1
|
B T SK, Hebbar UH, Annapurna Singh S. Isolation, purification, and physio-chemical characterization of melanin pigment from nigerseed hulls ( Guizotia abyssinica). Prep Biochem Biotechnol 2025; 55:141-149. [PMID: 38995969 DOI: 10.1080/10826068.2024.2376579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Plant melanin, a natural pigment, has gained significant attention recently due to its potential therapeutic and industrial applications. In this study, melanin pigments were extracted from Nigerseed hulls (NH) via alkali and acid extraction methods, followed by acid hydrolysis, organic solvent treatment, and repeated precipitation. The solubility of NH melanin was assessed, revealing solubility in alkali and dimethyl sulfoxide (DMSO) but insolubility in other common organic solvents. High-performance liquid chromatography (HPLC) was employed to measure the purity of NH melanin in comparison to standard melanin, while elemental analysis indicated a similarity between melanin extracted from nigerseed hulls and the standard counterpart. LC-MS data revealed a molecular weight of NH melanin. Furthermore, the stability of melanin was evaluated under varying conditions including temperature, oxidants, reducing agents, light exposure, and metal ion presence. Results demonstrated significant effects of Mg2+, Cu2+, and Fe2+ metal ions on melanin stability, with a minor effect observed for Ca2+, while sodium hyposulfite was found to destabilize the pigments. Our findings suggest that nigerseed hulls hold promise as a novel source for efficient melanin production, with potential applications in the food sector, food packaging, and biomedical fields.
Collapse
Affiliation(s)
- Sunil Kumar B T
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Umesh H Hebbar
- Department of Food Engineering, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sridevi Annapurna Singh
- Department of Traditional Foods and Applied Nutrition, CSIR-Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
2
|
Santos KFDN, Oliveira MS, Ferreira EPDB, Amaral ADG, Martin-Didonet CCG. Physicochemical characterization of the brown pigment produced by Azospirillum brasilense HM053 using tryptophan as precursor. Braz J Microbiol 2024; 55:2227-2237. [PMID: 38954221 PMCID: PMC11405611 DOI: 10.1007/s42770-024-01433-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
Microorganisms are known to be a promising source of biopigments because they are easy to obtain, can be produced on a commercial scale, and are environmentally friendly. Therefore, the aim of this work was to characterize a brown pigment (BP) produced by HM053 in NFbHPN-lactate medium. The BP was extracted from the pellet (BPP) or supernatant (BPS), in the presence (BPPTrp, BPSTrp) or absence (BPPw, BPSw) of tryptophan (Trp). The UV-vis results were similar among all BP samples and compared with commercial melanin used as a standard, and the maximum absorption was observed around 200-220 nm. FTIR spectra showed that BP and commercial melanin had slight differences, with a small band between 3000-2840 cm- 1, related to C-H in the CH2 and CH3 aliphatic groups, which is not observed in the commercial melanin. Between BPP and BPS showed a different structure with bands in the region 1230-1070 cm- 1 related to groups C-O. The thermogravimetric curves for BPSw and BPSTrp showed similar behavior, with 4 stages of mass loss. The similarity between BPPw and BPPTrp with 2 stages of mass loss was also observed. Scanning electron microscopy results showed morphological differences between BPP and BPS, where BPP had a physical structure more homogeneous and a regular flat surface, while the BPS physical structure did not seem homogeneous and the surface was uneven with some spherical structures as commercial melanin.
Collapse
Affiliation(s)
- Karina Freire d'Eça Nogueira Santos
- Embrapa Arroz e Feijão, Rodovia GO-462, Km12, Fazenda Capivara, Santo Antônio de Goiás,, GO, Brazil.
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil.
| | - Marilene Silva Oliveira
- Campus Anápolis de Ciências Exatas e Tecnológicas Henrique Santillo, UEG, Anápolis, GO, Brazil
- Simple Agro Corporation, Rua Augusta Bastos, 866, Setor Central, Rio Verde, GO, Brazil
| | | | | | | |
Collapse
|
3
|
Devi M, Ramakrishnan E, Deka S, Parasar DP. Bacteria as a source of biopigments and their potential applications. J Microbiol Methods 2024; 219:106907. [PMID: 38387652 DOI: 10.1016/j.mimet.2024.106907] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
From the prehistoric period, the utilization of pigments as colouring agents was an integral part of human life. Early people may have utilized paint for aesthetic motives, according to archaeologists. The pigments are either naturally derived or synthesized in the laboratory. Different studies reported that certain synthetic colouring compounds were toxic and had adverse health and environmental effects. Therefore, knowing the drawbacks of these synthetic colouring agents now scientists are attracted towards the harmless natural pigments. The main sources of natural pigments are plants, animals or microorganisms. Out of these natural pigments, microorganisms are the most important source for the production and application of bioactive secondary metabolites. Among all kinds of microorganisms, bacteria have specific benefits due to their short life cycle, low sensitivity to seasonal and climatic variations, ease of scaling, and ability to create pigments of various colours. Based on these physical characteristics, bacterial pigments appear to be a promising sector for novel biotechnological applications, ranging from functional food production to the development of new pharmaceuticals and biomedical therapies. This review summarizes the need for bacterial pigments, biosynthetic pathways of carotenoids and different applications of bacterial pigments.
Collapse
Affiliation(s)
- Moitrayee Devi
- Faculty of Paramedical Science (Microbiology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Elancheran Ramakrishnan
- Department of Chemistry, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Tiruchirappalli, Tamil Nadu 621112, India
| | - Suresh Deka
- Faculty of Science, Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India
| | - Deep Prakash Parasar
- Faculty of Science (Biotechnology), Assam down town University, Sankar Madhab Path, Gandhi Nagar, Panikhaiti, Guwahati, Assam 781026, India.
| |
Collapse
|
4
|
Saber WIA, Ghoniem AA, Al-Otibi FO, El-Hersh MS, Eldadamony NM, Menaa F, Elattar KM. A comparative study using response surface methodology and artificial neural network towards optimized production of melanin by Aureobasidium pullulans AKW. Sci Rep 2023; 13:13545. [PMID: 37598271 PMCID: PMC10439932 DOI: 10.1038/s41598-023-40549-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/12/2023] [Indexed: 08/21/2023] Open
Abstract
The effect of three independent variables (i.e., tyrosine, sucrose, and incubation time) on melanin production by Aureobasidium pullulans AKW was unraveled by two distinctive approaches: response surface methodology (i.e. Box Behnken design (BBD)) and artificial neural network (ANN) in this study for the first time ever using a simple medium. Regarding BBD, sucrose and incubation intervals did impose a significant influence on the output (melanin levels), however, tyrosine did not. The validation process exhibited a high consistency of BBD and ANN paradigms with the experimental melanin production. Concerning ANN, the predicted values of melanin were highly comparable to the experimental values, with minor errors competing with BBD. Highly comparable experimental values of melanin were achieved upon using BBD (9.295 ± 0.556 g/L) and ANN (10.192 ± 0.782 g/L). ANN accurately predicted melanin production and showed more improvement in melanin production by about 9.7% higher than BBD. The purified melanin structure was verified by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction pattern (XRD), and thermogravimetric analysis (TGA). The results verified the hierarchical architecture of the particles as small compasses by SEM analysis, inter-layer spacing in the XRD analysis, maximal atomic % for carbon, and oxygen atoms in the EDX analysis, and the great thermal stability in the TGA analysis of the purified melanin. Interestingly, the current novel endophytic strain was tyrosine-independent, and the uniquely applied ANN paradigm was more efficient in modeling the melanin production with appreciate amount on a simple medium in a relatively short time (168 h), suggesting additional optimization studies for further maximization of melanin production.
Collapse
Affiliation(s)
- WesamEldin I A Saber
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Abeer A Ghoniem
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Fatimah O Al-Otibi
- Botany and Microbiology Department, Faculty of Science, King Saud University, 11451, Riyadh, Saudi Arabia.
| | - Mohammed S El-Hersh
- Microbial Activity Unit, Department of Microbiology, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, Egypt
| | - Noha M Eldadamony
- Seed Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, 12619, Egypt.
| | - Farid Menaa
- Department of Biomedical and Environmental Engineering (BEE), Fluorotronics, Inc. California Innovation Corporation, San Diego, CA, 92037, USA
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University, El-Gomhoria Street, Mansoura, 35516, Egypt
| |
Collapse
|
5
|
Natural Melanin: Current Trends, and Future Approaches, with Especial Reference to Microbial Source. Polymers (Basel) 2022; 14:polym14071339. [PMID: 35406213 PMCID: PMC9002885 DOI: 10.3390/polym14071339] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/09/2022] [Accepted: 02/24/2022] [Indexed: 02/04/2023] Open
Abstract
Melanin is a universal natural dark polymeric pigment, arising in microorganisms, animals, and plants. There is a couple of pieces of literature on melanin, each focusing on a different issue, the goal of the present review is to focus on microbial melanin. It has numerous benefits with very few drawbacks. The current situation and expected trends are discussed. Intriguing, numerous studies have provoked a serious necessity for a comprehensive assessment of microbial melanin pigments. So that, such review would help scholars from diverse backgrounds to realize the importance of melanin pigments isolated from microorganisms, with this aim in mind, information, and hypothesis from this review could be the paradigm for studies on melanin in the next era.
Collapse
|
6
|
Melanin production by Pseudomonas sp. and in silico comparative analysis of tyrosinase gene sequences. BIOTECHNOLOGIA 2021; 102:411-424. [PMID: 36605604 PMCID: PMC9642935 DOI: 10.5114/bta.2021.111106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/06/2021] [Accepted: 09/14/2021] [Indexed: 01/09/2023] Open
Abstract
Background Melanin finds enormous applications in different industries for its unique photoprotective and anti-oxidant properties. Due to its emerging demand, scientific researchers are putting efforts to unravel more microorganisms with a potential of producing melanin on large scale. Hence, the present study was aimed at the isolation of extracellular melanin producing microorganisms from lime quarries of Karnataka, India. Besides this, the tyrosinase gene governing melanin synthesis in different organisms were compared in silico to understand its evolutionary aspects. Material and methods Melanin producing microorganisms were screened on tyrosine gelatin beef extract agar medium. Potential isolate was explored for submerged production of melanin in broth containing L-tyrosine. Melanin was characterized by UV-Vis spectroscopy, thin layer and high performance liquid chromatographic techniques. Antibacterial activity of melanin was performed by agar well assay. Comparative tyrosinase gene sequence analysis was performed by using Geneious 2021.1 trial version software. Results Pseudomonas otitidis DDB2 was found to be potential for melanin production. No antibacterial activity was exerted by the melanin against tested pathogens. The in silico studies showed that the common central domain of tyrosinase protein sequence of selected Pseudomonas sps. exhibited 100% identity with the common central domain of Homo sapiens tyrosinase (NP_000363.1). Conclusions Our study shows the production of melanin in good quantities by the isolate Pseudomonas otitidis DDB2 which can be explored for scale-up process. Since the melanin formed is of eumelanin type and the tyrosinase gene sequence of several Pseudomonas sp. showed relatedness to humans, this molecule may be further developed for sunscreen formulations.
Collapse
|
7
|
Arizmendi-Grijalva A, Martínez-Higuera AA, Soto-Guzmán JA, Martínez-Soto JM, Rodríguez-León E, Rodríguez-Beas C, López-Soto LF, Alvarez-Cirerol FJ, Garcia-Flores N, Cortés-Reynosa P, Pérez-Salazar E, Iñiguez-Palomares R. Effect on Human Vascular Endothelial Cells of Au Nanoparticles Synthesized from Vitex mollis. ACS OMEGA 2021; 6:24338-24350. [PMID: 34604617 PMCID: PMC8482397 DOI: 10.1021/acsomega.1c01506] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Indexed: 06/13/2023]
Abstract
A green method for synthesizing gold nanoparticles is proposed using hydroethanolic extract of Vitex mollis fruit (Vm extract) as a reducer and stabilizer. The formation of gold nanoparticles synthesized with Vm extract (AuVmNPs) was monitored by measuring the ultraviolet-visible spectra. The morphology and crystalline phase were determined using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. Synthesized nanoparticles were generally spherical, and the size distribution obtained by transmission electron microscopy shows two populations with mean sizes of 12.5 and 22.5 nm. Cell viability assay using MTT and cellular apoptosis studies using annexin V on human umbilical vein endothelial cells (HUVECs) and the human mammary epithelial cell line (MCF10A) indicate that AuVmNPs have low toxicity. Cell migration tests indicate that AuVmNPs significantly inhibit HUVEC cell migration in a dose-dependent manner. The evaluation of the localization of AuVmNPs in HUVECs using confocal laser scanning microscopy indicates that nanoparticles penetrate cells and are found in the cytosol without preferential distribution and without entering the nucleus. The inhibitory effect on cellular migration and low toxicity suggest AuVmNPs as appropriate candidates in future studies of antiangiogenic activity.
Collapse
Affiliation(s)
- Abraham Arizmendi-Grijalva
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Aarón Alberto Martínez-Higuera
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Jesús Adriana Soto-Guzmán
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Juan Manuel Martínez-Soto
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Ericka Rodríguez-León
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - César Rodríguez-Beas
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Luis Fernando López-Soto
- Department
of Medicine and Health Science, Universidad
de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Francisco Javier Alvarez-Cirerol
- Health
Sciences Graduate Program, Department of Biological Chemistry, Universidad de Sonora, Rosales and Transversal, Hermosillo, Sonora 83000, Mexico
| | - Nadia Garcia-Flores
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| | - Pedro Cortés-Reynosa
- Departamento
de Biología Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360 Mexico DF, Mexico
| | - Eduardo Pérez-Salazar
- Departamento
de Biología Celular, Cinvestav-IPN, San Pedro Zacatenco, 07360 Mexico DF, Mexico
| | - Ramón Iñiguez-Palomares
- Nanotechnology
Graduate Program, Department of Physics, Universidad de Sonora, Rosales and
Transversal, Hermosillo, Sonora 83000, Mexico
| |
Collapse
|
8
|
Eskandari S, Etemadifar Z. Melanin biopolymers from newly isolated Pseudomonas koreensis strain UIS 19 with potential for cosmetics application, and optimization on molasses waste medium. J Appl Microbiol 2021; 131:1331-1343. [PMID: 33609007 DOI: 10.1111/jam.15046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 11/28/2022]
Abstract
AIMS Bacterial melanins are UV-absorber biopolymers with potential applications in cosmetics and pharmaceutical industries. However, the cost concern of these pigments remains a limiting factor for their commercial production. Hence, the present study was aimed to isolate a bacterium with high yield of melanin by optimization of an inexpensive waste sources. METHODS AND RESULTS Pseudomonas koreensis UIS 19 (accession number: MG548583), which displayed significant bioproduction of melanin along with high tyrosinase enzyme activity was isolated from soil and introduced as a melanin-producing bacterium. Scanning and transmission electron microscope studies revealed that melanin pigments accumulated inside as well as the extracellular space of the cells. Melanin was extracted from the isolated strain and its detection was investigated using NMR and HPLC analyses. Here, we showed that the DPPH radical scavenging activity of 20 mg ml-1 melanin extracted from the isolated strain was >92·42% and its sun protection factor (SPF) value was 61·55. Melanin production by the UIS 19 in molasses medium showed sugar consumption (32 g l-1 ) for biomass production (5·4 g dry wt) and melanin yield of 0·44 g dry wt g-1 biomass from l-tyrosine. Some critical intermediated such tyramine, l-dopa, dopamine and dopaquinone related to the melanin Raper Mason pathway were detected by H-NMR. Furthermore, to achieve high bioproduction of melanin in inexpensive media include 5% molasses 5 Brix as an industrial waste, nutritional and environmental parameters were screened using response surface methodology by Box-Behnken design in which, maximum melanin yield of 5·5 g dry wt l-1 was obtained. CONCLUSIONS The bioproduction of melanin as valuable compound from P. koreensis was performed using an optimized waste medium. The purified melanin showed high radical scavenging activity and high SPF value. SIGNIFICANCE AND IMPACT OF THE STUDY Pseudomonas koreensis UIS 19 is a promising candidate for industrial production of melanin as cosmetic skin-care product.
Collapse
Affiliation(s)
- S Eskandari
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Z Etemadifar
- Department of Cell and Molecular Biology & Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| |
Collapse
|
9
|
Singh S, Nimse SB, Mathew DE, Dhimmar A, Sahastrabudhe H, Gajjar A, Ghadge VA, Kumar P, Shinde PB. Microbial melanin: Recent advances in biosynthesis, extraction, characterization, and applications. Biotechnol Adv 2021; 53:107773. [PMID: 34022328 DOI: 10.1016/j.biotechadv.2021.107773] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 12/19/2022]
Abstract
Melanin is a common name for a group of biopolymers with the dominance of potential applications in medical sciences, cosmeceutical, bioremediation, and bioelectronic applications. The broad distribution of these pigments suggests their role to combat abiotic and biotic stresses in diverse life forms. Biosynthesis of melanin in fungi and bacteria occurs by oxidative polymerization of phenolic compounds predominantly by two pathways, 1,8-dihydroxynaphthalene [DHN] or 3,4-dihydroxyphenylalanine [DOPA], resulting in different kinds of melanin, i.e., eumelanin, pheomelanin, allomelanin, pyomelanin, and neuromelanin. The enzymes responsible for melanin synthesis belong mainly to tyrosinase, laccase, and polyketide synthase families. Studies have shown that manipulating culture parameters, combined with recombinant technology, can increase melanin yield for large-scale production. Despite significant efforts, its low solubility has limited the development of extraction procedures, and heterogeneous structural complexity has impaired structural elucidation, restricting effective exploitation of their biotechnological potential. Innumerable studies have been performed on melanin pigments from different taxa of life in order to advance the knowledge about melanin pigments for their efficient utilization in diverse applications. These studies prompted an urgent need for a comprehensive review on melanin pigments isolated from microorganisms, so that such review encompassing biosynthesis, bioproduction, characterization, and potential applications would help researchers from diverse background to understand the importance of microbial melanins and to utilize the information from the review for planning studies on melanin. With this aim in mind, the present report compares conventional and modern ideas for environment-friendly extraction procedures for melanin. Furthermore, the characteristic parameters to differentiate between eumelanin and pheomelanin are also mentioned, followed by their biotechnological applications forming the basis of industrial utilization. There lies a massive scope of work to circumvent the bottlenecks in their isolation and structural elucidation methodologies.
Collapse
Affiliation(s)
- Sanju Singh
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Satish B Nimse
- Institute of Applied Chemistry and Department of Chemistry, Hallym University, Chuncheon 200702, Republic of Korea
| | - Doniya Elze Mathew
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Applied Phycology and Biotechnology Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India
| | - Asmita Dhimmar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Harshal Sahastrabudhe
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Apexa Gajjar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vishal A Ghadge
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pankaj Kumar
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pramod B Shinde
- Natural Products & Green Chemistry Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), Bhavnagar 364002, Gujarat, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
10
|
A Yarrowia lipolytica Strain Engineered for Pyomelanin Production. Microorganisms 2021; 9:microorganisms9040838. [PMID: 33920006 PMCID: PMC8071058 DOI: 10.3390/microorganisms9040838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/09/2021] [Accepted: 04/10/2021] [Indexed: 11/20/2022] Open
Abstract
The yeast Yarrowia lipolytica naturally produces pyomelanin. This pigment accumulates in the extracellular environment following the autoxidation and polymerization of homogentisic acid, a metabolite derived from aromatic amino acids. In this study, we used a chassis strain optimized to produce aromatic amino acids for the de novo overproduction of pyomelanin. The gene 4HPPD, which encodes an enzyme involved in homogentisic acid synthesis (4-hydroxyphenylpyruvic acid dioxygenase), was characterized and overexpressed in the chassis strain with up to three copies, leading to pyomelanin yields of 4.5 g/L. Homogentisic acid is derived from tyrosine. When engineered strains were grown in a phenylalanine-supplemented medium, pyomelanin production increased, revealing that the yeast could convert phenylalanine to tyrosine, or that the homogentisic acid pathway is strongly induced by phenylalanine.
Collapse
|
11
|
Roy S, Rhim JW. New insight into melanin for food packaging and biotechnology applications. Crit Rev Food Sci Nutr 2021; 62:4629-4655. [PMID: 33523716 DOI: 10.1080/10408398.2021.1878097] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Melanin is a dark brown to black biomacromolecule with biologically active multifunctional properties that do not have a precise chemical structure, but its structure mainly depends on the polymerization conditions during the synthesis process. Natural melanin can be isolated from various animal, plant, and microbial sources, while synthetic melanin-like compounds can be synthesized by simple polymerization of dopamine. Melanin is widely used in various areas due to its functional properties such as photosensitivity, light barrier property, free radical scavenging ability, antioxidant activity, etc. It also has an excellent ability to act as a reducing agent and capping agent to synthesize various metal nanoparticles. Melanin nanoparticles (MNP) or melanin-like nanoparticles (MLNP) have the unique potential to act as functional materials to improve nanocomposite films' physical and functional properties. Various food packaging and biomedical applications have been made alone or by mixing melanin or MLNP. In this review, the general aspects of melanin that highlight biological activity, along with a description of MNP and the use as nanofillers in packaging films as well as reducing and capping agents and biomedical applications, were comprehensively reviewed.
Collapse
Affiliation(s)
- Swarup Roy
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
12
|
Kowsalya E, MosaChristas K, Balashanmugam P, Manivasagan V, Devasena T, Jaquline CRI. Sustainable use of biowaste for synthesis of silver nanoparticles and its incorporation into gelatin‐based nanocomposite films for antimicrobial food packaging applications. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13641] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Elumalai Kowsalya
- Department of Plant Biology and Biotechnology Loyola College, University of Madras Chennai Tamil Nadu India
| | - Kithiyon MosaChristas
- Department of Plant Biology and Biotechnology Loyola College, University of Madras Chennai Tamil Nadu India
| | | | - Veerasamy Manivasagan
- Department of Biotechnology Adhiyamaan College of Engineering Hosur Tamil Nadu India
| | - Thiyagarajan Devasena
- Centre for Nanoscience and Nanotechnology A.C. Tech Campus, Anna University Chennai Tamil Nadu India
| | | |
Collapse
|
13
|
Tran-Ly AN, Reyes C, Schwarze FWMR, Ribera J. Microbial production of melanin and its various applications. World J Microbiol Biotechnol 2020; 36:170. [PMID: 33043393 PMCID: PMC7548279 DOI: 10.1007/s11274-020-02941-z] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023]
Abstract
Melanins are natural biopolymers that are known to contribute to different biological processes and to protect organisms from adverse environmental conditions. During the past decade, melanins have attracted increasing attention for their use in organic semiconductors and bioelectronics, drug delivery, photoprotection and environmental bioremediation. Although considerable advances in these fields have been achieved, real-world applications of melanins are still scarce, probably due to the limited and expensive source of natural melanin. Nevertheless, recent biotechnological advances have allowed for relatively large-scale production of microbial melanins, which could replace current commercial melanin. In this review, we first describe different melanin sources and highlight the advantages and disadvantages of each production method. Our focus is on the microbial synthesis of melanins, including the methodology and mechanism of melanin formation. Applications of microbial melanins are also discussed, and an outlook on how to push the field forward is discussed.
Collapse
Affiliation(s)
- Anh N Tran-Ly
- Laboratory for Cellulose & Wood Materials, Empa, 9014, St. Gallen, Switzerland.
- Department of Civil, Environmental and Geomatic Engineering, ETH Zürich, 8093, Zürich, Switzerland.
| | - Carolina Reyes
- Laboratory for Cellulose & Wood Materials, Empa, 9014, St. Gallen, Switzerland
| | | | - Javier Ribera
- Laboratory for Cellulose & Wood Materials, Empa, 9014, St. Gallen, Switzerland.
| |
Collapse
|
14
|
Ben Tahar I, Kus‐Liśkiewicz M, Lara Y, Javaux E, Fickers P. Characterization of a nontoxic pyomelanin pigment produced by the yeast
Yarrowia lipolytica. Biotechnol Prog 2020; 36:e2912. [DOI: 10.1002/btpr.2912] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023]
Affiliation(s)
- Imen Ben Tahar
- Microbial Processes and Interactions, TERRA Teaching and Research CentreUniversity of Liège ‐ Gembloux Agro Bio Tech Gembloux Belgium
| | | | - Yannick Lara
- Early Life Traces & Evolution – Astrobiology, UR Astrobiology, Geology DepartmentUniversity of Liège Gembloux Belgium
| | - Emmanuelle Javaux
- Early Life Traces & Evolution – Astrobiology, UR Astrobiology, Geology DepartmentUniversity of Liège Gembloux Belgium
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research CentreUniversity of Liège ‐ Gembloux Agro Bio Tech Gembloux Belgium
| |
Collapse
|
15
|
Pavan ME, López NI, Pettinari MJ. Melanin biosynthesis in bacteria, regulation and production perspectives. Appl Microbiol Biotechnol 2019; 104:1357-1370. [PMID: 31811318 DOI: 10.1007/s00253-019-10245-y] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/25/2019] [Accepted: 11/04/2019] [Indexed: 12/26/2022]
Abstract
The production of black pigments in bacteria was discovered more than a century ago and related to tyrosine metabolism. However, their diverse biological roles and the control of melanin synthesis in different bacteria have only recently been investigated. The broad distribution of these pigments suggests that they have an important role in a variety of organisms. Melanins protect microorganisms from many environmental stress conditions, ranging from ultraviolet radiation and toxic heavy metals to oxidative stress. Melanins can also affect bacterial interactions with other organisms and are important in pathogenesis and survival in many environments. Bacteria produce several types of melanin through dedicated pathways or as a result of enzymatic imbalances in altered metabolic routes. The control of the melanin synthesis in bacteria involves metabolic and transcriptional regulation, but many aspects remain still largely unknown. The diverse properties of melanins have spurred a large number of applications, and recent efforts have been done to produce the pigment at biotechnologically relevant scales.
Collapse
Affiliation(s)
- María Elisa Pavan
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nancy I López
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | - M Julia Pettinari
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina. .,IQUIBICEN-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.
| |
Collapse
|
16
|
El-Bialy HA, El-Gamal MS, Elsayed MA, Saudi H, Khalifa M. Microbial melanin physiology under stress conditions and gamma radiation protection studies. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2019.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
17
|
Roy S, Rhim JW. Carrageenan-based antimicrobial bionanocomposite films incorporated with ZnO nanoparticles stabilized by melanin. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.12.056] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
18
|
Fan B, Yang X, Li X, Lv S, Zhang H, Sun J, Li L, Wang L, Qu B, Peng X, Zhang R. Photoacoustic-imaging-guided therapy of functionalized melanin nanoparticles: combination of photothermal ablation and gene therapy against laryngeal squamous cell carcinoma. NANOSCALE 2019; 11:6285-6296. [PMID: 30882835 DOI: 10.1039/c9nr01122f] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Multimodality therapy under imaging-guidance is significant to improve the accuracy of cancer treatment. In this study, a photoacoustic imaging (PAI)-guided anticancer strategy based on poly-l-lysine functionalized melanin nanoparticles (MNP-PLL) was developed to treat laryngeal squamous cell carcinoma (LSCC). As a promising alternative to traditional therapies for LSCC, MNP-PLL/miRNA nanoparticles were combined with photothermal ablation against primary tumors and miR-145-5p mediated gene therapy for depleting the metastatic potential of tumor cells. Furthermore, taking advantage of the photoacoustic properties of melanin, PAI guided therapy could optimize the time point of NIR irradiation to maximize the efficacy of photothermal therapy (PTT). The in vitro and in vivo results proved that the combined treatments displayed the most significant tumor suppression compared with monotherapy. By integrating thermo-gene therapies into a theranostic nanoplatform, the MNP-PLL/miR-145-5p nanoparticles significantly suppressed the LSCC progression, indicating their great potential use for cancer therapy.
Collapse
Affiliation(s)
- Bo Fan
- Department of Pharmacy, Shanxi Medical University, Taiyuan 030001, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Biogenic synthesis and effect of silver nanoparticles (AgNPs) to combat catheter-related urinary tract infections. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101037] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
20
|
Qi C, Fu LH, Xu H, Wang TF, Lin J, Huang P. Melanin/polydopamine-based nanomaterials for biomedical applications. Sci China Chem 2019. [DOI: 10.1007/s11426-018-9392-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Kiran GS, Sekar S, Ramasamy P, Thinesh T, Hassan S, Lipton AN, Ninawe AS, Selvin J. Marine sponge microbial association: Towards disclosing unique symbiotic interactions. MARINE ENVIRONMENTAL RESEARCH 2018; 140:169-179. [PMID: 29935729 DOI: 10.1016/j.marenvres.2018.04.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 03/01/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Sponges are sessile benthic filter-feeding animals, which harbor numerous microorganisms. The enormous diversity and abundance of sponge associated bacteria envisages sponges as hot spots of microbial diversity and dynamics. Many theories were proposed on the ecological implications and mechanism of sponge-microbial association, among these, the biosynthesis of sponge derived bioactive molecules by the symbiotic bacteria is now well-indicated. This phenomenon however, is not exhibited by all marine sponges. Based on the available reports, it has been well established that the sponge associated microbial assemblages keep on changing continuously in response to environmental pressure and/or acquisition of microbes from surrounding seawater or associated macroorganisms. In this review, we have discussed nutritional association of sponges with its symbionts, interaction of sponges with other eukaryotic organisms, dynamics of sponge microbiome and sponge-specific microbial symbionts, sponge-coral association etc.
Collapse
Affiliation(s)
- G Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Sivasankari Sekar
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Pasiyappazham Ramasamy
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | | | - Saqib Hassan
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - Anuj Nishanth Lipton
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India
| | - A S Ninawe
- Department of Biotechnology, Ministry of Science and Technology, New Delhi, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
22
|
Seghal Kiran G, Ramasamy P, Sekar S, Ramu M, Hassan S, Ninawe A, Selvin J. Synthetic biology approaches: Towards sustainable exploitation of marine bioactive molecules. Int J Biol Macromol 2018; 112:1278-1288. [DOI: 10.1016/j.ijbiomac.2018.01.149] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/18/2018] [Accepted: 01/21/2018] [Indexed: 12/18/2022]
|
23
|
Keles Y, Özdemir Ö. Extraction, purification, antioxidant properties and stability conditions of phytomelanin pigment on the sunflower seeds. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2018. [DOI: 10.21448/ijsm.377470] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
24
|
de Barros CHN, Cruz GCF, Mayrink W, Tasic L. Bio-based synthesis of silver nanoparticles from orange waste: effects of distinct biomolecule coatings on size, morphology, and antimicrobial activity. Nanotechnol Sci Appl 2018; 11:1-14. [PMID: 29618924 PMCID: PMC5875405 DOI: 10.2147/nsa.s156115] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose Despite the numerous reports on biological syntheses of silver nanoparticles (AgNPs), little is known about the composition of their capping agents, protein corona of plant extract-mediated synthesis, and their influence on the properties of AgNPs. Here, orange (Citrus sinensis) waste was utilized as a source of an extract for AgNP synthesis (the protein corona composition of which was elucidated), and also as a starting material for hesperidin and nanocellulose extraction, which were used for bio-based AgNP synthesis. A comparison of the results using the two methods of synthesis is presented. Methods AgNPs were synthesized using orange (C. sinensis) peel extract (Or-AgNPs) in a biological route, and using hesperidin (Hsd-AgNPs) and nanocellulose (extracted from oranges) in a green chemical route. Characterization of nanoparticles was carried out using zeta potential and hydrodynamic size measurements, transmission electron microscopy, and X-ray diffraction. Elucidation of proteins from protein corona was performed via ultra performance liquid chromatography-tandem mass spectrometer experiments. Antimicrobial activity was assessed via minimum inhibitory concentration assays against Xanthomonas axonopodis pv. citri (Xac), the bacterium that causes citric canker in oranges. Results Or-AgNPs were not completely uniform in morphology, having a size of 48.1±20.5 nm and a zeta potential of −19.0±0.4 mV. Stabilization was performed mainly by three proteins, which were identified by tandem mass spectrometry (MS/MS) experiments. Hsd-AgNPs were smaller (25.4±12.5 nm) and had uniform morphology. Nanocellulose provided a strong steric and electrostatic (−28.2±1.0 mV) stabilization to the nanoparticles. Both AgNPs presented roughly the same activity against Xac, with the minimum inhibitory concentration range between 22 and 24 μg mL−1. Conclusion Despite the fact that different capping biomolecules on AgNPs had an influence on morphology, size, and stability of AgNPs, the antibacterial activity against Xac was not sensitive to this parameter. Moreover, three proteins from the protein corona of Or-AgNPs were identified.
Collapse
Affiliation(s)
- Caio Henrique Nasi de Barros
- Laboratory of Chemical Biology, Department of Organic Chemistry, Instituto de Química da Universidade Estadual de Campinas-Unicamp, Campinas, SP, Brazil
| | - Guilherme Crispim Faria Cruz
- Laboratory of Chemical Biology, Department of Organic Chemistry, Instituto de Química da Universidade Estadual de Campinas-Unicamp, Campinas, SP, Brazil
| | - Willian Mayrink
- Laboratory of Chemical Biology, Department of Organic Chemistry, Instituto de Química da Universidade Estadual de Campinas-Unicamp, Campinas, SP, Brazil
| | - Ljubica Tasic
- Laboratory of Chemical Biology, Department of Organic Chemistry, Instituto de Química da Universidade Estadual de Campinas-Unicamp, Campinas, SP, Brazil
| |
Collapse
|
25
|
Rizzo C, Syldatk C, Hausmann R, Gerçe B, Longo C, Papale M, Conte A, De Domenico E, Michaud L, Lo Giudice A. The demospongeHalichondria (Halichondria) panicea(Pallas, 1766) as a novel source of biosurfactant-producing bacteria. J Basic Microbiol 2018; 58:532-542. [DOI: 10.1002/jobm.201700669] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 01/31/2018] [Accepted: 02/28/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Carmen Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Christoph Syldatk
- Section II: Technical Biology; Institute of Process Engineering in Life Sciences; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Rudolf Hausmann
- Section Bioprocess Engineering; Institute of Food Science and Biotechnology; University of Hohenheim; Stuttgart Germany
| | - Berna Gerçe
- Section II: Technical Biology; Institute of Process Engineering in Life Sciences; Karlsruhe Institute of Technology (KIT); Karlsruhe Germany
| | - Caterina Longo
- Department of Biology; University of Bari “Aldo Moro,”; Bari Italy
| | - Maria Papale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Antonella Conte
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Emilio De Domenico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Luigi Michaud
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Angelina Lo Giudice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
- Institute for the Coastal Marine Environment (IAMC-CNR); National Research Council; Messina Italy
| |
Collapse
|
26
|
Araújo FVDE, Netto MCM, Azevedo GP, Jayme MMA, Nunes-Carvalho MC, Silva MM, Carmo FLDO. Ecology and biotechnological potential of bacterial community from three marine sponges of the coast of Rio de Janeiro, Brazil. AN ACAD BRAS CIENC 2017; 89:2785-2792. [PMID: 29236862 DOI: 10.1590/0001-3765201720170462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/11/2017] [Indexed: 11/22/2022] Open
Abstract
Marine sponges has been a large reservoir of microbial diversity, with the presence of many species specific populations as well as producing biologically active compounds, which has attracted great biotechnological interest. In order to verify the influence of the environment in the composition of the bacterial community present in marine sponges and biotechnological potential of bacteria isolated from these organisms, three species of sponges and the waters surrounding them were collected in different beaches of Rio de Janeiro, Brazil. The profile of the bacterial community present in sponges and water was obtained by PCR-DGGE technique and the biotechnological potential of the strains isolated by producing amylase, cellulase, protease and biosurfactants. The results showed that despite the influence of the environment in the composition of the microbial community, studied marine sponges shown to have specific bacterial populations, with some, showing potential in the production of substances of biotechnological applications.
Collapse
Affiliation(s)
- Fábio V DE Araújo
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Marcelle C M Netto
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Gustavo P Azevedo
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Marcelly M A Jayme
- Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rua São Francisco Xavier, 524, 3° andar , Maracanã, 20550-900 Rio de Janeiro, RJ, Brazil
| | - Monica C Nunes-Carvalho
- Departamento de Bioquímica, Instituto de Química, Universidade Federal do Rio de Janeiro, Cidade Universitária, Av. Athos da Silveira Ramos, 149, 21044-020 Rio de Janeiro, RJ, Brazil
| | - Mariana M Silva
- Departamento de Ciências, Faculdade de Formação de Professores, Universidade do Estado do Rio de Janeiro, Rua Dr. Francisco Portela, 1470, Patronato, 24435-005 São Gonçalo, RJ, Brazil
| | - Flávia L DO Carmo
- Departamento de Microbiologia Geral, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Cidade Universitária, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
27
|
Jacob PJ, Masarudin MJ, Hussein MZ, Rahim RA. Facile aerobic construction of iron based ferromagnetic nanostructures by a novel microbial nanofactory isolated from tropical freshwater wetlands. Microb Cell Fact 2017; 16:175. [PMID: 29020992 PMCID: PMC5637262 DOI: 10.1186/s12934-017-0789-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/03/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iron based ferromagnetic nanoparticles (IONP) have found a wide range of application in microelectronics, chemotherapeutic cell targeting, and as contrast enhancers in MRI. As such, the design of well-defined monodisperse IONPs is crucial to ensure effectiveness in these applications. Although these nanostructures are currently manufactured using chemical and physical processes, these methods are not environmentally conducive and weigh heavily on energy and outlays. Certain microorganisms have the innate ability to reduce metallic ions in aqueous solution and generate nano-sized IONP's with narrow size distribution. Harnessing this potential is a way forward in constructing microbial nanofactories, capable of churning out high yields of well-defined IONP's with physico-chemical characteristics on par with the synthetically produced ones. RESULTS In this work, we report the molecular characterization of an actinomycetes, isolated from tropical freshwater wetlands sediments, that demonstrated rapid aerobic extracellular reduction of ferric ions to generate iron based nanoparticles. Characterization of these nanoparticles was carried out using Field Emission Scanning Electron Microscope with energy dispersive X-ray spectroscopy (FESEM-EDX), Field Emission Transmission Electron Microscope (FETEM), Ultraviolet-Visible (UV-Vis) Spectrophotometer, dynamic light scattering (DLS) and Fourier transform infrared spectroscopy (FTIR). This process was carried out at room temperature and humidity and under aerobic conditions and could be developed as an environmental friendly, cost effective bioprocess for the production of IONP's. CONCLUSION While it is undeniable that iron reducing microorganisms confer a largely untapped resource as potent nanofactories, these bioprocesses are largely anaerobic and hampered by the low reaction rates, highly stringent microbial cultural conditions and polydispersed nanostructures. In this work, the novel isolate demonstrated rapid, aerobic reduction of ferric ions in its extracellular matrix, resulting in IONPs of relatively narrow size distribution which are easily extracted and purified without the need for convoluted procedures. It is therefore hoped that this isolate could be potentially developed as an effective nanofactory in the future.
Collapse
Affiliation(s)
- Patricia Jayshree Jacob
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Mas Jaffri Masarudin
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia. .,Institute of Biosciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia.
| | - Mohd Zobir Hussein
- Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Raha Abdul Rahim
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| |
Collapse
|
28
|
Synthesis of Nm-PHB (nanomelanin-polyhydroxy butyrate) nanocomposite film and its protective effect against biofilm-forming multi drug resistant Staphylococcus aureus. Sci Rep 2017; 7:9167. [PMID: 28831068 PMCID: PMC5567312 DOI: 10.1038/s41598-017-08816-y] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 07/19/2017] [Indexed: 12/30/2022] Open
Abstract
Melanin is a dark brown ubiquitous photosynthetic pigment which have many varied and ever expanding applications in fabrication of radio-protective materials, food packaging, cosmetics and in medicine. In this study, melanin production in a Pseudomonas sp. which was isolated from the marine sponge Tetyrina citirna was optimized employing one-factor at a time experiments and characterized for chemical nature and stability. Following sonication nucleated nanomelanin (Nm) particles were formed and evaluated for antibacterial and antioxidant properties. Nanocomposite film was fabricated using combinations (% w/v) of polyhydroxy butyrate-nanomelanin (PHB:Nm) blended with 1% glycerol. The Nm was found to be spherical in shape with a diameter of 100-140 nm and showed strong antimicrobial activity against both Gram positive and Gram negative bacteria. The Nm-PHB nanocomposite film was homogeneous, smooth, without any cracks, and flexible. XRD and DSC data indicated that the film was crystalline in nature, and was thermostable up to 281.87 °C. This study represents the first report on the synthesis of Nm and fabrication of Nm-PHB nanocomposite film which show strong protective effect against multidrug resistant Staphyloccoccus aureus. Thus this Nm-PHB nanocomposite film may find utility as packaging material for food products by protecting the food products from oxidation and bacterial contamination.
Collapse
|
29
|
Sathiyanarayanan G, Dineshkumar K, Yang YH. Microbial exopolysaccharide-mediated synthesis and stabilization of metal nanoparticles. Crit Rev Microbiol 2017; 43:731-752. [DOI: 10.1080/1040841x.2017.1306689] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ganesan Sathiyanarayanan
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| | - Krishnamoorthy Dineshkumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, India
- Marine and Lake Biogeochemistry Group, Institute F.-A. Forel, Earth and Environmental Sciences, University of Geneva, Geneva, Switzerland
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
- Microbial Carbohydrate Resource Bank, Konkuk University, Seoul, South Korea
| |
Collapse
|
30
|
Melanin-Associated Synthesis of SERS-Active Nanostructures and the Application for Monitoring of Intracellular Melanogenesis. NANOMATERIALS 2017; 7:nano7030070. [PMID: 28336903 PMCID: PMC5388172 DOI: 10.3390/nano7030070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/11/2017] [Accepted: 03/14/2017] [Indexed: 01/28/2023]
Abstract
Melanin plays an indispensable role in the human body. It serves as a biological reducer for the green synthesis of precious metal nanoparticles. Melanin–Ag nanocomposites were successfully produced which exhibited very strong surface-enhanced Raman scattering (SERS) effect because of the reducibility property of melanin. A melanin–Ag composite structure was synthesized in situ in melanin cells, and SERS technique was performed for the rapid imaging and quantitative assay of intracellular melanin. This imaging technique was also used to successfully trace the formation and secretion of intracellular melanin after stimulation with melanin-stimulating hormones. Based on the self-reducing property of melanin, the proposed SERS imaging method can provide potentially powerful analytical detection tools to study the biological functions of melanin and to prevent and cure melanin-related diseases.
Collapse
|
31
|
Mejía-Caballero A, de Anda R, Hernández-Chávez G, Rogg S, Martinez A, Bolívar F, Castaño VM, Gosset G. Biosynthesis of catechol melanin from glycerol employing metabolically engineered Escherichia coli. Microb Cell Fact 2016; 15:161. [PMID: 27659593 PMCID: PMC5034560 DOI: 10.1186/s12934-016-0561-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/14/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Melanins comprise a chemically-diverse group of polymeric pigments whose function is related to protection against physical and chemical stress factors. These polymers have current and potential applications in the chemical, medical, electronics and materials industries. The biotechnological production of melanins offers the possibility of obtaining these pigments in pure form and relatively low cost. In this study, Escherichia coli strains were engineered to evaluate the production of melanin from supplemented catechol or from glycerol-derived catechol produced by an Escherichia coli strain generated by metabolic engineering. RESULTS It was determined that an improved mutant version of the tyrosinase from Rhizobium etli (MutmelA), could employ catechol as a substrate to generate melanin. Strain E. coli W3110 expressing MutmelA was grown in bioreactor batch cultures with catechol supplemented in the medium. Under these conditions, 0.29 g/L of catechol melanin were produced. A strain with the capacity to synthesize catechol melanin from a simple carbon source was generated by integrating the gene MutmelA into the chromosome of E. coli W3110 trpD9923, that has been modified to produce catechol by the expression of genes encoding a feedback inhibition resistant version of 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase, transketolase and anthranilate 1,2-dioxygenase from Pseudomonas aeruginosa PAO1. In batch cultures with this strain employing complex medium with 40 g/L glycerol as a carbon source, 1.21 g/L of catechol melanin were produced. The melanin was analysed by employing Fourier transform infrared spectroscopy, revealing the expected characteristics for a catechol-derived polymer. CONCLUSIONS This constitutes the first report of an engineered E. coli strain and a fermentation process for producing a catechol melanin from a simple carbon source (glycerol) at gram level, opening the possibility of generating a large quantity of this polymer for its detailed characterization and the development of novel applications.
Collapse
Affiliation(s)
- Alejandra Mejía-Caballero
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Ramón de Anda
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Georgina Hernández-Chávez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Simone Rogg
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Francisco Bolívar
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico
| | - Victor M Castaño
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Santiago de Querétaro, Mexico
| | - Guillermo Gosset
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apdo. Postal 510-3, Cuernavaca, MOR, CP 62271, Mexico.
| |
Collapse
|
32
|
Dhasayan A, Selvin J, Kiran S. Biosurfactant production from marine bacteria associated with sponge Callyspongia diffusa. 3 Biotech 2015; 5:443-454. [PMID: 28324546 PMCID: PMC4522725 DOI: 10.1007/s13205-014-0242-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2014] [Accepted: 07/19/2014] [Indexed: 12/04/2022] Open
Abstract
Marine-derived biosurfactants have gained significant attention due to their structural and functional diversity. Biosurfactant production was performed using bacteria associated with Callyspongia diffusa, a marine sponge inhabiting the southern coast of India. A total of 101 sponge-associated bacteria were isolated on different media, of which 29 isolates showed positive result for biosurfactant production. Among the 29 positive isolates, four were selected based on highest emusification activity and were identified based on 16S rDNA sequence analysis. These isolates were identified as Bacillus subtilis MB-7, Bacillus amyloliquefaciens MB-101, Halomonas sp. MB-30 and Alcaligenes sp. MB-I9. The 16S rDNA nucleotide sequences were deposited in GenBank with accession numbers KF493730, KJ540939, KJ414418 and KJ540940, respectively. Based on the highest oil displacement activity and effective surface tension reduction potential, the isolate B. amyloliquefaciens MB-101 was selected for further optimization and structural delineation. The production of biosurfactant by the isolate was significantly enhanced up to 6.76 g/l with optimal concentration values of 2.83 % for glycerol, 2.65 % for peptone, 20.11 mM for ferrous sulfate and 74 h of incubation by employing factorial design. The structural features of the purified biosurfactant from B. amyloliquefaciens MB-101 showed similarity with lipopeptide class of biosurfactant. In conclusion, the present study emphasizes the utilization of marine sponge-associated bacteria for the production of biosurfactant that may find various applications.
Collapse
|