1
|
Ma Y, Song J, Sheng S, Wang D, Wang T, Wang N, Chen A, Wang L, Peng Y, Ma Y, Lv Z, Zhu X, Hou H. Genome-wide characterization of Solanum tuberosum UGT gene family and functional analysis of StUGT178 in salt tolerance. BMC Genomics 2024; 25:1206. [PMID: 39695388 DOI: 10.1186/s12864-024-11140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024] Open
Abstract
UDP-glycosyltransferases (UGTs) widely exist in plants and play essential roles in catalyzing the glycosylation reaction associated with metabolic processes. UGT gene family has been identified in many species to date. However, the comprehensive identification and systematic analysis have not been documented yet in the latest potato genome. In this study, a total of 295 UGT members (StUGT) were identified and found to be unevenly distributed on twelve chromosomes of potato. All StUGT genes were classified into 17 groups (A-P, R) and the UGT genes within the same groups have similar structural characterization. Tandem duplication was the major driving force for the StUGT gene expansion. The prediction of cis-acting elements showed that the development process, light, phytohormone, and abiotic stress-responsive elements generally existed in StUGT promoter regions. Analysis of spatial and temporal expression patterns demonstrated that StUGT genes were widely and differentially expressed in various tissues. Additionally, to investigate the salt stress-responsive genes, we analyzed the expression profiles of the StUGT genes under salt treatment. A total of 50 and 20 StUGT genes were continuously up- and down-regulated, respectively, implicating that these genes were involved in the regulation of salt tolerance. Among them, the StUGT178 gene, which was significantly induced by salt stress and contains salt-responsive element, was considered as one of the most relevant candidate genes. Transient transformation of the StUGT178 promoter in tobacco revealed that the transcriptional activation activity of the StUGT178 gene was strengthened under salt treatment. Furthermore, the heterologous expressions of the promoter and coding protein of the StUGT178 gene in Arabidopsis further demonstrated that the StUGT178 gene significantly responds to salt treatment, and enhanced salinity tolerance by regulating antioxidant enzyme activity and H2O2 accumulation. These results provide comprehensive information for a better understanding of the StUGT genes and offer a foundation for uncovering their function associated with salt stress in potato.
Collapse
Affiliation(s)
- Yu Ma
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jiafeng Song
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Suao Sheng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Daijuan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Tongtong Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Nan Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Airu Chen
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Lixia Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yaxuan Peng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yuhan Ma
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhaoyan Lv
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaobiao Zhu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Hualan Hou
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
2
|
Ullah MA, Abdullah-Zawawi MR, Razalli II, Sukiran NL, Uddin MI, Zainal Z. Overexpression of rice High-affinity Potassium Transporter gene OsHKT1;5 improves salinity and drought tolerance in Arabidopsis. Mol Biol Rep 2024; 52:40. [PMID: 39644345 DOI: 10.1007/s11033-024-10130-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/21/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Rice is subjected to various environmental stresses, resulting in significant production losses. Abiotic stresses, particularly drought and salinity, are the leading causes of plant damage worldwide. The High-affinity Potassium Transporter (HKT) gene family plays an important role in enhancing crop stress tolerance by regulating physiological and enzymatic functions. METHODS AND RESULTS This study investigates the effect of overexpressing the rice HKT1;5 gene in Arabidopsis thaliana on its tolerance to salinity and drought. The OsHKT1;5 gene was introduced into Arabidopsis under the control of 35 S promoter of CaMV via floral dip transformation method. PCR confirmed the integration of the transgene into the Arabidopsis genome, while qPCR analysis showed its expression. Three transgenic lines of OsHKT1;5 were used for stress treatment and phenotypic studies. The overexpressed lines showed considerably higher germination rates, increased leaf counts, greater fresh and dry weights of the roots and shoots, higher chlorophyll contents, longer root lengths, and reduced Na+ levels together with increased K+ ions levels after salt and drought treatments, in comparison to wild-type plants. Furthermore, overexpressed lines exhibited higher antioxidant levels than wild-type plants under salinity and drought conditions. In addition, transgenic lines showed higher expression levels of the OsHKT1;5 gene in both roots and shoots compared to wild-type plants. CONCLUSIONS In conclusion, this study revealed OsHKT1;5 as a promising candidate for enhancing tolerance to salinity and drought stresses in rice, marking a significant step toward developing a new rice variety with improved abiotic stress tolerance.
Collapse
Affiliation(s)
- Mohammad Asad Ullah
- Faculty of Science & Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
- Bangladesh Institute of Nuclear Agriculture (BINA), BAU Campus, Mymensingh, 2202, Bangladesh
| | - Muhammad-Redha Abdullah-Zawawi
- UKM Medical Molecular Biology Institute (UMBI), Jalan Ya'acob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur, 56000, Malaysia
| | - Izreen Izzati Razalli
- Faculty of Science & Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Noor Liyana Sukiran
- Faculty of Science & Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia
| | - Md Imtiaz Uddin
- Bangladesh Institute of Nuclear Agriculture (BINA), BAU Campus, Mymensingh, 2202, Bangladesh
| | - Zamri Zainal
- Faculty of Science & Technology, Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia.
- Institute of System Biology (INBIOSIS), Universiti Kebangsaan Malaysia (UKM), Bangi, Selangor, 43600, Malaysia.
| |
Collapse
|
3
|
Hanafy MS, Desouky AF, Asker MS, Zaki ER. Impact of homologous overexpression of PR10a gene on improving salt stress tolerance in transgenic Solanum tuberosum. J Genet Eng Biotechnol 2024; 22:100437. [PMID: 39674650 PMCID: PMC11600784 DOI: 10.1016/j.jgeb.2024.100437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 10/28/2024] [Indexed: 12/16/2024]
Abstract
Abiotic stresses severely affected crop productivity and considered to be a major yield limiting factor for crop plant. The tolerance to these stresses is a very complex phenomenon involving a wide array of molecular, biochemical and physiological changes in plant cells. Therefore, it is challenging to understand the molecular basis of abiotic stress tolerance to manipulate it for improving abiotic stress tolerance of major crops. Biotechnological approaches and genetic engineering including homologous gene overexpression can be implemented to understand gene functions under well-defined conditions. The Pathogenesis-related proteins (PR10) such as PR10a play multiple roles in biotic and abiotic stress tolerance and, hence, plant development. A PR10a gene from potato cv. Deseree was introduced into three cultivars of potato (Solanum tuberosum L.) by Agrobacterium tumefaciens-mediated genetic transformation. Transgenic plants were selected on a medium containing 1.0 mg/l phosphinothricin (PPT) and confirmed by polymerase chain reaction (PCR), herbicide (BASTA®) leaf paint assay, and Real-Time- quantitative PCR analyses (qPCR). All of the selected transformants showed completely tolerance to the application of PPT application. Experiments designed for testing salt tolerance revealed that there was enhanced salt tolerance of the transgenic lines in vitro in terms of morphological (plant FW, plant DW and plant height) and antioxidant activates as compared to the non-transgenic control plants. qRT-PCR showed that the expression of PR10a gene in the transgenic potato is higher than that in non-transgenic control under salt stress. The relative PR10a gene-expression patterns in the transgenic plants shed lights into the molecular response of homologues overexpressed PR10a potato to salt-stress conditions. The obtained results provide insights on the fact that PR10a plays a major role regarding salt stress tolerance in potato plants.
Collapse
Affiliation(s)
- Moemen S Hanafy
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt.
| | - Abeer F Desouky
- Plant Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt
| | - Mohsen S Asker
- Microbial Biotechnology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt
| | - Eman R Zaki
- Molecular Biology Department, Biotechnology Research Institute, National Research Centre (NRC), Tahrir Str., Dokki, 12311 Cairo, Egypt
| |
Collapse
|
4
|
Qu L, Huang X, Su X, Zhu G, Zheng L, Lin J, Wang J, Xue H. Potato: from functional genomics to genetic improvement. MOLECULAR HORTICULTURE 2024; 4:34. [PMID: 39160633 PMCID: PMC11331666 DOI: 10.1186/s43897-024-00105-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Potato is the most widely grown non-grain crop and ranks as the third most significant global food crop following rice and wheat. Despite its long history of cultivation over vast areas, slow breeding progress and environmental stress have led to a scarcity of high-yielding potato varieties. Enhancing the quality and yield of potato tubers remains the ultimate objective of potato breeding. However, conventional breeding has faced challenges due to tetrasomic inheritance, high genomic heterozygosity, and inbreeding depression. Recent advancements in molecular biology and functional genomic studies of potato have provided valuable insights into the regulatory network of physiological processes and facilitated trait improvement. In this review, we present a summary of identified factors and genes governing potato growth and development, along with progress in potato genomics and the adoption of new breeding technologies for improvement. Additionally, we explore the opportunities and challenges in potato improvement, offering insights into future avenues for potato research.
Collapse
Affiliation(s)
- Li Qu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xueqing Huang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Su
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guoqing Zhu
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lingli Zheng
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Lin
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jiawen Wang
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongwei Xue
- Shanghai Collaborative Innovation Center of Agri-Seeds, Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
5
|
Yan B, Zhang L, Jiao K, Wang Z, Yong K, Lu M. Vesicle formation-related protein CaSec16 and its ankyrin protein partner CaANK2B jointly enhance salt tolerance in pepper. JOURNAL OF PLANT PHYSIOLOGY 2024; 296:154240. [PMID: 38603993 DOI: 10.1016/j.jplph.2024.154240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/26/2024] [Accepted: 03/26/2024] [Indexed: 04/13/2024]
Abstract
Vesicle transport plays important roles in plant tolerance against abiotic stresses. However, the contribution of a vesicle formation related protein CaSec16 (COPII coat assembly protein Sec16-like) in pepper tolerance to salt stress remains unclear. In this study, we report that the expression of CaSec16 was upregulated by salt stress. Compared to the control, the salt tolerance of pepper with CaSec16-silenced was compromised, which was shown by the corresponding phenotypes and physiological indexes, such as the death of growing point, the aggravated leaf wilting, the higher increment of relative electric leakage (REL), the lower content of total chlorophyll, the higher accumulation of dead cells, H2O2, malonaldehyde (MDA), and proline (Pro), and the inhibited induction of marker genes for salt-tolerance and vesicle transport. In contrast, the salt tolerance of pepper was enhanced by the transient overexpression of CaSec16. In addition, heterogeneously induced CaSec16 protein did not enhance the salt tolerance of Escherichia coli, an organism lacking the vesicle transport system. By yeast two-hybrid method, an ankyrin protein, CaANK2B, was identified as the interacting protein of CaSec16. The expression of CaANK2B showed a downward trend during the process of salt stress. Compared with the control, pepper plants with transient-overexpression of CaANK2B displayed increased salt tolerance, whereas those with CaANK2B-silenced exhibited reduced salt tolerance. Taken together, both the vesicle formation related protein CaSec16 and its interaction partner CaANK2B can improve the pepper tolerance to salt stress.
Collapse
Affiliation(s)
- Bentao Yan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linyang Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kexin Jiao
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhenze Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Kang Yong
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Minghui Lu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
6
|
Altaf MA, Behera B, Mangal V, Singhal RK, Kumar R, More S, Naz S, Mandal S, Dey A, Saqib M, Kishan G, Kumar A, Singh B, Tiwari RK, Lal MK. Tolerance and adaptation mechanism of Solanaceous crops under salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36356932 DOI: 10.1071/fp22158] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Solanaceous crops act as a source of food, nutrition and medicine for humans. Soil salinity is a damaging environmental stress, causing significant reductions in cultivated land area, crop productivity and quality, especially under climate change. Solanaceous crops are extremely vulnerable to salinity stress due to high water requirements during the reproductive stage and the succulent nature of fruits and tubers. Salinity stress impedes morphological and anatomical development, which ultimately affect the production and productivity of the economic part of these crops. The morpho-physiological parameters such as root-to-shoot ratio, leaf area, biomass production, photosynthesis, hormonal balance, leaf water content are disturbed under salinity stress in Solanaceous crops. Moreover, the synthesis and signalling of reactive oxygen species, reactive nitrogen species, accumulation of compatible solutes, and osmoprotectant are significant under salinity stress which might be responsible for providing tolerance in these crops. The regulation at the molecular level is mediated by different genes, transcription factors, and proteins, which are vital in the tolerance mechanism. The present review aims to redraw the attention of the researchers to explore the mechanistic understanding and potential mitigation strategies against salinity stress in Solanaceous crops, which is an often-neglected commodity.
Collapse
Affiliation(s)
| | | | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rajesh Kumar Singhal
- ICAR-Indian Grassland and Fodder Research Institute, Jhansi, Uttar Pradesh, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Sanket More
- ICAR-Central Tuber Crops Research Institute, Thiruvananthapuram, Kerala, India
| | - Safina Naz
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Sayanti Mandal
- Institute of Bioinformatics Biotechnology (IBB), Savitribai Phule Pune University (SPPU), Pune, Maharashtra, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073, India
| | - Muhammad Saqib
- Department of Horticulture, Bahauddin Zakariya University, Multan, Pakistan
| | - Gopi Kishan
- ICAR-Indian Institute of Seed Science, Mau, Uttar Pradesh, India
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack, Odisha, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, India; and ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
7
|
Irulappan V, Park HW, Han SY, Kim MH, Kim JS. Genome-wide identification of a novel Na + transporter from Bienertia sinuspersici and overexpression of BsHKT1;2 improved salt tolerance in Brassica rapa. FRONTIERS IN PLANT SCIENCE 2023; 14:1302315. [PMID: 38192689 PMCID: PMC10773568 DOI: 10.3389/fpls.2023.1302315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024]
Abstract
Salt stress is an ever-increasing stressor that affects both plants and humans. Therefore, developing strategies to limit the undesirable effects of salt stress is essential. Sodium ion exclusion is well known for its efficient salt-tolerance mechanism. The High-affinity K+ Transporter (HKT) excludes excess Na+ from the transpiration stream. This study identified and characterized the HKT protein family in Bienertia sinuspersici, a single-cell C4 plant. The HKT and Salt Overly Sensitive 1 (SOS1) expression levels were examined in B. sinuspersici and Arabidopsis thaliana leaves under four different salt stress conditions: 0, 100, 200, and 300 mM NaCl. Furthermore, BsHKT1;2 was cloned, thereby producing stable transgenic Brassica rapa. Our results showed that, compared to A. thaliana as a glycophyte, the HKT family is expanded in B. sinuspersici as a halophyte with three paralogs. The phylogenetic analysis revealed three paralogs belonging to the HKT subfamily I. Out of three copies, the expression of BsHKT1;2 was higher in Bienertia under control and salt stress conditions than in A. thaliana. Stable transgenic plants overexpressing 35S::BsHKT1;2 showed higher salt tolerance than non-transgenic plants. Higher biomass and longer roots were observed in the transgenic plants under salt stress than in non-transgenic plants. This study demonstrates the evolutionary and functional differences in HKT proteins between glycophytes and halophytes and associates the role of BsHKT1;2 in imparting salt tolerance and productivity.
Collapse
Affiliation(s)
| | | | | | | | - Jung Sun Kim
- Genomics Division, Department of Agricultural Bio-Resources, National Institute of Agricultural Sciences, Jeonju, Republic of Korea
| |
Collapse
|
8
|
Gu S, Han S, Abid M, Bai D, Lin M, Sun L, Qi X, Zhong Y, Fang J. A High-K + Affinity Transporter (HKT) from Actinidia valvata Is Involved in Salt Tolerance in Kiwifruit. Int J Mol Sci 2023; 24:15737. [PMID: 37958739 PMCID: PMC10647804 DOI: 10.3390/ijms242115737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Ion transport is crucial for salt tolerance in plants. Under salt stress, the high-affinity K+ transporter (HKT) family is mainly responsible for the long-distance transport of salt ions which help to reduce the deleterious effects of high concentrations of ions accumulated within plants. Kiwifruit is well known for its susceptibility to salt stress. Therefore, a current study was designed to decipher the molecular regulatory role of kiwifruit HKT members in the face of salt stress. The transcriptome data from Actinidia valvata revealed that salt stress significantly induced the expression of AvHKT1. A multiple sequence alignment analysis indicated that the AvHKT1 protein contains three conserved amino acid sites for the HKT family. According to subcellular localization analysis, the protein was primarily present in the cell membrane and nucleus. Additionally, we tested the AvHKT1 overexpression in 'Hongyang' kiwifruit, and the results showed that the transgenic lines exhibited less leaf damage and improved plant growth compared to the control plants. The transgenic lines displayed significantly higher SPAD and Fv/Fm values than the control plants. The MDA contents of transgenic lines were also lower than that of the control plants. Furthermore, the transgenic lines accumulated lower Na+ and K+ contents, proving this protein involvement in the transport of Na+ and K+ and classification as a type II HKT transporter. Further research showed that the peroxidase (POD) activity in the transgenic lines was significantly higher, indicating that the salt-induced overexpression of AvHKT1 also scavenged POD. The promoter of AvHKT1 contained phytohormone and abiotic stress-responsive cis-elements. In a nutshell, AvHKT1 improved kiwifruit tolerance to salinity by facilitating ion transport under salt stress conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yunpeng Zhong
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (S.G.); (S.H.); (M.A.); (D.B.); (M.L.); (L.S.); (X.Q.)
| | - Jinbao Fang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China; (S.G.); (S.H.); (M.A.); (D.B.); (M.L.); (L.S.); (X.Q.)
| |
Collapse
|
9
|
Mulet JM, Porcel R, Yenush L. Modulation of potassium transport to increase abiotic stress tolerance in plants. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5989-6005. [PMID: 37611215 DOI: 10.1093/jxb/erad333] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Potassium is the major cation responsible for the maintenance of the ionic environment in plant cells. Stable potassium homeostasis is indispensable for virtually all cellular functions, and, concomitantly, viability. Plants must cope with environmental changes such as salt or drought that can alter ionic homeostasis. Potassium fluxes are required to regulate the essential process of transpiration, so a constraint on potassium transport may also affect the plant's response to heat, cold, or oxidative stress. Sequencing data and functional analyses have defined the potassium channels and transporters present in the genomes of different species, so we know most of the proteins directly participating in potassium homeostasis. The still unanswered questions are how these proteins are regulated and the nature of potential cross-talk with other signaling pathways controlling growth, development, and stress responses. As we gain knowledge regarding the molecular mechanisms underlying regulation of potassium homeostasis in plants, we can take advantage of this information to increase the efficiency of potassium transport and generate plants with enhanced tolerance to abiotic stress through genetic engineering or new breeding techniques. Here, we review current knowledge of how modifying genes related to potassium homeostasis in plants affect abiotic stress tolerance at the whole plant level.
Collapse
Affiliation(s)
- Jose M Mulet
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Rosa Porcel
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Lynne Yenush
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| |
Collapse
|
10
|
Hussein MAA, Alqahtani MM, Alwutayd KM, Aloufi AS, Osama O, Azab ES, Abdelsattar M, Hassanin AA, Okasha SA. Exploring Salinity Tolerance Mechanisms in Diverse Wheat Genotypes Using Physiological, Anatomical, Agronomic and Gene Expression Analyses. PLANTS (BASEL, SWITZERLAND) 2023; 12:3330. [PMID: 37765494 PMCID: PMC10535590 DOI: 10.3390/plants12183330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023]
Abstract
Salinity is a widespread abiotic stress that devastatingly impacts wheat growth and restricts its productivity worldwide. The present study is aimed at elucidating biochemical, physiological, anatomical, gene expression analysis, and agronomic responses of three diverse wheat genotypes to different salinity levels. A salinity treatment of 5000 and 7000 ppm gradually reduced photosynthetic pigments, anatomical root and leaf measurements and agronomic traits of all evaluated wheat genotypes (Ismailia line, Misr 1, and Misr 3). In addition, increasing salinity levels substantially decreased all anatomical root and leaf measurements except sclerenchyma tissue upper and lower vascular bundle thickness compared with unstressed plants. However, proline content in stressed plants was stimulated by increasing salinity levels in all evaluated wheat genotypes. Moreover, Na+ ions content and antioxidant enzyme activities in stressed leaves increased the high level of salinity in all genotypes. The evaluated wheat genotypes demonstrated substantial variations in all studied characters. The Ismailia line exhibited the uppermost performance in photosynthetic pigments under both salinity levels. Additionally, the Ismailia line was superior in the activity of superoxide dismutase (SOD), catalase activity (CAT), peroxidase (POX), and polyphenol oxidase (PPO) enzymes followed by Misr 1. Moreover, the Ismailia line recorded the maximum anatomical root and leaf measurements under salinity stress, which enhanced its tolerance to salinity stress. The Ismailia line and Misr 3 presented high up-regulation of H+ATPase, NHX2 HAK, and HKT genes in the root and leaf under both salinity levels. The positive physiological, anatomical, and molecular responses of the Ismailia line under salinity stress were reflected on agronomic performance and exhibited superior values of all evaluated agronomic traits.
Collapse
Affiliation(s)
- Mohammed A. A. Hussein
- Department of Botany (Genetics), Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mesfer M. Alqahtani
- Department of Biological Sciences, Faculty of Science and Humanities, Shaqra University, Ad-Dawadimi 11911, Saudi Arabia;
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Omnia Osama
- Environmental Stress Lab (ESL), Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt;
| | - Enas S. Azab
- Agricultural Botany Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt;
| | - Mohamed Abdelsattar
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza 12619, Egypt;
| | - Abdallah A. Hassanin
- Genetics Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah A. Okasha
- Department of Agronomy, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
11
|
Balasubramaniam T, Shen G, Esmaeili N, Zhang H. Plants' Response Mechanisms to Salinity Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2253. [PMID: 37375879 DOI: 10.3390/plants12122253] [Citation(s) in RCA: 96] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Soil salinization is a severe abiotic stress that negatively affects plant growth and development, leading to physiological abnormalities and ultimately threatening global food security. The condition arises from excessive salt accumulation in the soil, primarily due to anthropogenic activities such as irrigation, improper land uses, and overfertilization. The presence of Na⁺, Cl-, and other related ions in the soil above normal levels can disrupt plant cellular functions and lead to alterations in essential metabolic processes such as seed germination and photosynthesis, causing severe damage to plant tissues and even plant death in the worst circumstances. To counteract the effects of salt stress, plants have developed various mechanisms, including modulating ion homeostasis, ion compartmentalization and export, and the biosynthesis of osmoprotectants. Recent advances in genomic and proteomic technologies have enabled the identification of genes and proteins involved in plant salt-tolerance mechanisms. This review provides a short overview of the impact of salinity stress on plants and the underlying mechanisms of salt-stress tolerance, particularly the functions of salt-stress-responsive genes associated with these mechanisms. This review aims at summarizing recent advances in our understanding of salt-stress tolerance mechanisms, providing the key background knowledge for improving crops' salt tolerance, which could contribute to the yield and quality enhancement in major crops grown under saline conditions or in arid and semiarid regions of the world.
Collapse
Affiliation(s)
| | - Guoxin Shen
- Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Nardana Esmaeili
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Hong Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
12
|
SEN A, Kecoglu I, Ahmed M, Parlatan U, Unlu MB. Differentiation of advanced generation mutant wheat lines: Conventional techniques versus Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2023; 14:1116876. [PMID: 36909443 PMCID: PMC9997642 DOI: 10.3389/fpls.2023.1116876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
This research aimed to assess the feasibility of utilizing Raman spectroscopy in plant breeding programs. For this purpose, the evaluation of the mutant populations set up the application of 4 mM NaN3 to the somatic embryos obtained from mature wheat (Triticum aestivum L. Adana-99 cv.) embryos. Advanced wheat mutant lines, which were brought up to the seventh generation with salt stress tolerance by following in vitro and in vivo environments constructed by mutated populations, were evaluated using conventional techniques [measurement of antioxidant enzyme activities (SOD, CAT, and POX), total chlorophyll, TBARS, and proline contents; measurement of the concentration of Na+ and K+ ions; and evaluation of gene expression by qPCR (TaHKT2;1, TaHKT1;5, TaSOS1, TaNa+/H+ vacuolar antiporter, TaV-PPase, TaV-ATPase, and TaP5CS)] and Raman spectroscopy. In this research, no significant difference was found in the increase of SOD, CAT, and POX antioxidant enzyme activities between the salt-treated and untreated experimental groups of the commercial cultivar, while there was a statistically significant increase in salt-treated advanced generation mutant lines as compared to control and the salt-treated commercial cultivar. Proline showed a statistically significant increase in all experimental groups compared to the untreated commercial cultivar. The degradation in the amount of chlorophyll was lower in the salt-treated advanced generation mutant lines than in the salt-treated commercial cultivar. According to gene expression studies, there were statistical differences at various levels in terms of Na+ and/or K+ uptake from soil to plant (TaHKT2;1, TaHKT1;5, and TaSOS1), and Na+ compartmentalizes into the cell vacuole (TaNa+/H+ vacuolar antiporter, Ta vacuolar pyrophosphatase, and Ta vacuolar H+-ATPase). The expression activity of TaP5CS, which is responsible for the transcription of proline, is similar to the content of proline in the current study. As a result of Raman spectroscopy, the differences in peaks represent the protein-related bands in mutant lines having a general decreasing trend in intensity when compared to the commercial cultivar. Amide-I (1,630 and 1,668 cm-1), Histidine, Lysine, Arginine, and Leucine bands (823, 849, 1,241, 1,443, and 1,582 cm-1) showed decreasing wavenumbers. Beta-carotene peaks at 1,153 and 1,519 cm-1 showed increasing trends when the normalized Raman intensities of the mutant lines were compared.
Collapse
Affiliation(s)
- Ayse SEN
- Department of Biology, Faculty of Science, Istanbul University, Istanbul, Türkiye
| | - Ibrahim Kecoglu
- Department of Physics, Bogazici University, Istanbul, Türkiye
| | - Muhammad Ahmed
- Graduate School of Engineering and Science, Istanbul University, Istanbul, Türkiye
| | - Ugur Parlatan
- Department of Physics, Bogazici University, Istanbul, Türkiye
| | - Mehmet Burcin Unlu
- Department of Physics, Bogazici University, Istanbul, Türkiye
- Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Global Center for Biomedical Science and Engineering Quantum Medical Science and Engineering (GI-CoRE Cooperating Hub), Faculty of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
13
|
Proteomic Analysis Reveals a Critical Role of the Glycosyl Hydrolase 17 Protein in Panax ginseng Leaves under Salt Stress. Int J Mol Sci 2023; 24:ijms24043693. [PMID: 36835103 PMCID: PMC9965409 DOI: 10.3390/ijms24043693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Ginseng, an important crop in East Asia, exhibits multiple medicinal and nutritional benefits because of the presence of ginsenosides. On the other hand, the ginseng yield is severely affected by abiotic stressors, particularly salinity, which reduces yield and quality. Therefore, efforts are needed to improve the ginseng yield during salinity stress, but salinity stress-induced changes in ginseng are poorly understood, particularly at the proteome-wide level. In this study, we report the comparative proteome profiles of ginseng leaves at four different time points (mock, 24, 72, and 96 h) using a label-free quantitative proteome approach. Of the 2484 proteins identified, 468 were salt-responsive. In particular, glycosyl hydrolase 17 (PgGH17), catalase-peroxidase 2, voltage-gated potassium channel subunit beta-2, fructose-1,6-bisphosphatase class 1, and chlorophyll a-b binding protein accumulated in ginseng leaves in response to salt stress. The heterologous expression of PgGH17 in Arabidopsis thaliana improved the salt tolerance of transgenic lines without compromising plant growth. Overall, this study uncovers the salt-induced changes in ginseng leaves at the proteome level and highlights the critical role of PgGH17 in salt stress tolerance in ginseng.
Collapse
|
14
|
Wang J, Li Q, Zhang M, Wang Y. The high pH value of alkaline salt destroys the root membrane permeability of Reaumuria trigyna and leads to its serious physiological decline. JOURNAL OF PLANT RESEARCH 2022; 135:785-798. [PMID: 36266589 DOI: 10.1007/s10265-022-01410-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 08/28/2022] [Indexed: 06/16/2023]
Abstract
Variable climatic conditions frequently have harmful effects on plants. Reaumuria trigyna, a salt-secreting xerophytic shrub, occurs in Inner Mongolia, which has a poor environment for plant growth. To explore the physiological and molecular mechanisms of R. trigyna in response to environmental stress, this study investigated the abiotic resistance of R. trigyna in terms of growth regulation, antioxidant defense, osmotic regulation, ion transport, and ion homeostasis-related genes. R. trigyna seedlings were treated with 400 mM NaCl, 400 mM neutral salts (NaCl:Na2SO4 = 9:1), 50 mM alkaline salts (NaHCO3:Na2CO3 = 9:1), 10% polyethylene glycol (PEG), and UV-B. Seedlings under 400 mM NaCl and 400 mM neutral salt stress showed less damage. While alkaline salt, PEG, and UV stress caused more damage, specifically in oxidative damage, proline levels, electrolyte leakage, and activation of antioxidant defenses. Furthermore, under the abiotic stress treatments, the accumulation of Na+ increased while the accumulation of K+ decreased. Further analysis showed that the flow rate of Na+ and K+ under alkaline salt stress was higher than under neutral salt stress. Neutral salt induced high expression of RtNHX1 and RtSOS1, while alkaline salt induced high expression of RtHKT1, and alkaline salt stress significantly reduced the activity of root cells. These results indicated that R. trigyna seedlings were more tolerant to neutral than alkaline salts; this might be because root activity decreased at high pH levels, which impaired membrane permeability and the ion transfer system, leading to an imbalance between Na+ and K+, and in turn to excessive accumulation of reactive oxygen species (ROS) and decreased plant stress resistance.
Collapse
Affiliation(s)
- Jianye Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, 010010, Hohhot, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology in Inner Mongolia, 010010, Hohhot, China
- School of Life Science, Inner Mongolia University, 010010, Hohhot, China
| | - Qian Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, 010010, Hohhot, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology in Inner Mongolia, 010010, Hohhot, China
- School of Life Science, Inner Mongolia University, 010010, Hohhot, China
| | - Miao Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, 010010, Hohhot, China
- Key Laboratory of Herbage & Endemic Crop Biotechnology in Inner Mongolia, 010010, Hohhot, China
- School of Life Science, Inner Mongolia University, 010010, Hohhot, China
| | - Yingchun Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, 010010, Hohhot, China.
- Key Laboratory of Herbage & Endemic Crop Biotechnology in Inner Mongolia, 010010, Hohhot, China.
- School of Life Science, Inner Mongolia University, 010010, Hohhot, China.
| |
Collapse
|
15
|
Sanwal SK, Kumar P, Kesh H, Gupta VK, Kumar A, Kumar A, Meena BL, Colla G, Cardarelli M, Kumar P. Salinity Stress Tolerance in Potato Cultivars: Evidence from Physiological and Biochemical Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11141842. [PMID: 35890476 PMCID: PMC9316722 DOI: 10.3390/plants11141842] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 05/12/2023]
Abstract
Salinity stress is a major constraint to sustainable crop production due to its adverse impact on crop growth, physiology, and productivity. As potato is the fourth most important staple food crop, enhancing its productivity is necessary to ensure food security for the ever-increasing population. Identification and cultivation of salt-tolerant potato genotypes are imperative mitigating strategies to cope with stress conditions. For this purpose, fifty-three varieties of potato were screened under control and salt stress conditions for growth and yield-related traits during 2020. Salt stress caused a mean reduction of 14.49%, 8.88%, and 38.75% in plant height, stem numbers, and tuber yield, respectively in comparison to control. Based on percent yield reduction, the genotypes were classified as salt-tolerant (seven genotypes), moderately tolerant (thirty-seven genotypes), and salt-sensitive genotypes (nine genotypes). Seven salt-tolerant and nine salt-sensitive genotypes were further evaluated to study their responses to salinity on targeted physiological, biochemical, and ionic traits during 2021. Salt stress significantly reduced the relative water content (RWC), membrane stability index (MSI), photosynthesis rate (Pn), transpiration rate (E), stomatal conductance, and K+/Na+ ratio in all the sixteen genotypes; however, this reduction was more pronounced in salt-sensitive genotypes compared to salt-tolerant ones. The better performance of salt-tolerant genotypes under salt stress was due to the strong antioxidant defense system as evidenced by greater activity of super oxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) and better osmotic adjustment (accumulation of proline). The stepwise regression approach identified plant height, stem numbers, relative water content, proline content, H2O2, POX, tuber K+/Na+, and membrane stability index as predominant traits for tuber yield, suggesting their significant role in alleviating salt stress. The identified salt-tolerant genotypes could be used in hybridization programs for the development of new high-yielding and salt-tolerant breeding lines. Further, these genotypes can be used to understand the genetic and molecular mechanism of salt tolerance in potato.
Collapse
Affiliation(s)
- Satish Kumar Sanwal
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
- Correspondence: (S.K.S.); (M.C.)
| | - Parveen Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
- ICAR—Central Coastal Agricultural Research Institute, Ela, Old Goa 403402, India
| | - Hari Kesh
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Vijai Kishor Gupta
- ICAR—Central Potato Research Institute, Regional Station Modipuram, Meerut 250110, India;
| | - Arvind Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Ashwani Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Babu Lal Meena
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India; (P.K.); (H.K.); (A.K.); (A.K.); (B.L.M.)
| | - Giuseppe Colla
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
| | - Mariateresa Cardarelli
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy;
- Correspondence: (S.K.S.); (M.C.)
| | - Pradeep Kumar
- ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India;
| |
Collapse
|
16
|
Chourasia KN, More SJ, Kumar A, Kumar D, Singh B, Bhardwaj V, Kumar A, Das SK, Singh RK, Zinta G, Tiwari RK, Lal MK. Salinity responses and tolerance mechanisms in underground vegetable crops: an integrative review. PLANTA 2022; 255:68. [PMID: 35169941 DOI: 10.1007/s00425-022-03845-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 01/25/2022] [Indexed: 05/04/2023]
Abstract
The present review gives an insight into the salinity stress tolerance responses and mechanisms of underground vegetable crops. Phytoprotectants, agronomic practices, biofertilizers, and modern biotechnological approaches are crucial for salinity stress management. Underground vegetables are the source of healthy carbohydrates, resistant starch, antioxidants, vitamins, mineral, and nutrients which benefit human health. Soil salinity is a serious threat to agriculture that severely affects the growth, development, and productivity of underground vegetable crops. Salt stress induces several morphological, anatomical, physiological, and biochemical changes in crop plants which include reduction in plant height, leaf area, and biomass. Also, salinity stress impedes the growth of the underground organs, which ultimately reduces crop yield. Moreover, salt stress is detrimental to photosynthesis, membrane integrity, nutrient balance, and leaf water content. Salt tolerance mechanisms involve a complex interplay of several genes, transcription factors, and proteins that are involved in the salinity tolerance mechanism in underground crops. Besides, a coordinated interaction between several phytoprotectants, phytohormones, antioxidants, and microbes is needed. So far, a comprehensive review of salinity tolerance responses and mechanisms in underground vegetables is not available. This review aims to provide a comprehensive view of salt stress effects on underground vegetable crops at different levels of biological organization and discuss the underlying salt tolerance mechanisms. Also, the role of multi-omics in dissecting gene and protein regulatory networks involved in salt tolerance mechanisms is highlighted, which can potentially help in breeding salt-tolerant underground vegetable crops.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
- ICAR-Central Research Institute for Jute and Allied Fibres, Barrackpore, West Bengal, India
| | | | - Ashok Kumar
- ICAR-Directorate of Onion and Garlic Research, Rajgurunagar, Pune, Maharashtra, India
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India
| | - Awadhesh Kumar
- Division of Crop Physiology and Biochemistry, ICAR-National Rice Research Institute, Cuttack, India
| | | | - Rajesh Kumar Singh
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India
| | - Gaurav Zinta
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, India.
- Academy of Scientifc and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India.
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla, Himachal Pradesh, 171001, India.
- ICAR-Indian Agricultural Research Institute, New Delhi, India.
| |
Collapse
|
17
|
Dave A, Agarwal P, Agarwal PK. Mechanism of high affinity potassium transporter (HKT) towards improved crop productivity in saline agricultural lands. 3 Biotech 2022; 12:51. [PMID: 35127306 PMCID: PMC8795266 DOI: 10.1007/s13205-021-03092-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 12/10/2021] [Indexed: 02/03/2023] Open
Abstract
Glycophytic plants are susceptible to salinity and their growth is hampered in more than 40 mM of salt. Salinity not only affects crop yield but also limits available land for farming by decreasing its fertility. Presence of distinct traits in response to environmental conditions might result in evolutionary adaptations. A better understanding of salinity tolerance through a comprehensive study of how Na+ is transported will help in the development of plants with improved salinity tolerance and might lead to increased yield of crops growing in strenuous environment. Ion transporters play pivotal role in salt homeostasis and maintain low cytotoxic effect in the cell. High-affinity potassium transporters are the critical class of integral membrane proteins found in plants. It mainly functions to remove excess Na+ from the transpiration stream to prevent sodium toxicity in the salt-sensitive shoot and leaf tissues. However, there are large number of HKT proteins expressed in plants, and it is possible that these members perform in a wide range of functions. Understanding their mechanism and functions will aid in further manipulation and genetic transformation of different crops. This review focuses on current knowledge of ion selectivity and molecular mechanisms controlling HKT gene expression. The current review highlights the mechanism of different HKT transporters from different plant sources and how this knowledge could prove as a valuable tool to improve crop productivity.
Collapse
Affiliation(s)
- Ankita Dave
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| | - Parinita Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India
| | - Pradeep K. Agarwal
- Plant Omics Division, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Bhavnagar, Gujarat 364 002 India ,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002 India
| |
Collapse
|
18
|
Gao Z, Zhang J, Zhang J, Zhang W, Zheng L, Borjigin T, Wang Y. Nitric oxide alleviates salt-induced stress damage by regulating the ascorbate-glutathione cycle and Na +/K + homeostasis in Nitraria tangutorum Bobr. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 173:46-58. [PMID: 35093694 DOI: 10.1016/j.plaphy.2022.01.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/13/2022] [Accepted: 01/18/2022] [Indexed: 05/04/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule involved in mediation of salt stress induced physiological responses in plants. In this study, we investigated the effect of NO on Nitraria tangutorum seedlings exposed to salt stress. Exogenous application of NO donor, sodium nitroprusside (SNP) increased fresh weight, shoot and root elongation and decreased electrolyte leakage and malondialdehyde (MDA) content in N. tangutorum seedlings under salt stress. Simultaneously, leaf senescence and root damage induced by salt stress were alleviated. SNP effectively increased NO content both in leaves and roots of plants under salt stress. Meanwhile, SNP activated the ascorbate-glutathione (AsA-GSH) cycle by increasing antioxidants contents, antioxidant enzymes activities, and related genes expression, thereby scavenging reactive oxygen species (ROS) and alleviating oxidative damage caused by salt stress. SNP alleviated salt stress induced ion toxicity by promoting Na+ efflux and ion transporter gene expression and reducing Na+ content and the Na+/K+ ratio. In addition, application of NO specific scavenger cPTIO and mammalian NO synthase inhibitor L-NAME sifnificantly aggravated stress damage in plant under salt stress. These results show the beneficial impacts of NO as a stress-signaling molecule that positively regulates defense response in N. tangutorum to salt stress.
Collapse
Affiliation(s)
- Ziqi Gao
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Jiayuan Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Jie Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Wenxiu Zhang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Linlin Zheng
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China
| | - Tebuqin Borjigin
- School of Mongolian Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Yingchun Wang
- Key Laboratory of Forage and Endemic Crop Biotechnology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot, China; State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot, China.
| |
Collapse
|
19
|
Athar HUR, Zulfiqar F, Moosa A, Ashraf M, Zafar ZU, Zhang L, Ahmed N, Kalaji HM, Nafees M, Hossain MA, Islam MS, El Sabagh A, Siddique KHM. Salt stress proteins in plants: An overview. FRONTIERS IN PLANT SCIENCE 2022; 13:999058. [PMID: 36589054 PMCID: PMC9800898 DOI: 10.3389/fpls.2022.999058] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/23/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress is considered the most devastating abiotic stress for crop productivity. Accumulating different types of soluble proteins has evolved as a vital strategy that plays a central regulatory role in the growth and development of plants subjected to salt stress. In the last two decades, efforts have been undertaken to critically examine the genome structure and functions of the transcriptome in plants subjected to salinity stress. Although genomics and transcriptomics studies indicate physiological and biochemical alterations in plants, it do not reflect changes in the amount and type of proteins corresponding to gene expression at the transcriptome level. In addition, proteins are a more reliable determinant of salt tolerance than simple gene expression as they play major roles in shaping physiological traits in salt-tolerant phenotypes. However, little information is available on salt stress-responsive proteins and their possible modes of action in conferring salinity stress tolerance. In addition, a complete proteome profile under normal or stress conditions has not been established yet for any model plant species. Similarly, a complete set of low abundant and key stress regulatory proteins in plants has not been identified. Furthermore, insufficient information on post-translational modifications in salt stress regulatory proteins is available. Therefore, in recent past, studies focused on exploring changes in protein expression under salt stress, which will complement genomic, transcriptomic, and physiological studies in understanding mechanism of salt tolerance in plants. This review focused on recent studies on proteome profiling in plants subjected to salinity stress, and provide synthesis of updated literature about how salinity regulates various salt stress proteins involved in the plant salt tolerance mechanism. This review also highlights the recent reports on regulation of salt stress proteins using transgenic approaches with enhanced salt stress tolerance in crops.
Collapse
Affiliation(s)
- Habib-ur-Rehman Athar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Faisal Zulfiqar
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| | - Anam Moosa
- Department of Plant Pathology, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Ashraf
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Zafar Ullah Zafar
- Institute of Pure and Applied Biology, Bahauddin Zakariya University, Multan, Pakistan
| | - Lixin Zhang
- College of Life Sciences, Northwest A&F University, Yangling, China
| | - Nadeem Ahmed
- College of Life Sciences, Northwest A&F University, Yangling, China
- Department of Botany, Mohy-ud-Din Islamic University, Nerian Sharif, Pakistan
| | - Hazem M. Kalaji
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences SGGW, Warsaw, Poland
| | - Muhammad Nafees
- Department of Horticultural Sciences, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Sohidul Islam
- Department of Agronomy, Hajee Mohammad Danesh Science and Technology University, Dinajpur, Bangladesh
| | - Ayman El Sabagh
- Faculty of Agriculture, Department of Field Crops, Siirt University, Siirt, Türkiye
- Agronomy Department, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Kadambot H. M. Siddique
- The UWA Institute of Agriculture, The University of Western Australia, Petrth WA, Australia
- *Correspondence: Faisal Zulfiqar, ; Kadambot H. M. Siddique,
| |
Collapse
|
20
|
Transcriptome Analysis of Arbuscular Mycorrhizal Casuarina glauca in Damage Mitigation of Roots on NaCl Stress. Microorganisms 2021; 10:microorganisms10010015. [PMID: 35056464 PMCID: PMC8780529 DOI: 10.3390/microorganisms10010015] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 01/13/2023] Open
Abstract
Casuarina glauca grows in coastal areas suffering long-term damage due to high salt stress. Arbuscular mycorrhizal fungi (AMF) can colonize their roots to alleviate the effects of salt stress. However, the specific molecular mechanism still needs to be further explored. Our physiological and biochemical analysis showed that Rhizophagus irregularis inoculation played an important role in promoting plant growth, regulating ion balance, and changing the activity of antioxidant enzymes. Transcriptome analysis of roots revealed that 1827 differentially expressed genes (DEGs) were affected by both R. irregularis inoculation and NaCl stress. The enrichment of GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) showed that most of these DEGs were significantly enriched in ion transport, antioxidant enzyme activity, carbohydrate metabolism, and cell wall. HAK5, KAT3, SKOR, PIP1-2, PER64, CPER, GLP10, MYB46, NAC43, WRKY1, and WRKY19 were speculated to play the important roles in the salt tolerance of C. glauca induced by R. irregularis. Our research systematically revealed the effect of R. irregularis on the gene expression of C. glauca roots under salt stress, laying a theoretical foundation for the future use of AMF to enhance plant tolerance to salt stress.
Collapse
|
21
|
Ma R, Liu W, Li S, Zhu X, Yang J, Zhang N, Si H. Genome-Wide Identification, Characterization and Expression Analysis of the CIPK Gene Family in Potato ( Solanum tuberosum L.) and the Role of StCIPK10 in Response to Drought and Osmotic Stress. Int J Mol Sci 2021; 22:ijms222413535. [PMID: 34948331 PMCID: PMC8708990 DOI: 10.3390/ijms222413535] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/23/2022] Open
Abstract
The potato (Solanum tuberosum L.), one of the most important food crops worldwide, is sensitive to environmental stresses. Sensor–responder complexes comprising calcineurin B-like (CBL) proteins and CBL-interacting protein kinases (CIPKs) not only modulate plant growth and development but also mediate numerous stress responses. Here, using a Hidden Markov Model and BLAST searches, 27 CIPK genes were identified in potato and divided into five groups by phylogenetic analysis and into two clades (intron-poor and intron-rich) by gene structure analysis. Quantitative reverse-transcription PCR (qRT-PCR) assays revealed that StCIPK genes play important roles in plant growth, development and abiotic stress tolerance. Up-regulated expression of StCIPK10 was significantly induced by drought, PEG6000 and ABA. StCIPK10 enhances both the ability of potato to scavenge reactive oxygen species and the content of corresponding osmoregulation substances, thereby strengthening tolerance to drought and osmotic stress. StCIPK10 is located at the intersection between the abscisic acid and abiotic stress signaling pathways, which control both root growth and stomatal closure in potato. In addition, StCIPK10 interacts with StCBL1, StCBL4, StCBL6, StCBL7, StCBL8, StCBL11 and StCBL12, and is specifically recruited to the plasma membrane by StCBL11.
Collapse
Affiliation(s)
- Rui Ma
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Dingxi Academy of Agricultural Sciences, Dingxi 743000, China
| | - Weigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Shigui Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xi Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangwei Yang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ning Zhang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Huaijun Si
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou 730070, China; (R.M.); (W.L.); (S.L.); (X.Z.); (J.Y.); (N.Z.)
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: ; Tel.: +86-931-763-1875
| |
Collapse
|
22
|
Chourasia KN, Lal MK, Tiwari RK, Dev D, Kardile HB, Patil VU, Kumar A, Vanishree G, Kumar D, Bhardwaj V, Meena JK, Mangal V, Shelake RM, Kim JY, Pramanik D. Salinity Stress in Potato: Understanding Physiological, Biochemical and Molecular Responses. Life (Basel) 2021; 11:life11060545. [PMID: 34200706 PMCID: PMC8228783 DOI: 10.3390/life11060545] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/01/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022] Open
Abstract
Among abiotic stresses, salinity is a major global threat to agriculture, causing severe damage to crop production and productivity. Potato (Solanum tuberosum) is regarded as a future food crop by FAO to ensure food security, which is severely affected by salinity. The growth of the potato plant is inhibited under salt stress due to osmotic stress-induced ion toxicity. Salinity-mediated osmotic stress leads to physiological changes in the plant, including nutrient imbalance, impairment in detoxifying reactive oxygen species (ROS), membrane damage, and reduced photosynthetic activities. Several physiological and biochemical phenomena, such as the maintenance of plant water status, transpiration, respiration, water use efficiency, hormonal balance, leaf area, germination, and antioxidants production are adversely affected. The ROS under salinity stress leads to the increased plasma membrane permeability and extravasations of substances, which causes water imbalance and plasmolysis. However, potato plants cope with salinity mediated oxidative stress conditions by enhancing both enzymatic and non-enzymatic antioxidant activities. The osmoprotectants, such as proline, polyols (sorbitol, mannitol, xylitol, lactitol, and maltitol), and quaternary ammonium compound (glycine betaine) are synthesized to overcome the adverse effect of salinity. The salinity response and tolerance include complex and multifaceted mechanisms that are controlled by multiple proteins and their interactions. This review aims to redraw the attention of researchers to explore the current physiological, biochemical and molecular responses and subsequently develop potential mitigation strategies against salt stress in potatoes.
Collapse
Affiliation(s)
- Kumar Nishant Chourasia
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
- Correspondence: (K.N.C.); (D.P.)
| | - Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Devanshu Dev
- School of Agricultural Sciences, G D Goenka University, Gurugram 122103, Haryana, India;
| | - Hemant Balasaheb Kardile
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Virupaksh U. Patil
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Amarjeet Kumar
- Department of Genetics and Plant Breeding, MTTC&VTC, Central Agriculture University, Imphal 795004, Manipur, India;
| | - Girimalla Vanishree
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Dharmendra Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Vinay Bhardwaj
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Jitendra Kumar Meena
- ICAR-Central Research Institute for Jute and Allied Fibres, Kolkata 700120, West Bengal, India;
| | - Vikas Mangal
- ICAR-Central Potato Research Institute, Shimla 171001, Himachal Pradesh, India; (M.K.L.); (R.K.T.); (H.B.K.); (V.U.P.); (G.V.); (D.K.); (V.B.); (V.M.)
| | - Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 FOUR Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (R.M.S.); (J.-Y.K.)
- Correspondence: (K.N.C.); (D.P.)
| |
Collapse
|
23
|
Zhang S, Quartararo A, Betz OK, Madahhosseini S, Heringer AS, Le T, Shao Y, Caruso T, Ferguson L, Jernstedt J, Wilkop T, Drakakaki G. Root vacuolar sequestration and suberization are prominent responses of Pistacia spp. rootstocks during salinity stress. PLANT DIRECT 2021; 5:e00315. [PMID: 34027297 PMCID: PMC8133763 DOI: 10.1002/pld3.315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 05/11/2023]
Abstract
Understanding the mechanisms of stress tolerance in diverse species is needed to enhance crop performance under conditions such as high salinity. Plant roots, in particular in grafted agricultural crops, can function as a boundary against external stresses in order to maintain plant fitness. However, limited information exists for salinity stress responses of woody species and their rootstocks. Pistachio (Pistacia spp.) is a tree nut crop with relatively high salinity tolerance as well as high genetic heterogeneity. In this study, we used a microscopy-based approach to investigate the cellular and structural responses to salinity stress in the roots of two pistachio rootstocks, Pistacia integerrima (PGI) and a hybrid, P. atlantica x P. integerrima (UCB1). We analyzed root sections via fluorescence microscopy across a developmental gradient, defined by xylem development, for sodium localization and for cellular barrier differentiation via suberin deposition. Our cumulative data suggest that the salinity response in pistachio rootstock species is associated with both vacuolar sodium ion (Na+) sequestration in the root cortex and increased suberin deposition at apoplastic barriers. Furthermore, both vacuolar sequestration and suberin deposition correlate with the root developmental gradient. We observed a higher rate of Na+ vacuolar sequestration and reduced salt-induced leaf damage in UCB1 when compared to P. integerrima. In addition, UCB1 displayed higher basal levels of suberization, in both the exodermis and endodermis, compared to P. integerrima. This difference was enhanced after salinity stress. These cellular characteristics are phenotypes that can be taken into account during screening for sodium-mediated salinity tolerance in woody plant species.
Collapse
Affiliation(s)
- Shuxiao Zhang
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Alessandra Quartararo
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Oliver Karl Betz
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Shahab Madahhosseini
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Genetic and Plant Production DepartmentVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Angelo Schuabb Heringer
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Unidade de Biologia IntegrativaSetor de Genômica e ProteômicaUENFRio de JaneiroRJBrazil
| | - Thu Le
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Yuhang Shao
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Present address:
Key Laboratory of Crop Physiology Ecology and Production Management of Ministry of AgricultureNanjing Agricultural UniversityNanjingJiangsu ProvinceP. R. China
| | - Tiziano Caruso
- Department of Agricultural & Forest ScienceUniversity of PalermoViale delle ScienzePalermoItaly
| | - Louise Ferguson
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Judy Jernstedt
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| | - Thomas Wilkop
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
- Light Microscopy CoreDepartment of PhysiologyUniversity of KentuckyLexingtonKYUSA
| | - Georgia Drakakaki
- Department of Plant SciencesUniversity of California DavisDavisCAUSA
| |
Collapse
|
24
|
Kotula L, Garcia Caparros P, Zörb C, Colmer TD, Flowers TJ. Improving crop salt tolerance using transgenic approaches: An update and physiological analysis. PLANT, CELL & ENVIRONMENT 2020; 43:2932-2956. [PMID: 32744336 DOI: 10.1111/pce.13865] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 05/04/2023]
Abstract
Salinization of land is likely to increase due to climate change with impact on agricultural production. Since most species used as crops are sensitive to salinity, improvement of salt tolerance is needed to maintain global food production. This review summarises successes and failures of transgenic approaches in improving salt tolerance in crop species. A conceptual model of coordinated physiological mechanisms in roots and shoots required for salt tolerance is presented. Transgenic plants overexpressing genes of key proteins contributing to Na+ 'exclusion' (PM-ATPases with SOS1 antiporter, and HKT1 transporter) and Na+ compartmentation in vacuoles (V-H+ ATPase and V-H+ PPase with NHX antiporter), as well as two proteins potentially involved in alleviating water deficit during salt stress (aquaporins and dehydrins), were evaluated. Of the 51 transformations, with gene(s) involved in Na+ 'exclusion' or Na+ vacuolar compartmentation that contained quantitative data on growth and include a non-saline control, 48 showed improvements in salt tolerance (less impact on plant mass) of transgenic plants, but with only two tested in field conditions. Of these 51 transformations, 26 involved crop species. Tissue ion concentrations were altered, but not always in the same way. Although glasshouse data are promising, field studies are required to assess crop salinity tolerance.
Collapse
Affiliation(s)
- Lukasz Kotula
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, Perth, Australia
| | - Pedro Garcia Caparros
- Agronomy Department of Superior School Engineering, University of Almeria, CIAIMBITAL, Agrifood Campus of International Excellence ceiA3, Almería, Spain
| | - Christian Zörb
- Institute of Crop Science, Quality of Plant Products 340e, University of Hohenheim, Stuttgart, Germany
| | - Timothy D Colmer
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, Australia
- ARC Industrial Transformation Research Hub on Legumes for Sustainable Agriculture, Faculty of Science, The University of Western Australia, Perth, Australia
| | - Timothy J Flowers
- UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Perth, Australia
- School of Biological Sciences, University of Sussex, Sussex, UK
| |
Collapse
|
25
|
Zhu X, Zhang N, Liu X, Wang S, Li S, Yang J, Wang F, Si H. StMAPK3 controls oxidase activity, photosynthesis and stomatal aperture under salinity and osmosis stress in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:167-177. [PMID: 32956929 DOI: 10.1016/j.plaphy.2020.09.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 09/04/2020] [Indexed: 05/20/2023]
Abstract
Mitogen-activated protein kinase 3 (MAPK3) is involved in plant growth and development, as well as response to adverse stress. Here we aimed to explore the role of StMAPK3 in response to salt and osmosis stress. Polyethylene glycol (PEG) (5% and 10%) and mannitol (40 mM and 80 mM) were used to induce osmosis stress. To induce salinity stress, potato plant was cultured with NaCl (40 mM and 80 mM). StMAPK3 overexpression and RNA interference-mediated StMAPK3 knockdown were constructed to explore the role of StMAPK3 in potato growth, stomatal aperture size, activity of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD), and contents of H2O2, proline and malonaldehyde (MDA). Meanwhile, we detected transpiration, net photosynthesis, stomatal conductance, and water use efficiency. Subcellular location of StMAPK3 protein was also detected. PEG, mannitol and NaCl treatments induced the accumulation of StMAPK3 mRNA in potato plants. StMAPK3 protein was located on the membrane and nucleus. Abnormal expression of StMAPK3 changed potato phenotypes, enzyme activity of SOD, CAT and POD, as well as H2O2, proline and MDA contents under osmosis and salinity stress. Photosynthesis and stomatal aperture were regulated by StMAPK3 in potato treated by PEG, mannitol and NaCl. Modulation of potato phenotypes and physiological activity indicates StMAPK3 as a regulator of osmosis and salinity tolerance.
Collapse
Affiliation(s)
- Xi Zhu
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, PR China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, PR China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Ning Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, PR China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Xue Liu
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shulin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Shigui Li
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, PR China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Jiangwei Yang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, PR China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Fangfang Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China
| | - Huaijun Si
- College of Agronomy, Gansu Agricultural University, Lanzhou, 730070, PR China; Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Key Laboratory of Crop Genetic and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, 730070, PR China; College of Life Science and Technology, Gansu Agricultural University, Lanzhou, 730070, PR China.
| |
Collapse
|
26
|
Qi Q, Yanyan D, Yuanlin L, Kunzhi L, Huini X, Xudong S. Overexpression of SlMDHAR in transgenic tobacco increased salt stress tolerance involving S-nitrosylation regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 299:110609. [PMID: 32900447 DOI: 10.1016/j.plantsci.2020.110609] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
Protein S-nitrosylation, which refers to the redox-based posttranslational modification of a cysteine thiol by the attachment of a nitric oxide (NO) group, modulates a variety of enzyme activities. Monodehydroascorbate reductase (MDHAR) is essential for ascorbic acid (AsA) regeneration, which protects plant cells against damage by detoxifying reactive oxygen species (ROS). However, the relationship between S-nitrosylation and the role of tomato MDHAR (SlMDHAR) under salt stress remains unclear. In this paper, we show that the SlMDHAR mRNA expression, enzyme activity, protein level, total S-nitrosylated proteins and S-nitrosylated SlMDHAR protein level in tomato leaves significantly increase after NaCl treatment. To further evaluate the function of SlMDHAR under salt stress, overexpressed transgenic tobacco plants were used. The germination rate and root length of the overexpressed plants under NaCl stress were significantly higher than those of wild-type (WT) plants. Meanwhile, the transgenic plants had lower ROS accumulation, higher antioxidant enzyme activities and AsA-DHA ratio, more proline and soluble sugar contents than those in WT plants under salt stress. With a higher expression of stress-related genes, the transgenic plants demonstrated lower Na+ and higher K+ accumulation compared with WT plants. The NO accumulation and S-nitrosylated MDHAR level were higher in transgenic plants than in WT plants after NaCl treatment. In contrast, virus-induced gene silencing (VIGS) of SlMDHAR tomato plants showed enhanced sensitivity to salt stress and have lower S-nitrosylated MDHAR protein. These results suggested that SlMDHAR confers salt stress tolerance by alleviating oxidative damage probably involving the S-nitrosylation of MDHAR.
Collapse
Affiliation(s)
- Qi Qi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Dong Yanyan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Liang Yuanlin
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Li Kunzhi
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China
| | - Xu Huini
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Jingming South Street, Kunming, Yunnan 650224, PR China.
| | - Sun Xudong
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, PR China.
| |
Collapse
|
27
|
Kawakami Y, Imran S, Katsuhara M, Tada Y. Na + Transporter SvHKT1;1 from a Halophytic Turf Grass Is Specifically Upregulated by High Na + Concentration and Regulates Shoot Na + Concentration. Int J Mol Sci 2020; 21:ijms21176100. [PMID: 32847126 PMCID: PMC7503356 DOI: 10.3390/ijms21176100] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/21/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
We characterized an Na+ transporter SvHKT1;1 from a halophytic turf grass, Sporobolus virginicus. SvHKT1;1 mediated inward and outward Na+ transport in Xenopus laevis oocytes and did not complement K+ transporter-defective mutant yeast. SvHKT1;1 did not complement athkt1;1 mutant Arabidopsis, suggesting its distinguishable function from other typical HKT1 transporters. The transcript was abundant in the shoots compared with the roots in S. virginicus and was upregulated by severe salt stress (500 mM NaCl), but not by lower stress. SvHKT1;1-expressing Arabidopsis lines showed higher shoot Na+ concentrations and lower salt tolerance than wild type (WT) plants under nonstress and salt stress conditions and showed higher Na+ uptake rate in roots at the early stage of salt treatment. These results suggested that constitutive expression of SvHKT1;1 enhanced Na+ uptake in root epidermal cells, followed by increased Na+ transport to shoots, which led to reduced salt tolerance. However, Na+ concentrations in phloem sap of the SvHKT1;1 lines were higher than those in WT plants under salt stress. Based on this result, together with the induction of the SvHKT1;1 transcription under high salinity stress, it was suggested that SvHKT1;1 plays a role in preventing excess shoot Na+ accumulation in S. virginicus.
Collapse
Affiliation(s)
- Yuki Kawakami
- Graduate School of Bionics, Computer and Media Sciences, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan;
| | - Shahin Imran
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan; (S.I.); (M.K.)
| | - Maki Katsuhara
- Institute of Plant Science and Resources, Okayama University, Chuo 2-20-1, Kurashiki, Okayama 710-0046, Japan; (S.I.); (M.K.)
| | - Yuichi Tada
- School of Biosciences and Biotechnology, Tokyo University of Technology, 1404-1 Katakura, Hachioji, Tokyo 192-0982, Japan
- Correspondence:
| |
Collapse
|
28
|
Rajappa S, Krishnamurthy P, Kumar PP. Regulation of AtKUP2 Expression by bHLH and WRKY Transcription Factors Helps to Confer Increased Salt Tolerance to Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:1311. [PMID: 32983201 PMCID: PMC7477289 DOI: 10.3389/fpls.2020.01311] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 08/11/2020] [Indexed: 05/02/2023]
Abstract
Potassium transporters play an essential role in maintaining cellular ion homeostasis, turgor pressure, and pH, which are critical for adaptation under salt stress. We identified a salt responsive Avicennia officinalis KUP/HAK/KT transporter family gene, AoKUP2, which has high sequence similarity to its Arabidopsis ortholog AtKUP2. These genes were functionally characterized in mutant yeast cells and Arabidopsis plants. Both AoKUP2 and AtKUP2 were induced by salt stress, and AtKUP2 was primarily induced in roots. Subcellular localization revealed that AoKUP2 and AtKUP2 are localized to the plasma membrane and mitochondria. Expression of AtKUP2 and AoKUP2 in Saccharomyces cerevisiae mutant strain (BY4741 trk1Δ::loxP trk2Δ::loxP) helped to rescue the growth defect of the mutant under different NaCl and K+ concentrations. Furthermore, constitutive expression of AoKUP2 and AtKUP2 conferred enhanced salt tolerance in Arabidopsis indicated by higher germination rate, better survival, and increased root and shoot length compared to the untreated controls. Analysis of Na+ and K+ contents in the shoots and roots showed that ectopic expression lines accumulated less Na+ and more K+ than the WT. Two stress-responsive transcription factors, bHLH122 and WRKY33, were identified as direct regulators of AtKUP2 expression. Our results suggest that AtKUP2 plays a key role in enhancing salt stress tolerance by maintaining cellular ion homeostasis.
Collapse
Affiliation(s)
- Sivamathini Rajappa
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Pannaga Krishnamurthy
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
| | - Prakash P. Kumar
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- NUS Environmental Research Institute (NERI), National University of Singapore, Singapore, Singapore
- *Correspondence: Prakash P. Kumar,
| |
Collapse
|