1
|
Popova MA, Komissarov AS, Ostromyshenskii DI, Podgornaya OI, Travina AO. Large tandem repeats of grass frog (Rana temporaria) in silico and in situ. BMC Genomics 2025; 26:445. [PMID: 40329174 PMCID: PMC12054243 DOI: 10.1186/s12864-025-11643-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 04/25/2025] [Indexed: 05/08/2025] Open
Abstract
BACKGROUND Genomes of higher eukaryotes contain a large fraction of non-coding repetitive DNA, including tandem repeats (TRs) and transposable elements (TEs). The impact of TRs on genome structure and function and the importance of TR transcripts have been described for several model species. Amphibians have one of the most diverse genome sizes among vertebrates, attributed to the abundance of repetitive non-coding DNA. Consequently, amphibians are good models for the analysis of repetitive sequences, including TRs. However, few studies have focused on amphibian genomes. RESULTS Bioinformatic analyses were performed to characterise the content and localisation of TRs in the sequenced grass frog Rana temporaria genome. By applying different bioinformatic approaches, 76 TR families and 314 single TR arrays (not grouped into families) were identified. Each TR was characterised on the basis of chromosomal position, monomer length and variability and GC content. Bioinformatic analysis revealed a great diversity of TRs, with a clear predominance of TRs with short monomers (< 100 bp), although TRs with long monomers (> 1000 bp) also exist. The six most abundant TRs were successfully mapped by fluorescence in situ hybridization (FISH), which highlighted the presence of specific TR sequences in strategic chromosomal regions, i.e., the pericentromeric regions. A comparison of the results of in situ and in silico TR mapping revealed some inaccuracies in the assembly of heterochromatic regions. A putative new non-autonomous TE called "FEDoR" (Frog Element Dispersed organised Repeat) is also described. FEDoR is ∼ 3.5 kb in length, has no significant similarity to any known TE family, contains multiple internal TR motifs, and is flanked on both sides by pairs of inverted repeat sequences (IRSs) and target site duplications (TSDs). CONCLUSION Characterisation of TRs in this frog species has provided some insights regarding TR biology in Anuran amphibians.
Collapse
Affiliation(s)
- Marina A Popova
- Institute of Cytology RAS, Saint-Petersburg, 194064, Russia.
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia.
| | - Aleksey S Komissarov
- Applied Genomics Laboratory, SCAMT Institute, ITMO University, Saint Petersburg, 197101, Russia
| | | | | | | |
Collapse
|
2
|
Wang H, Wang D, Shao B, Li J, Li Z, Chase MW, Li J, Feng Y, Wen Y, Qin S, Chen B, Wu Z, Jin X. Unequally Abundant Chromosomes and Unusual Collections of Transferred Sequences Characterize Mitochondrial Genomes of Gastrodia (Orchidaceae), One of the Largest Mycoheterotrophic Plant Genera. Mol Biol Evol 2025; 42:msaf082. [PMID: 40189939 PMCID: PMC12022611 DOI: 10.1093/molbev/msaf082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 03/12/2025] [Accepted: 04/01/2025] [Indexed: 04/26/2025] Open
Abstract
The mystery of genomic alternations in heterotrophic plants is among the most intriguing in evolutionary biology. Compared to plastid genomes (plastomes) with parallel size reduction and gene loss, mitochondrial genome (mitogenome) variation in heterotrophic plants remains underexplored in many aspects. To further unravel the evolutionary outcomes of heterotrophy, we present a comparative mitogenomic study with 13 de novo assemblies of Gastrodia (Orchidaceae), one of the largest fully mycoheterotrophic plant genera, and its relatives. Analyzed Gastrodia mitogenomes range from 0.56 to 2.1 Mb, each consisting of numerous, unequally abundant chromosomes or contigs. Size variation might have evolved through chromosome rearrangements followed by stochastic loss of "dispensable" chromosomes, with deletion-biased mutations. The discovery of a hyper-abundant (∼15 times intragenomic average) chromosome in two assemblies represents the hitherto most extreme copy number variation in any mitogenomes, with similar architectures discovered in two metazoan lineages. Transferred sequence contents highlight asymmetric evolutionary consequences of heterotrophy: despite drastically reduced intracellular plastome transfers convergent across heterotrophic plants, their rarity of horizontally acquired sequences sharply contrasts parasitic plants, where massive transfers from their hosts prevail. Rates of sequence evolution are markedly elevated but not explained by copy number variation, extending prior findings of accelerated molecular evolution from parasitic to heterotrophic plants. Putative evolutionary scenarios for these mitogenomic convergence and divergence fit well with the common (e.g. plastome contraction) and specific (e.g. host identity) aspects of the two heterotrophic types. These idiosyncratic mycoheterotrophs expand known architectural variability of plant mitogenomes and provide mechanistic insights into their content and size variation.
Collapse
Affiliation(s)
- Hanchen Wang
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Deyi Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- Naturalis Biodiversity Center, Leiden, the Netherlands
| | - Bingyi Shao
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jingrui Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Zhanghai Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education, Yunnan Minzu University, Kunming, China
| | - Mark W Chase
- Department of Environment and Agriculture, Curtin University, Bentley, Australia
- Royal Botanic Gardens, Kew, Richmond, UK
| | - Jianwu Li
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla County, Yunnan, China
| | - Yanlei Feng
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
| | - Yingying Wen
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Shiyu Qin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- School of Life Sciences, Nanchang University, Nanchang, China
| | - Binghua Chen
- College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xiaohua Jin
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Amaya I, Roldán‐Guerra FJ, Ordóñez‐Díaz JL, Torreblanca R, Wagner H, Waurich V, Olbricht K, Moreno‐Rojas JM, Sánchez‐Sevilla JF, Castillejo C. Differential expression of CCD4(4B) drives natural variation in fruit carotenoid content in strawberry (Fragaria spp.). PLANT BIOTECHNOLOGY JOURNAL 2025; 23:679-691. [PMID: 39840714 PMCID: PMC11869172 DOI: 10.1111/pbi.14523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/05/2024] [Accepted: 11/06/2024] [Indexed: 01/23/2025]
Abstract
Carotenoids are a diverse group of pigments imparting red, orange, and yellow hues to many horticultural plants, also enhancing their nutritional properties and health benefits. In strawberry, the genetic and molecular mechanisms regulating the natural variation of fruit carotenoid composition remain largely unexplored. In this study, we use a population segregating in yellow/white flesh to detect a major quantitative trait locus (QTL), qYellow Flesh-4B, located on chromosome 4B and accounting for 82% of total phenotypic variation. In the QTL interval, specific polymorphisms on the promoter of the carotenoid cleavage dioxygenase CCD4(4B) were associated with yellow flesh, down-regulation of CCD4(4B) during ripening, and increased carotenoid content. The role of CCD4(4B) in carotenoid turnover was further confirmed through transient overexpression in strawberry fruits, which resulted in decreased concentrations of the xanthophylls violaxanthin, lutein, and zeaxanthin. Notably, a -35 C>T single-nucleotide polymorphism (SNP) in the CCD4(4B) promoter was predictive of both CCD4(4B) expression and carotenoid content across a diverse collection of octoploid Fragaria species. These findings provide valuable genetic insights into the natural variation of carotenoid composition and accumulation in strawberry. A high-resolution melting (HRM) DNA test developed in this study offers a rapid and reliable method for predicting high carotenoid content in strawberry fruits, representing a valuable tool for breeding projects aimed at enhancing the nutritional value of this crop.
Collapse
Affiliation(s)
- Iraida Amaya
- Department of Plant Breeding and Biotechnology, Centro IFAPA de MálagaAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)MálagaSpain
- Unidad Asociada de I+D+i IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - F. Javier Roldán‐Guerra
- Department of Plant Breeding and Biotechnology, Centro IFAPA de MálagaAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)MálagaSpain
| | - José L. Ordóñez‐Díaz
- Department of Agroindustry and Food Quality, Alameda del ObispoAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)CórdobaSpain
| | - Rocío Torreblanca
- Department of Plant Breeding and Biotechnology, Centro IFAPA de MálagaAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)MálagaSpain
| | - Henning Wagner
- Hansabred GmbH & Co. KGDresdenGermany
- Institut für BotanikTechnische Universität DresdenDresdenGermany
| | - Veronika Waurich
- Hansabred GmbH & Co. KGDresdenGermany
- Institut für BotanikTechnische Universität DresdenDresdenGermany
| | | | - José M. Moreno‐Rojas
- Department of Agroindustry and Food Quality, Alameda del ObispoAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)CórdobaSpain
| | - José F. Sánchez‐Sevilla
- Department of Plant Breeding and Biotechnology, Centro IFAPA de MálagaAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)MálagaSpain
- Unidad Asociada de I+D+i IFAPA‐CSIC Biotecnología y Mejora en FresaMálagaSpain
| | - Cristina Castillejo
- Department of Plant Breeding and Biotechnology, Centro IFAPA de MálagaAndalusian Institute of Agricultural and Fisheries Research and Training (IFAPA)MálagaSpain
| |
Collapse
|
4
|
Vidal JAD, Charlesworth D, Utsunomia R, Garrido-Ramos MA, Dos Santos RZ, Porto-Foresti F, Artoni RF, Liehr T, de Almeida MC, de Bello Cioffi M. Unraveling the role of satellite DNAs in the evolution of the giant XY sex chromosomes of the flea beetle Omophoita octoguttata (Coleoptera, Chrysomelidae). BMC Biol 2025; 23:53. [PMID: 39984886 PMCID: PMC11846391 DOI: 10.1186/s12915-025-02155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
BACKGROUND The flea beetle Omophoita octoguttata (Coleoptera, Chrysomelidae) is a member of a group in which the males completely lack meiotic recombination (male-specific achiasmy) and that have extraordinarily large X and Y chromosomes. We combined genome sequencing, including microdissected Y and X chromosomes, and cytogenetic in situ hybridization studies, to evaluate the potential role of satellite DNAs (satDNAs) in the differentiation of those gigantic sex chromosomes. RESULTS We report flow cytometry results showing that this species has a very large genome size (estimated to be 4.61 and 5.47 pg, or roughly 4.6 and 5.5 gigabases, for males and females, respectively), higher than the estimates from two other Alticinae species without giant sex chromosomes, suggesting that these sequences have greatly expanded on both the sex chromosomes, and that the Y has not greatly shrunk like the ones of other insects such as Drosophila with male achiasmy. About 68% of this large genome is made up of repetitive DNAs. Satellite DNAs (OocSatDNAs) form ~ 8-9% of their genomes, and we estimate how much of the sex chromosome expansions occurred due to differential amplification of different satellite classes. Analysis of divergence between sequences in the X and Y chromosomes suggests that, during the past roughly 20 mya, different OocSatDNAs amplified independently, leading to different representations. Some are specific to the Y or X chromosome, as expected when males are achiasmate, completely preventing genetic exchanges between the Y and X.
Collapse
Affiliation(s)
- Jhon Alex Dziechciarz Vidal
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| | | | | | - Manuel A Garrido-Ramos
- Departamento de Genética, Facultad de Ciencias, Universidad de Granada, Granada, 18071, Spain
| | | | | | - Roberto Ferreira Artoni
- Laboratory of Genetics and Evolution, Department of Molecular Structural Biology and Genetics, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, Ponta Grossa, 4748, Brazil
| | - Thomas Liehr
- Institute of Human Genetics, Jena University Hospital, Friedrich Schiller University, Jena, Germany.
| | - Mara Cristina de Almeida
- Laboratory of Genetics and Evolution, Department of Molecular Structural Biology and Genetics, State University of Ponta Grossa (UEPG), Av. Carlos Cavalcanti, Ponta Grossa, 4748, Brazil
| | - Marcelo de Bello Cioffi
- Laboratory of Evolutionary Cytogenetics, Department of Genetics and Evolution, Federal University of São Carlos, São Carlos, SP, Brazil
| |
Collapse
|
5
|
Belinchon-Moreno J, Berard A, Canaguier A, Chovelon V, Cruaud C, Engelen S, Feriche-Linares R, Le-Clainche I, Marande W, Rittener-Ruff V, Lagnel J, Hinsinger D, Boissot N, Faivre-Rampant P. Nanopore adaptive sampling to identify the NLR gene family in melon (Cucumis melo L.). BMC Genomics 2025; 26:126. [PMID: 39930362 PMCID: PMC11808957 DOI: 10.1186/s12864-025-11295-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/27/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Nanopore adaptive sampling (NAS) offers a promising approach for assessing genetic diversity in targeted genomic regions. Here we designed and validated an experiment to enrich a set of resistance genes in several melon cultivars as a proof of concept. RESULTS Using the same reference to guide read acceptance or rejection with NAS, we successfully and accurately reconstructed the 15 regions in two newly assembled ssp. melo genomes and in a third ssp. agrestis cultivar. We obtained fourfold enrichment regardless of the tested samples, but with some variations according to the enriched regions. The accuracy of our assembly was further confirmed by PCR in the agrestis cultivar. We discussed parameters that could influence the enrichment and accuracy of NAS generated assemblies. CONCLUSIONS Overall, we demonstrated that NAS is a simple and efficient approach for exploring complex genomic regions, such as clusters of Nucleotide-binding site leucine-rich repeat (NLR) resistance genes. These regions are characterized by containing a high number of copy number variations, presence-absence polymorphisms and repetitive elements. These features make accurate assembly challenging but are crucial to study due to their central role in plant immunity and disease resistance. This approach facilitates resistance gene characterization in a large number of individuals, as required when breeding new cultivars suitable for the agroecological transition.
Collapse
Affiliation(s)
- Javier Belinchon-Moreno
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Aurélie Berard
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - Aurélie Canaguier
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - Véronique Chovelon
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Corinne Cruaud
- Commissariat à l'Energie Atomique (CEA), Genoscope, Institut de Biologie François-Jacob, Université Paris-Saclay, 2 Rue Gaston Crémieux, Evry, 91057, France
| | - Stéfan Engelen
- Génomique Métabolique, Institut François Jacob, Commissariat à l'Energie Atomique (CEA), CNRS, Univ. Evry, Université Paris-Saclay, Genoscope, Evry, 91057, France
| | | | - Isabelle Le-Clainche
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - William Marande
- INRAE, Centre National de Ressources Génomiques Végétales, Castanet-Tolosan, 31326, France
| | | | - Jacques Lagnel
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Damien Hinsinger
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France
| | - Nathalie Boissot
- INRAE, Génétique et Amélioration des Fruits et Légumes, Montfavet, 84143, France
| | - Patricia Faivre-Rampant
- Université Paris-Saclay, Centre INRAE Île-de-France Versailles-Saclay, EPGV, Evry, 91057, France.
| |
Collapse
|
6
|
Park S, Hwang Y, Kim H, Choi K. Insights into the nuclear-organelle DNA integration in Cicuta virosa (Apiaceae) provided by complete plastid and mitochondrial genomes. BMC Genomics 2025; 26:102. [PMID: 39901091 PMCID: PMC11792336 DOI: 10.1186/s12864-025-11230-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/09/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Gene transfer between the organelles and the nucleus plays a central role in shaping plant genome evolution. The identification and analysis of nuclear DNA of plastid (NUPTs) and mitochondrial (NUMTs) origins are important for exploring the extent of intracellular DNA transfer in genomes. RESULTS We report the complete plastid and mitochondrial genomes (plastome and mitogenome) of Cicuta virosa (Apiaceae) as well as a draft nuclear genome using high-fidelity (HiFi) PacBio sequencing technologies. The C. virosa plastome (154,449 bp) is highly conserved, with a quadripartite structure, whereas the mitogenome (406,112 bp) exhibits two chromosomes (352,718 bp and 53,394 bp). The mitochondrial-encoded genes (rpl2, rps14, rps19, and sdh3) were successfully transferred to the nuclear genome. Our findings revealed extensive DNA transfer from organelles to the nucleus, with 6,686 NUPTs and 6,237 NUMTs detected, covering nearly the entire plastome (99.93%) and a substantial portion of the mitogenome (77.04%). These transfers exhibit a range of sequence identities (80-100%), suggesting multiple transfer events over evolutionary timescales. Recent DNA transfer between organelles and the nucleus is more frequent in mitochondria than that in plastids. CONCLUSIONS This study contributes to the understanding of ongoing genome evolution in C. virosa and underscores the significance of the organelle-nuclear genome interplay in plant species. Our findings provide valuable insights into the evolutionary processes that shape organelle genomes in Apiaceae, with implications for broader plant genome evolution.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, South Korea
| | - Yong Hwang
- Biological Specimen Conservation Division, Diversity Conservation Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - Heesoo Kim
- Divesity Forecast & Evaluation Division, Diversity Conservation Research Department, Nakdonggang National Institute of Biological Resources, Sangju, Gyeongbuk, 37242, South Korea
| | - KyoungSu Choi
- Department of Biology, College of Natural Science, Kyungpook National University, Daegu, 41566, Korea.
| |
Collapse
|
7
|
Zhang YH, Qian X, Zong X, An SH, Yan S, Shen J. Dual-role regulator of a novel miR-3040 in photoperiod-mediated wing dimorphism and wing development in green peach aphid. INSECT SCIENCE 2025; 32:80-94. [PMID: 38728615 DOI: 10.1111/1744-7917.13377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024]
Abstract
Wing dimorphism is regarded as an important phenotypic plasticity involved in the migration and reproduction of aphids. However, the signal transduction and regulatory mechanism of wing dimorphism in aphids are still unclear. Herein, the optimal environmental conditions were first explored for inducing winged offspring of green peach aphid, and the short photoperiod was the most important environmental cue to regulate wing dimorphism. Compared to 16 L:8 D photoperiod, the proportion of winged offspring increased to 90% under 8 L:16 D photoperiod. Subsequently, 5 differentially expressed microRNAs (miRNAs) in aphids treated with long and short photoperiods were identified using small RNA sequencing, and a novel miR-3040 was identified as a vital miRNA involved in photoperiod-mediated wing dimorphism. More specifically, the inhibition of miR-3040 expression could reduce the proportion of winged offspring induced by short photoperiod, whereas its activation increased the proportion of winged offspring under long photoperiod. Meanwhile, the expression level of miR-3040 in winged aphids was about 2.5 times that of wingless aphids, and the activation or inhibition of miR-3040 expression could cause wing deformity, revealing the dual-role regulator of miR-3040 in wing dimorphism and wing development. In summary, the current study identified the key environmental cue for wing dimorphism in green peach aphid, and the first to demonstrate the dual-role regulator of miR-3040 in photoperiod-mediated wing dimorphism and wing development.
Collapse
Affiliation(s)
- Yun-Hui Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xin Qian
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xin Zong
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Shi-Heng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuo Yan
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Shen
- Department of Plant Biosecurity, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Zhang R, Liu Y, Liu S, Zhao Y, Xiang N, Gao X, Yuan T. Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution. BMC Genomics 2025; 26:40. [PMID: 39815181 PMCID: PMC11737216 DOI: 10.1186/s12864-025-11213-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc. Results indicated differences in the evolutionary patterns of the plastome and mitogenome in D. macropodum. The plastome had a more conserved structure but a faster nucleotide substitution rate, and the mitogenome showed a more complex structure while the mitotic genome shows a more complex structure but a slower nucleotide substitution rate. We identified several unidirectional protein-coding gene transfer events from the plastome to the mitogenome based on homology analysis, but no transfer events occurred from the mitogenome to the plastome. Multiple TE fragments existed in organelle genomes, and two organelles showed different preferences for nuclear TE insertion types. The estimation of divergence time indicated that the differentiation of Daphniphyllaceae and Altingiaceae at around 29.86 Mya might be due to the dramatic uplift of Tibetan Plateau during the Oligocene. About 75% of codon changes in organelles were found to be hydrophilic to hydrophobic amino acids. The RNA editing in protein-coding transcripts is the result of amino acid changes to increase their hydrophobicity and conservation in alleles, which may contribute to the formation of functional 3D structures in proteins. This study would enrich genomic resources and provide valuable insights into the structural dynamics and molecular biology of Daphniphyllaceae species.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Ying Liu
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
- School of Resources and Environmental Science, Hubei University, Wuhan, 430062, China
| | - Xiaoman Gao
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Tao Yuan
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
| |
Collapse
|
9
|
Jin GT, Xu YC, Hou XH, Jiang J, Li XX, Xiao JH, Bian YT, Gong YB, Wang MY, Zhang ZQ, Zhang YE, Zhu WS, Liu YX, Guo YL. A de novo Gene Promotes Seed Germination Under Drought Stress in Arabidopsis. Mol Biol Evol 2025; 42:msae262. [PMID: 39719058 PMCID: PMC11721784 DOI: 10.1093/molbev/msae262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/29/2024] [Accepted: 12/06/2024] [Indexed: 12/26/2024] Open
Abstract
The origin of genes from noncoding sequences is a long-term and fundamental biological question. However, how de novo genes originate and integrate into the existing pathways to regulate phenotypic variations is largely unknown. Here, we selected 7 genes from 782 de novo genes for functional exploration based on transcriptional and translational evidence. Subsequently, we revealed that Sun Wu-Kong (SWK), a de novo gene that originated from a noncoding sequence in Arabidopsis thaliana, plays a role in seed germination under osmotic stress. SWK is primarily expressed in dry seed, imbibing seed and silique. SWK can be fully translated into an 8 kDa protein, which is mainly located in the nucleus. Intriguingly, SWK was integrated into an extant pathway of hydrogen peroxide content (folate synthesis pathway) via the upstream gene cytHPPK/DHPS, an Arabidopsis-specific gene that originated from the duplication of mitHPPK/DHPS, and downstream gene GSTF9, to improve seed germination in osmotic stress. In addition, we demonstrated that the presence of SWK may be associated with drought tolerance in natural populations of Arabidopsis. Overall, our study highlights how a de novo gene originated and integrated into the existing pathways to regulate stress adaptation.
Collapse
Affiliation(s)
- Guang-Teng Jin
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong-Chao Xu
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Xing-Hui Hou
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Juan Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin-Xin Li
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia-Hui Xiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Tao Bian
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan-Bo Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming-Yu Wang
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhi-Qin Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong E Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents and Key Laboratory of the Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wang-Sheng Zhu
- State Key Laboratory of Maize Bio-breeding/College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yong-Xiu Liu
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ya-Long Guo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
10
|
Reeves IMM, Weeks AR, Towner AV, Impey R, Fish JJ, Clark ZSR, Butcher PA, Meyer L, Donnelly DM, Huveneers C, Hudson N, Miller AD. Genetic Evidence of Killer Whale Predation on White Sharks in Australia. Ecol Evol 2025; 15:e70786. [PMID: 39872902 PMCID: PMC11770329 DOI: 10.1002/ece3.70786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/30/2025] Open
Abstract
Killer whales (Orcinus orca) have been documented to prey on white sharks (Carcharodon carcharias), in some cases causing localised shark displacement and triggering ecological cascades. Notably, a series of such predation events have been reported from South Africa over the last decade, with killer whales specifically targeting sharks' liver. However, observations of these interactions are rare, and knowledge of their frequency across the world's oceans remains limited. In October 2023, a 4.7 m (total length) white shark carcass washed ashore in southeastern Australia, coinciding with reports from citizen scientists of killer whales hunting a large, unidentified prey item in the area. Visual inspection of the carcass revealed that the liver, digestive, and reproductive organs were missing, and the presence of four distinctive bite wounds, one of which was characteristic of killer whale liver extraction as seen in South Africa. Genomic analyses performed on swabs taken from the bite wounds confirmed the presence of killer whale DNA in the major bite area, while the other bites were embedded with genetic material from the scavenging broadnose sevengill shark (Notorynchus cepedianus). These results provide confirmed evidence of killer whale predation on white sharks in Australia and the likely selective consumption of the liver, suggesting predations of this nature are more globally prevalent than currently assumed.
Collapse
Affiliation(s)
- Isabella M. M. Reeves
- Cetacean Research Centre (CETREC WA)PerthWestern AustraliaAustralia
- Southern Shark Ecology Group, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Andrew R. Weeks
- EnviroDNABrunswickVictoriaAustralia
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
| | - Alison V. Towner
- School of BioSciencesThe University of MelbourneParkvilleVictoriaAustralia
- Department of Ichthyology and Fisheries ScienceRhodes UniversityMakhandaSouth Africa
- South African International Maritime InstituteOcean Science CampusGqeberhaSouth Africa
| | | | - Jessica J. Fish
- EcoGenetics Lab, School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Zach S. R. Clark
- EcoGenetics Lab, School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| | - Paul A. Butcher
- EcoGenetics Lab, School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
- New South Wales Department of Primary IndustriesNational Marine Science CentreCoffs HarbourNew South WalesAustralia
| | - Lauren Meyer
- Southern Shark Ecology Group, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - David M. Donnelly
- Killer Whales AustraliaMorningtonVictoriaAustralia
- Dolphin Research InstituteHastingsVictoriaAustralia
| | - Charlie Huveneers
- Southern Shark Ecology Group, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
| | - Nicky Hudson
- Gunditj Mirring Traditional Owners Aboriginal CorporationHeywoodVictoriaAustralia
| | - Adam D. Miller
- Southern Shark Ecology Group, College of Science and EngineeringFlinders UniversityAdelaideSouth AustraliaAustralia
- EnviroDNABrunswickVictoriaAustralia
- EcoGenetics Lab, School of Life and Environmental SciencesDeakin UniversityWarrnamboolVictoriaAustralia
| |
Collapse
|
11
|
Aleix-Mata G, Montiel EE, Mora P, Yurchenko A, Rico-Porras JM, Anguita F, Palomo F, Marchal JA, Rovatsos M, Sánchez A. Satellitome analysis on Microtus thomasi (Arvicolinae) genome, a mammal species with high karyotype and sex chromosome variations. Genome 2025; 68:1-13. [PMID: 39933162 DOI: 10.1139/gen-2024-0141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Abstract
The voles of the Microtus thomasi/Microtus atticus species complex (Arvicolinae) display extensive karyotypic variation, in the number of autosomes and the morphology of sex chromosomes. We analyzed the satellitome of Microtus thomasi and identified 17 satellite DNA (satDNA) families, corresponding to 6.704% of the genome. Homogenization and divergence analyses showed that some satDNA families are more homogeneous, indicative of recent amplification, while others displayed higher variation, suggesting ancient amplification. Twelve of the satDNA families are conserved across Arvicolinae with a substantial variation in the abundance and the composition. These results support the "library" hypothesis, where a shared collection of satDNAs exists across related species, with differential amplification driving species-specific genomic profiles. Localization analysis demonstrated that an increased number of satDNA families are localized in the pericentromeric and the heterochromatic regions of autosomes and sex chromosomes. Our results suggest that the heterochromatin of the X and Y chromosomes co-evolved and that satDNA families might have contributed to the chromosomal rearrangements involved in the karyotypic variation and sex chromosome polymorphism of the chromosomal races. Our study contributes to a deeper understanding of the evolutionary mechanisms underlying karyotype diversification in Microtus species, which exhibit some of the highest rates of karyotypic variation among mammals.
Collapse
Affiliation(s)
- Gaël Aleix-Mata
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
- Cos de Banders, Govern d'Andorra, Av. de la Bartra, s/n, AD700 Encamp, Andorra
| | - Eugenia E Montiel
- Departamento de Biología (Genética), Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
- Centro de Investigación en Biodiversidad y Cambio Global, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | - Pablo Mora
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
| | - Alona Yurchenko
- Faculty of Science, Charles University in Prague, Department of Ecology, Vinicna 7, 128 44 Praha 2, Czech Republic
| | - José M Rico-Porras
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
| | - Francisco Anguita
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
| | - Fátima Palomo
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
| | - Juan Alberto Marchal
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
| | - Michail Rovatsos
- Faculty of Science, Charles University in Prague, Department of Ecology, Vinicna 7, 128 44 Praha 2, Czech Republic
| | - Antonio Sánchez
- Departamento de Biología Experimental, Área de Genética, Universidad de Jaén, Paraje de las Lagunillas s/n., 23071 Jaén, Spain
| |
Collapse
|
12
|
Cherezov RO, Vorontsova JE, Kuvaeva EE, Akishina AA, Zavoloka EL, Simonova OB. The lawc gene emerged de novo from conserved genomic elements and acquired a broad expression pattern in Drosophila. J Genet Genomics 2024:S1673-8527(24)00367-9. [PMID: 39733859 DOI: 10.1016/j.jgg.2024.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024]
Abstract
It has recently become evident that the de novo emergence of genes is widespread and documented for a variety of organisms. De novo genes frequently emerge in proximity to existing genes, forming gene overlaps. Here, we present an analysis of the evolutionary history of a putative de novo gene, lawc, which overlaps with the conserved Trf2 gene, which encodes a general transcription factor in Drosophila melanogaster. We demonstrate that lawc emerged approximately 68 million years ago in the 5'-untranslated region (UTR) of Trf2 and displays an extensive spatiotemporal expression pattern. One of the most remarkable features of the lawc evolutionary history is that its emergence was facilitated by the engagement of Drosophilidae-specific short, highly conserved regions located in Trf2 introns. This represents a unique example of putative de novo gene birth involving conserved DNA regions localized in introns of conserved genes. The observed lawc expression pattern may be due to the overlap of lawc with the 5'-UTR of Trf2. This study not only enriches our understanding of gene evolution but also highlights the complex interplay between genetic conservation and innovation.
Collapse
Affiliation(s)
- Roman O Cherezov
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Julia E Vorontsova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Elena E Kuvaeva
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Angelina A Akishina
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Ekaterina L Zavoloka
- Kol'tsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - Olga B Simonova
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
13
|
Yang X, Liu Q, Wang MM, Wang XY, Han MQ, Liu FP, Lü TF, Liu J, Wang YZ. A single dominant GLOBOSA allele accounts for repeated origins of hose-in-hose flowers in Sinningia (Gesneriaceae). THE PLANT CELL 2024; 37:koae283. [PMID: 39422240 DOI: 10.1093/plcell/koae283] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/30/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024]
Abstract
Plants bearing double flowers have long been cultivated as ornamental plants. Hose-in-hose flowers, bearing two-whorled corolla tubes in whorls 1 and 2, are uncommon but recur in Sinningia (Gesnerioideae, Gesneriaceae). In this study, we selected 15 hose-in-hose cultivars as materials to explore the underlying molecular and genetic mechanisms of this floral architecture. We found that they originated from different hybridization events within the Dircaea clade. Three B-class MADS-box genes were globally expressed in all floral whorls, but only GLOBOSA1 (GLO1) has accumulated a dominant mutation, i.e. the insertion of a hAT-like miniature inverted-repeat transposable element (MITE) into its promoter, that co-segregated with the hose-in-hose phenotype. In addition, all 15 hose-in-hose cultivars contained the same dominant GLO1 allele. Transient gene expression assays confirmed the role of this MITE insertion in upregulating the promoter activity of GLO1 by providing several cis-regulatory elements. Genetic transformation in heterologous Chirita pumila (Didymocarpoideae, Gesneriaceae) verified that this dominant GLO1 allele is sufficient to confer the hose-in-hose phenotype. We further demonstrated that both the GLO1 allele and the hAT-like MITE descended from wild S. cardinalis with single flowers. This study highlights the significance of wide hybridization in frequent gains of the dominant GLO1 allele and thereafter repeated occurrence of hose-in-hose flowers in Sinningia.
Collapse
Affiliation(s)
- Xia Yang
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
| | - Qi Liu
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Miao-Miao Wang
- China National Botanical Garden (North Garden), Beijing 100093, China
| | - Xiao-Ya Wang
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng-Qi Han
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Pu Liu
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tian-Feng Lü
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
| | - Jing Liu
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
| | - Yin-Zheng Wang
- Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden (South Garden), Beijing 100093, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Martins MLT, Sforça DA, Dos Santos LP, Pimenta RJG, Mancini MC, Aono AH, Cardoso-Silva CB, Vautrin S, Bellec A, Dos Santos RV, Bérgès H, da Silva CC, de Souza AP. Identifying candidate genes for sugar accumulation in sugarcane: an integrative approach. BMC Genomics 2024; 25:1201. [PMID: 39695384 DOI: 10.1186/s12864-024-11089-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Elucidating the intricacies of the sugarcane genome is essential for breeding superior cultivars. This economically important crop originates from hybridizations of highly polyploid Saccharum species. However, the large size (10 Gb), high degree of polyploidy, and aneuploidy of the sugarcane genome pose significant challenges to complete genome sequencing, assembly, and annotation. One successful strategy for identifying candidate genes linked to agronomic traits, particularly those associated with sugar accumulation, leverages synteny and potential collinearity with related species. RESULTS In this study, we explored synteny between sorghum and sugarcane. Genes from a sorghum Brix QTL were used to screen bacterial artificial chromosome (BAC) libraries from two Brazilian sugarcane varieties (IACSP93-3046 and SP80-3280). The entire region was successfully recovered, confirming synteny and collinearity between the species. Manual annotation identified 51 genes in the hybrid varieties that were subsequently confirmed to be present in Saccharum spontaneum. This study employed a multifaceted approach to identify candidate genes for sugar accumulation, including retrieving the genomic region of interest, performing a gene-by-gene analysis, analyzing RNA-seq data for internodes from Saccharum officinarum and S. spontaneum accessions, constructing a coexpression network to examine the expression patterns of genes within the studied region and their neighbors, and finally identifying differentially expressed genes (DEGs). CONCLUSIONS This comprehensive approach led to the discovery of three candidate genes potentially involved in sugar accumulation: an ethylene-responsive transcription factor (ERF), an ABA 8'-hydroxylase, and a prolyl oligopeptidase (POP). These findings could be valuable for identifying additional candidate genes for other important agricultural traits and directly targeting candidate genes for further work in molecular breeding.
Collapse
Affiliation(s)
| | - Danilo Augusto Sforça
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luís Paulo Dos Santos
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | - Alexandre Hild Aono
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Cláudio Benício Cardoso-Silva
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
- National Laboratory of Biorenewables-LNBR/CNPEM, Campinas, SP, Brazil
| | - Sonia Vautrin
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | - Arnaud Bellec
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | | | - Helene Bérgès
- Centre National de Resources Génomiques Végétales, CNRGV/INRA, Toulouse, France
| | - Carla Cristina da Silva
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil
- Agronomy Department, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Anete Pereira de Souza
- Institute of Biology (IB), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Center for Molecular Biology and Genetic Engineering (CBMEG), State University of Campinas (UNICAMP), Campinas, SP, Brazil.
- Departamento de Biologia Vegetal, Universidade Estadual de Campinas, Campinas, São Paulo, CEP, 13083-875, Brazil.
| |
Collapse
|
15
|
Krasikova A, Kulikova T, Schelkunov M, Makarova N, Fedotova A, Plotnikov V, Berngardt V, Maslova A, Fedorov A. The first chicken oocyte nucleus whole transcriptomic profile defines the spectrum of maternal mRNA and non-coding RNA genes transcribed by the lampbrush chromosomes. Nucleic Acids Res 2024; 52:12850-12877. [PMID: 39494543 PMCID: PMC11602149 DOI: 10.1093/nar/gkae941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 10/11/2024] [Indexed: 11/05/2024] Open
Abstract
Lampbrush chromosomes, with their unusually high rate of nascent RNA synthesis, provide a valuable model for studying mechanisms of global transcriptome up-regulation. Here, we obtained a whole-genomic profile of transcription along the entire length of all lampbrush chromosomes in the chicken karyotype. With nuclear RNA-seq, we obtained information about a wider set of transcripts, including long non-coding RNAs retained in the nucleus and stable intronic sequence RNAs. For a number of protein-coding genes, we visualized their nascent transcripts on the lateral loops of lampbrush chromosomes by RNA-FISH. The set of genes transcribed on the lampbrush chromosomes is required for basic cellular processes and is characterized by a broad expression pattern. We also present the first high-throughput transcriptome characterization of miRNAs and piRNAs in chicken oocytes at the lampbrush chromosome stage. Major targets of predicted piRNAs include CR1 and long terminal repeat (LTR) containing retrotransposable elements. Transcription of tandem repeat arrays was demonstrated by alignment against the whole telomere-to-telomere chromosome assemblies. We show that transcription of telomere-derived RNAs is initiated at adjacent LTR elements. We conclude that hypertranscription on the lateral loops of giant lampbrush chromosomes is required for synthesizing large amounts of transferred to the embryo maternal RNA for thousands of genes.
Collapse
Affiliation(s)
- Alla Krasikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Tatiana Kulikova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Mikhail Schelkunov
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Institute for Information Transmission Problems, Moscow, 127051, Russia
| | - Nadezhda Makarova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Anna Fedotova
- Genomics Core Facility, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
- Lomonosov Moscow State University, Moscow, 119991, Russia
| | - Vladimir Plotnikov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Valeria Berngardt
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Antonina Maslova
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| | - Anton Fedorov
- Laboratory of Cell Nucleus Structure and Dynamics, Department of Cytology and Histology, Saint-Petersburg State University, Saint-Petersburg, 199034, Russia
| |
Collapse
|
16
|
Liu P, Vigneau J, Craig RJ, Barrera-Redondo J, Avdievich E, Martinho C, Borg M, Haas FB, Liu C, Coelho SM. 3D chromatin maps of a brown alga reveal U/V sex chromosome spatial organization. Nat Commun 2024; 15:9590. [PMID: 39505852 PMCID: PMC11541908 DOI: 10.1038/s41467-024-53453-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/08/2024] [Indexed: 11/08/2024] Open
Abstract
Nuclear three dimensional (3D) folding of chromatin structure has been linked to gene expression regulation and correct developmental programs, but little is known about the 3D architecture of sex chromosomes within the nucleus, and how that impacts their role in sex determination. Here, we determine the sex-specific 3D organization of the model brown alga Ectocarpus chromosomes at 2 kb resolution, by mapping long-range chromosomal interactions using Hi-C coupled with Oxford Nanopore long reads. We report that Ectocarpus interphase chromatin exhibits a non-Rabl conformation, with strong contacts among telomeres and among centromeres, which feature centromere-specific LTR retrotransposons. The Ectocarpus chromosomes do not contain large local interactive domains that resemble TADs described in animals, but their 3D genome organization is largely shaped by post-translational modifications of histone proteins. We show that the sex determining region (SDR) within the U and V chromosomes are insulated and span the centromeres and we link sex-specific chromatin dynamics and gene expression levels to the 3D chromatin structure of the U and V chromosomes. Finally, we uncover the unique conformation of a large genomic region on chromosome 6 harboring an endogenous viral element, providing insights regarding the impact of a latent giant dsDNA virus on the host genome's 3D chromosomal folding.
Collapse
Affiliation(s)
- Pengfei Liu
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Jeromine Vigneau
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Rory J Craig
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Josué Barrera-Redondo
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Elena Avdievich
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Claudia Martinho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
- School of Life Sciences, Division of Plant Sciences, University of Dundee, At James Hutton Institute, Errol Road, Invergowrie, Dundee, UK
| | - Michael Borg
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Fabian B Haas
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Chang Liu
- Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Susana M Coelho
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
| |
Collapse
|
17
|
Crepaldi C, Cabral-de-Mello DC, Parise-Maltempi PP. Comparative analysis of transposable elements dynamics in fish with different sex chromosome systems. Genome 2024; 67:339-350. [PMID: 38739948 DOI: 10.1139/gen-2023-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Transposable elements (TEs) are widespread genomic components with substantial roles in genome evolution and sex chromosome differentiation. In this study, we compared the TE composition of three closely related fish with different sex chromosome systems: Megaleporinus elongatus (Z1Z1Z2Z2/Z1W1Z2W2), Megaleporinus macrocephalus (ZZ/ZW) (both with highly differentiated W sex chromosomes), and Leporinus friderici (without heteromorphic sex chromosomes). We created custom TE libraries for each species using clustering methods and manual annotation and prediction, and we predicted TE temporal dynamics through divergence-based analysis. The TE abundance ranged from 16% to 21% in the three mobilomes, with L. friderici having the lowest overall. Despite the recent amplification of TEs in all three species, we observed differing expansion activities, particularly between the two genera. Both Megaleporinus recently experienced high retrotransposon activity, with a reduction in DNA TEs, which could have implications in sex chromosome composition. In contrast, L. friderici showed the opposite pattern. Therefore, despite having similar TE compositions, Megaleporinus and Leporinus exhibit distinct TE histories that likely evolved after their separation, highlighting a rapid TE expansion over short evolutionary periods.
Collapse
Affiliation(s)
- Carolina Crepaldi
- Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho", Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho", Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, Brazil
| | - Patricia Pasquali Parise-Maltempi
- Universidade Estadual Paulista (UNESP) "Júlio de Mesquita Filho", Instituto de Biociências, Departamento de Biologia Geral e Aplicada, Rio Claro, Brazil
| |
Collapse
|
18
|
Zhang Y, Zhang J, Chen Z, Huang Y, Liu J, Liu Y, Yang Y, Jin X, Yang Y, Chen Y. Comparison of organelle genomes between endangered mangrove plant Dolichandrone spathacea to terrestrial relative provides insights into its origin and adaptative evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1442178. [PMID: 39376234 PMCID: PMC11457174 DOI: 10.3389/fpls.2024.1442178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 09/02/2024] [Indexed: 10/09/2024]
Abstract
Dolichandrone spathacea is a mangrove associate with high medicinal and ecological values. However, due to the dual-pressure of climate change and human activities, D. spathacea has become endangered in China. Moreover, misidentification between D. spathacea and its terrestrial relative D. cauda-felina poses further challenges to field protection and proper medicinal usage of D. spathacea. Thus, to address these problems, we sequenced and assembled mitochondrial (mt) and chloroplast (cp) genomes for both D. spathacea and D. cauda-felina. Comparative analysis revealed apparently different size and scaffold number between the two mt genomes, but a high similarity between the cp genomes. Eight regions with high sequence divergence were identified between the two cp genomes, which might be used for developing candidate DNA markers for distinguishing the two species. The splitting between D. spathacea and D. cauda-felina was inferred to occur at ~6.8 - 7.7 million years ago (Mya), which may be driven by the environment fluctuations in late Miocene. In the cp genome, 12 genes related to the expression of photosynthesis-associated proteins were detected with signatures of positive selection, which may contribute to the origin and evolutionary adaptation of Dolichandrone mangrove species. These new findings do not only enrich organelle genomic resources of Dolichandrone species, but also provide important genetic clues for improving the conservation and proper usage of endangered mangrove associate D. spathacea.
Collapse
Affiliation(s)
- Ying Zhang
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jingwen Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Zewei Chen
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Yanni Huang
- Mangrove Rare and Endangered Species Protection and Utilization Engineering Technology Research Center, Zhanjiang Key Laboratory of Mangrove Ecosystem Protection and Restoration, Lingnan Normal University, Zhanjiang, China
| | - Jiaxuan Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yuqi Liu
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yong Yang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Yuchen Yang
- State Key Laboratory of Biocontrol, School of Ecology, Sun Yat-sen University, Shenzhen, China
| | - Yiqing Chen
- Hainan Academy of Forestry, Hainan Mangrove Research Institute, Haikou, China
| |
Collapse
|
19
|
Shen W, Zhang D, Zhang Z, He J, Khalil A, Li X, Ma F, Guan Q, Niu C. The SET-Domain-Containing Protein MdSDG26 Negatively Regulates Alternaria alternata Resistance in Apple. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39257329 DOI: 10.1111/pce.15136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/12/2024]
Abstract
Apple leaf spot is one of the most devastating diseases in the apple industry, caused by Alternaria alternata f. sp mali (A. alternata). SET-domain group (SDG) proteins function as the histone methyltransferases and participate in plant development and stress responses. However, whether SDG proteins are associated with A. alternata resistance is largely unclear. Here, we describe the pathogen-inducible MdSDG26 gene in apple (Malus × domestica). MdSDG26 has two transcript variants that function similarly in catalyzing histone methylation and A. alternata resistance. Transient overexpression of MdSDG26 increased the global levels of H3K4me3 and H3K36me3, whereas knockdown of MdSDG26 only reduced the H3K36me3 level. Transcriptome analysis revealed that MdSDG26 affected the genome-wide transcriptome changes in response to A. alternata infection. ChIP-qPCR analysis demonstrated that MdSDG26 modulates the levels of H3K36me3 and H3K4me3 at both the promoter and exon regions of MdNTL9. As a negative regulator of A. alternata resistance in apples, MdNTL9 plays a pivotal role in MdSDG26-mediated resistance to A. alternata. Therefore, our findings provide compelling evidence for the regulatory function of MdSDG26 in histone methylation and its molecular role in conferring resistance to A. alternata.
Collapse
Affiliation(s)
- Wenyun Shen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Dehui Zhang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, China
| | - Zitong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Jieqiang He
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Arij Khalil
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
- Department of Horticulture, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Xuewei Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingmei Guan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| | - Chundong Niu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
20
|
Morandell J, Monziani A, Lazioli M, Donzel D, Döring J, Oss Pegorar C, D'Anzi A, Pellegrini M, Mattiello A, Bortolotti D, Bergonzoni G, Tripathi T, Mattis VB, Kovalenko M, Rosati J, Dieterich C, Dassi E, Wheeler VC, Ellederová Z, Wilusz JE, Viero G, Biagioli M. CircHTT(2,3,4,5,6) - co-evolving with the HTT CAG-repeat tract - modulates Huntington's disease phenotypes. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102234. [PMID: 38974999 PMCID: PMC11225910 DOI: 10.1016/j.omtn.2024.102234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 05/29/2024] [Indexed: 07/09/2024]
Abstract
Circular RNA (circRNA) molecules have critical functions during brain development and in brain-related disorders. Here, we identified and validated a circRNA, circHTT(2,3,4,5,6), stemming from the Huntington's disease (HD) gene locus that is most abundant in the central nervous system (CNS). We uncovered its evolutionary conservation in diverse mammalian species, and a correlation between circHTT(2,3,4,5,6) levels and the length of the CAG-repeat tract in exon-1 of HTT in human and mouse HD model systems. The mouse orthologue, circHtt(2,3,4,5,6), is expressed during embryogenesis, increases during nervous system development, and is aberrantly upregulated in the presence of the expanded CAG tract. While an IRES-like motif was predicted in circH TT (2,3,4,5,6), the circRNA does not appear to be translated in adult mouse brain tissue. Nonetheless, a modest, but consistent fraction of circHtt(2,3,4,5,6) associates with the 40S ribosomal subunit, suggesting a possible role in the regulation of protein translation. Finally, circHtt(2,3,4,5,6) overexpression experiments in HD-relevant STHdh striatal cells revealed its ability to modulate CAG expansion-driven cellular defects in cell-to-substrate adhesion, thus uncovering an unconventional modifier of HD pathology.
Collapse
Affiliation(s)
- Jasmin Morandell
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Alan Monziani
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Martina Lazioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Deborah Donzel
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Jessica Döring
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Claudio Oss Pegorar
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Angela D'Anzi
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Miguel Pellegrini
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Andrea Mattiello
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Dalia Bortolotti
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Guendalina Bergonzoni
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Takshashila Tripathi
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Virginia B Mattis
- Board of Governor's Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Marina Kovalenko
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jessica Rosati
- Cellular Reprogramming Unit Fondazione IRCCS, Casa Sollievo Della Sofferenza, Viale dei Cappuccini 1, 71013 San Giovanni Rotondo, FG, Italy
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Erik Dassi
- Laboratory of RNA Regulatory Networks, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| | - Vanessa C Wheeler
- Molecular Neurogenetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zdenka Ellederová
- Research Center PIGMOD, Institute of Animal Physiology and Genetics, Czech Academy of Science, 277 21 Libechov, Czech Republic
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Gabriella Viero
- Institute of Biophysics Unit at Trento, National Research Council - CNR, 38123 Trento, Italy
| | - Marta Biagioli
- NeuroEpigenetics Laboratory, Department of Cellular, Computational, and Integrative Biology - CIBIO, University of Trento, 38123 Trento, Italy
| |
Collapse
|
21
|
Mugenzi LMJ, Tekoh TA, Ntadoun ST, Chi AD, Gadji M, Menze BD, Tchouakui M, Irving H, Wondji MJ, Weedall GD, Hearn J, Wondji CS. Association of a rapidly selected 4.3kb transposon-containing structural variation with a P450-based resistance to pyrethroids in the African malaria vector Anopheles funestus. PLoS Genet 2024; 20:e1011344. [PMID: 39074161 PMCID: PMC11309504 DOI: 10.1371/journal.pgen.1011344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/08/2024] [Accepted: 06/17/2024] [Indexed: 07/31/2024] Open
Abstract
Deciphering the evolutionary forces controlling insecticide resistance in malaria vectors remains a prerequisite to designing molecular tools to detect and assess resistance impact on control tools. Here, we demonstrate that a 4.3kb transposon-containing structural variation is associated with pyrethroid resistance in central/eastern African populations of the malaria vector Anopheles funestus. In this study, we analysed Pooled template sequencing data and direct sequencing to identify an insertion of 4.3kb containing a putative retro-transposon in the intergenic region of two P450s CYP6P5-CYP6P9b in mosquitoes of the malaria vector Anopheles funestus from Uganda. We then designed a PCR assay to track its spread temporally and regionally and decipher its role in insecticide resistance. The insertion originates in or near Uganda in East Africa, where it is fixed and has spread to high frequencies in the Central African nation of Cameroon but is still at low frequency in West Africa and absent in Southern Africa. A marked and rapid selection was observed with the 4.3kb-SV frequency increasing from 3% in 2014 to 98% in 2021 in Cameroon. A strong association was established between this SV and pyrethroid resistance in field populations and is reducing pyrethroid-only nets' efficacy. Genetic crosses and qRT-PCR revealed that this SV enhances the expression of CYP6P9a/b but not CYP6P5. Within this structural variant (SV), we identified putative binding sites for transcription factors associated with the regulation of detoxification genes. An inverse correlation was observed between the 4.3kb SV and malaria parasite infection, indicating that mosquitoes lacking the 4.3kb SV were more frequently infected compared to those possessing it. Our findings highlight the underexplored role and rapid spread of SVs in the evolution of insecticide resistance and provide additional tools for molecular surveillance of insecticide resistance.
Collapse
Affiliation(s)
- Leon M. J. Mugenzi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Theofelix A. Tekoh
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Biochemistry and Molecular Biology, Faculty of Science University of Buea, Buea, Cameroon
| | - Stevia T. Ntadoun
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Achille D. Chi
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Mahamat Gadji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Microbiology, The University of Yaounde I, Yaounde, Cameroon
| | - Benjamin D. Menze
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Magellan Tchouakui
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Helen Irving
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Murielle J. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Gareth D. Weedall
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jack Hearn
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
- Centre for Epidemiology and Planetary Health, Department of Veterinary and Animal Science, North Faculty, Scotland’s Rural College, An Lòchran, 10 Inverness Campus, Inverness, Scotland, United Kingdom
| | - Charles S. Wondji
- LSTM Research Unit, Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Vector Biology Department, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| |
Collapse
|
22
|
Sierra P, Durbin R. Identification of transposable element families from pangenome polymorphisms. Mob DNA 2024; 15:13. [PMID: 38926873 PMCID: PMC11202377 DOI: 10.1186/s13100-024-00323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Transposable Elements (TEs) are segments of DNA, typically a few hundred base pairs up to several tens of thousands bases long, that have the ability to generate new copies of themselves in the genome. Most existing methods used to identify TEs in a newly sequenced genome are based on their repetitive character, together with detection based on homology and structural features. As new high quality assemblies become more common, including the availability of multiple independent assemblies from the same species, an alternative strategy for identification of TE families becomes possible in which we focus on the polymorphism at insertion sites caused by TE mobility. RESULTS We develop the idea of using the structural polymorphisms found in pangenomes to create a library of the TE families recently active in a species, or in a closely related group of species. We present a tool, pantera, that achieves this task, and illustrate its use both on species with well-curated libraries, and on new assemblies. CONCLUSIONS Our results show that pantera is sensitive and accurate, tending to correctly identify complete elements with precise boundaries, and is particularly well suited to detect larger, low copy number TEs that are often undetected with existing de novo methods.
Collapse
Affiliation(s)
- Pío Sierra
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge, CB2 3EH, UK.
| |
Collapse
|
23
|
Yang J, Wang DF, Huang JH, Zhu QH, Luo LY, Lu R, Xie XL, Salehian-Dehkordi H, Esmailizadeh A, Liu GE, Li MH. Structural variant landscapes reveal convergent signatures of evolution in sheep and goats. Genome Biol 2024; 25:148. [PMID: 38845023 PMCID: PMC11155191 DOI: 10.1186/s13059-024-03288-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/21/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Sheep and goats have undergone domestication and improvement to produce similar phenotypes, which have been greatly impacted by structural variants (SVs). Here, we report a high-quality chromosome-level reference genome of Asiatic mouflon, and implement a comprehensive analysis of SVs in 897 genomes of worldwide wild and domestic populations of sheep and goats to reveal genetic signatures underlying convergent evolution. RESULTS We characterize the SV landscapes in terms of genetic diversity, chromosomal distribution and their links with genes, QTLs and transposable elements, and examine their impacts on regulatory elements. We identify several novel SVs and annotate corresponding genes (e.g., BMPR1B, BMPR2, RALYL, COL21A1, and LRP1B) associated with important production traits such as fertility, meat and milk production, and wool/hair fineness. We detect signatures of selection involving the parallel evolution of orthologous SV-associated genes during domestication, local environmental adaptation, and improvement. In particular, we find that fecundity traits experienced convergent selection targeting the gene BMPR1B, with the DEL00067921 deletion explaining ~10.4% of the phenotypic variation observed in goats. CONCLUSIONS Our results provide new insights into the convergent evolution of SVs and serve as a rich resource for the future improvement of sheep, goats, and related livestock.
Collapse
Affiliation(s)
- Ji Yang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Dong-Feng Wang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Jia-Hui Huang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Qiang-Hui Zhu
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ling-Yun Luo
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Ran Lu
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Xing-Long Xie
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Hosein Salehian-Dehkordi
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences (CAS), Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences (UCAS), Beijing, 100049, China
| | - Ali Esmailizadeh
- Department of Animal Science, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, 76169-133, Iran
| | - George E Liu
- Animal Genomics and Improvement Laboratory, BARC, USDA-ARS, Beltsville, MD, 20705, USA
| | - Meng-Hua Li
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, China.
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
24
|
Dulz TA, Azambuja M, Lorscheider CA, Noleto RB, Moreira-Filho O, Nogaroto V, Nascimento VD, Diniz D, de Mello Affonso PRA, Vicari MR. Repetitive DNAs and chromosome evolution in Megaleporinus obtusidens and M. reinhardti (Characiformes: Anostomidae). Genetica 2024; 152:63-70. [PMID: 38587599 DOI: 10.1007/s10709-024-00206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
The high dynamism of repetitive DNAs is a major driver of chromosome evolution. In particular, the accumulation of repetitive DNA sequences has been reported as part of the differentiation of sex-specific chromosomes. In turn, the fish species of the genus Megaleporinus are a monophyletic clade in which the presence of differentiated ZZ/ZW sex chromosomes represents a synapomorphic condition, thus serving as a suitable model to evaluate the dynamic evolution of repetitive DNA classes. Therefore, transposable elements (TEs) and in tandem repeats were isolated and located on chromosomes of Megaleporinus obtusidens and M. reinhardti to infer their role in chromosome differentiation with emphasis on sex chromosome systems. Despite the conserved karyotype features of both species, the location of repetitive sequences - Rex 1, Rex 3, (TTAGGG)n, (GATA)n, (GA)n, (CA)n, and (A)n - varied both intra and interspecifically, being mainly accumulated in Z and W chromosomes. The physical mapping of repetitive sequences confirmed the remarkable dynamics of repetitive DNA classes on sex chromosomes that might have promoted chromosome diversification and reproductive isolation in Megaleporinus species.
Collapse
Affiliation(s)
- Thais Aparecida Dulz
- Graduate Program in Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Matheus Azambuja
- Graduate Program in Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | - Carla Andrea Lorscheider
- Department of Biological Sciences, Universidade Estadual do Paraná, União da Vitória, PR, Brazil
| | - Rafael Bueno Noleto
- Department of Biological Sciences, Universidade Estadual do Paraná, União da Vitória, PR, Brazil
| | - Orlando Moreira-Filho
- Department of Genetics and Evolution, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Viviane Nogaroto
- Graduate Program in Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| | | | - Débora Diniz
- Graduate Program in Genetics, Biodiversity and Conservation, Universidade Estadual do Sudoeste da Bahia, Jequié, BA, Brazil
| | | | - Marcelo Ricardo Vicari
- Graduate Program in Genetics, Universidade Federal do Paraná, Curitiba, PR, Brazil
- Graduate Program in Animal Science, Universidade Estadual de Ponta Grossa, Ponta Grossa, PR, Brazil
| |
Collapse
|
25
|
de Oliveira IP, Schaaf C, de Setta N. Drought Responses in Poaceae: Exploring the Core Components of the ABA Signaling Pathway in Setaria italica and Setaria viridis. PLANTS (BASEL, SWITZERLAND) 2024; 13:1451. [PMID: 38891260 PMCID: PMC11174756 DOI: 10.3390/plants13111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Drought severely impacts plant development and reproduction, reducing biomass and seed number, and altering flowering patterns. Drought-tolerant Setaria italica and Setaria viridis species have emerged as prominent model species for investigating water deficit responses in the Poaceae family, the most important source of food and biofuel biomass worldwide. In higher plants, abscisic acid (ABA) regulates environmental stress responses, and its signaling entails interactions between PYR/PYL/RCAR receptors and clade A PP2C phosphatases, which in turn modulate SnRK2 kinases via reversible phosphorylation to activate ABA-responsive genes. To compare the diversity of PYR/PYL/RCAR, PP2C, and SnRK2 between S. italica and S. viridis, and their involvement in water deficit responses, we examined gene and regulatory region structures, investigated orthology relationships, and analyzed their gene expression patterns under water stress via a meta-analysis approach. Results showed that coding and regulatory sequences of PYR/PYL/RCARs, PP2Cs, and SnRK2s are highly conserved between Setaria spp., allowing us to propose pairs of orthologous genes for all the loci identified. Phylogenetic relationships indicate which clades of Setaria spp. sequences are homologous to the functionally well-characterized Arabidopsis thaliana PYR/PYL/RCAR, PP2C, and SnRK2 genes. Gene expression analysis showed a general downregulation of PYL genes, contrasting with upregulation of PP2C genes, and variable expression modulation of SnRK2 genes under drought stress. This complex network implies that ABA core signaling is a diverse and multifaceted process. Through our analysis, we identified promising candidate genes for further functional characterization, with great potential as targets for drought resistance studies, ultimately leading to advances in Poaceae biology and crop-breeding strategies.
Collapse
Affiliation(s)
| | | | - Nathalia de Setta
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo 09606-045, SP, Brazil; (I.P.d.O.); (C.S.)
| |
Collapse
|
26
|
Peona V, Martelossi J, Almojil D, Bocharkina J, Brännström I, Brown M, Cang A, Carrasco-Valenzuela T, DeVries J, Doellman M, Elsner D, Espíndola-Hernández P, Montoya GF, Gaspar B, Zagorski D, Hałakuc P, Ivanovska B, Laumer C, Lehmann R, Boštjančić LL, Mashoodh R, Mazzoleni S, Mouton A, Nilsson MA, Pei Y, Potente G, Provataris P, Pardos-Blas JR, Raut R, Sbaffi T, Schwarz F, Stapley J, Stevens L, Sultana N, Symonova R, Tahami MS, Urzì A, Yang H, Yusuf A, Pecoraro C, Suh A. Teaching transposon classification as a means to crowd source the curation of repeat annotation - a tardigrade perspective. Mob DNA 2024; 15:10. [PMID: 38711146 DOI: 10.1186/s13100-024-00319-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/09/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND The advancement of sequencing technologies results in the rapid release of hundreds of new genome assemblies a year providing unprecedented resources for the study of genome evolution. Within this context, the significance of in-depth analyses of repetitive elements, transposable elements (TEs) in particular, is increasingly recognized in understanding genome evolution. Despite the plethora of available bioinformatic tools for identifying and annotating TEs, the phylogenetic distance of the target species from a curated and classified database of repetitive element sequences constrains any automated annotation effort. Moreover, manual curation of raw repeat libraries is deemed essential due to the frequent incompleteness of automatically generated consensus sequences. RESULTS Here, we present an example of a crowd-sourcing effort aimed at curating and annotating TE libraries of two non-model species built around a collaborative, peer-reviewed teaching process. Manual curation and classification are time-consuming processes that offer limited short-term academic rewards and are typically confined to a few research groups where methods are taught through hands-on experience. Crowd-sourcing efforts could therefore offer a significant opportunity to bridge the gap between learning the methods of curation effectively and empowering the scientific community with high-quality, reusable repeat libraries. CONCLUSIONS The collaborative manual curation of TEs from two tardigrade species, for which there were no TE libraries available, resulted in the successful characterization of hundreds of new and diverse TEs in a reasonable time frame. Our crowd-sourcing setting can be used as a teaching reference guide for similar projects: A hidden treasure awaits discovery within non-model organisms.
Collapse
Affiliation(s)
- Valentina Peona
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-752 36, Sweden.
- Swiss Ornithological Institute Vogelwarte, Sempach, CH-6204, Switzerland.
- Department of Bioinformatics and Genetics, Swedish Natural History Museum, Stockholm, Sweden.
| | - Jacopo Martelossi
- Department of Biological Geological and Environmental Science, University of Bologna, Via Selmi 3, Bologna, 40126, Italy.
| | - Dareen Almojil
- New York University Abu Dhabi, Saadiyat Island, United Arab Emirates
| | | | - Ioana Brännström
- Natural History Museum, Oslo University, Oslo, Norway
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Max Brown
- Anglia Ruskin University, East Rd, Cambridge, CB1 1PT, UK
| | | | - Tomàs Carrasco-Valenzuela
- Evolutionary Genetics Department, Leibniz Institute for Zoo and Wildlife Research, 10315, Berlin, Germany
- Berlin Center for Genomics in Biodiversity Research, 14195, Berlin, Germany
| | - Jon DeVries
- Reed College, Portland, OR, United States of America
| | - Meredith Doellman
- Department of Ecology and Evolution, The University of Chicago, Chicago, IL, 60637, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, 46556, USA
| | - Daniel Elsner
- Evolutionary Biology & Ecology, University of Freiburg, Freiburg, Germany
| | - Pamela Espíndola-Hernández
- Research Unit Comparative Microbiome Analysis (COMI), Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | | | - Bence Gaspar
- Institute of Evolution and Ecology, University of Tuebingen, Tuebingen, Germany
| | - Danijela Zagorski
- Institute of Botany, Czech Academy of Sciences, Průhonice, Czech Republic
| | - Paweł Hałakuc
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Beti Ivanovska
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary
| | | | - Robert Lehmann
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ljudevit Luka Boštjančić
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Rahia Mashoodh
- Department of Genetics, Environment & Evolution, Centre for Biodiversity & Environment Research, University College London, London, UK
| | - Sofia Mazzoleni
- Department of Ecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Alice Mouton
- INBIOS-Conservation Genetic Lab, University of Liege, Liege, Belgium
| | - Maria Anna Nilsson
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Yifan Pei
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-752 36, Sweden
- Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 127, 53113, Bonn, Germany
| | - Giacomo Potente
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
| | - Panagiotis Provataris
- German Cancer Research Center, NGS Core Facility, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - José Ramón Pardos-Blas
- Departamento de Biodiversidad y Biología Evolutiva, Museo Nacional de Ciencias Naturales (MNCN-CSIC), José Gutiérrez Abascal 2, Madrid, 28006, Spain
| | - Ravindra Raut
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy - Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Florian Schwarz
- Eurofins Genomics Europe Pharma and Diagnostics Products & Services Sales GmbH, Ebersberg, Germany
| | - Jessica Stapley
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Lewis Stevens
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Nusrat Sultana
- Department of Botany, Jagannath Univerity, Dhaka, 1100, Bangladesh
| | - Radka Symonova
- Institute of Hydrobiology, Biology Centre of the Czech Academy of Sciences, České Budějovice, Czech Republic
| | - Mohadeseh S Tahami
- Department of Biological and Environmental Science, University of Jyväskylä, P.O. Box 35, Jyväskylä, 40014, Finland
| | - Alice Urzì
- Centogene GmbH, Am Strande 7, 18055, Rostock, Germany
| | - Heidi Yang
- Department of Ecology & Evolutionary Biology, University of California, Los Angeles, Los Angeles, CA, United States of America
| | - Abdullah Yusuf
- Zell- und Molekularbiologie der Pflanzen, Technische Universität Dresden, Dresden, Germany
| | | | - Alexander Suh
- Department of Organismal Biology - Systematic Biology, Evolutionary Biology Centre, Uppsala University, Uppsala, SE-752 36, Sweden.
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TU, UK.
- Present address: Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change, Adenauerallee 160, 53113, Bonn, Germany.
| |
Collapse
|
27
|
Deans NC, Talbot JERB, Li M, Sáez-González C, Hövel I, Heavens D, Stam M, Hollick JB. Paramutation at the maize pl1 locus is associated with RdDM activity at distal tandem repeats. PLoS Genet 2024; 20:e1011296. [PMID: 38814980 PMCID: PMC11166354 DOI: 10.1371/journal.pgen.1011296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 06/11/2024] [Accepted: 05/08/2024] [Indexed: 06/01/2024] Open
Abstract
Exceptions to Mendelian inheritance often highlight novel chromosomal behaviors. The maize Pl1-Rhoades allele conferring plant pigmentation can display inheritance patterns deviating from Mendelian expectations in a behavior known as paramutation. However, the chromosome features mediating such exceptions remain unknown. Here we show that small RNA production reflecting RNA polymerase IV function within a distal downstream set of five tandem repeats is coincident with meiotically-heritable repression of the Pl1-Rhoades transcription unit. A related pl1 haplotype with three, but not one with two, repeat units also displays the trans-homolog silencing typifying paramutations. 4C interactions, CHD3a-dependent small RNA profiles, nuclease sensitivity, and polyadenylated RNA levels highlight a repeat subregion having regulatory potential. Our comparative and mutant analyses show that transcriptional repression of Pl1-Rhoades correlates with 24-nucleotide RNA production and cytosine methylation at this subregion indicating the action of a specific DNA-dependent RNA polymerase complex. These findings support a working model in which pl1 paramutation depends on trans-chromosomal RNA-directed DNA methylation operating at a discrete cis-linked and copy-number-dependent transcriptional regulatory element.
Collapse
Affiliation(s)
- Natalie C. Deans
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Joy-El R. B. Talbot
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California, United States of America
| | - Mowei Li
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
| | - Cristian Sáez-González
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Iris Hövel
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | | | - Maike Stam
- Swammerdam Institute for Life Sciences, Universiteit van Amsterdam, Amsterdam, The Netherlands
| | - Jay B. Hollick
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
- Centers for Applied Plant Sciences and RNA Biology, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant and Microbial Biology, University of California, Berkeley, California, United States of America
| |
Collapse
|
28
|
Zhang R, Xiang N, Qian C, Liu S, Zhao Y, Zhang G, Wei P, Li J, Yuan T. Comparative analysis of the organelle genomes of Aconitum carmichaelii revealed structural and sequence differences and phylogenetic relationships. BMC Genomics 2024; 25:260. [PMID: 38454328 PMCID: PMC10921738 DOI: 10.1186/s12864-024-10136-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 02/17/2024] [Indexed: 03/09/2024] Open
Abstract
In this study, we conducted an assembly and analysis of the organelle genomes of Aconitum carmichaelii. Our investigation encompassed the examination of organelle genome structures, gene transfer events, and the environmental selection pressures affecting A. carmichaelii. The results revealed distinct evolutionary patterns in the organelle genomes of A. carmichaelii. Especially, the plastome exhibited a more conserved structure but a higher nucleotide substitution rate (NSR), while the mitogenome displayed a more complex structure with a slower NSR. Through homology analysis, we identified several instances of unidirectional protein-coding genes (PCGs) transferring from the plastome to the mitogenome. However, we did not observe any events which genes moved from the mitogenome to the plastome. Additionally, we observed multiple transposable element (TE) fragments in the organelle genomes, with both organelles showing different preferences for the type of nuclear TE insertion. Divergence time estimation suggested that rapid differentiation occurred in Aconitum species approximately 7.96 million years ago (Mya). This divergence might be associated with the reduction in CO2 levels and the significant uplift of the Qinghai-Tibet Plateau (QTP) during the late Miocene. Selection pressure analysis indicated that the dN/dS values of both organelles were less than 1, suggested that organelle PCGs were subject to purification selection. However, we did not detect any positively selected genes (PSGs) in Subg. Aconitum and Subg. Lycoctonum. This observation further supports the idea that stronger negative selection pressure on organelle genes in Aconitum results in a more conserved amino acid sequence. In conclusion, this study contributes to a deeper understanding of organelle evolution in Aconitum species and provides a foundation for future research on the genetic mechanisms underlying the structure and function of the Aconitum plastome and mitogenome.
Collapse
Affiliation(s)
- Rongxiang Zhang
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China
| | - Niyan Xiang
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Changjiang Qian
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Shuwen Liu
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Yuemei Zhao
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China
| | - Guiyu Zhang
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Pei Wei
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Jianfeng Li
- School of Biological Science, Guizhou Education University, Guiyang, 550018, China.
- Key Laboratory of Development and Utilization of Biological Resources in Colleges and Universities of Guizhou Province, Guizhou Education University, Guiyang, 550018, China.
| | - Tao Yuan
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China.
- State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
29
|
Triesch S, Denton AK, Bouvier JW, Buchmann JP, Reichel-Deland V, Guerreiro RNFM, Busch N, Schlüter U, Stich B, Kelly S, Weber APM. Transposable elements contribute to the establishment of the glycine shuttle in Brassicaceae species. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:270-281. [PMID: 38168881 DOI: 10.1111/plb.13601] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 11/15/2023] [Indexed: 01/05/2024]
Abstract
C3 -C4 intermediate photosynthesis has evolved at least five times convergently in the Brassicaceae, despite this family lacking bona fide C4 species. The establishment of this carbon concentrating mechanism is known to require a complex suite of ultrastructural modifications, as well as changes in spatial expression patterns, which are both thought to be underpinned by a reconfiguration of existing gene-regulatory networks. However, to date, the mechanisms which underpin the reconfiguration of these gene networks are largely unknown. In this study, we used a pan-genomic association approach to identify genomic features that could confer differential gene expression towards the C3 -C4 intermediate state by analysing eight C3 species and seven C3 -C4 species from five independent origins in the Brassicaceae. We found a strong correlation between transposable element (TE) insertions in cis-regulatory regions and C3 -C4 intermediacy. Specifically, our study revealed 113 gene models in which the presence of a TE within a gene correlates with C3 -C4 intermediate photosynthesis. In this set, genes involved in the photorespiratory glycine shuttle are enriched, including the glycine decarboxylase P-protein whose expression domain undergoes a spatial shift during the transition to C3 -C4 photosynthesis. When further interrogating this gene, we discovered independent TE insertions in its upstream region which we conclude to be responsible for causing the spatial shift in GLDP1 gene expression. Our findings hint at a pivotal role of TEs in the evolution of C3 -C4 intermediacy, especially in mediating differential spatial gene expression.
Collapse
Affiliation(s)
- S Triesch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - A K Denton
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - J W Bouvier
- Department of Biology, University of Oxford, Oxford, UK
| | - J P Buchmann
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Biological Data Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - V Reichel-Deland
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - R N F M Guerreiro
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - N Busch
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - U Schlüter
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| | - B Stich
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
- Institute for Quantitative Genetics and Genomics of Plants, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - S Kelly
- Department of Biology, University of Oxford, Oxford, UK
| | - A P M Weber
- Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), Düsseldorf, Germany
| |
Collapse
|
30
|
Loreto ELS, Melo ESD, Wallau GL, Gomes TMFF. The good, the bad and the ugly of transposable elements annotation tools. Genet Mol Biol 2024; 46:e20230138. [PMID: 38373163 PMCID: PMC10876081 DOI: 10.1590/1678-4685-gmb-2023-0138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
Transposable elements are repetitive and mobile DNA segments that can be found in virtually all organisms investigated to date. Their complex structure and variable nature are particularly challenging from the genomic annotation point of view. Many softwares have been developed to automate and facilitate TEs annotation at the genomic level, but they are highly heterogeneous regarding documentation, usability and methods. In this review, we revisited the existing software for TE genomic annotation, concentrating on the most often used ones, the methodologies they apply, and usability. Building on the state of the art of TE annotation software we propose best practices and highlight the strengths and weaknesses from the available solutions.
Collapse
Affiliation(s)
- Elgion L S Loreto
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
- Universidade Federal de Santa Maria, Departamento de Bioquímica e Biologia Molecular, Santa Maria, RS, Brazil
| | - Elverson S de Melo
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Entomologia, Recife, PE, Brazil
| | - Gabriel L Wallau
- Fundação Oswaldo Cruz, Instituto Aggeu Magalhães, Departamento de Entomologia, Recife, PE, Brazil
| | - Tiago M F F Gomes
- Universidade Federal do Rio Grande do Sul, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Kojima KK. Helenus and Ajax, Two Groups of Non-Autonomous LTR Retrotransposons, Represent a New Type of Small RNA Gene-Derived Mobile Elements. BIOLOGY 2024; 13:119. [PMID: 38392337 PMCID: PMC10886601 DOI: 10.3390/biology13020119] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/06/2024] [Accepted: 02/10/2024] [Indexed: 02/24/2024]
Abstract
Terminal repeat retrotransposons in miniature (TRIMs) are short non-autonomous long terminal repeat (LTR) retrotransposons found from various eukaryotes. Cassandra is a unique TRIM lineage which contains a 5S rRNA-derived sequence in its LTRs. Here, two new groups of TRIMs, designated Helenus and Ajax, are reported based on bioinformatics analysis and the usage of Repbase. Helenus is found from fungi, animals, and plants, and its LTRs contain a tRNA-like sequence. It includes two LTRs and between them, a primer-binding site (PBS) and polypurine tract (PPT) exist. Fungal and plant Helenus generate 5 bp target site duplications (TSDs) upon integration, while animal Helenus generates 4 bp TSDs. Ajax includes a 5S rRNA-derived sequence in its LTR and is found from two nemertean genomes. Ajax generates 5 bp TSDs upon integration. These results suggest that despite their unique promoters, Helenus and Ajax are TRIMs whose transposition is dependent on autonomous LTR retrotransposon. These TRIMs can originate through an insertion of SINE in an LTR of TRIM. The discovery of Helenus and Ajax suggests the presence of TRIMs with a promoter for RNA polymerase III derived from a small RNA gene, which is here collectively termed TRIMp3.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, CA 95014, USA
| |
Collapse
|
32
|
Bukhman YV, Meyer S, Chu LF, Abueg L, Antosiewicz-Bourget J, Balacco J, Brecht M, Dinatale E, Fedrigo O, Formenti G, Fungtammasan A, Giri SJ, Hiller M, Howe K, Kihara D, Mamott D, Mountcastle J, Pelan S, Rabbani K, Sims Y, Tracey A, Wood JMD, Jarvis ED, Thomson JA, Chaisson MJP, Stewart R. Chromosome level genome assembly of the Etruscan shrew Suncus etruscus. Sci Data 2024; 11:176. [PMID: 38326333 PMCID: PMC10850158 DOI: 10.1038/s41597-024-03011-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
Suncus etruscus is one of the world's smallest mammals, with an average body mass of about 2 grams. The Etruscan shrew's small body is accompanied by a very high energy demand and numerous metabolic adaptations. Here we report a chromosome-level genome assembly using PacBio long read sequencing, 10X Genomics linked short reads, optical mapping, and Hi-C linked reads. The assembly is partially phased, with the 2.472 Gbp primary pseudohaplotype and 1.515 Gbp alternate. We manually curated the primary assembly and identified 22 chromosomes, including X and Y sex chromosomes. The NCBI genome annotation pipeline identified 39,091 genes, 19,819 of them protein-coding. We also identified segmental duplications, inferred GO term annotations, and computed orthologs of human and mouse genes. This reference-quality genome will be an important resource for research on mammalian development, metabolism, and body size control.
Collapse
Affiliation(s)
- Yury V Bukhman
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA.
| | - Susanne Meyer
- Neuroscience Research Institute, University of California - Santa Barbara, 494 UCEN Rd, Isla Vista, CA, 93117, USA
| | - Li-Fang Chu
- Department of Comparative Biology and Experimental Medicine, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Linelle Abueg
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Jennifer Balacco
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Michael Brecht
- BCCN/Humboldt University Berlin, Philippstr, 13 House 6, 10115, Berlin, Germany
| | - Erica Dinatale
- Max Planck Institute for Biology Tübingen, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - Olivier Fedrigo
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Giulio Formenti
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, 1230 York Avenue, New York, NY, 10065, USA
| | | | - Swagarika Jaharlal Giri
- Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN, 47907, USA
| | - Michael Hiller
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325, Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325, Frankfurt, Germany
- Institute of Cell Biology and Neuroscience, Faculty of Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 9, 60438, Frankfurt, Germany
| | - Kerstin Howe
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Daisuke Kihara
- Department of Computer Science, Purdue University, 249 S. Martin Jischke Dr, West Lafayette, IN, 47907, USA
- Department of Biological Sciences, Purdue University, 249 S. Martin Jischke Dr., West Lafayette, IN, 47907, USA
| | - Daniel Mamott
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
| | - Jacquelyn Mountcastle
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
| | - Sarah Pelan
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Keon Rabbani
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way RRI 408, Los Angeles, CA, 90089, USA
| | - Ying Sims
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | - Alan Tracey
- Tree of Life, Wellcome Sanger Institute, Cambridge, CB10 1SA, UK
| | | | - Erich D Jarvis
- Vertebrate Genome Lab, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, USA
- Laboratory of Neurogenetics of Language, The Rockefeller University/HHMI, 1230 York Avenue, New York, NY, 10065, USA
| | - James A Thomson
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
- Department of Molecular, Cellular and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53726, USA
| | - Mark J P Chaisson
- Department of Quantitative and Computational Biology, University of Southern California, 1050 Childs Way RRI 408, Los Angeles, CA, 90089, USA
| | - Ron Stewart
- Regenerative Biology, Morgridge Institute for Research, 330 N. Orchard St., Madison, WI, 53715, USA
| |
Collapse
|
33
|
Arnqvist G, Westerberg I, Galbraith J, Sayadi A, Scofield DG, Olsen RA, Immonen E, Bonath F, Ewels P, Suh A. A chromosome-level assembly of the seed beetle Callosobruchus maculatus genome with annotation of its repetitive elements. G3 (BETHESDA, MD.) 2024; 14:jkad266. [PMID: 38092066 PMCID: PMC10849321 DOI: 10.1093/g3journal/jkad266] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/30/2023] [Indexed: 02/09/2024]
Abstract
Callosobruchus maculatus is a major agricultural pest of legume crops worldwide and an established model system in ecology and evolution. Yet, current molecular biological resources for this species are limited. Here, we employ Hi-C sequencing to generate a greatly improved genome assembly and we annotate its repetitive elements in a dedicated in-depth effort where we manually curate and classify the most abundant unclassified repeat subfamilies. We present a scaffolded chromosome-level assembly, which is 1.01 Gb in total length with 86% being contained within the 9 autosomes and the X chromosome. Repetitive sequences accounted for 70% of the total assembly. DNA transposons covered 18% of the genome, with the most abundant superfamily being Tc1-Mariner (9.75% of the genome). This new chromosome-level genome assembly of C. maculatus will enable future genetic and evolutionary studies not only of this important species but of beetles more generally.
Collapse
Affiliation(s)
- Göran Arnqvist
- Animal Ecology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Ivar Westerberg
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm SE10691, Sweden
| | - James Galbraith
- School of Biological Sciences, University of Adelaide, Adelaide 5005, Australia
- Faculty of Environment, Science and Economy, University of Exeter, Cornwall TR10 9FE, UK
| | - Ahmed Sayadi
- Rheumatology, Department of Medical Sciences, Uppsala University, Uppsala SE75236, Sweden
| | - Douglas G Scofield
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
- Uppsala Multidisciplinary Center for Advanced Computational Science, Uppsala University, Uppsala SE75236, Sweden
| | - Remi-André Olsen
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Stockholm SE10691, Sweden
| | - Elina Immonen
- Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala SE75236, Sweden
| | - Franziska Bonath
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm SE10691, Sweden
| | | | - Alexander Suh
- Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala SE75236, Sweden
| |
Collapse
|
34
|
Liu D, Zhang Z, Hao Y, Li M, Yu H, Zhang X, Mi H, Cheng L, Zhao Y. Decoding the complete organelle genomic architecture of Stewartia gemmata: an early-diverging species in Theaceae. BMC Genomics 2024; 25:114. [PMID: 38273225 PMCID: PMC10811901 DOI: 10.1186/s12864-024-10016-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Theaceae, comprising 300 + species, holds significance in biodiversity, economics, and culture, notably including the globally consumed tea plant. Stewartia gemmata, a species of the earliest diverging tribe Stewartieae, is critical to offer insights into Theaceae's origin and evolutionary history. RESULT We sequenced the complete organelle genomes of Stewartia gemmata using short/long reads sequencing technologies. The chloroplast genome (158,406 bp) exhibited a quadripartite structure including the large single-copy region (LSC), a small single-copy region (SSC), and a pair of inverted repeat regions (IRs); 114 genes encoded 80 proteins, 30 tRNAs, and four rRNAs. The mitochondrial genome (681,203 bp) exhibited alternative conformations alongside a monocyclic structure: 61 genes encoding 38 proteins, 20 tRNAs, three rRNAs, and RNA editing-impacting genes, including ATP6, RPL16, COX2, NAD4L, NAD5, NAD7, and RPS1. Comparative analyses revealed frequent recombination events and apparent rRNA gene gains and losses in the mitochondrial genome of Theaceae. In organelle genomes, the protein-coding genes exhibited a strong A/U bias at codon endings; ENC-GC3 analysis implies selection-driven codon bias. Transposable elements might facilitate interorganelle sequence transfer. Phylogenetic analysis confirmed Stewartieae's early divergence within Theaceae, shedding light on organelle genome characteristics and evolution in Theaceae. CONCLUSIONS We studied the detailed characterization of organelle genomes, including genome structure, composition, and repeated sequences, along with the identification of lateral gene transfer (LGT) events and complexities. The discovery of a large number of repetitive sequences and simple sequence repeats (SSRs) has led to new insights into molecular phylogenetic markers. Decoding the Stewartia gemmata organellar genome provides valuable genomic resources for further studies in tea plant phylogenomics and evolutionary biology.
Collapse
Affiliation(s)
- Daliang Liu
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
| | - Zhihan Zhang
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China
- College of Engineering and Technology, Northeast Forestry University, Harbin, 150040, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, 01003, USA
- Present address: Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Xingruo Zhang
- Department of Public Health Sciences, University of Chicago, Chicago, IL, 60637, USA
| | - Haoyang Mi
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Lin Cheng
- Henan International Joint Laboratory of Tea-Oil Tree Biology and High-Value Utilization, College of Life Sciences, Xinyang Normal University, Xinyang, 464000, China.
| | - Yiyong Zhao
- Key Laboratory of Functional Agriculture in Higher Education of Guizhou Province, College of Agriculture, Guizhou University, Guiyang, 550025, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
35
|
Feldmeyer B, Bornberg-Bauer E, Dohmen E, Fouks B, Heckenhauer J, Huylmans AK, Jones ARC, Stolle E, Harrison MC. Comparative Evolutionary Genomics in Insects. Methods Mol Biol 2024; 2802:473-514. [PMID: 38819569 DOI: 10.1007/978-1-0716-3838-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Genome sequencing quality, in terms of both read length and accuracy, is constantly improving. By combining long-read sequencing technologies with various scaffolding techniques, chromosome-level genome assemblies are now achievable at an affordable price for non-model organisms. Insects represent an exciting taxon for studying the genomic underpinnings of evolutionary innovations, due to ancient origins, immense species-richness, and broad phenotypic diversity. Here we summarize some of the most important methods for carrying out a comparative genomics study on insects. We describe available tools and offer concrete tips on all stages of such an endeavor from DNA extraction through genome sequencing, annotation, and several evolutionary analyses. Along the way we describe important insect-specific aspects, such as DNA extraction difficulties or gene families that are particularly difficult to annotate, and offer solutions. We describe results from several examples of comparative genomics analyses on insects to illustrate the fascinating questions that can now be addressed in this new age of genomics research.
Collapse
Affiliation(s)
- Barbara Feldmeyer
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Molecular Ecology, Frankfurt, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Bertrand Fouks
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Jacqueline Heckenhauer
- LOEWE Centre for Translational Biodiversity Genomics (LOEWE-TBG), Frankfurt, Germany
- Department of Terrestrial Zoology, Senckenberg Research Institute and Natural History Museum Frankfurt, Frankfurt, Germany
| | - Ann Kathrin Huylmans
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
| | - Alun R C Jones
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany
| | - Eckart Stolle
- Museum Koenig, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Bonn, Germany
| | - Mark C Harrison
- Institute for Evolution and Biodiversity, University of Münster, Münster, Germany.
| |
Collapse
|
36
|
Park S, Park S. Intrageneric structural variation in organelle genomes from the genus Dystaenia (Apiaceae): genome rearrangement and mitochondrion-to-plastid DNA transfer. FRONTIERS IN PLANT SCIENCE 2023; 14:1283292. [PMID: 38116150 PMCID: PMC10728875 DOI: 10.3389/fpls.2023.1283292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
Introduction During plant evolution, intracellular DNA transfer (IDT) occurs not only from organelles to the nucleus but also between organelles. To further comprehend these events, both organelle genomes and transcriptomes are needed. Methods In this study, we constructed organelle genomes and transcriptomes for two Dystaenia species and described their dynamic IDTs between their nuclear and mitochondrial genomes, or plastid and mitochondrial genomes (plastome and mitogenome). Results and Discussion We identified the putative functional transfers of the mitochondrial genes 5' rpl2, rps10, rps14, rps19, and sdh3 to the nucleus in both Dystaenia species and detected two transcripts for the rpl2 and sdh3 genes. Additional transcriptomes from the Apicaceae species also provided evidence for the transfers and duplications of these mitochondrial genes, showing lineage-specific patterns. Intrageneric variations of the IDT were found between the Dystaenia organelle genomes. Recurrent plastid-to-mitochondrion DNA transfer events were only identified in the D. takeshimana mitogenome, and a pair of mitochondrial DNAs of plastid origin (MIPTs) may generate minor alternative isoforms. We only found a mitochondrion-to-plastid DNA transfer event in the D. ibukiensis plastome. This event may be linked to inverted repeat boundary shifts in its plastome. We inferred that the insertion region involved an MIPT that had already acquired a plastid sequence in its mitogenome via IDT. We propose that the MIPT acts as a homologous region pairing between the donor and recipient sequences. Our results provide insight into the evolution of organelle genomes across the family Apiaceae.
Collapse
Affiliation(s)
- Seongjun Park
- Institute of Natural Science, Yeungnam University, Gyeongsan, Republic of Korea
| | - SeonJoo Park
- Department of Life Sciences, Yeungnam University, Gyeongsan, Republic of Korea
| |
Collapse
|
37
|
Wang Y, Ding Y, Zhao Q, Wu C, Deng CH, Wang J, Wang Y, Yan Y, Zhai R, Yauk YK, Ma F, Atkinson RG, Li P. Dihydrochalcone glycoside biosynthesis in Malus is regulated by two MYB-like transcription factors and is required for seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1492-1507. [PMID: 37648286 DOI: 10.1111/tpj.16444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Dihydrochalcones (DHCs) including phlorizin (phloretin 2'-O-glucoside) and its positional isomer trilobatin (phloretin 4'-O-glucoside) are the most abundant phenylpropanoids in apple (Malus spp.). Transcriptional regulation of DHC production is poorly understood despite their importance in insect- and pathogen-plant interactions in human physiology research and in pharmaceuticals. In this study, segregation in hybrid populations and bulked segregant analysis showed that the synthesis of phlorizin and trilobatin in Malus leaves are both single-gene-controlled traits. Promoter sequences of PGT1 and PGT2, two glycosyltransferase genes involved in DHC glycoside synthesis, were shown to discriminate Malus with different DHC glycoside patterns. Differential PGT1 and PGT2 promoter activities determined DHC glycoside accumulation patterns between genotypes. Two transcription factors containing MYB-like DNA-binding domains were then shown to control DHC glycoside patterns in different tissues, with PRR2L mainly expressed in leaf, fruit, flower, stem, and seed while MYB8L mainly expressed in stem and root. Further hybridizations between specific genotypes demonstrated an absolute requirement for DHC glycoside production in Malus during seed development which explains why no Malus spp. with a null DHC chemotype have been reported.
Collapse
Affiliation(s)
- Yule Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuduan Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chen Wu
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Cecilia H Deng
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Jingru Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yufan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanfang Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Rui Zhai
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yar-Khing Yauk
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd, Auckland, 1142, New Zealand
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
38
|
Wang X, Xia W, Teng X, Lin W, Xing Z, Wang S, Liu X, Qu J, Zhao W, Wang L. Chromosome-level genome assembly of Przevalski's partridge (Alectoris magna). Sci Data 2023; 10:829. [PMID: 38007538 PMCID: PMC10676418 DOI: 10.1038/s41597-023-02655-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/17/2023] [Indexed: 11/27/2023] Open
Abstract
Przevalski's partridge (Alectoris magna) is one of the birds in the genus Alectoris endemic to China. The distribution of A. magna was narrow, and it was only found in parts of the Qinghai, Gansu, and Ningxia provinces. A. magna was considered a monotypic species until it was distinguished into two subspecies. However, external morphological characteristics, rather than genetic differences or evolutionary relationships, are now commonly used as evidence of subspecies differentiation. In this study, a chromosome-level reference genome of A. magna has been constructed by combining Illumina, PacBio and Hi-C sequencing data. The 1135.01 Mb A. magna genome was ultimately assembled. The genome showed 96.9% completeness (BUSCO), with a contig N50 length of 23.34 Mb. The contigs were clustered and oriented on 20 chromosomes, covering approximately 99.96% of the genome assembly. Additionally, altogether 19,103 protein-coding genes were predicted, of which 95.10% were functionally annotated. This high-quality genome assembly could serve as a valuable genomic resource for future research on the functional genomics, genetic protection, and interspecific hybridization of A. magna.
Collapse
Affiliation(s)
- Xumin Wang
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Wenhao Xia
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Xindong Teng
- Qingdao International Travel Healthcare Center, Qingdao, Shandong, 266071, China
| | - Wanying Lin
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Zhikai Xing
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Shuang Wang
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Xiumei Liu
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China
| | - Jiangyong Qu
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China.
| | - Wei Zhao
- College of Life Science, Lanzhou University, No.222 Tianshui South Road, Lanzhou, 730000, Gansu, China.
| | - Lijun Wang
- College of Life Science, Yantai University, Yantai, Shandong, 264005, China.
| |
Collapse
|
39
|
Reeves IM, Totterdell JA, Betty EL, Donnelly DM, George A, Holmes S, Moller L, Stockin KA, Wellard R, White C, Foote AD. Ancestry testing of "Old Tom," a killer whale central to mutualistic interactions with human whalers. J Hered 2023; 114:598-611. [PMID: 37821799 PMCID: PMC10650950 DOI: 10.1093/jhered/esad058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023] Open
Abstract
Cooperative hunting between humans and killer whales (Orcinus orca) targeting baleen whales was reported in Eden, New South Wales, Australia, for almost a century. By 1928, whaling operations had ceased, and local killer whale sightings became scarce. A killer whale from the group, known as "Old Tom," washed up dead in 1930 and his skeleton was preserved. How these killer whales from Eden relate to other populations globally and whether their genetic descendants persist today remains unknown. We extracted and sequenced DNA from Old Tom using ancient DNA techniques. Genomic sequences were then compared with a global dataset of mitochondrial and nuclear genomes. Old Tom shared a most recent common ancestor with killer whales from Australasia, the North Atlantic, and the North Pacific, having the highest genetic similarity with contemporary New Zealand killer whales. However, much of the variation found in Old Tom's genome was not shared with these widespread populations, suggesting ancestral rather than ongoing gene flow. Our genetic comparisons also failed to find any clear descendants of Tom, raising the possibility of local extinction of this group. We integrated Traditional Custodian knowledge to recapture the events in Eden and recognize that Indigenous Australians initiated the relationship with the killer whales before European colonization and the advent of commercial whaling locally. This study rectifies discrepancies in local records and provides new insight into the origins of the killer whales in Eden and the history of Australasian killer whales.
Collapse
Affiliation(s)
- Isabella M Reeves
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - John A Totterdell
- Cetacean Research Centre (CETREC WA), Esperance, Perth, Western Australia, Australia
| | - Emma L Betty
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | - David M Donnelly
- Killer Whales Australia, Mornington, Melbourne, Victoria, Australia
| | - Angela George
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Steven Holmes
- Eden Killer Whale Museum, New South Wales, Sydney, Australia
| | - Luciana Moller
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
- Molecular Ecology Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Karen A Stockin
- Cetacean Ecology Research Group, School of Natural Sciences, Massey University, Auckland, New Zealand
| | | | - Charlie White
- Flinders University, College of Science and Engineering, Bedford Park, Adelaide,South Australia, Australia
- Cetacean Ecology, Behaviour and Evolution Laboratory, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, South Australia, Australia
| | - Andrew D Foote
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| |
Collapse
|
40
|
Fruzangohar M, Moolhuijzen P, Bakaj N, Taylor J. CoreDetector: a flexible and efficient program for core-genome alignment of evolutionary diverse genomes. Bioinformatics 2023; 39:btad628. [PMID: 37878789 PMCID: PMC10663985 DOI: 10.1093/bioinformatics/btad628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 09/20/2023] [Accepted: 10/23/2023] [Indexed: 10/27/2023] Open
Abstract
MOTIVATION Whole genome alignment of eukaryote species remains an important method for the determination of sequence and structural variations and can also be used to ascertain the representative non-redundant core-genome sequence of a population. Many whole genome alignment tools were first developed for the more mature analysis of prokaryote species with few current tools containing the functionality to process larger genomes of eukaryotes as well as genomes of more divergent species. In addition, the functionality of these tools becomes computationally prohibitive due to the significant compute resources needed to handle larger genomes. RESULTS In this research, we present CoreDetector, an easy-to-use general-purpose program that can align the core-genome sequences for a range of genome sizes and divergence levels. To illustrate the flexibility of CoreDetector, we conducted alignments of a large set of closely related fungal pathogen and hexaploid wheat cultivar genomes as well as more divergent fly and rodent species genomes. In all cases, compared to existing multiple genome alignment tools, CoreDetector exhibited improved flexibility, efficiency, and competitive accuracy in tested cases. AVAILABILITY AND IMPLEMENTATION CoreDetector was developed in the cross platform, and easily deployable, Java language. A packaged pipeline is readily executable in a bash terminal without any external need for Perl or Python environments. Installation, example data, and usage instructions for CoreDetector are freely available from https://github.com/mfruzan/CoreDetector.
Collapse
Affiliation(s)
- Mario Fruzangohar
- The Biometry Hub, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Paula Moolhuijzen
- Centre for Crop Disease Management, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia 6102, Australia
| | - Nicolette Bakaj
- The Biometry Hub, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Julian Taylor
- The Biometry Hub, School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| |
Collapse
|
41
|
Gu C, Han R, Liu C, Fang G, Yuan Q, Zheng Z, Yu Q, Jiang J, Liu S, Xie L, Wei H, Zhang Q, Liu G. Heritable epigenetic modification of BpPIN1 is associated with leaf shapes in Betula pendula. TREE PHYSIOLOGY 2023; 43:1811-1824. [PMID: 37406032 DOI: 10.1093/treephys/tpad085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 05/29/2023] [Accepted: 06/29/2023] [Indexed: 07/07/2023]
Abstract
The new variety Betula pendula 'Dalecarlica', selected from Betula pendula, shows high ornamental value owing to its lobed leaf shape. In this study, to identify the genetic components of leaf shape formation, we performed bulked segregant analysis and molecular marker-based fine mapping to identify the causal gene responsible for lobed leaves in B. pendula 'Dalecarlica'. The most significant variations associated with leaf shape were identified within the gene BpPIN1 encoding a member of the PIN-FORMED family, responsible for the auxin efflux carrier. We further confirmed the hypomethylation at the promoter region promoting the expression level of BpPIN1, which causes stronger and longer veins and lobed leaf shape in B. pendula 'Dalecarlica'. These results indicated that DNA methylation at the BpPIN1 promoter region is associated with leaf shapes in B. pendula. Our findings revealed an epigenetic mechanism of BpPIN1 in the regulation of leaf shape in Betula Linn. (birch), which could help in the molecular breeding of ornamental traits.
Collapse
Affiliation(s)
- Chenrui Gu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Rui Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Chaoyi Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Gonggui Fang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Qihang Yuan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Zhimin Zheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Qibin Yu
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33580, USA
| | - Jing Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Throckmorton Center, 116 Ackert Hall, Manhattan, KS 66506-5502, USA
| | - Linan Xie
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Hairong Wei
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - Qingzhu Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
- College of Life Science, Northeast Forestry University, No. 26, Hexing Road, Harbin, Heilongjiang 150040, China
| | - Guifeng Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, No. 51, Hexing Road, Harbin, Heilongjiang 150040, China
| |
Collapse
|
42
|
Kojima KK. Daidara: A gigantic Gypsy LTR retrotransposon lineage in the springtail Allacma fusca genome. Genes Cells 2023; 28:746-752. [PMID: 37650155 DOI: 10.1111/gtc.13062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
Long terminal repeat (LTR) retrotransposons are the major contributor to genome size expansion, as in the cases of the maize genome or the axolotl genome. Despite their impact on the genome size, the length of each retrotransposon is limited, compared to DNA transposons, which sometimes exceed over 100 kb. The longest LTR retrotransposon known to date is Burro-1 from the planarian Schmidtea medierranea, which is around 35.7 kb long. Here through bioinformatics analysis, a new lineage of gigantic LTR retrotransposons, designated Daidara, is reported from the springtail Allacma fusca genome. Their entire length (25-33 kb) rivals Burro families, while their LTRs are shorter than 1.5 kb, in contrast to other gigantic LTR retrotransposon lineages Burro and Ogre, whose LTRs are around 5 kb long. Daidara encodes three core proteins corresponding to gag, pol, and an additional protein of unknown function. The phylogenetic analysis supports the independent gigantification of Daidara from Burro or Ogre.
Collapse
Affiliation(s)
- Kenji K Kojima
- Genetic Information Research Institute, Cupertino, California, USA
| |
Collapse
|
43
|
Sproul JS, Hotaling S, Heckenhauer J, Powell A, Marshall D, Larracuente AM, Kelley JL, Pauls SU, Frandsen PB. Analyses of 600+ insect genomes reveal repetitive element dynamics and highlight biodiversity-scale repeat annotation challenges. Genome Res 2023; 33:1708-1717. [PMID: 37739812 PMCID: PMC10691545 DOI: 10.1101/gr.277387.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Repetitive elements (REs) are integral to the composition, structure, and function of eukaryotic genomes, yet remain understudied in most taxonomic groups. We investigated REs across 601 insect species and report wide variation in RE dynamics across groups. Analysis of associations between REs and protein-coding genes revealed dynamic evolution at the interface between REs and coding regions across insects, including notably elevated RE-gene associations in lineages with abundant long interspersed nuclear elements (LINEs). We leveraged this large, empirical data set to quantify impacts of long-read technology on RE detection and investigate fundamental challenges to RE annotation in diverse groups. In long-read assemblies, we detected ∼36% more REs than short-read assemblies, with long terminal repeats (LTRs) showing 162% increased detection, whereas DNA transposons and LINEs showed less respective technology-related bias. In most insect lineages, 25%-85% of repetitive sequences were "unclassified" following automated annotation, compared with only ∼13% in Drosophila species. Although the diversity of available insect genomes has rapidly expanded, we show the rate of community contributions to RE databases has not kept pace, preventing efficient annotation and high-resolution study of REs in most groups. We highlight the tremendous opportunity and need for the biodiversity genomics field to embrace REs and suggest collective steps for making progress toward this goal.
Collapse
Affiliation(s)
- John S Sproul
- Department of Biology, Brigham Young University, Provo, Utah 84602, USA;
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
- Department of Biology, University of Rochester, Rochester, New York 14627, USA
| | - Scott Hotaling
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Watershed Sciences, Utah State University, Logan, Utah 84322, USA
| | - Jacqueline Heckenhauer
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
| | - Ashlyn Powell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
| | - Dez Marshall
- Department of Biology, University of Nebraska Omaha, Omaha, Nebraska 68182, USA
| | | | - Joanna L Kelley
- School of Biological Sciences, Washington State University, Pullman, Washington 99163, USA
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, California 95064, USA
| | - Steffen U Pauls
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Senckenberg Research Institute and Natural History Museum Frankfurt, 60325 Frankfurt, Germany
- Department of Insect Biotechnology, Justus-Liebig-University Gießen, 35392 Gießen, Germany
| | - Paul B Frandsen
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), 60325 Frankfurt, Germany
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, Utah 84602, USA
- Data Science Lab, Smithsonian Institution, Washington, District of Columbia 20560, USA
| |
Collapse
|
44
|
Bours A, Pruisscher P, Bascón-Cardozo K, Odenthal-Hesse L, Liedvogel M. The blackcap (Sylvia atricapilla) genome reveals a recent accumulation of LTR retrotransposons. Sci Rep 2023; 13:16471. [PMID: 37777595 PMCID: PMC10542752 DOI: 10.1038/s41598-023-43090-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 09/19/2023] [Indexed: 10/02/2023] Open
Abstract
Transposable elements (TEs) are mobile genetic elements that can move around the genome, and as such are a source of genomic variability. Based on their characteristics we can annotate TEs within the host genome and classify them into specific TE types and families. The increasing number of available high-quality genome references in recent years provides an excellent resource that will enhance the understanding of the role of recently active TEs on genetic variation and phenotypic evolution. Here we showcase the use of a high-quality TE annotation to understand the distinct effect of recent and ancient TE insertions on the evolution of genomic variation, within our study species the Eurasian blackcap (Sylvia atricapilla). We investigate how these distinct TE categories are distributed along the genome and evaluate how their coverage across the genome is correlated with four genomic features: recombination rate, gene coverage, CpG island coverage and GC content. We found within the recent TE insertions an accumulation of LTRs previously not seen in birds. While the coverage of recent TE insertions was negatively correlated with both GC content and recombination rate, the correlation with recombination rate disappeared and turned positive for GC content when considering ancient TE insertions.
Collapse
Affiliation(s)
- Andrea Bours
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
| | - Peter Pruisscher
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
- Department of Evolutionary Biology, Evolutionary Biology Centre (EBC), Uppsala University, Uppsala, Sweden
| | - Karen Bascón-Cardozo
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Linda Odenthal-Hesse
- Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany
| | - Miriam Liedvogel
- MPRG Behavioural Genomics, Max Planck Institute for Evolutionary Biology, 24306, Plön, Germany.
- Institute of Avian Research "Vogelwarte Helgoland", 26386, Wilhelmshaven, Germany.
| |
Collapse
|
45
|
Hayashi S, Tamura K, Tsukamoto D, Ogita Y, Takamatsu N, Ito M. Promoter generation for the chimeric sex-determining gene dm-W in Xenopus frogs. Genes Genet Syst 2023; 98:53-60. [PMID: 37302840 DOI: 10.1266/ggs.22-00137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023] Open
Abstract
Many sex-determining genes (SDGs) were generated as neofunctionalized genes through duplication and/or mutation of gonadal formation-related genes. We previously identified dm-W as an SDG in the African clawed frog Xenopus laevis and found that a partial duplication of the masculinization gene dmrt1 created the neofunctionalized dm-W after allotetraploidization by interspecific hybridization. The allotetraploid Xenopus species have two dmrt1 genes, dmrt1.L and dmrt1.S. Xenopus laevis dm-W has four exons: two dmrt1.S-derived exons (exons 2 and 3) and two other exons (noncoding exon 1 and exon 4). Our recent work revealed that exon 4 originated from a DNA transposon, hAT-10. Here, to clarify when and how the noncoding exon 1 and its coexisting promoter evolved during the establishment of dm-W after allotetraploidization, we newly determined nucleotide sequences of the dm-W promoter region from two other allotetraploid species, X. largeni and X. petersii, and performed an evolutionary analysis. We found that dm-W acquired a new exon 1 and TATA-type promoter in the common ancestor of the three allotetraploid Xenopus species, resulting in the deletion of the dmrt1.S-derived TATA-less promoter. In addition, we demonstrated that the TATA box contributes to dm-W promoter activity in cultured cells. Collectively, these findings suggest that this novel TATA-type promoter was important for the establishment of dm-W as a sex-determining gene, followed by the degeneration of the preexisting promoter.
Collapse
Affiliation(s)
- Shun Hayashi
- Department of Bioscience, School of Science, Kitasato University
| | - Kei Tamura
- Department of Bioscience, School of Science, Kitasato University
| | | | - Yusaku Ogita
- Department of Bioscience, School of Science, Kitasato University
| | | | - Michihiko Ito
- Department of Bioscience, School of Science, Kitasato University
| |
Collapse
|
46
|
Lozano-Arce D, García T, Gonzalez-Garcia LN, Guyot R, Chacón-Sánchez MI, Duitama J. Selection signatures and population dynamics of transposable elements in lima bean. Commun Biol 2023; 6:803. [PMID: 37532823 PMCID: PMC10397206 DOI: 10.1038/s42003-023-05144-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023] Open
Abstract
The domestication process in lima bean (Phaseolus lunatus L.) involves two independent events, within the Mesoamerican and Andean gene pools. This makes lima bean an excellent model to understand convergent evolution. The mechanisms of adaptation followed by Mesoamerican and Andean landraces are largely unknown. Genes related to these adaptations can be selected by identification of selective sweeps within gene pools. Previous genetic analyses in lima bean have relied on Single Nucleotide Polymorphism (SNP) loci, and have ignored transposable elements (TEs). Here we show the analysis of whole-genome sequencing data from 61 lima bean accessions to characterize a genomic variation database including TEs and SNPs, to associate selective sweeps with variable TEs and to predict candidate domestication genes. A small percentage of genes under selection are shared among gene pools, suggesting that domestication followed different genetic avenues in both gene pools. About 75% of TEs are located close to genes, which shows their potential to affect gene functions. The genetic structure inferred from variable TEs is consistent with that obtained from SNP markers, suggesting that TE dynamics can be related to the demographic history of wild and domesticated lima bean and its adaptive processes, in particular selection processes during domestication.
Collapse
Affiliation(s)
- Daniela Lozano-Arce
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
| | - Tatiana García
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Laura Natalia Gonzalez-Garcia
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, 34394, Montpellier, France
| | - Romain Guyot
- Institut de Recherche pour le Développement (IRD), UMR DIADE, Université de Montpellier, CIRAD, 34394, Montpellier, France
| | - Maria Isabel Chacón-Sánchez
- Departamento de Agronomía, Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Jorge Duitama
- Systems and Computing Engineering Department, Universidad de los Andes, Bogotá, Colombia.
| |
Collapse
|
47
|
Jiang W, Nasir M, Zhao C. Variation of insulin-related peptides accompanying the differentiation of Aphis gossypii biotypes and their expression profiles. Ecol Evol 2023; 13:e10306. [PMID: 37456079 PMCID: PMC10349280 DOI: 10.1002/ece3.10306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023] Open
Abstract
Insulin signaling plays a critical role in regulating various aspects of insect biology, including development, reproduction, and the formation of wing polyphenism. This leads to differentiation among insect populations at different levels. The insulin family exhibits functional variation, resulting in diverse functional pathways. Aphis gossypii Glover, commonly known as the cotton-melon aphid, is a highly adaptable aphid species that has evolved into multiple biotypes. To understand the genetic structure of the insulin family and its evolutionary diversification and expression patterns in A. gossypii, we conducted studies using genome annotation files and RNA-sequencing data. Consequently, we identified 11 insulin receptor protein (IRP) genes in the genomes of the examined biotypes. Among these, eight AgosIRPs were dispersed across the X chromosome, while two were found in tandem on the A1 chromosome. Notably, AgosIRP2 exhibited alternative splicing, resulting in the formation of two isoforms. The AgosIRP genes displayed a high degree of conservation between Hap1 and Hap3, although some variations were observed between their genomes. For instance, a transposon was present in the coding regions of AgosIRP3 and AgosIRP9 in the Hap3 genome but not in the Hap1 genome. RNA-sequencing data revealed that four AgosIRPs were expressed ubiquitously across different morphs of A. gossypii, while others showed specific expression patterns in adult gynopara and adult males. Furthermore, the expression levels of most AgosIRPs decreased upon treatment with the pesticide acetamiprid. These findings demonstrate the evolutionary diversification of AgosIRPs between the genomes of the two biotypes and provide insights into their expression profiles across different morphs, developmental stages, and biotypes. Overall, this study contributes valuable information for investigating aphid genome evolution and the functions of insulin receptor proteins.
Collapse
Affiliation(s)
- Weili Jiang
- Basic Experimental Teaching Center of Life SciencesYangzhou UniversityYangzhouChina
| | - Muhammad Nasir
- Agricultural Biotechnology Research Institute, Ayub Agricultural Research Institute (AARI)FaisalabadPakistan
| | - Chenchen Zhao
- Henan International Laboratory for Green Pest Control/College of Plant ProtectionHenan Agricultural UniversityZhengzhouChina
| |
Collapse
|
48
|
do Nascimento Moreira C, Cardoso AL, Valeri MP, Ventura K, Ferguson-Smith MA, Yonenaga-Yassuda Y, Svartman M, Martins C. Characterization of repetitive DNA on the genome of the marsh rat Holochilus nanus (Cricetidae: Sigmodontinae). Mol Genet Genomics 2023:10.1007/s00438-023-02038-w. [PMID: 37233800 DOI: 10.1007/s00438-023-02038-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023]
Abstract
Repetitive DNA are sequences repeated hundreds or thousands of times and an abundant part of eukaryotic genomes. SatDNA represents the majority of the repetitive sequences, followed by transposable elements. The species Holochilus nanus (HNA) belongs to the rodent tribe Oryzomyini, the most taxonomically diverse of Sigmodontinae subfamily. Cytogenetic studies on Oryzomyini reflect such diversity by revealing an exceptional range of karyotype variability. However, little is known about the repetitive DNA content and its involvement in chromosomal diversification of these species. In the search for a more detailed understanding about the composition of repetitive DNA on the genome of HNA and other species of Oryzomyini, we employed a combination of bioinformatic, cytogenetic and molecular techniques to characterize the repetitive DNA content of these species. RepeatExplorer analysis showed that almost half of repetitive content of HNA genome are composed by Long Terminal Repeats and a less significant portion are composed by Short Interspersed Nuclear Elements and Long Interspersed Nuclear Elements. RepeatMasker showed that more than 30% of HNA genome are composed by repetitive sequences, with two main waves of repetitive element insertion. It was also possible to identify a satellite DNA sequence present in the centromeric region of Oryzomyini species, and a repetitive sequence enriched on the long arm of HNA X chromosome. Also, comparative analysis between HNA genome with and without B chromosome did not evidence any repeat element enriched on the supernumerary, suggesting that B chromosome of HNA is composed by a fraction of repeats from all the genome.
Collapse
Affiliation(s)
- Camila do Nascimento Moreira
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil.
| | - Adauto Lima Cardoso
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Mirela Pelizaro Valeri
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Karen Ventura
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Malcolm Andrew Ferguson-Smith
- Cambridge Resource Centre for Comparative Genomics, Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Yatiyo Yonenaga-Yassuda
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marta Svartman
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cesar Martins
- Departamento de Biologia Estrutural e Funcional, Instituto de Biociências, Universidade Estadual Paulista, Botucatu, SP, Brazil
| |
Collapse
|
49
|
Li H, Sun P, Wang Y, Zhang Z, Yang J, Suo Y, Han W, Diao S, Li F, Fu J. Allele-aware chromosome-level genome assembly of the autohexaploid Diospyros kaki Thunb. Sci Data 2023; 10:270. [PMID: 37169805 PMCID: PMC10175270 DOI: 10.1038/s41597-023-02175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 04/21/2023] [Indexed: 05/13/2023] Open
Abstract
Artificially improving persimmon (Diospyros kaki Thunb.), one of the most important fruit trees, remains challenging owing to the lack of reference genomes. In this study, we generated an allele-aware chromosome-level genome assembly for the autohexaploid persimmon 'Xiaoguotianshi' (Chinese-PCNA type) using PacBio CCS and Hi-C technology. The final assembly contained 4.52 Gb, with a contig N50 value of 5.28 Mb and scaffold N50 value of 44.01 Mb, of which 4.06 Gb (89.87%) of the assembly were anchored onto 90 chromosome-level pseudomolecules comprising 15 homologous groups with 6 allelic chromosomes in each. A total of 153,288 protein-coding genes were predicted, of which 98.60% were functionally annotated. Repetitive sequences accounted for 64.02% of the genome; and 110,480 rRNAs, 12,297 tRNAs, 1,483 miRNAs, and 3,510 snRNA genes were also identified. This genome assembly fills the knowledge gap in the autohexaploid persimmon genome, which is conducive in the study on the regulatory mechanisms underlying the major economically advantageous traits of persimmons and promoting breeding programs.
Collapse
Affiliation(s)
- Huawei Li
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, No. 498 Shaoshan South Road, Changsha, 410004, China
| | - Peng Sun
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Yiru Wang
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Zhongren Zhang
- Novogene Bioinformatics Institute, Beijing, 100083, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai Chenshan Botanical Garden, 3888 Chenhua Road, Shanghai, 201602, China
| | - Yujing Suo
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Weijuan Han
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Songfeng Diao
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China
| | - Fangdong Li
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
| | - Jianmin Fu
- Research Institute of Non-timber Forestry, Chinese Academy of Forestry, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
- Key Laboratory of Non-timber Forest Germplasm Enhancement & Utilization of State Administration of Forestry and Grassland, No. 3 Weiwu Road, Jinshui District, Zhengzhou, 450003, China.
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
50
|
Gržan T, Dombi M, Despot-Slade E, Veseljak D, Volarić M, Meštrović N, Plohl M, Mravinac B. The Low-Copy-Number Satellite DNAs of the Model Beetle Tribolium castaneum. Genes (Basel) 2023; 14:genes14050999. [PMID: 37239359 DOI: 10.3390/genes14050999] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The red flour beetle Tribolium castaneum is an important pest of stored agricultural products and the first beetle whose genome was sequenced. So far, one high-copy-number and ten moderate-copy-number satellite DNAs (satDNAs) have been described in the assembled part of its genome. In this work, we aimed to catalog the entire collection of T. castaneum satDNAs. We resequenced the genome using Illumina technology and predicted potential satDNAs via graph-based sequence clustering. In this way, we discovered 46 novel satDNAs that occupied a total of 2.1% of the genome and were, therefore, considered low-copy-number satellites. Their repeat units, preferentially 140-180 bp and 300-340 bp long, showed a high A + T composition ranging from 59.2 to 80.1%. In the current assembly, we annotated the majority of the low-copy-number satDNAs on one or a few chromosomes, discovering mainly transposable elements in their vicinity. The current assembly also revealed that many of the in silico predicted satDNAs were organized into short arrays not much longer than five consecutive repeats, and some of them also had numerous repeat units scattered throughout the genome. Although 20% of the unassembled genome sequence masked the genuine state, the predominance of scattered repeats for some low-copy satDNAs raises the question of whether these are essentially interspersed repeats that occur in tandem only sporadically, with the potential to be satDNA "seeds".
Collapse
Affiliation(s)
- Tena Gržan
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- University Hospital Centre Zagreb, HR-10000 Zagreb, Croatia
| | - Mira Dombi
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | | | - Damira Veseljak
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Marin Volarić
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Nevenka Meštrović
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Miroslav Plohl
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| | - Brankica Mravinac
- Ruđer Bošković Institute, Bijenička Cesta 54, HR-10000 Zagreb, Croatia
| |
Collapse
|