ROS can cause alterations of the cardiac sodium channel (Na(v)1.5), abnormal Ca(2+) handling, changes of mitochondrial function, and gap junction remodeling, leading to arrhythmogenesis. This review summarizes our knowledge of the mechanisms by which ROS may cause arrhythmias and discusses potential therapeutic strategies to prevent arrhythmias by targeting ROS and its consequences. This article is part of a Special Issue entitled "Local Signaling in Myocytes".
Collapse
Affiliation(s)
- Euy-Myoung Jeong
- Section of Cardiology, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | | | | | | | | | | | | |
Collapse
|
39
|
Rook MB, Evers MM, Vos MA, Bierhuizen MFA. Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc Res 2011; 93:12-23. [PMID: 21937582 DOI: 10.1093/cvr/cvr252] [Citation(s) in RCA: 148] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Na(v)1.5, the pore forming α-subunit of the voltage-dependent cardiac Na(+) channel, is an integral membrane protein involved in the initiation and conduction of action potentials. Mutations in the gene-encoding Na(v)1.5, SCN5A, have been associated with a variety of arrhythmic disorders, including long QT, Brugada, and sick sinus syndromes as well as progressive cardiac conduction defect and atrial standstill. Moreover, alterations in the Na(v)1.5 expression level and/or sodium current density have been frequently noticed in acquired cardiac disorders, such as heart failure. The molecular mechanisms underlying these alterations are poorly understood, but are considered essential for conception of arrhythmogenesis and the development of therapeutic strategies for prevention or treatment of arrhythmias. The unravelling of such mechanisms requires critical molecular insight into the biology of Na(v)1.5 expression and function. Therefore, the aim of this review is to provide an up-to-date account of molecular determinants of normal Na(v)1.5 expression and function. The parts of the Na(v)1.5 life cycle that are discussed include (i) regulatory aspects of the SCN5A gene and transcript structure, (ii) the nature, molecular determinants, and functional consequences of Na(v)1.5 post-translational modifications, and (iii) the role of Na(v)1.5 interacting proteins in cellular trafficking. The reviewed studies have provided valuable information on how the Na(v)1.5 expression level, localization, and biophysical properties are regulated, but also revealed that our understanding of the underlying mechanisms is still limited.
Collapse
Affiliation(s)
- Martin B Rook
- Department of Medical Physiology, Division Heart & Lungs, University Medical Center Utrecht, The Netherlands
| | | | | | | |
Collapse
|
40
|
Beard LL, Li T, Hu Y, Folkesson HG. Fetal Lung Epithelial Ion Channels Relocate in the Cell Membrane During Late Gestation. Anat Rec (Hoboken) 2011; 294:1461-71. [DOI: 10.1002/ar.21363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 09/08/2010] [Accepted: 10/22/2010] [Indexed: 11/09/2022]
|
41
|
Scheuer T. Regulation of sodium channel activity by phosphorylation. Semin Cell Dev Biol 2011; 22:160-5. [PMID: 20950703 PMCID: PMC3423337 DOI: 10.1016/j.semcdb.2010.10.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Revised: 10/04/2010] [Accepted: 10/05/2010] [Indexed: 12/24/2022]
Abstract
Voltage-gated sodium channels carry the major inward current responsible for action potential depolarization in excitable cells as well as providing additional inward current that modulates overall excitability. Both their expression and function is under tight control of protein phosphorylation by specific kinases and phosphatases and this control is particular to each type of sodium channel. This article examines the impact and mechanism of phosphorylation for isoforms where it has been studied in detail in an attempt to delineate common features as well as differences.
Collapse
Affiliation(s)
- Todd Scheuer
- Department of Pharmacology, University of Washington School of Medicine, Seattle, WA 98195-7280, United States.
| |
Collapse
|
42
|
Nediani C, Raimondi L, Borchi E, Cerbai E. Nitric oxide/reactive oxygen species generation and nitroso/redox imbalance in heart failure: from molecular mechanisms to therapeutic implications. Antioxid Redox Signal 2011; 14:289-331. [PMID: 20624031 DOI: 10.1089/ars.2010.3198] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Adaptation of the heart to intrinsic and external stress involves complex modifications at the molecular and cellular levels that lead to tissue remodeling, functional and metabolic alterations, and finally to failure depending upon the nature, intensity, and chronicity of the stress. Reactive oxygen species (ROS) have long been considered as merely harmful entities, but their role as second messengers has gradually emerged. At the same time, our comprehension of the multifaceted role of nitric oxide (NO) and the related reactive nitrogen species (RNS) has been upgraded. The tight interlay between ROS and RNS suggests that their imbalance may implicate the impairment in physiological NO/redox-based signaling that contributes to the failing of the cardiovascular system. This review initially provides basic concepts on the role of nitroso/oxidative stress in the pathophysiology of heart failure with a particular focus on sources of ROS/RNS, their downstream targets, and endogenous modulators. Then, the role of NO/redox regulation of cardiomyocyte function, including calcium homeostasis, electrogenesis, and insulin signaling pathways, is described. Finally, an overview of old and emerging therapeutic opportunities in heart failure is presented, focusing on modulation of NO/redox mechanisms and discussing benefits and limitations.
Collapse
Affiliation(s)
- Chiara Nediani
- Department of Biochemical Sciences, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
43
|
Fraser SP, Ozerlat-Gunduz I, Onkal R, Diss JKJ, Latchman DS, Djamgoz MBA. Estrogen and non-genomic upregulation of voltage-gated Na(+) channel activity in MDA-MB-231 human breast cancer cells: role in adhesion. J Cell Physiol 2010; 224:527-39. [PMID: 20432453 DOI: 10.1002/jcp.22154] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
External (but not internal) application of beta-estradiol (E2) increased the current amplitude of voltage-gated Na(+) channels (VGSCs) in MDA-MB-231 human breast cancer (BCa) cells. The G-protein activator GTP-gamma-S, by itself, also increased the VGSC current whilst the G-protein inhibitor GDP-beta-S decreased the effect of E2. Expression of GPR30 (a G-protein-coupled estrogen receptor) in MDA-MB-231 cells was confirmed by PCR, Western blot and immunocytochemistry. Importantly, G-1, a specific agonist for GPR30, also increased the VGSC current amplitude in a dose-dependent manner. Transfection and siRNA-silencing of GPR30 expression resulted in corresponding changes in GPR30 protein expression but only internally, and the response to E2 was not affected. The protein kinase A inhibitor, PKI, abolished the effect of E2, whilst forskolin, an adenylate cyclase activator, by itself, increased VGSC activity. On the other hand, pre-incubation of the MDA-MB-231 cells with brefeldin A (a trans-Golgi protein trafficking inhibitor) had no effect on the E2-induced increase in VGSC amplitude, indicating that such trafficking ('externalisation') of VGSC was not involved. Finally, acute application of E2 decreased cell adhesion whilst the specific VGSC blocker tetrodotoxin increased it. Co-application of E2 and tetrodotoxin inhibited the effect of E2 on cell adhesion, suggesting that the effect of E2 was mainly through VGSC activity. Pre-treatment of the cells with PKI abolished the effect of E2 on adhesion, consistent with the proposed role of PKA. Potential implications of the E2-induced non-genomic upregulation of VGSC activity for BCa progression are discussed.
Collapse
Affiliation(s)
- Scott P Fraser
- Division of Cell and Molecular Biology, Neuroscience Solutions to Cancer Research Group, Imperial College London, South Kensington Campus, London, UK.
| | | | | | | | | | | |
Collapse
|
44
|
Protein kinase A and regulation of neonatal Nav1.5 expression in human breast cancer cells: Activity-dependent positive feedback and cellular migration. Int J Biochem Cell Biol 2010; 42:346-58. [DOI: 10.1016/j.biocel.2009.11.021] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 10/30/2009] [Accepted: 11/24/2009] [Indexed: 11/22/2022]
|
45
|
Modulation of canine cardiac sodium current by Apelin. J Mol Cell Cardiol 2009; 48:694-701. [PMID: 20036246 DOI: 10.1016/j.yjmcc.2009.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Revised: 12/14/2009] [Accepted: 12/15/2009] [Indexed: 11/20/2022]
Abstract
Apelin, a ligand of the G protein-coupled putative angiotensin II-like receptor (APJ-R), exerts strong vasodilating, cardiac inotropic and chronotropic actions. Its expression is highly up-regulated during heart failure. Apelin also increases cardiac conduction speed and excitability. While our knowledge of apelin cardiovascular actions is growing, our understanding of the physiological mechanisms behind the cardiac effects remains limited. We tested the effects of apelin on the cardiac sodium current (I(Na)) using patch clamp technique on cardiac myocytes acutely dissociated from dog ventricle. We found that apelin-13 and apelin-17 increased peak I(Na) by 39% and 61% and shifted its mid-activation potential by -6.8+/-0.6 mV and -17+/-1 mV respectively thus increasing channel opening at negative voltage. Apelin also slowed I(Na) recovery from inactivation. The effects of apelin on I(Na) amplitude were linked to activation of protein kinase C. Apelin also increased I(Na) "window" current by up to 600% suggesting that changes in intracellular sodium may contribute to the apelin inotropic effects. Our results reveal for the first time the effects of apelin on I(Na). These effects are likely to modulate cardiac conduction and excitability and may have beneficial antiarrhythmic action in sodium chanelopathies such as Brugada Syndrome where I(Na) amplitude is reduced.
Collapse
|
46
|
Liu C, Li Q, Su Y, Bao L. Prostaglandin E2 promotes Na1.8 trafficking via its intracellular RRR motif through the protein kinase A pathway. Traffic 2009; 11:405-17. [PMID: 20028484 DOI: 10.1111/j.1600-0854.2009.01027.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Voltage-gated sodium channels (Na(v)) are essential for the initiation and propagation of action potentials in neurons. Na(v)1.8 activity is regulated by prostaglandin E(2) (PGE(2)). There is, however, no direct evidence showing the regulated trafficking of Na(v)1.8, and the molecular and cellular mechanism of PGE(2)-induced sodium channel trafficking is not clear. Here, we report that PGE(2) regulates the trafficking of Na(v)1.8 through the protein kinase A (PKA) signaling pathway, and an RRR motif in the first intracellular loop of Na(v)1.8 mediates this effect. In rat dorsal root ganglion (DRG) neurons, prolonged PGE(2) treatment enhanced Na(v)1.8 currents by increasing the channel density on the cell surface. Activation of PKA by forskolin had the same effect on DRG neurons and human embryonic kidney 293T cells expressing Na(v)1.8. Inhibition of PKA completely blocked the PGE(2)-promoted effect on Na(v)1.8. Mutation of five PKA phosphorylation sites or the RRR motif in the first intracellular loop of Na(v)1.8 abolished the PKA-promoted Na(v)1.8 surface expression. Furthermore, a membrane-tethered peptide containing the intracellular RRR motif disrupted the PGE(2)-induced promotion of the Na(v)1.8 current in DRG neurons. Our data indicate that PGE(2) promotes the surface expression of Na(v)1.8 via an intracellular RRR motif, and provide a novel mechanism for functional modulation of Na(v)1.8 by hyperalgesic agents.
Collapse
Affiliation(s)
- Chao Liu
- Laboratory of Molecular Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, People's Republic of China
| | | | | | | |
Collapse
|
47
|
Aiba T, Hesketh GG, Liu T, Carlisle R, Villa-Abrille MC, O'Rourke B, Akar FG, Tomaselli GF. Na+ channel regulation by Ca2+/calmodulin and Ca2+/calmodulin-dependent protein kinase II in guinea-pig ventricular myocytes. Cardiovasc Res 2009; 85:454-63. [PMID: 19797425 DOI: 10.1093/cvr/cvp324] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AIMS Calmodulin (CaM) regulates Na+ channel gating through binding to an IQ-like motif in the C-terminus. Ca2+/CaM-dependent protein kinase II (CaMKII) regulates Ca2+ handling, and chronic overactivity of CaMKII is associated with left ventricular hypertrophy and dysfunction and lethal arrhythmias. However, the acute effects of Ca2+/CaM and CaMKII on cardiac Na+ channels are not fully understood. METHODS AND RESULTS Purified Na(V)1.5-glutathione-S-transferase fusion peptides were phosphorylated in vitro by CaMKII predominantly on the I-II linker. Whole-cell voltage-clamp was used to measure Na+ current (I(Na)) in isolated guinea-pig ventricular myocytes in the absence or presence of CaM or CaMKII in the pipette solution. CaMKII shifted the voltage dependence of Na+ channel availability by approximately +5 mV, hastened recovery from inactivation, decreased entry into intermediate or slow inactivation, and increased persistent (late) current, but did not change I(Na) decay. These CaMKII-induced changes of Na+ channel gating were completely abolished by a specific CaMKII inhibitor, autocamtide-2-related inhibitory peptide (AIP). Ca2+/CaM alone reproduced the CaMKII-induced changes of I(Na) availability and the fraction of channels undergoing slow inactivation, but did not alter recovery from inactivation or the magnitude of the late current. Furthermore, the CaM-induced changes were also completely abolished by AIP. On the other hand, cAMP-dependent protein kinase A inhibitors did not abolish the CaM/CaMKII-induced alterations of I(Na) function. CONCLUSION Ca2+/CaM and CaMKII have distinct effects on the inactivation phenotype of cardiac Na+ channels. The differences are consistent with CaM-independent effects of CaMKII on cardiac Na+ channel gating.
Collapse
Affiliation(s)
- Takeshi Aiba
- Division of Cardiology, Johns Hopkins University School of Medicine, 720 Rutland Ave., Ross 844, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Affiliation(s)
- Eric S. Fortune
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maurice J. Chacron
- Department of Physiology, Center for Nonlinear Dynamics, McGill University, Montreal, Canada
- Department of Physics, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
49
|
Markham MR, McAnelly ML, Stoddard PK, Zakon HH. Circadian and social cues regulate ion channel trafficking. PLoS Biol 2009; 7:e1000203. [PMID: 19787026 PMCID: PMC2741594 DOI: 10.1371/journal.pbio.1000203] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 08/13/2009] [Indexed: 12/25/2022] Open
Abstract
Electric fish strengthen their communication signals nightly and during social encounters by rapidly trafficking ion channels into cell membranes, demonstrating a direct relationship between environmental stimuli, channel trafficking, and behavior. Electric fish generate and sense electric fields for navigation and communication. These signals can be energetically costly to produce and can attract electroreceptive predators. To minimize costs, some nocturnally active electric fish rapidly boost the power of their signals only at times of high social activity, either as night approaches or in response to social encounters. Here we show that the gymnotiform electric fish Sternopygus macrurus rapidly boosts signal amplitude by 40% at night and during social encounters. S. macrurus increases signal magnitude through the rapid and selective trafficking of voltage-gated sodium channels into the excitable membranes of its electrogenic cells, a process under the control of pituitary peptide hormones and intracellular second-messenger pathways. S. macrurus thus maintains a circadian rhythm in signal amplitude and adapts within minutes to environmental events by increasing signal amplitude through the rapid trafficking of ion channels, a process that directly modifies an ongoing behavior in real time. Excitable cells, such as neurons and muscle cells, control behavior by generating action potentials, electrical signals that propagate along the cell membrane. Action potentials are generated when the cell allows charged molecules (ions) such as sodium and potassium to move across the membrane through specialized proteins called ion channels. By changing the number of ion channels in the plasma membrane, excitable cells can rapidly remodel their functional characteristics, potentially causing changes in behavior. To gain an understanding of how environmental events cause the remodeling of excitable cell membranes and the resulting behavioral adaptations, we studied the electric communication/navigation signals of an electric fish, Sternopygus macrurus. High amplitude signals facilitate communication and electrolocation, but are energetically costly and more detectable by those predators that can detect electrical signals. We found that Sternopygus increase signal amplitude at night, when they are active, and increase signal amplitude rapidly during social encounters. Electrocytes, the cells that produce the signal, rapidly boost the signal amplitude when they allow more sodium to cross the cell membrane, thereby generating larger action potentials. To increase sodium currents during the action potential, electrocytes rapidly insert additional sodium channels into the cell membrane in response to hormones released into circulation by the pituitary. By adding new ion channels to the electrocyte membrane only during periods of activity or social encounters and removing these channels during inactive periods, these animals can save energy and reduce predation risks associated with communication.
Collapse
Affiliation(s)
- Michael R Markham
- Section of Neurobiology, Patterson Laboratory, The University of Texas at Austin, Austin, Texas, United States of America.
| | | | | | | |
Collapse
|
50
|
Liu M, Sanyal S, Gao G, Gurung IS, Zhu X, Gaconnet G, Kerchner LJ, Shang LL, Huang CLH, Grace A, London B, Dudley SC. Cardiac Na+ current regulation by pyridine nucleotides. Circ Res 2009; 105:737-45. [PMID: 19745168 DOI: 10.1161/circresaha.109.197277] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Mutations in glycerol-3-phosphate dehydrogenase 1-like (GPD1-L) protein reduce cardiac Na+ current (I(Na)) and cause Brugada Syndrome (BrS). GPD1-L has >80% amino acid homology with glycerol-3-phosphate dehydrogenase, which is involved in NAD-dependent energy metabolism. OBJECTIVE Therefore, we tested whether NAD(H) could regulate human cardiac sodium channels (Na(v)1.5). METHODS AND RESULTS HEK293 cells stably expressing Na(v)1.5 and rat neonatal cardiomyocytes were used. The influence of NADH/NAD+ on arrhythmic risk was evaluated in wild-type or SCN5A(+/-) mouse heart. A280V GPD1-L caused a 2.48+/-0.17-fold increase in intracellular NADH level (P<0.001). NADH application or cotransfection with A280V GPD1-L resulted in decreased I(Na) (0.48+/-0.09 or 0.19+/-0.04 of control group, respectively; P<0.01), which was reversed by NAD+, chelerythrine, or superoxide dismutase. NAD+ antagonism of the Na+ channel downregulation by A280V GPD1-L or NADH was prevented by a protein kinase (PK)A inhibitor, PKAI(6-22). The effects of NADH and NAD+ were mimicked by a phorbol ester and forskolin, respectively. Increasing intracellular NADH was associated with an increased risk of ventricular tachycardia in wild-type mouse hearts. Extracellular application of NAD+ to SCN5A(+/-) mouse hearts ameliorated the risk of ventricular tachycardia. CONCLUSIONS Our results show that Na(v)1.5 is regulated by pyridine nucleotides, suggesting a link between metabolism and I(Na). This effect required protein kinase C activation and was mediated by oxidative stress. NAD+ could prevent this effect by activating PKA. Mutations of GPD1-L may downregulate Na(v)1.5 by altering the oxidized to reduced NAD(H) balance.
Collapse
Affiliation(s)
- Man Liu
- Division in Cardiology, University of Illinois at Chicago and the Jesse Brown Veteran Affairs Medical Center, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|