1
|
Tremblay D, Hasserjian RP, Rampal RK. Myelodysplastic syndrome/myeloproliferative neoplasm overlap syndromes: a practical guide to diagnosis and management. Leukemia 2025:10.1038/s41375-025-02620-8. [PMID: 40253543 DOI: 10.1038/s41375-025-02620-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025]
Abstract
Myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) overlap syndromes are a rare group of biologically and clinically connected hematologic malignancies that includes chronic myelomonocytic leukemia (CMML), the most common subtype, as well as atypical chronic myeloid leukemia, MDS/MPN with SF3B1 and thrombocytosis, and MDS/MPN, not otherwise specified. Given their rarity and overlapping clinical features, accurate diagnosis and risk stratification presents a significant challenge. Therapeutic approaches are largely borrowed from either MDS or MPN and the only curative option for appropriate patients is allogeneic stem cell transplantation. Recent advances have started to uncover the pathobiologic basis for these diseases, leading to novel clinical trials for MDS/MPN overlap syndromes, in particular CMML. This review is a practical guide for the diagnosis and management of MDS/MPN overlap syndromes and presents novel therapeutics being specifically designed for these diseases to improve their historically poor outcomes.
Collapse
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | | | | |
Collapse
|
2
|
Chen X, Patkar N, Tembhare P, Papagudi S, Yeung C, Kanagal Shamanna R, Gujral S, Wood B, Naresh KN. Fifth edition WHO classification: myeloid neoplasms. J Clin Pathol 2025; 78:335-345. [PMID: 39947884 DOI: 10.1136/jcp-2024-210022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 04/19/2025]
Abstract
The fifth edition of the WHO classification of haematolymphoid tumours (WHO-HEM5) introduces significant advancements in the understanding and diagnosis of myeloid neoplasms, emphasising molecular and genetic insights. This review highlights key updates from the revised fourth edition (WHO-HEM4R), particularly the integration of genetic criteria for disease classification. Many entities are now defined by specific genetic abnormalities, enhancing diagnostic precision and prognostic assessment. Notably, the elimination of the 20% blast threshold for acute myeloid leukaemia (AML) with specific defining genetic alterations reflects a shift towards genomic-driven diagnostics. Additional updates include the refined subclassification of myelodysplastic neoplasms (MDS) and MDS/myeloproliferative neoplasms, as well as the recognition of novel entities such as clonal haematopoiesis and MDS with biallelic TP53 inactivation, further expanding the spectrum of myeloid neoplasms. WHO-HEM5 illustrates the diagnostic utility of morphology, flow cytometry, immunohistochemistry and next-generation sequencing in resource-rich settings. However, its implementation in low-income and middle-income countries (LMICs) remains challenging due to limited access to advanced diagnostic tools. This review explores strategies to optimise diagnosis in resource-constrained environments, where morphology and immunophenotyping remain fundamental. By integrating molecular diagnostics with traditional methods, WHO-HEM5 aims to refine classification and facilitate risk stratification in the era of personalised medicine, providing haematopathologists and clinicians with an essential framework to navigate the complexities of myeloid neoplasms. The emphasis on advancing haematopathology practices worldwide, including in LMICs, demonstrates the ongoing commitment to improving global outcomes in haematological malignancies.
Collapse
Affiliation(s)
- Xueyan Chen
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | - Nikhil Patkar
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Prashant Tembhare
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Subramanian Papagudi
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Cecelia Yeung
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| | | | - Sumeet Gujral
- Hematopathology Department, ACTREC, Tata Memorial Centre, Homi Bhabha National Institute, Tata Memorial Centre, Navi Mumbai, India
| | - Brent Wood
- Diagnostic Immunology & Flow Cytometry, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Kikkeri N Naresh
- Section of Pathology, Translational Science and Therapeutics Division, Fred Hutchinson Cancer Center, Seattle, Washington, USA
- Department of Laboratory Medicine & Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Prakash S, Orazi A. Diagnostic Approach to Myeloproliferative Neoplasms and Myelodysplastic/Myeloproliferative Neoplasms. Adv Anat Pathol 2025:00125480-990000000-00147. [PMID: 40243206 DOI: 10.1097/pap.0000000000000493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
The International Consensus Classification (ICC) updated in 2022 the World Health Organization (WHO) classification of hematopoietic tumors (2016 revision of the 4th edition WHO classification). Although the major categories of myeloid neoplasms remained unchanged from the prior WHO classification, many disease entities including those in the myeloproliferative neoplasm (MPN) and myelodysplastic syndrome/myeloproliferative neoplasm (MDS/MPN) categories underwent updates. For all these disease subtypes, a careful integration of clinicopathologic findings and molecular data led to improved diagnostic definitions. Although the classification of MPNs received only minor changes, these included a simpler definition of accelerated phase of chronic myeloid leukemia. For the MDS/MPN group, in addition to the presence of one or more increased peripheral blood cell counts as evidence of myeloproliferative features, concomitant cytopenia as evidence of ineffective hematopoiesis is now an explicit diagnostic requirement for all the entities included in this category. The presence of specific mutations in the appropriate clinicopathologic context is now included in the diagnostic criteria for some of the MPN and MDS/MPN entities. This review aims to briefly discuss the diagnostic approach to MPNs and MDS/MPNs according to the ICC.
Collapse
Affiliation(s)
- Sonam Prakash
- Department of Laboratory Medicine, University of California, San Francisco, CA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX
| |
Collapse
|
4
|
Costa A, Breccia M. SOHO State of the Art Updates and Next Questions. Atypical Chronic Myeloid Leukemia: Pathogenesis, Diagnostic Challenges, and Therapeutic Strategies. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2025:S2152-2650(25)00110-7. [PMID: 40288921 DOI: 10.1016/j.clml.2025.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/29/2025]
Abstract
Atypical chronic myeloid leukemia (aCML) is a rare and challenging clonal hematopoietic disorder within the myelodysplastic/myeloproliferative neoplasm (MDS/MPN) spectrum. Over the past two decades, substantial progress has been made in understanding the genetic mechanisms driving aCML, revealing a complex and heterogeneous mutational landscape. Key ancestral mutations, such as ASXL1 and ETNK1, have been identified, providing a foundation for the pathogenesis and for the possible emergence of secondary abnormalities, particularly in epigenetic regulation (eg, SETBP1), and in splicing process (eg, SRSF2). These molecular insights have been integrated into current diagnostic classifications, refining disease characterization and offering potential targets for precision therapies. Despite these advances, significant clinical challenges persist due to the disease's rarity and the lack of randomized clinical trials. Therapeutic strategies remain inadequately defined, with allogeneic stem cell transplantation being the only curative option. This review provides an overview of the molecular, clinical, and therapeutic information that may pave the way for essential advancements in the proper management of this disease.
Collapse
Affiliation(s)
- Alessandro Costa
- Hematology Unit, Businco Hospital, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| | - Massimo Breccia
- Hematology, Department of Translational and Precision Medicine, Az. Policlinico Umberto I-Sapienza University, Rome, Italy.
| |
Collapse
|
5
|
Vardell VA, Ose J, Rets AV, Tantravahi SK, Patel AB. Chronic Myelomonocytic Leukemia and Atypical Chronic Myeloid Leukemia: A National Analysis. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2024; 24:843-851. [PMID: 39179449 DOI: 10.1016/j.clml.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024]
Abstract
BACKGROUND Myelodysplastic/myeloproliferative overlap syndromes (MDS/MPN) are rare blood cancers characterized by concomitant myeloid hyperplasia and dysplasia. These heterogenous disorders include chronic myelomonocytic leukemia (CMML) and atypical chronic myeloid leukemia (aCML). METHODS Using two large national cancer databases to examine a total of 15,704 CMML and 702 aCML patients, we report the largest study to date on the incidence, survival and demographic characteristics of CMML and aCML in the United States. RESULTS Overall age-adjusted incidence of CMML and aCML was 0.63 per 100,000 Americans per year and 0.03 per 100,000 per year, respectively. CMML incidence in the U.S. was noted to rise steadily in the years between 2001 and 2019. Median patient age was 75 and 72 years for CMML and aCML, and the majority of CMML and aCML patients were male (62.9% and 62.0%) and White (90.1% and 86.3%). Median OS was 17.4 months for CMML, and 15.2 months for aCML. Multivariate Cox regression demonstrated features associated with reduced survival, including increasing age, comorbidities, Medicaid insurance status, and low-income residential zip code, highlighting survival disparities in underinsured and socioeconomically disadvantaged patients. In CMML, Black race was associated with inferior survival, while female sex, management at an academic center, and later calendar-year of diagnosis were associated with improved OS. CONCLUSION These findings underscore the need to better understand the biological basis for such differences in survival and reflect the importance of access to specialized care for patients with these rare disorders.
Collapse
MESH Headings
- Humans
- Male
- Female
- Aged
- Leukemia, Myelomonocytic, Chronic/epidemiology
- Leukemia, Myelomonocytic, Chronic/mortality
- Leukemia, Myelomonocytic, Chronic/therapy
- United States/epidemiology
- Middle Aged
- Aged, 80 and over
- Incidence
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/epidemiology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/pathology
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Adult
Collapse
Affiliation(s)
- Victoria A Vardell
- Department of Internal Medicine, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Jennifer Ose
- Department of Population Health Sciences, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT
| | - Anton V Rets
- Department of Pathology, University of Utah, Salt Lake City, UT; ARUP Laboratories, University of Utah, Salt Lake City, UT
| | - Srinivas K Tantravahi
- Department of Internal Medicine, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT
| | - Ami B Patel
- Department of Internal Medicine, University of Utah, Salt Lake City, UT; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT; Division of Hematology and Hematologic Malignancies, University of Utah, Salt Lake City, UT.
| |
Collapse
|
6
|
Jiang M, Chen M, Yan L, Zhang Y, Yang X, Zhang W. Atypical chronic myeloid leukemia found in a patient with eosinophilia for six years: a case report. BMC Geriatr 2024; 24:595. [PMID: 38992589 PMCID: PMC11241931 DOI: 10.1186/s12877-024-05196-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 07/02/2024] [Indexed: 07/13/2024] Open
Abstract
BACKGROUND Atypical chronic myeloid leukemia (aCML) is a highly aggressive type of blood cancer that falls under the category of myelodysplastic/myeloproliferative neoplasms (MDS/MPN). In the fifth edition of the WHO classification of tumors, this category has been renamed MDS/MPN with neutrophilia. Although eosinophilia is commonly observed in blood cancers, it is rarely seen in aCML. CASE PRESENTATION This study presents a case of aCML that was diagnosed six years after the patient developed eosinophilia. The patient had undergone tests to rule out other primary and secondary diseases, but the eosinophilia remained unexplained. Treatment with corticosteroids and hydroxyurea had proven ineffective. Six years later, the patient experienced an increase in white blood cells, primarily neutrophils. After ruling out other possible diagnoses, a combination of morphologic and molecular genetic findings led to the diagnosis of aCML. The patient responded well to treatment with azacitidine. CONCLUSIONS This study summarizes the current state of aCML diagnosis and management and discusses the possible connection between eosinophilia and aCML.
Collapse
Affiliation(s)
- Moqin Jiang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Meng Chen
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Lixiang Yan
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Ying Zhang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Xiangdong Yang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China
| | - Weifeng Zhang
- Department of Hematology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300381, China.
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, China.
| |
Collapse
|
7
|
Szuber N, Orazi A, Tefferi A. Chronic neutrophilic leukemia and atypical chronic myeloid leukemia: 2024 update on diagnosis, genetics, risk stratification, and management. Am J Hematol 2024; 99:1360-1387. [PMID: 38644693 DOI: 10.1002/ajh.27321] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024]
Abstract
Chronic neutrophilic leukemia (CNL) is a rare BCR::ABL1-negative myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis and bone marrow granulocyte hyperplasia. Atypical chronic myeloid leukemia (aCML) (myelodysplastic "[MDS]/MPN with neutrophilia" per World Health Organization [WHO]) is a MDS/MPN overlap disorder featuring dysplastic neutrophilia and circulating myeloid precursors. Both manifest with frequent hepatosplenomegaly and less commonly, bleeding, with high rates of leukemic transformation and death. The 2022 revised WHO classification conserved CNL diagnostic criteria of leukocytosis ≥25 × 109/L, neutrophils ≥80% with <10% circulating precursors, absence of dysplasia, and presence of an activating CSF3R mutation. ICC criteria are harmonized with those of other myeloid entities, with a key distinction being lower leukocytosis threshold (≥13 × 109/L) for cases CSF3R-mutated. Criteria for aCML include leukocytosis ≥13 × 109/L, dysgranulopoiesis, circulating myeloid precursors ≥10%, and at least one cytopenia for MDS-thresholds (ICC). In both classifications ASXL1 and SETBP1 (ICC), or SETBP1 ± ETNK1 (WHO) mutations can be used to support the diagnosis. Both diseases show hypercellular bone marrow due to a granulocytic proliferation, aCML distinguished by dysplasia in granulocytes ± other lineages. Absence of monocytosis, rare/no basophilia, or eosinophilia, <20% blasts, and exclusion of other MPN, MDS/MPN, and tyrosine kinase fusions, are mandated. Cytogenetic abnormalities are identified in ~1/3 of CNL and ~15-40% of aCML patients. The molecular signature of CNL is a driver mutation in colony-stimulating factor 3 receptor-classically T618I, documented in >80% of cases. Atypical CML harbors a complex genomic backdrop with high rates of recurrent somatic mutations in ASXL1, SETBP1, TET2, SRSF2, EZH2, and less frequently in ETNK1. Leukemic transformation rates are ~10-25% and 30-40% for CNL and aCML, respectively. Overall survival is poor: 15-31 months in CNL and 12-20 months in aCML. The Mayo Clinic CNL risk model for survival stratifies patients according to platelets <160 × 109/L (2 points), leukocytes >60 × 109/L (1 point), and ASXL1 mutation (1 point); distinguishing low- (0-1 points) versus high-risk (2-4 points) categories. The Mayo Clinic aCML risk model attributes 1 point each for: age >67 years, hemoglobin <10 g/dL, and TET2 mutation, delineating low- (0-1 risk factor) and high-risk (≥2 risk factors) subgroups. Management is risk-driven and symptom-directed, with no current standard of care. Most commonly used agents include hydroxyurea, interferon, Janus kinase inhibitors, and hypomethylating agents, though none are disease-modifying. Hematopoietic stem cell transplant is the only potentially curative modality and should be considered in eligible patients. Recent genetic profiling has disclosed CBL, CEBPA, EZH2, NRAS, TET2, and U2AF1 to represent high-risk mutations in both entities. Actionable mutations (NRAS/KRAS, ETNK1) have also been identified, supporting novel agents targeting involved pathways. Preclinical and clinical studies evaluating new drugs (e.g., fedratinib, phase 2) and combinations are detailed.
Collapse
MESH Headings
- Humans
- Leukemia, Neutrophilic, Chronic/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/therapy
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Mutation
- Risk Assessment
- Receptors, Colony-Stimulating Factor/genetics
- Carrier Proteins
- Nuclear Proteins
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, Texas, USA
| | - Ayalew Tefferi
- Department of Internal Medicine, Division of Hematology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
8
|
Elmakaty I, Saglio G, Al-Khabori M, Elsayed A, Elsayed B, Elmarasi M, Elsabagh AA, Alshurafa A, Ali E, Yassin M. The Contemporary Role of Hematopoietic Stem Cell Transplantation in the Management of Chronic Myeloid Leukemia: Is It the Same in All Settings? Cancers (Basel) 2024; 16:754. [PMID: 38398145 PMCID: PMC10886670 DOI: 10.3390/cancers16040754] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/07/2023] [Accepted: 11/10/2023] [Indexed: 02/25/2024] Open
Abstract
Hematopoietic stem cell transplantation (HSCT) for chronic myeloid leukemia (CML) patients has transitioned from the standard of care to a treatment option limited to those with unsatisfactory tyrosine kinase inhibitor (TKI) responses and advanced disease stages. In recent years, the threshold for undergoing HSCT has increased. Most CML patients now have life expectancies comparable to the general population, and therefore, the goal of therapy is shifting toward achieving treatment-free remission (TFR). While TKI discontinuation trials in CML show potential for achieving TFR, relapse risk is high, affirming allogeneic HSCT as the sole curative treatment. HSCT should be incorporated into treatment algorithms from the time of diagnosis and, in some patients, evaluated as soon as possible. In this review, we will look at some of the recent advances in HSCT, as well as its indication in the era of aiming for TFR in the presence of TKIs in CML.
Collapse
Affiliation(s)
- Ibrahim Elmakaty
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Giuseppe Saglio
- Department of Clinical and Biological Sciences, University of Turin, 10124 Turin, Italy
| | | | | | - Basant Elsayed
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohamed Elmarasi
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | | | - Awni Alshurafa
- Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| | - Elrazi Ali
- Interfaith Medical Center, Brooklyn, NY 11213, USA
| | - Mohamed Yassin
- College of Medicine, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
- Hematology Section, Medical Oncology, National Center for Cancer Care and Research (NCCCR), Hamad Medical Corporation (HMC), Doha P.O. Box 3050, Qatar
| |
Collapse
|
9
|
Liu L, Song X, Dong W, Li Z, Guo D. Case report: Safety and efficacy of synergistic treatment using selinexor and azacitidine in patients with atypical chronic myeloid leukemia with resistance to decitabine. Front Oncol 2024; 14:1353818. [PMID: 38384813 PMCID: PMC10879427 DOI: 10.3389/fonc.2024.1353818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/22/2024] [Indexed: 02/23/2024] Open
Abstract
Background Atypical chronic myeloid leukemia (aCML) is a BCR::ABL1 negative myelodysplastic/myeloproliferative neoplasm with poor overall survival. Some patients can be treated by allogeneic hematopoietic stem cell transplantation (allo-HSCT) from suitable donors. The effectiveness of decitabine or azacitidine (AZA) has recently been reported; however, their combined efficacy with selinexor has not yet been reported. Case description In this study, we report the case of a patient with aCML who was successfully treated with selinexor combined with AZA. A 67-year-old man with a history of gastric mucosa-associated lymphoid tissue (MALT) lymphoma was admitted to the hospital with fatigue and emaciation. He was diagnosed with aCML and no longer responded to decitabine treatment after undergoing seven cycles. The patient was subsequently administered hydroxyurea (HU), selinexor, and AZA. After four courses of combination therapy, his blood cell counts improved; he no longer required transfusions and was able to discontinue HU. The patient continued receiving selinexor and AZA without severe complications. This case is the first to show that combinatorial selinexor and AZA therapy can effectively treat aCML. Conclusion Our case sheds light on the importance of selinexor and AZA combined therapy in the exploration of new treatment strategies for aCML. Moreover, this treatment approach offers the possibility of bridging with allo-HSCT.
Collapse
Affiliation(s)
- Lu Liu
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Xiaofeng Song
- Department of Hand and Foot Surgery, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Wenhao Dong
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Zhao Li
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| | - Dongmei Guo
- Department of Hematology, Qilu Hospital (Qingdao) of Shandong University, Qingdao, China
| |
Collapse
|
10
|
Awidi A, Alzu'bi M, Odeh N, Alrawabdeh J, Al Zyoud M, Hamadneh Y, Bawa'neh H, Magableh A, Alshorman A, Al-Fararjeh F, Aladily T, Zeidan AM. Myelodysplastic Syndromes and Myelodysplastic Syndromes/Myeloproliferative Neoplasms: A Real-World Experience From a Developing Country. JCO Glob Oncol 2024; 10:e2300281. [PMID: 38422464 PMCID: PMC10914245 DOI: 10.1200/go.23.00281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/10/2023] [Accepted: 12/11/2023] [Indexed: 03/02/2024] Open
Abstract
PURPOSE Myelodysplastic syndromes (MDS) include a heterogeneous group of clonal bone marrow disorders characterized by ineffective hematopoiesis. They manifest as dysplasia in bone marrow hemopoietic elements associated with peripheral cytopenias with variable risk of AML transformation. PATIENTS AND METHODS We analyzed retrospectively registry data collected prospectively from patients with primary MDS and patients with MDS/myeloproliferative neoplasm (MPN) in the Jordan University Hospital between January 2007 and September 2021. The registry captured epidemiologic information such as date of diagnosis, age, gender, date of AML transformation, cytogenetics, MDS subtype, risk group according to Revised International Prognostic Scoring System, and survival. The registry also captured baseline ferritin, B12, and lactate dehydrogenase levels. RESULTS A total of 112 patients with MDS and MDS/MPN were included in the registry. Median age at diagnosis was 59 years. The male-to-female ratio was about 1.2. In a multivariate cox regression model, baseline serum ferritin significantly affected survival as patients with levels exceeding 1,000 μg/L had a risk of death three times higher compared with those with <1,000 μg/L levels (P < .05). CONCLUSION To our knowledge, our study is the first comprehensive study examining the epidemiology and prognostic factors in patients with MDS and patients with MDS/MPN in Jordan. Our results show that MDS and MDS/MPN epidemiology in Jordan is different compared with Western countries. Our results also show that baseline serum ferritin levels can be used as a prognostic marker for patients with MDS.
Collapse
Affiliation(s)
- Abdalla Awidi
- Medical School, University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
- Cell Therapy Center, University of Jordan, Amman, Jordan
| | | | - Nada Odeh
- Medical School, University of Jordan, Amman, Jordan
| | | | | | | | | | | | - Alaa Alshorman
- Jordan University Hospital, Amman, Jordan
- Al-Basheer Hospital, Ministry of Health, Amman, Jordan
| | - Feras Al-Fararjeh
- Medical School, University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Tariq Aladily
- Medical School, University of Jordan, Amman, Jordan
- Jordan University Hospital, Amman, Jordan
| | - Amer M. Zeidan
- Yale Cancer Center and Smilow Cancer Hospital, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
11
|
Klein SK, Huls GA, Visser O, Kluin-Nelemans HC, Dinmohamed AG. Characteristics, primary treatment, and survival of MDS/MPN with neutrophilia: a population-based study. Blood Adv 2023; 7:7554-7563. [PMID: 37934881 PMCID: PMC10761362 DOI: 10.1182/bloodadvances.2023011181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/02/2023] [Accepted: 10/27/2023] [Indexed: 11/09/2023] Open
Abstract
Myelodysplastic and myeloproliferative neoplasms (MDS/MPN) with neutrophilia, until recently called atypical chronic myeloid leukemia (aCML), being part of the MDS/MPN is a very rare disease with poor prognosis. Although emerging data reveal its cytogenetic and molecular profile, integrated survival and treatment data remain scarce. We analyzed a cohort of 347 adult patients diagnosed with MDS/MPN with neutrophilia, registered in the Netherlands Cancer Registry between 2001 and 2019. Our demographic baseline data align with other cohorts. We observed cytogenetic aberrations exclusively in patients aged >65 years, with trisomy 8 being the most common abnormality. We identified 16 distinct molecular mutations, with some patients (16/101) harboring up to 3 different mutations; ASXL1 being the most frequent one (22%). In a multivariable Cox regression analysis, only age, hemoglobin level and allogeneic hematopoietic stem cell transplant (alloHSCT) were associated with overall survival (aged >65 years; hazard ratio [HR] 1.85; P = .001 and alloHSCT HR, 0.51; P = .039). Because no other treatment modality seemed to affect survival and might cause toxicity, we propose that all patients eligible for alloHSCT should, whenever possible, receive an allogeneic transplant. It is imperative that we strive to improve outcomes for patients who are not eligible for alloHSCT. Tackling this challenge requires international collaborative efforts to conduct prospective intervention studies.
Collapse
MESH Headings
- Adult
- Humans
- Aged
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/therapy
- Myelodysplastic Syndromes/genetics
- Prospective Studies
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Chromosome Aberrations
- Leukocytosis
Collapse
Affiliation(s)
- Saskia K. Klein
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerwin A. Huls
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Otto Visser
- Department of Registration, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
| | - Hanneke C. Kluin-Nelemans
- Department of Hematology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Avinash G. Dinmohamed
- Department of Research and Development, Netherlands Comprehensive Cancer Organization, Utrecht, The Netherlands
- Department of Public Health, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
- Department of Hematology, Amsterdam UMC, Cancer Center Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
12
|
Mahmud M, Vasireddy S, Gowin K, Amaraneni A. Myeloproliferative Neoplasms: Contemporary Review and Molecular Landscape. Int J Mol Sci 2023; 24:17383. [PMID: 38139212 PMCID: PMC10744078 DOI: 10.3390/ijms242417383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/29/2023] [Accepted: 12/02/2023] [Indexed: 12/24/2023] Open
Abstract
Myelofibrosis (MF), Myeloproliferative neoplasms (MPNs), and MDS/MPN overlap syndromes have a broad range of clinical presentations and molecular abnormalities, making their diagnosis and classification complex. This paper reviews molecular aberration, epigenetic modifications, chromosomal anomalies, and their interactions with cellular and other immune mechanisms in the manifestations of these disease spectra, clinical features, classification, and treatment modalities. The advent of new-generation sequencing has broadened the understanding of the genetic factors involved. However, while great strides have been made in the pharmacological treatment of these diseases, treatment of advanced disease remains hematopoietic stem cell transplant.
Collapse
Affiliation(s)
- Muftah Mahmud
- Department of Medicine, Midwestern University Internal Medicine Residency Consortium, Cottonwood, AZ 86326, USA
| | - Swati Vasireddy
- Department of Medicine, University of Arizona Health Sciences, Tucson, AZ 85701, USA
| | - Krisstina Gowin
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| | - Akshay Amaraneni
- Division of Hematology and Oncology, Department of Medicine, University of Arizona Cancer Center, Tucson, AZ 85701, USA
| |
Collapse
|
13
|
Breccia M. Atypical CML: diagnosis and treatment. HEMATOLOGY. AMERICAN SOCIETY OF HEMATOLOGY. EDUCATION PROGRAM 2023; 2023:476-482. [PMID: 38066919 PMCID: PMC10727105 DOI: 10.1182/hematology.2023000448] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Atypical chronic myeloid leukemia (aCML) is included in the group of myelodysplastic/myeloproliferative neoplasms by the International Consensus Classification and has been renamed as MDS/MPN with neutrophilia by the fifth edition of World Health Organization classification. It is always characterized by morphologic identification of granulocytic dysplasia with >10% circulating immature myeloid cells, 2 distinguished features that differentiate this disease among the others. Somatic mutations may help to diagnose but are not specifically pathognomonic of the disease, with the most detected including ASXL1, SETBP1, NRAS, KRAS, SRSF2, and TET2 and with low-frequency CBL, CSF3R, JAK2, and ETNK1. The genomic landscape of aCML has been recently unravelling, revealing that SETBP1 and ETNK1 are usually not ancestral but secondary events associated with disease progression. Unfortunately, until now, no consensus on risk stratification and treatment has been developed: Mayo Clinic prognostic score identified as adverse events age >67 years, hemoglobin level <10 g/dL, and TET2 mutations. Although some possible genetic markers have been identified, allogeneic transplant remains the only curative strategy.
Collapse
MESH Headings
- Humans
- Aged
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Myelodysplastic-Myeloproliferative Diseases/diagnosis
- Mutation
- Prognosis
- Disease Progression
Collapse
Affiliation(s)
- Massimo Breccia
- Department of Translational and Precision Medicine, Sapienza University, Rome, Italy
| |
Collapse
|
14
|
Decamp M, Klein E, Godon C, Lestringant V, Roynard P, Theisen O, Jimenez-Pocquet M, Roche-Lestienne C, Bidet A, Veronese L. Cytogenetics in the management of myeloproliferative neoplasms, mastocytosis and myelodysplastic/myeloproliferative neoplasms: Guidelines from the Group Francophone de Cytogénétique Hématologique (GFCH). Curr Res Transl Med 2023; 71:103424. [PMID: 38011761 DOI: 10.1016/j.retram.2023.103424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 11/29/2023]
Abstract
Myeloproliferative neoplasms, mastocytosis, myeloid/lymphoid neoplasms with hypereosinophilia and tyrosine kinase gene fusions, and myelodysplastic/myeloproliferative neoplasms are clonal hematopoietic cancers that, with the exception of certain entities, have an indolent course. In addition to their increasingly important role in the diagnosis of these entities, as shown by the recent classification of hematolymphoid tumors in the 5th edition of the World Health Organization and the International Consensus Classification of myeloid neoplasms and acute leukemias, identification of the profile of acquired genetic abnormalities is essential for adapting patient management and early detection of patients at high risk of progression. Alongside molecular abnormalities, cytogenetic abnormalities play an important role in the diagnosis, prognosis and follow-up of these diseases. Here, we review the recent literature on the impact of chromosomal abnormalities in these different entities and provide updated cytogenetic recommendations and guidelines for their management.
Collapse
Affiliation(s)
- Matthieu Decamp
- CHU de Caen Normandie, Service de Génétique, Avenue de la côte de Nacre, 14033 Cedex 9, Caen 14000, France.
| | - Emilie Klein
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Catherine Godon
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | - Pauline Roynard
- Institut de Génétique Médicale, CHRU de Lille, Lille, France
| | - Olivier Theisen
- Laboratoire d'Hématologie Biologique, CHU Nantes, Nantes, France
| | | | | | - Audrey Bidet
- Laboratoire d'Hématologie Biologique, CHU Bordeaux, Bordeaux, France
| | - Lauren Veronese
- Service de Cytogénétique Médicale, CHU Estaing, Clermont-Ferrand, France
| |
Collapse
|
15
|
Tremblay D, Sastow D, Mascarenhas J. CNL and aCML are prognostically distinct: a large National Cancer Database analysis. Blood Adv 2023; 7:4400-4402. [PMID: 37289504 PMCID: PMC10432596 DOI: 10.1182/bloodadvances.2023010722] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 05/30/2023] [Accepted: 06/06/2023] [Indexed: 06/10/2023] Open
Affiliation(s)
- Douglas Tremblay
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Dahniel Sastow
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - John Mascarenhas
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| |
Collapse
|
16
|
Strasser B, Grünberger M, Steindl R, Heibl S, Thaler J, Haushofer A. Differential diagnoses and the mutational landscape of myelodysplastic/myeloproliferative neoplasm with neutrophilia: A case report. Mol Clin Oncol 2023; 19:62. [PMID: 37456801 PMCID: PMC10345896 DOI: 10.3892/mco.2023.2658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Myelodysplastic/myeloproliferative neoplasm with neutrophilia (MDS/MPN-N; previously referred to as atypical chronic myeloid leukemia) is a type of myelodysplastic syndrome/myeloproliferative neoplasm. A molecular genetic precondition for diagnosis is BCR::ABL negativity; further diagnostic criteria include clinicopathological assessments, such as peripheral blood leukocyte counts, the number of neutrophils and their precursors, and the presence of dysgranulopoiesis. The present case report highlights the importance of differential diagnoses with a stringent diagnostic workup according to the 5th Edition of the World Health Organization Classification of Hematolymphoid Tumors. A systematic review of the literature from 2013 to 2022 covering the mutational landscape of MDS/MPN-N was also performed to highlight recent improvements in the molecular genetic diagnostics of this disease.
Collapse
Affiliation(s)
- Bernhard Strasser
- Institute of Laboratory Medicine, Hospital Wels-Grieskirchen, A-4600 Wels, Austria
| | - Monika Grünberger
- Institute of Laboratory Medicine, Hospital Wels-Grieskirchen, A-4600 Wels, Austria
| | - Rita Steindl
- Department of Molecular Biology, Hospital Wels-Grieskirchen, A-4600 Wels, Austria
| | - Sonja Heibl
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, A-4600 Wels, Austria
| | - Josef Thaler
- Department of Internal Medicine IV, Hospital Wels-Grieskirchen, A-4600 Wels, Austria
| | - Alexander Haushofer
- Institute of Laboratory Medicine, Hospital Wels-Grieskirchen, A-4600 Wels, Austria
| |
Collapse
|
17
|
Fontana D, Elli EM, Pagni F, Piazza R. Myelodysplastic Syndromes/Myeloproliferative Overlap Neoplasms and Differential Diagnosis in the WHO and ICC 2022 Era: A Focused Review. Cancers (Basel) 2023; 15:3175. [PMID: 37370785 DOI: 10.3390/cancers15123175] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The myelodysplastic syndromes/myeloproliferative neoplasms (MDS/MPN) category comprises a varied group of myeloid neoplastic diseases characterized by clinical and pathologic overlapping features of both myelodysplastic and myeloproliferative neoplasms. For these reasons, these tumors are challenging in terms of diagnosis. The recent World Health Organization (WHO) 2022 classification and the International Consensus Classification (ICC) made changes in the classification of MDS/MPN compared to the previous 2016 WHO classification and improved the diagnostic criteria of these entities. The aim of this review is to describe the main entities reported in the more recent classifications, focusing on chronic myelomonocytic leukemia (CMML), MDS/MPN with neutrophilia (or atypical CML [aCML]), and MDS/MPN with SF3B1 mutation and thrombocytosis/MDS/MPN with ring sideroblasts and thrombocytosis. A particular emphasis is given to the differential diagnosis and analysis of subtle divergences and semantic differences between the WHO classification and the ICC for these entities.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elena M Elli
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Fabio Pagni
- Department of Medicine and Surgery, Pathology, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
- Hematology Division and Bone Marrow Unit, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
18
|
Faria C, Tzankov A. Progression in Myeloid Neoplasms: Beyond the Myeloblast. Pathobiology 2023; 91:55-75. [PMID: 37232015 PMCID: PMC10857805 DOI: 10.1159/000530940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/28/2023] [Indexed: 05/27/2023] Open
Abstract
Disease progression in myelodysplastic syndromes (MDS), myelodysplastic-myeloproliferative neoplasms (MDS/MPN), and myeloproliferative neoplasms (MPN), altogether referred to as myeloid neoplasms (MN), is a major source of mortality. Apart from transformation to acute myeloid leukemia, the clinical progression of MN is mostly due to the overgrowth of pre-existing hematopoiesis by the MN without an additional transforming event. Still, MN may evolve along other recurrent yet less well-known scenarios: (1) acquisition of MPN features in MDS or (2) MDS features in MPN, (3) progressive myelofibrosis (MF), (4) acquisition of chronic myelomonocytic leukemia (CMML)-like characteristics in MPN or MDS, (5) development of myeloid sarcoma (MS), (6) lymphoblastic (LB) transformation, (7) histiocytic/dendritic outgrowths. These MN-transformation types exhibit a propensity for extramedullary sites (e.g., skin, lymph nodes, liver), highlighting the importance of lesional biopsies in diagnosis. Gain of distinct mutations/mutational patterns seems to be causative or at least accompanying several of the above-mentioned scenarios. MDS developing MPN features often acquire MPN driver mutations (usually JAK2), and MF. Conversely, MPN gaining MDS features develop, e.g., ASXL1, IDH1/2, SF3B1, and/or SRSF2 mutations. Mutations of RAS-genes are often detected in CMML-like MPN progression. MS ex MN is characterized by complex karyotypes, FLT3 and/or NPM1 mutations, and often monoblastic phenotype. MN with LB transformation is associated with secondary genetic events linked to lineage reprogramming leading to the deregulation of ETV6, IKZF1, PAX5, PU.1, and RUNX1. Finally, the acquisition of MAPK-pathway gene mutations may shape MN toward histiocytic differentiation. Awareness of all these less well-known MN-progression types is important to guide optimal individual patient management.
Collapse
Affiliation(s)
- Carlos Faria
- Department of Anatomical Pathology, Coimbra University Hospital, Coimbra, Portugal
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| | - Alexandar Tzankov
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
| |
Collapse
|
19
|
Carreño-Tarragona G, Álvarez-Larrán A, Harrison C, Martínez-Ávila JC, Hernández-Boluda JC, Ferrer-Marín F, Radia DH, Mora E, Francis S, González-Martínez T, Goddard K, Pérez-Encinas M, Narayanan S, Raya JM, Singh V, Gutiérrez X, Toth P, Amat-Martínez P, Mcilwaine L, Alobaidi M, Mayani K, McGregor A, Stuckey R, Psaila B, Segura A, Alvares C, Davidson K, Osorio S, Cutting R, Sweeney CP, Rufián L, Moreno L, Cuenca I, Smith J, Morales ML, Gil-Manso R, Koutsavlis I, Wang L, Mead AJ, Rozman M, Martínez-López J, Ayala R, Cross NCP. CNL and aCML should be considered as a single entity based on molecular profiles and outcomes. Blood Adv 2023; 7:1672-1681. [PMID: 36375042 PMCID: PMC10182308 DOI: 10.1182/bloodadvances.2022008204] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 01/11/2023] Open
Abstract
Chronic neutrophilic leukemia (CNL) and atypical chronic myeloid leukemia (aCML) are rare myeloid disorders that are challenging with regard to diagnosis and clinical management. To study the similarities and differences between these disorders, we undertook a multicenter international study of one of the largest case series (CNL, n = 24; aCML, n = 37 cases, respectively), focusing on the clinical and mutational profiles (n = 53 with molecular data) of these diseases. We found no differences in clinical presentations or outcomes of both entities. As previously described, both CNL and aCML share a complex mutational profile with mutations in genes involved in epigenetic regulation, splicing, and signaling pathways. Apart from CSF3R, only EZH2 and TET2 were differentially mutated between them. The molecular profiles support the notion of CNL and aCML being a continuum of the same disease that may fit best within the myelodysplastic/myeloproliferative neoplasms. We identified 4 high-risk mutated genes, specifically CEBPA (β = 2.26, hazard ratio [HR] = 9.54, P = .003), EZH2 (β = 1.12, HR = 3.062, P = .009), NRAS (β = 1.29, HR = 3.63, P = .048), and U2AF1 (β = 1.75, HR = 5.74, P = .013) using multivariate analysis. Our findings underscore the relevance of molecular-risk classification in CNL/aCML as well as the importance of CSF3R mutations in these diseases.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Neutrophilic, Chronic/diagnosis
- Leukemia, Neutrophilic, Chronic/genetics
- Epigenesis, Genetic
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Mutation
Collapse
Affiliation(s)
- Gonzalo Carreño-Tarragona
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | | | - Claire Harrison
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - José Carlos Martínez-Ávila
- Agricultural Economics, Statistics and Business Management Department, Escuela Técnica Superior de Ingeniería Agrónomica, Alimentaria y Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Francisca Ferrer-Marín
- Hematology Department, Hospital Morales Meseguer, Centro de Investigación Biomédica en Red de Enfermedades Raras, Universidad Católica San Antonio de Murcia, Murcia, Spain
| | - Deepti H. Radia
- Hematology Department, Guy’s and St. Thomas NHS Foundation Trust, London, United Kingdom
| | - Elvira Mora
- Hematology Department, Hospital Universitario La Fe, Valencia, Spain
| | - Sebastian Francis
- Hematology Department, Sheffield Hospital, Sheffield, United Kingdom
| | | | - Kathryn Goddard
- Hematology Department, Rotherham Hospital, Rotherham, United Kingdom
| | - Manuel Pérez-Encinas
- Hematology Department, Hospital Clínico Universitario, Santiago de Compostela, Spain
| | - Srinivasan Narayanan
- Hematology Department, University Hospital Southampton, Southampton, United Kingdom
| | - José María Raya
- Hematology Department, Hospital Universitario de Canarias, Tenerife, Spain
| | - Vikram Singh
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - Xabier Gutiérrez
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Peter Toth
- Hematology Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | | | - Louisa Mcilwaine
- Hematology Department, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Magda Alobaidi
- Department of Haematology, Chelsea and Westminster NHS Trust West Middlesex Hospital, London, United Kingdom
| | - Karan Mayani
- Hematology Department, Hospital General de La Palma, Santa Cruz de Tenerife, Spain
| | - Andrew McGregor
- Department of Haematology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle, United Kingdom
| | - Ruth Stuckey
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Bethan Psaila
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
- Department of Haematology, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Adrián Segura
- Hematology Department, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Caroline Alvares
- Hematology Department, University Hospital of Wales, Cardiff, United Kingdom
| | - Kerri Davidson
- Hematology Department, Kirkcaldy Hospital, Fife, Scotland
| | - Santiago Osorio
- Hematology Department, Hospital Universitario Gregorio Marañón, Madrid, Spain
| | - Robert Cutting
- Hematology Department, Doncaster Hospital, Doncaster, Yorkshire, England
| | - Caroline P. Sweeney
- Hematology Department, Vale of Leven Hospital, Alexandria, West Dunbartonshire, Scotland
| | - Laura Rufián
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Laura Moreno
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Isabel Cuenca
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Jeffery Smith
- The Clatterbridge Cancer Centre, Liverpool, United Kingdom
| | - María Luz Morales
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rodrigo Gil-Manso
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Ioannis Koutsavlis
- Hematology Department, Western General Hospital, Edinburgh, United Kingdom
| | - Lihui Wang
- Haemato-Oncology Diagnostic Service, Liverpool Clinical Laboratories, Liverpool University Hospital, Liverpool, United Kingdom
| | - Adam J. Mead
- Medical Research Council (MRC) Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, NIHR Biomedical Research Centre, University of Oxford, Oxford, United Kingdom
| | - María Rozman
- Hemopathology Unit, Hospital Clínic, Barcelona, Spain
| | - Joaquín Martínez-López
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Rosa Ayala
- Hematology Department, Hospital Universitario 12 de Octubre, I+12, Centro Nacional de Investigaciones Oncológicas, Complutense University, Centro de Investigación Biomédica en Red de Oncología, Madrid, Spain
| | - Nicholas C. P. Cross
- Wessex Regional Genetics Laboratory, Salisbury, United Kingdom
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
20
|
Patnaik MM, Tefferi A. Atypical chronic myeloid leukemia and myelodysplastic/myeloproliferative neoplasm, not otherwise specified: 2023 update on diagnosis, risk stratification, and management. Am J Hematol 2023; 98:681-689. [PMID: 36601682 DOI: 10.1002/ajh.26828] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023]
Abstract
DISEASE OVERVIEW Atypical chronic myeloid leukemia (aCML) and myelodysplastic/myeloproliferative (MDS/MPN) neoplasms, not otherwise specified (NOS), are MDS/MPN overlap neoplasms characterized by leukocytosis, in the absence of monocytosis and eosinophilia, with <20% blasts in the blood and bone marrow. DIAGNOSIS aCML, previously known as aCML, BCR::ABL1 negative, was renamed as aCML by the ICC classification, and as MDS/MPN with neutrophilia by the 5th edition of the WHO classification. This entity is characterized by dysplastic neutrophilia with immature myeloid cells comprising ≥10% of the white blood cell count, with prominent dysgranulopoiesis. MDS/MPN-NOS consists of MDS/MPN overlap neoplasms not meeting criteria for defined categories such as chronic myelomonocytic leukemia (CMML), MDS/MPN-ring sideroblasts-thrombocytosis (MDS/MPN-RS-T), and aCML. MUTATIONS AND KARYOTYPE Cytogenetic abnormalities are seen in 40-50% of patients in both categories. In aCML, somatic mutations commonly encountered include ASXL1, SETBP1, ETNK1, and EZH2 whereas MDS/MPN-NOS can be further stratified by mutational profiles into CMML-like, MDS/MPN-RS-T-like, aCML-like, TP35-mutated, and "others", respectively. RISK STRATIFICATION The Mayo Clinic aCML model stratifies patients based on age >67 years, hemoglobin <10 g/dl, and the presence of TET2 mutations into low-risk (0-1 points) and high-risk (>2 points) groups, with median survivals of 18 and 7 months, respectively. MDS/MPN-NOS patients have traditionally been risk stratified using MDS risk models such as IPSS and IPSS-R. TREATMENT Leukocytosis and anemia are managed like lower risk MPN and MDS. DNMT inhibitors have been used in both entities with suboptimal response rates. Allogeneic stem cell transplant remains the only curative strategy but is associated with high morbidity and mortality.
Collapse
MESH Headings
- Humans
- Aged
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/diagnosis
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/genetics
- Leukemia, Myeloid, Chronic, Atypical, BCR-ABL Negative/therapy
- Myelodysplastic Syndromes/diagnosis
- Myelodysplastic Syndromes/genetics
- Myelodysplastic Syndromes/therapy
- Leukocytosis
- Myelodysplastic-Myeloproliferative Diseases/diagnosis
- Myelodysplastic-Myeloproliferative Diseases/genetics
- Myelodysplastic-Myeloproliferative Diseases/therapy
- Leukemia, Myelomonocytic, Chronic/diagnosis
- Leukemia, Myelomonocytic, Chronic/genetics
- Leukemia, Myelomonocytic, Chronic/therapy
- Thrombocytosis/genetics
- Mutation
- Risk Assessment
Collapse
Affiliation(s)
- Mrinal M Patnaik
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
Rinaldi I, Winston K. Chronic Myeloid Leukemia, from Pathophysiology to Treatment-Free Remission: A Narrative Literature Review. J Blood Med 2023; 14:261-277. [PMID: 37051025 PMCID: PMC10084831 DOI: 10.2147/jbm.s382090] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/06/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic myeloid leukemia (CML) is one of the most common leukemias occurring in the adult population. The course of CML is divided into three phases: the chronic phase, the acceleration phase, and the blast phase. Pathophysiology of CML revolves around Philadelphia chromosome that constitutively activate tyrosine kinase through BCR-ABL1 oncoprotein. In the era of tyrosine kinase inhibitors (TKIs), CML patients now have a similar life expectancy to people without CML, and it is now very rare for CML patients to progress to the blast phase. Only a small proportion of CML patients have resistance to TKI, caused by BCR-ABL1 point mutations. CML patients with TKI resistance should be treated with second or third generation TKI, depending on the BCR-ABL1 mutation. Recently, many studies have shown that it is possible for CML patients who achieve a long-term deep molecular response to stop TKIs treatment and maintain remission. This review aimed to provide an overview of CML, including its pathophysiology, clinical manifestations, the role of stem cells, CML treatments, and treatment-free remission.
Collapse
Affiliation(s)
- Ikhwan Rinaldi
- Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Correspondence: Ikhwan Rinaldi, Division of Hematology and Medical Oncology, Department of Internal Medicine, Cipto Mangunkusumo National General Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia, Email
| | - Kevin Winston
- Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
- Hospital Medicine, Bhakti Medicare Hospital, Sukabumi, Indonesia
| |
Collapse
|
22
|
Prakash S, Arber DA, Bueso-Ramos C, Hasserjian RP, Orazi A. Advances in myelodysplastic/myeloproliferative neoplasms. Virchows Arch 2023; 482:69-83. [PMID: 36469102 DOI: 10.1007/s00428-022-03465-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 12/07/2022]
Abstract
The myelodysplastic syndrome/myeloproliferative neoplasms (MDS/MPN) category includes a heterogeneous group of diseases characterized by the co-occurrence of clinical and pathologic features of both myelodysplastic and myeloproliferative neoplasms. The recently published International Consensus Classification of myeloid neoplasms revised the entities included in the MDS/MPN category as well as criteria for their diagnosis. In addition to the presence of one or more increased peripheral blood cell counts as evidence of myeloproliferative features, concomitant cytopenia as evidence of ineffective hematopoiesis is now an explicit requirement to diagnose the diseases included in this category. The increasing availability of modern gene sequencing has allowed better understanding of the biologic characteristics of these myeloid neoplasms. The presence of specific mutations in the appropriate clinicopathologic context is now included in the diagnostic criteria for some of MDS/MPN entities. In this review, we highlight what has changed in the diagnostic criteria of MDS/MPN from the WHO 2016 classification while providing practical guidance in diagnosing these diseases.
Collapse
Affiliation(s)
- Sonam Prakash
- Department of Laboratory Medicine, University of California, San Francisco, CA, USA
| | - Daniel A Arber
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Carlos Bueso-Ramos
- Division of Pathology and Laboratory Medicine, Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert P Hasserjian
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Attilio Orazi
- Department of Pathology, Texas Tech University Health Sciences Center, El Paso, TX, USA.
| |
Collapse
|
23
|
Moyo TK, Mendler JH, Itzykson R, Kishtagari A, Solary E, Seegmiller AC, Gerds AT, Ayers GD, Dezern AE, Nazha A, Valent P, van de Loosdrecht AA, Onida F, Pleyer L, Cirici BX, Tibes R, Geissler K, Komrokji RS, Zhang J, Germing U, Steensma DP, Wiseman DH, Pfeilstöecker M, Elena C, Cross NCP, Kiladjian JJ, Luebbert M, Mesa RA, Montalban-Bravo G, Sanz GF, Platzbecker U, Patnaik MM, Padron E, Santini V, Fenaux P, Savona MR. The ABNL-MARRO 001 study: a phase 1-2 study of randomly allocated active myeloid target compound combinations in MDS/MPN overlap syndromes. BMC Cancer 2022; 22:1013. [PMID: 36153475 PMCID: PMC9509596 DOI: 10.1186/s12885-022-10073-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) comprise several rare hematologic malignancies with shared concomitant dysplastic and proliferative clinicopathologic features of bone marrow failure and propensity of acute leukemic transformation, and have significant impact on patient quality of life. The only approved disease-modifying therapies for any of the MDS/MPN are DNA methyltransferase inhibitors (DNMTi) for patients with dysplastic CMML, and still, outcomes are generally poor, making this an important area of unmet clinical need. Due to both the rarity and the heterogeneous nature of MDS/MPN, they have been challenging to study in dedicated prospective studies. Thus, refining first-line treatment strategies has been difficult, and optimal salvage treatments following DNMTi failure have also not been rigorously studied. ABNL-MARRO (A Basket study of Novel therapy for untreated MDS/MPN and Relapsed/Refractory Overlap Syndromes) is an international cooperation that leverages the expertise of the MDS/MPN International Working Group (IWG) and provides the framework for collaborative studies to advance treatment of MDS/MPN and to explore clinical and pathologic markers of disease severity, prognosis, and treatment response. METHODS ABNL MARRO 001 (AM-001) is an open label, randomly allocated phase 1/2 study that will test novel treatment combinations in MDS/MPNs, beginning with the novel targeted agent itacitinib, a selective JAK1 inhibitor, combined with ASTX727, a fixed dose oral combination of the DNMTi decitabine and the cytidine deaminase inhibitor cedazuridine to improve decitabine bioavailability. DISCUSSION Beyond the primary objectives of the study to evaluate the safety and efficacy of novel treatment combinations in MDS/MPN, the study will (i) Establish the ABNL MARRO infrastructure for future prospective studies, (ii) Forge innovative scientific research that will improve our understanding of pathogenetic mechanisms of disease, and (iii) Inform the clinical application of diagnostic criteria, risk stratification and prognostication tools, as well as response assessments in this heterogeneous patient population. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov on August 19, 2019 (Registration No. NCT04061421).
Collapse
Affiliation(s)
- Tamara K Moyo
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
- Levine Cancer Institute, Charlotte, NC, USA
| | - Jason H Mendler
- James P. Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | | | - Ashwin Kishtagari
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | - Eric Solary
- Institut Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Adam C Seegmiller
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | | | - Gregory D Ayers
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA
| | | | | | - Peter Valent
- Department of Internal Medicine I, Division of Hematology and Hemostaseology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Hematology and Oncology, Medical University of Vienna, Vienna, Austria
| | | | - Francesco Onida
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, University of Milan, Milan, Italy
| | - Lisa Pleyer
- Third Medical Department With Hematology, Medical Oncology, Rheumatology and Infectiology, Paracelsus Medical University, Salzburg, Austria
- Salzburg Cancer Research Institute Center for Clinical Cancer and Immunology Trials, Salzburg, Austria
| | - Blanca Xicoy Cirici
- Institut Català d'Oncologia-Hospital Germans Trias i Pujol, Josep Carreras Leukemia Research Institute, Universitat Autònoma de Barcelona, Bellaterr, Spain
| | | | | | | | - Jing Zhang
- University of Wisconsin-Madison, Madison, WI, USA
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, University of Duesseldorf, Duesseldorf, Germany
| | | | | | - Michael Pfeilstöecker
- Hanusch Hospital and Ludwig Boltzmann Institute for Hematology and Oncology, Vienna, Austria
| | | | | | - Jean-Jacques Kiladjian
- Université de Paris, APHP, Hôpital Saint-Louis, Centre d'Investigations Cliniques, INSERM CIC 1427, Paris, France
| | | | - Ruben A Mesa
- Mays Cancer Center at UT Health San Antonio MD Anderson, San Antonio, TX, USA
| | | | | | | | | | - Eric Padron
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | - Michael R Savona
- Vanderbilt University School of Medicine, Vanderbilt-Ingram Cancer Center, 2220 Pierce Avenue, Nashville, TN, 777 PRB, USA.
| |
Collapse
|
24
|
Arber DA, Orazi A, Hasserjian RP, Borowitz MJ, Calvo KR, Kvasnicka HM, Wang SA, Bagg A, Barbui T, Branford S, Bueso-Ramos CE, Cortes JE, Dal Cin P, DiNardo CD, Dombret H, Duncavage EJ, Ebert BL, Estey EH, Facchetti F, Foucar K, Gangat N, Gianelli U, Godley LA, Gökbuget N, Gotlib J, Hellström-Lindberg E, Hobbs GS, Hoffman R, Jabbour EJ, Kiladjian JJ, Larson RA, Le Beau MM, Loh MLC, Löwenberg B, Macintyre E, Malcovati L, Mullighan CG, Niemeyer C, Odenike OM, Ogawa S, Orfao A, Papaemmanuil E, Passamonti F, Porkka K, Pui CH, Radich JP, Reiter A, Rozman M, Rudelius M, Savona MR, Schiffer CA, Schmitt-Graeff A, Shimamura A, Sierra J, Stock WA, Stone RM, Tallman MS, Thiele J, Tien HF, Tzankov A, Vannucchi AM, Vyas P, Wei AH, Weinberg OK, Wierzbowska A, Cazzola M, Döhner H, Tefferi A. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: integrating morphologic, clinical, and genomic data. Blood 2022; 140:1200-1228. [PMID: 35767897 PMCID: PMC9479031 DOI: 10.1182/blood.2022015850] [Citation(s) in RCA: 1440] [Impact Index Per Article: 480.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/16/2022] [Indexed: 02/02/2023] Open
Abstract
The classification of myeloid neoplasms and acute leukemias was last updated in 2016 within a collaboration between the World Health Organization (WHO), the Society for Hematopathology, and the European Association for Haematopathology. This collaboration was primarily based on input from a clinical advisory committees (CACs) composed of pathologists, hematologists, oncologists, geneticists, and bioinformaticians from around the world. The recent advances in our understanding of the biology of hematologic malignancies, the experience with the use of the 2016 WHO classification in clinical practice, and the results of clinical trials have indicated the need for further revising and updating the classification. As a continuation of this CAC-based process, the authors, a group with expertise in the clinical, pathologic, and genetic aspects of these disorders, developed the International Consensus Classification (ICC) of myeloid neoplasms and acute leukemias. Using a multiparameter approach, the main objective of the consensus process was the definition of real disease entities, including the introduction of new entities and refined criteria for existing diagnostic categories, based on accumulated data. The ICC is aimed at facilitating diagnosis and prognostication of these neoplasms, improving treatment of affected patients, and allowing the design of innovative clinical trials.
Collapse
Affiliation(s)
| | - Attilio Orazi
- Texas Tech University Health Sciences Center El Paso, El Paso, TX
| | | | | | | | | | - Sa A Wang
- University of Texas MD Anderson Cancer Center, Houston, TX
| | - Adam Bagg
- University of Pennsylvania, Philadelphia, PA
| | - Tiziano Barbui
- Clinical Research Foundation, Papa Giovanni XXIII Hospital, Bergamo, Italy
| | | | | | | | | | | | - Hervé Dombret
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | - Jason Gotlib
- Stanford University School of Medicine, Stanford, CA
| | | | | | | | | | - Jean-Jacques Kiladjian
- Université Paris Cité, Hôpital Saint-Louis, Assistance Publique - Hôpitaux de Paris, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Kimmo Porkka
- Helsinki University Central Hospital Comprehensive Cancer Center, Helsinki, Finland
| | | | | | | | | | | | | | | | | | - Akiko Shimamura
- Dana-Farber Cancer Institute, Boston, MA
- Boston Children's Cancer and Blood Disorders Center, Boston, MA
| | - Jorge Sierra
- Hospital Santa Creu i Sant Pau, Barcelona, Spain
| | | | | | | | | | - Hwei-Fang Tien
- National Taiwan University Hospital, Taipei City, Taiwan
| | | | | | - Paresh Vyas
- University of Oxford, Oxford, United Kingdom
| | - Andrew H Wei
- Peter MacCallum Cancer Centre and Royal Melbourne Hospital, Melbourne, Australia
| | | | | | | | | | | |
Collapse
|
25
|
Symeonidis A, Chondropoulos S, Verigou E, Lazaris V, Kourakli A, Tsirigotis P. Allogeneic Hematopoietic Stem Cell Transplantation for Mixed or Overlap Myelodysplastic/Myeloproliferative Disorders. Front Oncol 2022; 12:884723. [PMID: 35992818 PMCID: PMC9389581 DOI: 10.3389/fonc.2022.884723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 05/23/2022] [Indexed: 12/30/2022] Open
Abstract
Chronic myelomonocytic leukemia (CMML) and the remaining, less frequent hybrid, mixed, or overlap myelodysplastic syndromes/myeloproliferative neoplasms (MDSs/MPNs) are difficult to treat neoplastic hematological disorders, exhibiting substantial clinical and prognostic heterogeneity, for which clear therapeutic guidelines or effective treatment options are still missing. CMML has an overall survival ranging from a few months to several years. Although patients with proliferative or dysplastic features may benefit from hydroxyurea and hypomethylating agent treatment, respectively, none of these treatments can establish long-term remission and prevent the inevitable transformation to acute leukemia. Novel targeted treatment approaches are emerging but are still under investigation. Therefore, currently, allogeneic stem cell transplantation (allo-SCT) remains the only treatment modality with a curative potential, but its widespread application is limited, due to significant morbidity and mortality associated with the procedure, especially in the elderly and in patients with comorbidities. Recognition of patient eligibility for allo-SCT is crucial, and the procedure should be addressed to patients with a good performance status without severe comorbidities and mainly to those in intermediate- to high-risk category, with a suitable stem cell donor available. The issues of best timing for performing transplantation, patient and donor eligibility, the type of conditioning regimen, and the outcomes after various allo-SCT procedures are the topics of this review.
Collapse
Affiliation(s)
- Argiris Symeonidis
- University of Patras Medical School, Hematology Division, Patras, Greece
- *Correspondence: Argiris Symeonidis, ; orcid.org/0000-0002-0543-046X
| | | | - Evgenia Verigou
- Hematology Division, General University Hospital of Patras, Rion of Patras, Greece
| | - Vasileios Lazaris
- Hematology Division, General University Hospital of Patras, Rion of Patras, Greece
| | - Alexandra Kourakli
- Hematology Division, General University Hospital of Patras, Rion of Patras, Greece
| | - Panagiotis Tsirigotis
- Department of Medicine, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
26
|
Elsayed M, Harry S, Nanua S, Zaidi S, Habib MH, Raza S. Trametinib: Could It Be a Promising Drug to Treat Atypical Chronic Myeloid Leukemia? Cureus 2022; 14:e26619. [PMID: 35949766 PMCID: PMC9356656 DOI: 10.7759/cureus.26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/06/2022] [Indexed: 12/03/2022] Open
Abstract
Atypical chronic myeloid leukemia (aCML) is a rare disease that is currently classified under the myelodysplastic (MDS)/myeloproliferative neoplasm (MPN) disease spectrum. MDS/MPN diseases are characterized by the absence of the Philadelphia (Ph) chromosome and the overlap between bone marrow fibrosis and dysplastic features. The Ph chromosome, resulting from BCR-ABL1 translocation, helps to distinguish aCML from chronic myeloid leukemia (CML). The currently reported incidence of aCML is imprecise because aCML is diagnosed primarily based on morphological features and other unspecified laboratory findings, and there is an especially high chance of under-diagnosis of aCML and other MDS/MPN diseases. Recent advances in next-generation sequencing (NGS) have allowed a greater understanding of the nature of aCML, providing better opportunities to achieve higher diagnostic accuracy and for the use of more targeted treatment to achieve better outcomes. Herein, we present a case of a 68-year-old woman who came to our hospital complaining of shortness of breath, fatigue, and weakness, who was found to have significantly increased leukocytosis, hepatosplenomegaly, and was negative for the Ph chromosome. Further investigations with NGS revealed mutations in ASXL1, GATA2, NRAS, and SRSF2 but not CSF3R. In addition to this, peripheral smear and bone marrow aspiration findings were suggestive of aCML based on specific morphological findings. Since the patient was ineligible for a stem cell transplant (SCT), symptomatic treatment was started with cell transfusion; however, the patient continued to have symptomatic anemia that required multiple transfusions. A trial with trametinib, a mitogen-activated protein kinase kinase (MEK) inhibitor, was later started as a targeted therapy based on one of her genetic mutations. Interestingly, the patient's blood counts stabilized, she reported feeling better, and she did not need any blood transfusions for four consecutive months during treatment with trametinib. Unfortunately, our patient later died from sepsis resulting from secondary infections. In light of the significant advancements in NGS, clinicians should always consider utilizing it as a helpful tool to not only establish a rare diagnosis of aCML but also to offer the best available targeted therapy when applicable. This might alleviate the burden associated with the poor prognosis of aCML.
Collapse
Affiliation(s)
- Marwa Elsayed
- Internal Medicine, University of Missouri Kansas City School of Medicine, Kansas City, USA
| | - Stephanie Harry
- Hematology/Oncology, Saint Francis Cancer Center Warren Clinic, Tulsa, USA
| | - Suprana Nanua
- Oncology, Saint Luke's Cancer Institute, University of Missouri Kansas City, Kansas City, USA
| | - Shayaan Zaidi
- Oncology, University of Kansas School of Medicine, Kansas City, USA
| | - Muhammad H Habib
- Oncology, Rutgers Cancer Institute of New Jersey, New Brunswick, USA
| | - Shahzad Raza
- Oncology, Saint Luke's Cancer Institute, University of Missouri Kansas City, Kansas City, USA
| |
Collapse
|
27
|
Wang B, Wen L, Wang Z, Chen S, Qiu H. Differential Implications of CSF3R Mutations in t(8;21) and CEBPA Double Mutated Acute Myeloid Leukemia. CLINICAL LYMPHOMA, MYELOMA & LEUKEMIA 2022; 22:393-404. [PMID: 34975010 DOI: 10.1016/j.clml.2021.11.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/13/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Few data are available exploring mutations of the colony-stimulating factor 3 receptor (CSF3R) in acute myeloid leukemia (AML) in an all-round and systematic manner. The purpose of this study was to analyze the CSF3R mutations (CSF3Rmut) in AML with recurrent genetic abnormalities for potential synergistic pathomechanism. PATIENTS AND METHODS We retrospectively screened 1102 adult de novo AML patients with available next-generation sequencing (NGS) information on 132 genes related to hematologic disorders. The χ2, Mann-Whitney U tests were used to analyze their associations with clinicopathologic characteristics, and a propensity score matching (PSM) followed by Kaplan-Meier method was applied to measure their prognostic effects. RESULTS Overall, CSF3Rmut were detected in 40 (3.6%) of 1102 patients with adult de novo AML. CSF3Rmut were predominantly enriched in AML with the CEBPA double mutations (CEBPAdm) (16/122, 13.1%), t(8;21) (12/186, 6.5%) and mutated RUNX1 (3/50, 6.0%), respectively. The CSF3Rmut loci and types differed according to AML subtypes, with frameshift-indels and premature stop confined in the t(8;21) AML [10/12 (83.3%)], and missense recurrently aggregated in the CEBPAdm AML [16/16 (100%)]. Cases with CSF3Rmut had a lower WBC count versus those with CSF3R wild-type (CSF3Rwt) in the t(8;21) AML cohort, with a borderline significance [median 5.45 (range 0.94-20.30) × 109/L) vs. 8.80 (range 0.96-155.00) × 109/L, P = .046]. CSF3Rmut were non-significantly associated with higher WBC counts [median 33.6 (range 6.8-287.6) × 109/L vs. 18.1 (range 1.7-196.0) × 109/L, P = .156] and significantly with lower immunophenotypic CD15 positivity [0/8 (0%) vs. 44/80 (55%), P = .009] as compared to CSF3Rwt in the CEBPAdm AML cohort. After propensity score matching followed by Kaplan-Meier analysis, CSF3Rmut cases had comparable disease-free survival (DFS) and overall survival (OS) to those with CSF3Rwt (P = .607 and P = .842, respectively) in the t(8;21) AML cohort. By contrast, CSF3Rmut showed an inclination towards inferior DFS compared to CSF3Rwt in the CEBPAdm AML cohort [median DFS 19.8 (95%CI 3.1-36.5) months vs. not reached (NR), P = .086]. No significant difference was found for OS between CSF3Rmut and CSF3Rwt cases (P = .943). CONCLUSION We concluded that CSF3Rmut were frequently enriched in patients with t(8;21) and CEBPAdm subtypes among AML, but showed divergent clinicopathologic features, mutation loci and types and differing prognostic aspects.
Collapse
Affiliation(s)
- Biao Wang
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; Department of Hematology, Changzhou First People's Hospital (The Third Affiliated Hospital of Soochow University), Changzhou, China
| | - Lijun Wen
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Zheng Wang
- National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China; Suzhou Jsuniwell Medical Laboratory, Suzhou, China
| | - Suning Chen
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China; National Clinical Research Center for Hematologic Diseases, Jiangsu Institute of Hematology, Suzhou, China
| | - Huiying Qiu
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
28
|
Szuber N, Elliott M, Tefferi A. Chronic neutrophilic leukemia: 2022 update on diagnosis, genomic landscape, prognosis, and management. Am J Hematol 2022; 97:491-505. [PMID: 35089603 DOI: 10.1002/ajh.26481] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/09/2022]
Abstract
DISEASE OVERVIEW Chronic neutrophilic leukemia (CNL) is a rare, often aggressive myeloproliferative neoplasm (MPN) defined by persistent mature neutrophilic leukocytosis, bone marrow granulocyte hyperplasia, and frequent hepatosplenomegaly. The 2013 seminal discovery of oncogenic driver mutations in colony-stimulating factor 3 receptor (CSF3R) in the majority of patients with CNL not only established its molecular pathogenesis but provided a diagnostic biomarker and rationale for pharmacological targeting. DIAGNOSIS In 2016, the World Health Organization (WHO) recognized activating CSF3R mutations as a central diagnostic feature of CNL. Other criteria include leukocytosis of ≥25 × 109 /L comprising >80% neutrophils with <10% circulating precursors and rare blasts, and absence of dysplasia or monocytosis, while not fulfilling criteria for other MPN. MANAGEMENT There is currently no standard of care for management of CNL, due in large part to the rarity of disease and dearth of formal clinical trials. Most commonly used therapeutic agents include conventional oral chemotherapy (e.g., hydroxyurea), interferon, and Janus kinase (JAK) inhibitors, while hematopoietic stem cell transplant remains the only potentially curative modality. DISEASE UPDATES Increasingly comprehensive genetic profiling in CNL, including new data on clonal evolution, has disclosed a complex genomic landscape with additional mutations and combinations thereof driving disease progression and drug resistance. Although accurate prognostic stratification and therapeutic decision-making remain challenging in CNL, emerging data on molecular biomarkers and the addition of newer agents, such as JAK inhibitors, to the therapeutic arsenal, are paving the way toward greater standardization and improvement of patient care.
Collapse
Affiliation(s)
- Natasha Szuber
- Department of Hematology Maisonneuve‐Rosemont Hospital Montreal Quebec Canada
| | - Michelle Elliott
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
29
|
Enjeti AK, Agarwal R, Blombery P, Chee L, Chua CC, Grigg A, Hamad N, Iland H, Lane S, Perkins A, Singhal D, Tate C, Tiong IS, Ross DM. Panel-based gene testing in myelodysplastic/myeloproliferative neoplasm- overlap syndromes: Australasian Leukaemia and Lymphoma Group (ALLG) consensus statement. Pathology 2022; 54:389-398. [DOI: 10.1016/j.pathol.2022.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 11/30/2022]
|
30
|
McLornan DP, Hargreaves R, Hernández-Boluda JC, Harrison CN. How I manage myeloproliferative neoplasm-unclassifiable: Practical approaches for 2022 and beyond. Br J Haematol 2022; 197:407-416. [PMID: 35191542 DOI: 10.1111/bjh.18087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 01/19/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Myeloproliferative neoplasm (MPN)-unclassifiable (MPN-U) or not otherwise specified represents a rare, poorly defined and heterogeneous group of MPNs. Disease incidence is difficult to define but likely represents close to 5% of all MPNs when strict World Health Organisation (WHO) criteria are applied. Dynamic review over time is required to assess if the disease can be re-classified into another MPN entity. A diagnosis of MPN-U leads to many challenges for both the patient and physician alike including lack of agreed monitoring and therapeutic guidelines, validated prognostic markers and licenced therapies coupled with exclusion from clinical trials. MPN-U has an inherent risk of an aggressive clinical course and transformation in some but who, and when to treat in the chronic phase, including identifying who may require more aggressive therapy at an earlier stage, remains elusive. Moreover, despite the significant thrombotic risk, there is no agreement on systematic primary thromboprophylaxis. We hereby provide a contemporary overview of MPN-U in addition to four illustrative cases providing our collective suggested approaches to clinical challenges.
Collapse
Affiliation(s)
- Donal P McLornan
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, Great Maze Pond, London, UK.,Department of Haematology, University College London Hospitals, London, UK
| | - Rupen Hargreaves
- Department of Haematology, University College London Hospitals, London, UK
| | | | - Claire N Harrison
- Department of Haematology, 4th Floor Southwark Wing, Guy's and St. Thomas' NHS Foundation Trust, Great Maze Pond, London, UK
| |
Collapse
|
31
|
Molony P, Smith AC, Selvarajah S, Sakhdari A. MDS/MPN-Unclassifiable with t(X;17)(q28;q21) and KANSL1-MTCP1/CMC4 Fusion Gene. Cytogenet Genome Res 2022; 161:564-568. [PMID: 35038703 DOI: 10.1159/000521509] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 12/12/2021] [Indexed: 11/19/2022] Open
Abstract
Myelodysplastic/myeloproliferative neoplasm, unclassifiable (MDS/MPN-U) is a poorly characterized entity among overlap myeloid syndromes. Recent studies have shown heterogeneous mutational profiles in this group being able to subclassify them into entities closely related to the more well-established disorders under the umbrella term of the MDS/MPN group. Recurrent cytogenetic alterations are, nonetheless, rare in MDS/MPN-U. Here, for the first time, we report a case of MDS/MPN-U with a t(X;17)(q28;q21) chromosomal rearrangement leading to the KANSL1-MTCP1 fusion gene.
Collapse
Affiliation(s)
- Peter Molony
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Adam C Smith
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Shamini Selvarajah
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ali Sakhdari
- Laboratory Medicine Program, University Health Network, and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
32
|
Kuendgen A, Kasprzak A, Germing U. Hybrid or Mixed Myelodysplastic/Myeloproliferative Disorders - Epidemiological Features and Overview. Front Oncol 2021; 11:778741. [PMID: 34869027 PMCID: PMC8635204 DOI: 10.3389/fonc.2021.778741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 10/25/2021] [Indexed: 11/25/2022] Open
Abstract
The WHO-category Myelodysplastic/Myeloproliferative neoplasms (MDS/MPNs) recognizes a unique group of clonal myeloid malignancies exhibiting overlapping features of myelodysplastic as well as myeloproliferative neoplasms. The group consists of chronic myelomonocytic leukemia (CMML), atypical chronic myeloid leukemia, BCR-ABL1-negative (aCML), juvenile myelomonocytic leukemia (JMML), myelodysplastic/myeloproliferative neoplasm with ringed sideroblasts and thrombocytosis (MDS/MPN-RS-T), and myelodysplastic/myeloproliferative neoplasms, unclassifiable (MDS/MPN-U). The most frequent entity in this category is CMML, while all other diseases are extremely rare. Thus, only very limited data on the epidemiology of these subgroups exists. An appropriate diagnosis and classification can be challenging since the diagnosis is still largely based on morphologic criteria and myelodysplastic as well as myeloproliferative features can be found in various occurrences. The diseases in this category share several features that are common in this specific WHO-category, but also exhibit specific traits for each disease. This review summarizes published data on epidemiological features and offers a brief overview of the main diagnostic criteria and clinical characteristics of the five MDS/MPN subgroups.
Collapse
Affiliation(s)
- Andrea Kuendgen
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Annika Kasprzak
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| | - Ulrich Germing
- Department of Hematology, Oncology, and Clinical Immunology, Heinrich-Heine-University Hospital Duesseldorf, Duesseldorf, Germany
| |
Collapse
|
33
|
Fontana D, Gambacorti-Passerini C, Piazza R. Molecular Pathogenesis of BCR-ABL-Negative Atypical Chronic Myeloid Leukemia. Front Oncol 2021; 11:756348. [PMID: 34858828 PMCID: PMC8631780 DOI: 10.3389/fonc.2021.756348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022] Open
Abstract
Atypical chronic myeloid leukemia is a rare disease whose pathogenesis has long been debated. It currently belongs to the group of myelodysplastic/myeloproliferative disorders. In this review, an overview on the current knowledge about diagnosis, prognosis, and genetics is presented, with a major focus on the recent molecular findings. We describe here the molecular pathogenesis of the disease, focusing on the mechanisms of action of the main mutations as well as on gene expression profiling. We also present the treatment options focusing on emerging targeted therapies.
Collapse
Affiliation(s)
- Diletta Fontana
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Carlo Gambacorti-Passerini
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology and Clinical Research Unit, San Gerardo Hospital, Monza, Italy.,Bicocca Bioinformatics, Biostatistics and Bioimaging Centre (B4), University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
34
|
Atypical CML with TET2 mutation, associated with NRAS and KRAS: A case report and literature review. Ann Med Surg (Lond) 2021; 71:102980. [PMID: 34840744 PMCID: PMC8606696 DOI: 10.1016/j.amsu.2021.102980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
Background Atypical chronic myeloid leukemia (BCR-ABL1 negative) is a rare myeloid neoplasm with poor prognosis and no current standard of treatment. It features both myelodysplastic and myeloproliferative characteristics with little data regarding mutations playing a role in the disease. Presentation of case We present a case of a 55-year-old female complaining of fever, cough, general weakness and night sweats. Examinations showed leukocytosis with a left shift, thrombocytopenia, hypercellular bone marrow with marked granulocytic hyperplasia and a negative BCR-ABL. After ruling out myelodysplastic and other myeloproliferative diseases the patient was finally diagnosed as aCML according to the WHO criteria with mutations in the TET2 gene, the NRAS gene and in the KRAS gene. The patient was started on Hydroxyurea for a duration of 9 months with an excellent initial response leading to normalization of her platelets and WBCs. However, in the last month she stopped responding to therapy and her state of health started declining once again. Conclusion Atypical chronic myeloid leukemia (BCR-ABL1 negative with presence of TET2 gene mutation) is an unusual finding in myeloid neoplasms, have unknown prognosis and no current standard of treatment. It features both myelodysplastic and myeloproliferative characteristics with little data regarding mutations playing a role in the disease. Atypical CML is challenging to diagnose and can be misdiagnosed with CMML. Careful history taking, meticulous physical examination, and investigations are necessary. A treatment is not yet stipulated; however, researchers are working on it.
Collapse
|
35
|
Diamantopoulos PT, Viniou NA. Atypical Chronic Myelogenous Leukemia, BCR-ABL1 Negative: Diagnostic Criteria and Treatment Approaches. Front Oncol 2021; 11:722507. [PMID: 34868917 PMCID: PMC8635713 DOI: 10.3389/fonc.2021.722507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022] Open
Abstract
Atypical chronic myelogenous leukemia (aCML), BCR/ABL1 negative is a rare myelodysplastic/myeloproliferative neoplasm, usually manifested with hyperleukocytosis without monocytosis or basophilia, organomegaly, and marked dysgranulopoiesis. In this review, we will discuss the classification and diagnostic criteria of aCML, as these have been formulated during the past 30 years, with a focus on the recent advances in the molecular characterization of the disease. Although this entity does not have a definitive molecular profile, its molecular characterization has contributed to a better understanding and more accurate classification and diagnosis of aCML. At the same time, it has facilitated the identification of adverse prognostic factors and the stratification of patients according to their risk for leukemic transformation. What is more, the molecular characterization of the disease has expanded our therapeutic choices, thoroughly presented and analyzed in this review article.
Collapse
Affiliation(s)
- Panagiotis T. Diamantopoulos
- First Department of Internal Medicine, Laikon General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | | |
Collapse
|
36
|
Cross NCP, Godfrey AL, Cargo C, Garg M, Mead AJ. The use of genetic tests to diagnose and manage patients with myeloproliferative and myeloproliferative/myelodysplastic neoplasms, and related disorders. Br J Haematol 2021; 195:338-351. [PMID: 34409596 DOI: 10.1111/bjh.17766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Nicholas C P Cross
- Wessex Regional Genetics Laboratory, Salisbury District Hospital, Salisbury, UK
- Faculty of Medicine, University of Southampton, Southampton, UK
| | - Anna L Godfrey
- Haematopathology & Oncology Diagnostics Service, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Catherine Cargo
- Haematological Malignancy Diagnostic Service, Leeds Cancer Centre, St James's University Hospital, Leeds, UK
| | - Mamta Garg
- Leicester Royal Infirmary, Infirmary Square, Leicester, UK
| | - Adam J Mead
- MRC Molecular Haematology Unit, NIHR Oxford Biomedical Research Centre, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| |
Collapse
|
37
|
Choi YJ, Baek HJ, Kim BR, Park SM, Shin MG, Kook H. A Pediatric Case of Atypical Chronic Myeloid Leukemia with CSF3R Mutation Not Responding to Ruxolitinib, but Rescued by Allogeneic Transplantation. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2021. [DOI: 10.15264/cpho.2021.28.2.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yoon Jung Choi
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hee Jo Baek
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| | - Bo Ram Kim
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Soo Min Park
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Myung-Geun Shin
- Department of Laboratory Medicine, Chonnam National University Hwasun Hospital, Hwasun, Korea
| | - Hoon Kook
- Department of Pediatrics, Chonnam National University Hwasun Hospital, Hwasun, Korea
- Department of Department of Pediatrics, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
38
|
Castellino A, Santambrogio E, Rapezzi D, Massaia M. Atypical Chronic Myeloid Leukemia: New Developments from Molecular Diagnosis to Treatment. MEDICINA-LITHUANIA 2021; 57:medicina57101104. [PMID: 34684141 PMCID: PMC8540192 DOI: 10.3390/medicina57101104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022]
Abstract
Atypical Chronic Myeloid Leukemia, BCR-ABL1 negative (aCML) is a rare hematological entity, included in the group of myelodysplastic (MDS)/myeloproliferative (MPN) overlap syndromes. It is characterized by an aggressive course, a high rate of acute myeloid leukemia (AML) transformation, and a dismal outcome. The clinical presentation includes splenomegaly and leukocytosis with neutrophilia and left-shifted granulocytosis accompanied by granulocytic dysplasia and sometimes multilineage dysplasia. In past years, the disease incidence was likely underestimated, as diagnosis was only based on morphological features. Recently, the improving knowledge in the molecular biology of MDS/MPN neoplasms has made it possible to distinguish aCML from other overlapping syndromes, basing on next generation sequencing. Among the most commonly mutated genes, several involve the Jak-STAT, MAPK, and ROCK signaling pathways, which could be actionable with targeted therapies that are already used in clinical practice, opening the way to tailored treatment in aCML. However, currently, there are few data available for small samples, and allogeneic transplant remains the only curative option for eligible patients.
Collapse
|
39
|
Martins JRB, Moraes LN, Cury SS, Capannacci J, Carvalho RF, Nogueira CR, Hokama NK, Hokama POM. MiR-125a-3p and MiR-320b Differentially Expressed in Patients with Chronic Myeloid Leukemia Treated with Allogeneic Hematopoietic Stem Cell Transplantation and Imatinib Mesylate. Int J Mol Sci 2021; 22:ijms221910216. [PMID: 34638557 PMCID: PMC8508688 DOI: 10.3390/ijms221910216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic myeloid leukemia (CML), a hematopoietic neoplasm arising from the fusion of BCR (breakpoint cluster region) gene on chromosome 22 to the ABL (Abelson leukemia virus) gene on chromosome 9 (BCR-ABL1 oncogene), originates from a small population of leukemic stem cells with extensive capacity for self-renewal and an inflammatory microenvironment. Currently, CML treatment is based on tyrosine kinase inhibitors (TKIs). However, allogeneic hematopoietic stem cell transplantation (HSCT-allo) is currently the only effective treatment of CML. The difficulty of finding a compatible donor and high rates of morbidity and mortality limit transplantation treatment. Despite the safety and efficacy of TKIs, patients can develop resistance. Thus, microRNAs (miRNAs) play a prominent role as biomarkers and post-transcriptional regulators of gene expression. The aim of this study was to analyze the miRNA profile in CML patients who achieved cytogenetic remission after treatment with both HSCT-allo and TKI. Expression analyses of the 758 miRNAs were performed using reverse transcription quantitative polymerase chain reaction (RT-qPCR). Bioinformatics tools were used for data analysis. We detected miRNA profiles using their possible target genes and target pathways. MiR-125a-3p stood out among the downregulated miRNAs, showing an interaction network with 52 target genes. MiR-320b was the only upregulated miRNA, with an interaction network of 26 genes. The results are expected to aid future studies of miRNAs, residual leukemic cells, and prognosis in CML.
Collapse
Affiliation(s)
- Juliana R. B. Martins
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Leonardo N. Moraes
- Department of Bioprocesses and Biotechnology, School of Agriculture, São Paulo State University (FCA-UNESP), Botucatu 18610-034, Brazil;
| | - Sarah S. Cury
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (IBB-UNESP), Botucatu 18618-970, Brazil; (S.S.C.); (R.F.C.)
| | - Juliana Capannacci
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (IBB-UNESP), Botucatu 18618-970, Brazil; (S.S.C.); (R.F.C.)
| | - Célia Regina Nogueira
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Newton Key Hokama
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
| | - Paula O. M. Hokama
- Department of Internal Medicine, Botucatu Medical School, São Paulo State University (FMB-UNESP), Botucatu 18618-687, Brazil; (J.R.B.M.); (J.C.); (C.R.N.); (N.K.H.)
- Correspondence:
| |
Collapse
|
40
|
Gao L, Ren MQ, Tian ZG, Peng ZY, Shi G, Yuan Z. Management of chronic myeloid leukemia presenting with isolated thrombocytosis and complex Philadelphia chromosome: A case report. Medicine (Baltimore) 2021; 100:e27134. [PMID: 34477162 PMCID: PMC8416011 DOI: 10.1097/md.0000000000027134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/18/2021] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Chronic myelogenous leukemia (CML) with thrombocytosis and complex chromosomal translocation is extremely rare in clinical setting. Here, we reported the clinical and pathological characteristics of CML patients, which were characterized by thrombocytosis and complex Philadelphia chromosome translocation. Moreover, we also introduced our therapeutic schedule for this patient as well as review relative literature. PATIENT CONCERNS A 24-year-old female presented with night sweating, fatigue, and intermittent fever for 1 month. DIAGNOSIS Fluorescence in situ hybridization results revealed that breakpoint cluster region (BCR)-Abelson (ABL) gene fusion in 62% of the cells and karyotyping showed a complex 3-way 46, XY, t(9;22;11) (q34;q11;q13) [19/20] translocation. This patient was diagnosed with CML complicated with thrombocytosis and complex Philadelphia chromosome translocation. INTERVENTIONS The patients received continuously oral imatinib mesylate tablets (400 mg) once a day. OUTCOMES After treatment with imatinib for 3 months, the BCR/ABLIS was less than 0.1% and achieved major molecular response. Moreover, the BCR/ABLIS of this patient achieved major molecular response. The BCR/ABLIS values at 6 months and 12 months were less than 0.01% and 0.0032%, respectively. And no BCR/ABL fusion was detected in the next 2 years follow-up period. LESSONS Imatinib might represent a preferred therapeutic option for CML patients with rare thrombocytosis and complex chromosomal translocation. In addition, BCR/ABL fusion gene examination in patients with thrombocytosis might represent an effective strategy to avoid the misdiagnosis of this specific CML population.
Collapse
|
41
|
Hochman MJ, Savani BN, Jain T. Examining disease boundaries: Genetics of myelodysplastic/myeloproliferative neoplasms. EJHAEM 2021; 2:607-615. [PMID: 35844680 PMCID: PMC9175746 DOI: 10.1002/jha2.264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/30/2021] [Accepted: 07/12/2021] [Indexed: 12/19/2022]
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid malignancies that are characterized by dysplasia resulting in cytopenias as well as proliferative features such as thrombocytosis or splenomegaly. Recent studies have better defined the genetics underlying this diverse group of disorders. Trisomy 8, monosomy 7, and loss of Y chromosome are the most common cytogenetic abnormalities seen. Chronic myelomonocytic leukemia (CMML) likely develops from early clones with TET2 mutations that drive granulomonocytic differentiation. Mutations in SRSF2 are common and those in the RAS-MAPK pathway are typically implicated in disease with a proliferative phenotype. Several prognostic systems have incorporated genetic features, with ASXL1 most consistently demonstrating worse prognosis. Atypical chronic myeloid leukemia (aCML) is most known for granulocytosis with marked dysplasia and often harbors ASXL1 mutations, but SETBP1 and ETNK1 are more specific to this disease. MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T) most commonly involves spliceosome mutations (namely SF3B1) and mutations in the JAK-STAT pathway. Finally, MDS/MPN-unclassifiable (MDS/MPN-U) is least characterized but a significant fraction carries mutations in TP53. The remaining patients have clinical and/or genetic features similar to the other MDS/MPNs, suggesting there is room to better characterize this entity. Evolution from age-related clonal hematopoiesis to MDS/MPN likely depends on the order of mutation acquisition and interactions between various biologic factors. Genetics will continue to play a critical role in our understanding of these illnesses and advancing patient care.
Collapse
Affiliation(s)
- Michael J. Hochman
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Bipin N. Savani
- Division of Hematology and OncologyVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Tania Jain
- Division of Hematological Malignancies and Bone Marrow TransplantationSidney Kimmel Comprehensive Cancer CenterJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
42
|
Voriconazole as a secondary prophylaxis for cryptococcal meningitis during hematopoietic stem cell transplantation. IDCases 2021; 25:e01241. [PMID: 34377674 PMCID: PMC8329504 DOI: 10.1016/j.idcr.2021.e01241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 11/25/2022] Open
Abstract
Antifungal prophylaxis is crucial for successful hematopoietic stem cell transplantation (HSCT). Maintenance therapy with fluconazole (FLCZ) is generally prescribed as secondary prophylaxis in patients with human immunodeficiency virus infection and non-immunocompromised hosts. However, previous reports have revealed that FLCZ is insufficient as a secondary prophylaxis for cryptococcal infection in HSCT cases. There is no well-established evidence of effective secondary prophylaxis against cryptococcal infection in conditions of severe immunosuppression, such as in HSCT. Herein, we report a case of atypical chronic myeloid leukemia (aCML) presenting with cryptococcal meningitis. A 58-year-old man with progressive leukocytosis and headache was referred to our hospital. Bone marrow biopsy revealed aCML. Because the estimated overall survival was limited, HSCT was indicated. Furthermore, enhanced magnetic resonance imaging and lumbar puncture aided in diagnosing cryptococcal meningitis, which was treated with a combination therapy comprising liposomal amphotericin B and 5-fluorocystine for 28 days. Given the high recurrence rate of cryptococcal meningitis, voriconazole (VRCZ) dose was calculated using the trough concentration of VRCZ in the cerebrospinal fluid. Eventually, HSCT was successfully performed at an appropriate therapeutic range of VRCZ. To the best of our knowledge, there is no case report on HSCT with secondary prophylaxis against cryptococcal meningitis. Our report thus emphasizes the efficacy of VRCZ maintenance therapy as secondary prophylaxis for cryptococcal infection.
Collapse
|
43
|
Nann D, Fend F. Synoptic Diagnostics of Myeloproliferative Neoplasms: Morphology and Molecular Genetics. Cancers (Basel) 2021; 13:cancers13143528. [PMID: 34298741 PMCID: PMC8303289 DOI: 10.3390/cancers13143528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 02/02/2023] Open
Abstract
Simple Summary The diagnosis of myeloproliferative neoplasms requires assessment of a combination of clinical, morphological, immunophenotypic and genetic features, and this integrated, multimodal approach forms the basis for precise classification. Evaluation includes cell counts and morphology in the peripheral blood, bone marrow aspiration and trephine biopsy, and may encompass flow cytometry for specific questions. Diagnosis nowadays is completed by targeted molecular analysis for the detection of recurrent driver and, optionally, disease-modifying mutations. According to the current World Health Organization classification, all myeloproliferative disorders require assessment of molecular features to support the diagnosis or confirm a molecularly defined entity. This requires a structured molecular analysis workflow tailored for a rapid and cost-effective diagnosis. The review focuses on the morphological and molecular features of Ph-negative myeloproliferative neoplasms and their differential diagnoses, addresses open questions of classification, and emphasizes the enduring role of histopathological assessment in the molecular era. Abstract The diagnosis of a myeloid neoplasm relies on a combination of clinical, morphological, immunophenotypic and genetic features, and an integrated, multimodality approach is needed for precise classification. The basic diagnostics of myeloid neoplasms still rely on cell counts and morphology of peripheral blood and bone marrow aspirate, flow cytometry, cytogenetics and bone marrow trephine biopsy, but particularly in the setting of Ph− myeloproliferative neoplasms (MPN), the trephine biopsy has a crucial role. Nowadays, molecular studies are of great importance in confirming or refining a diagnosis and providing prognostic information. All myeloid neoplasms of chronic evolution included in this review, nowadays feature the presence or absence of specific genetic markers in their diagnostic criteria according to the current WHO classification, underlining the importance of molecular studies. Crucial differential diagnoses of Ph− MPN are the category of myeloid/lymphoid neoplasms with eosinophilia and gene rearrangement of PDGFRA, PDGFRB or FGFR1, or with PCM1-JAK2, and myelodysplastic/myeloproliferative neoplasms (MDS/MPN). This review focuses on morphological, immunophenotypical and molecular features of BCR-ABL1-negative MPN and their differential diagnoses. Furthermore, areas of difficulties and open questions in their classification are addressed, and the persistent role of morphology in the area of molecular medicine is discussed.
Collapse
Affiliation(s)
- Dominik Nann
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
| | - Falko Fend
- Institute of Pathology and Neuropathology, University Hospital Tübingen, 72076 Tübingen, Germany;
- Comprehensive Cancer Center, University Hospital Tübingen, 72076 Tübingen, Germany
- Correspondence: ; Tel.: +49-7071-2980207
| |
Collapse
|
44
|
Molecular landscape and clonal architecture of adult myelodysplastic/myeloproliferative neoplasms. Blood 2021; 136:1851-1862. [PMID: 32573691 DOI: 10.1182/blood.2019004229] [Citation(s) in RCA: 125] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 05/13/2020] [Indexed: 12/14/2022] Open
Abstract
More than 90% of patients with myelodysplastic/myeloproliferative neoplasms (MDSs/MPNs) harbor somatic mutations in myeloid-related genes, but still, current diagnostic criteria do not include molecular data. We performed genome-wide sequencing techniques to characterize the mutational landscape of a large and clinically well-characterized cohort including 367 adults with MDS/MPN subtypes, including chronic myelomonocytic leukemia (CMML; n = 119), atypical chronic myeloid leukemia (aCML; n = 71), MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T; n = 71), and MDS/MPN unclassifiable (MDS/MPN-U; n = 106). A total of 30 genes were recurrently mutated in ≥3% of the cohort. Distribution of recurrently mutated genes and clonal architecture differed among MDS/MPN subtypes. Statistical analysis revealed significant correlations between recurrently mutated genes, as well as genotype-phenotype associations. We identified specific gene combinations that were associated with distinct MDS/MPN subtypes and that were mutually exclusive with most of the other MDSs/MPNs (eg, TET2-SRSF2 in CMML, ASXL1-SETBP1 in aCML, and SF3B1-JAK2 in MDS/MPN-RS-T). Patients with MDS/MPN-U were the most heterogeneous and displayed different molecular profiles that mimicked the ones observed in other MDS/MPN subtypes and that had an impact on the outcome of the patients. Specific gene mutations also had an impact on the outcome of the different MDS/MPN subtypes, which may be relevant for clinical decision-making. Overall, the results of this study help to elucidate the heterogeneity found in these neoplasms, which can be of use in the clinical setting of MDS/MPN.
Collapse
|
45
|
Zhao M, Sun J, Liu S, Fan H, Fu Y, Tan Y, Gao S. Development of a myelodysplastic/myeloproliferative neoplasm-unclassifiable in a patient with acute myeloid leukemia: a case report and literature review. J Int Med Res 2021; 49:3000605211018426. [PMID: 34057843 PMCID: PMC8753788 DOI: 10.1177/03000605211018426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Myelodysplastic/myeloproliferative neoplasms (MDS/MPNs) are a heterogeneous group of hematologic malignancies characterized by dysplastic and myeloproliferative overlapping features in the bone marrow and blood. The occurrence of the disease is related to age, prior history of MPN or MDS, and recent cytotoxic or growth factor therapy, but it rarely develops after acute myeloid leukemia (AML). We report a rare case of a patient diagnosed with AML with t(8; 21)(q22; q22) who received systematic chemotherapy. After 4 years of follow-up, MDS/MPN-unclassifiable occurred without signs of primary AML recurrence.
Collapse
Affiliation(s)
- Meifang Zhao
- The First Hospital of Jilin University, Changchun, China
| | - Jingnan Sun
- The First Hospital of Jilin University, Changchun, China
| | - Shanshan Liu
- The First Hospital of Jilin University, Changchun, China
| | - Hongqiong Fan
- The First Hospital of Jilin University, Changchun, China
| | - Yu Fu
- The First Hospital of Jilin University, Changchun, China
| | - Yehui Tan
- The First Hospital of Jilin University, Changchun, China
| | - Sujun Gao
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
46
|
Chang YH. Myelodysplastic syndromes and overlap syndromes. Blood Res 2021; 56:S51-S64. [PMID: 33935036 PMCID: PMC8094000 DOI: 10.5045/br.2021.2021010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022] Open
Abstract
Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal hematological neoplasms characterized by ineffective hematopoiesis, morphologic dysplasia, and cytopenia. MDS overlap syndromes include various disorders, such as myelodysplastic/myeloproliferative neoplasms and hypoplastic MDS with aplastic anemia characteristics. MDS overlap syndromes share the characteristics of other diseases, which make differential diagnoses challenging. Advances in genomic studies have led to the discovery of frequent mutations in MDS and overlap syndromes; however, most of the mutations are not specific for the diagnosis of these diseases. The molecular characteristics of the overlap syndromes usually do not show a just "in-between" form but rather heterogeneous features. Established diagnostic criteria for these diseases based on clinical, morphologic, and laboratory features are still useful when combined with genomic data. It is expected that further studies for MDS and overlap syndromes will place emphasis on the roles of mutations as therapeutic targets and prognostic indicators.
Collapse
Affiliation(s)
- Yoon Hwan Chang
- Department of Laboratory Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
47
|
Montalban-Bravo G, Kanagal-Shamanna R, Sasaki K, Masarova L, Naqvi K, Jabbour E, DiNardo CD, Takahashi K, Konopleva M, Pemmaraju N, Kadia TM, Ravandi F, Daver N, Borthakur G, Estrov Z, Khoury JD, Loghavi S, Soltysiak KA, Pierce S, Bueso-Ramos C, Patel KP, Verstovsek S, Kantarjian HM, Bose P, Garcia-Manero G. Clinicopathologic correlates and natural history of atypical chronic myeloid leukemia. Cancer 2021; 127:3113-3124. [PMID: 33914911 DOI: 10.1002/cncr.33622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND There are limited data on the clonal mechanisms underlying leukemogenesis, prognostic factors, and optimal therapy for atypical chronic myeloid leukemia (aCML). METHODS The authors evaluated the clinicopathologic features, outcomes, and responses to therapy of 65 patients with aCML. The median age was 67 years (range, 46-89 years). RESULTS The most frequently mutated genes included ASXL1 (83%), SRSF2 (68%), and SETBP1 (58%). Mutations in SETBP1, SRSF2, TET2, and GATA2 appeared at variant allele frequencies (VAFs) greater than 40%, whereas other RAS pathway mutations were more likely to appear at low VAFs. The acquisition of new, previously undetectable mutations at transformation was observed in 63% of the evaluable patients, with the most common involving signaling pathway mutations. Hypomethylating agents (HMAs) were associated with the highest response rates but with a short duration of response (median, 2.7 months). Therapy with ruxolitinib was not associated with clinically significant responses as a single agent or in combination with an HMA. Allogeneic stem cell transplantation was the only therapy associated with improved outcomes (hazard ratio, 0.144; 95% CI, 0.035-0.593; P = .007). Age, platelet counts, bone marrow blast percentages, and serum lactate dehydrogenase (LDH) levels were independent predictors of survival and were integrated in a multivariable model that allowed the prediction of 1- and 3-year survival. CONCLUSIONS aCML is characterized by high frequencies of ASXL1, SRSF2, and SETBP1 mutations and is associated with a high risk of acute myeloid leukemia transformation. Response and survival outcomes with current therapies remain poor. The incorporation of age, platelet counts, bone marrow blast percentages, and LDH levels can allow survival prediction, and allogeneic stem cell transplantation should be considered for all eligible patients.
Collapse
Affiliation(s)
| | - Rashmi Kanagal-Shamanna
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koji Sasaki
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lucia Masarova
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kiran Naqvi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Elias Jabbour
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Courtney D DiNardo
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Koichi Takahashi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naveen Pemmaraju
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tapan M Kadia
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Farhad Ravandi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Naval Daver
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gautam Borthakur
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Zeev Estrov
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Joseph D Khoury
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sanam Loghavi
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly A Soltysiak
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Pierce
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos Bueso-Ramos
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keyur P Patel
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Srdan Verstovsek
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hagop M Kantarjian
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Prithviraj Bose
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | |
Collapse
|
48
|
Palomo L, Acha P, Solé F. Genetic Aspects of Myelodysplastic/Myeloproliferative Neoplasms. Cancers (Basel) 2021; 13:cancers13092120. [PMID: 33925681 PMCID: PMC8124412 DOI: 10.3390/cancers13092120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are clonal myeloid neoplasms characterized, at the time of their presentation, by the simultaneous presence of both myelodysplastic and myeloproliferative features. In MDS/MPN, the karyotype is often normal but mutations in genes that are common across myeloid neoplasms can be detected in a high proportion of cases by targeted sequencing. In this review, we intend to summarize the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of patients. Abstract Myelodysplastic/myeloproliferative neoplasms (MDS/MPN) are myeloid neoplasms characterized by the presentation of overlapping features from both myelodysplastic syndromes and myeloproliferative neoplasms. Although the classification of MDS/MPN relies largely on clinical features and peripheral blood and bone marrow morphology, studies have demonstrated that a large proportion of patients (~90%) with this disease harbor somatic mutations in a group of genes that are common across myeloid neoplasms. These mutations play a role in the clinical heterogeneity of these diseases and their clinical evolution. Nevertheless, none of them is specific to MDS/MPN and current diagnostic criteria do not include molecular data. Even when such alterations can be helpful for differential diagnosis, they should not be used alone as proof of neoplasia because some of these mutations may also occur in healthy older people. Here, we intend to review the main genetic findings across all MDS/MPN overlap syndromes and discuss their relevance in the management of the patients.
Collapse
Affiliation(s)
- Laura Palomo
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Experimental Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Pamela Acha
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
| | - Francesc Solé
- MDS Group, Institut de Recerca Contra la Leucèmia Josep Carreras, ICO-Hospital Germans Trias i Pujol, Universitat Autònoma de Barcelona, 08916 Badalona, Spain; (L.P.); (P.A.)
- Correspondence: ; Tel.: +34-93-557-2806
| |
Collapse
|
49
|
Kuykendall AT, Tokumori FC, Komrokji RS. Traipsing Through Muddy Waters: A Critical Review of the Myelodysplastic Syndrome/Myeloproliferative Neoplasm (MDS/MPN) Overlap Syndromes. Hematol Oncol Clin North Am 2021; 35:337-352. [PMID: 33641873 DOI: 10.1016/j.hoc.2020.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Myelodysplastic syndrome/Myeloproliferative neoplasms (MDS/MPNs) are molecularly complex, clinically heterogeneous diseases that exhibit proliferative and dysplastic features. Diagnostic criteria use clinical, pathologic, and genomic features to distinguish between disease entities, though considerable clinical and genetic overlap persists. MDS/MPNs are associated with a poor prognosis, save for MDS/MPN with ring sideroblasts and thrombocytosis, which can behave more indolently. The current treatment approach is risk-adapted and symptom-directed and largely extrapolated from experience in MDS or MPN. Gene sequencing has demonstrated frequent mutations involving signaling, epigenetic, and splicing pathways, which present numerous therapeutic opportunities for clinical investigation.
Collapse
Affiliation(s)
- Andrew T Kuykendall
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA.
| | - Franco Castillo Tokumori
- University of South Florida, 17 Davis Boulevard, Suite 308, Tampa, FL 33606, USA. https://twitter.com/CTFrancoMD
| | - Rami S Komrokji
- Moffitt Cancer Center, 12902 USF Magnolia Drive, CSB 7th Floor, Tampa, FL 33612, USA. https://twitter.com/Ramikomrokji
| |
Collapse
|
50
|
Chronic myeloid neoplasms harboring concomitant mutations in myeloproliferative neoplasm driver genes (JAK2/MPL/CALR) and SF3B1. Mod Pathol 2021; 34:20-31. [PMID: 32694616 DOI: 10.1038/s41379-020-0624-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/30/2020] [Accepted: 06/30/2020] [Indexed: 01/10/2023]
Abstract
JAK2, CALR, and MPL are myeloproliferative neoplasm (MPN)-driver mutations, whereas SF3B1 is strongly associated with ring sideroblasts (RS) in myelodysplastic syndrome (MDS). Concomitant mutations of SF3B1 and MPN-driver mutations out of the context of MDS/MPN with RS and thrombocytosis (MDS/MPN-RS-T) are not well-studied. From the cases (<5% blasts) tested by NGS panels interrogating at least 42 myeloid neoplasm-related genes, we identified 18 MDS/MPN-RS-T, 42 MPN, 10 MDS, and 6 MDS/MPN-U cases with an SF3B1 and an MPN-driver mutation. Using a 10% VAF difference to define "SF3B1-dominant," "MPN-mutation dominant," and "no dominance," the majority of MDS/MPN-RS-T clustered in "SF3B1-dominant" and "no dominance" regions. Aside from parameters as thrombocytosis and ≥15% RS required for RS-T, MDS also differed in frequent neutropenia, multilineage dysplasia, and notably more cases with <10% VAF of MPN-driver mutations (60%, p = 0.0346); MPN differed in more frequent splenomegaly, myelofibrosis, and higher VAF of "MPN-driver mutations." "Gray zone" cases with features overlapping MDS/MPN-RS-T were observed in over one-thirds of non-RS-T cases. This study shows that concomitant SF3B1 and MPN-driver mutations can be observed in MDS, MPN, and MDS/MPN-U, each showing overlapping but also distinctively different clinicopathological features. Clonal hierarchy, cytogenetic abnormalities, and additional somatic mutations may in part contribute to different disease phenotypes, which may help in the classification of "gray zone" cases.
Collapse
|