1
|
Xiao Y, Hua W, Zhang Y, Wu H, Li D, Qi Y. Overexpression of auxin early response gene LcSAUR1 (Leymus chinensis) increases sensitivity to alkali and drought stresses in Arabidopsis and rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110019. [PMID: 40403620 DOI: 10.1016/j.plaphy.2025.110019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 04/27/2025] [Accepted: 05/12/2025] [Indexed: 05/24/2025]
Abstract
Alkali and drought stresses are two common abiotic factors affecting plants growth and development. Auxin signal also regulates plant responses to abiotic stresses. Especially, auxin early response genes can quickly respond after sensing auxin signal. However, auxin early response genes related to alkali and drought stresses are rarely reported in Leymus chinensis. In this study, LcSAUR1 (small auxin-up RNA) was isolated from the difference expression analysis of the transcriptome data in Leymus chinensis under alkali and drought stresses. And LcSAUR1 exhibited inhibitory expression under alkali and drought stresses. Further research showed that LcSAUR1 was localized in the nucleus, cell membrane, and chloroplast, suggesting that it might has special biofunction. Overexpression of LcSAUR1 led to shorter root lengths in LcSAUR1-transgenic Arabidopsis and rice. Under alkali and drought stresses, the OE-LcSAUR1-Col lines showed delayed germination and larger stomatal aperture, and the OE-LcSAUR1-NIP lines had lower survival rates. The determination of physiological indicators including hydrogen peroxide (H2O2), malondialdehyde (MDA), catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), the contents of proline (PRO), and the staining of nitro-blue tetrazolium (NBT) and Diaminobenzidine (DAB) indicated that the overexpressed LcSAUR1-transgenic Arabidopsis and rice produced more reactive oxygen species (ROS). In addition, for the genes related to abiotic stresses, the expression of AtSnRK2.6, AtNCEB3, AtCAT2, and AtAPX1 in the OE-LcSAUR1-Col lines, and OsLEA3-2, OsABF1, OsCAT2, and OsAPX2 in the OE-LcSAUR1-NIP lines were all lower than their WT under alkali and drought stresses, suggesting that LcSAUR1 regulates alkali and drought tolerances might through those abiotic-related genes. The study suggests that the LcSAUR1 negatively regulates alkali and drought stresses, providing a novel insight into auxin signal and abiotic stresses.
Collapse
Affiliation(s)
- Yan Xiao
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Wenzhi Hua
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Yanjun Zhang
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Huimin Wu
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China
| | - Dongming Li
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China.
| | - Yanhua Qi
- Key Laboratory of Herbage & Endemic Crop Biology of Ministry of Education, Inner Mongolia Key Laboratory of Herbage & Endemic Crop Biotechnology, School of Life Sciences, Inner Mongolia University, Hohhot, 010030, China.
| |
Collapse
|
2
|
Nadeem UA, Ali N, Zaib-Un Nisa, Abbas T, Shah AA, Arif M, Gatasheh MK, Shaffique S. Naphthalene acetic acid induced morphological and biochemical alterations in Lagenaria siceraria under alkaline stress. Sci Rep 2025; 15:15747. [PMID: 40328915 PMCID: PMC12056052 DOI: 10.1038/s41598-025-99455-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 04/21/2025] [Indexed: 05/08/2025] Open
Abstract
Alkaline stress exacerbates ionic toxicity, leading to a decline in plant growth and yield. Lagenaria siceraria (Molina) Stndl., commonly known as squash, an annual plant belonging to the Cucurbitaceae family, is sensitive to alkalinity because of its impact on physiological growth and yield of plant. However, studies on the utilization of plant growth regulators to alleviate alkali stress in Lagenaria siceraria is scarce. In the present study, a pot experiment was conducted to evaluate the impact of foliar application of NAA (0, 50, 75, or 100 ppm) on the growth, yield, and biochemical parameters of L. siceraria under both normal and alkaline stress conditions (0 and 40 mM). The findings revealed that alkaline stress significantly diminished plant growth, biomass, and leaf and fruit counts, whereas NAA application amplified all growth and yield characteristics under both stressful and normal conditions. Additionally, compared with salt stress alone, alkaline stress markedly decreased the levels of photosynthetic pigments; however, 75% NAA application resulted in 43% increase in Chl a, 53% increase in Chl b, and 66% increase in carotenoids. Moreover, there was a notable increase in the primary and secondary metabolites of plants treated with NAA, including a 27% increase in total soluble proteins (TSP), a 38% increase in total free amino acids (TFA), and a 28% and 27% increase in total phenolic and flavonoid contents, respectively, in comparison with the plants subjected only to stress. To further explore the impact of NAA on biochemical parameters of L. siceraria, antioxidant enzymes like catalase (CAT) and peroxidase (POD) activities were assessed. The results indicated that alkali stress increased enzyme activities, which were further increased under the influence of foliar-applied NAA as compared to the plants exposed solely to stress. These findings underscore the beneficial role of exogenous NAA application in mitigating the adverse effects of alkali stress on L. siceraria.
Collapse
Affiliation(s)
- Uswa Ashiq Nadeem
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Naila Ali
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan.
| | - Zaib-Un Nisa
- Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Toqeer Abbas
- Department of Botany, University of Sargodha, Sargodha, Pakistan.
| | - Anis Ali Shah
- Department of Botany, Division of Science and Technology , University of Education, Lahore, Punjab, Pakistan
| | - Muhammad Arif
- Department of Animal Sciences, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Mansour K Gatasheh
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, 11451, Riyadh, Saudi Arabia
| | - Shifa Shaffique
- College of Agriculture and Life Science, School of Applied Biosciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Korea
| |
Collapse
|
3
|
Sun Y, Wang N, Chen X, Peng F, Zhang J, Song H, Meng Y, Liu M, Huang H, Fan Y, Wang L, Yang Z, Zhang M, Chen X, Zhao L, Guo L, Lu X, Wang J, Wang S, Jiang J, Ye W. GHCYP706A7 governs anthocyanin biosynthesis to mitigate ROS under alkali stress in cotton. PLANT CELL REPORTS 2025; 44:61. [PMID: 39985587 DOI: 10.1007/s00299-025-03453-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/07/2025] [Indexed: 02/24/2025]
Abstract
KEY MESSAGE Flavonoid 3'-hydroxylase synthesis gene-GHCYP706A7, enhanced cotton resistance to alkali stress by scavenging ROS to regulate anthocyanin synthesis. Anthocyanins are a class of flavonoids that play a significant role in mediating plant responses to adverse environmental conditions. Flavonoid 3'-hydroxylase (F3'H), a member of the cytochrome P-450 (CYP) family, is a pivotal enzyme involved in the biosynthesis of anthocyanins. The present study identified 398 CYPs in the Gossypium hirsutum genome, of which GHCYP706A7 was responsible for F3'H synthesis and its ability to respond to alkaline stress. GHCYP706A7 suppression through virus-induced gene silencing (VIGS) diminished tolerance to alkali stress in cotton, evidenced by significantly reduced anthocyanin synthesis, markedly decreased antioxidant capacity, notable increases in reactive oxygen species, severe cellular damage, and observably decreased stomatal opening. The cumulative effects of these physiological disruptions ultimately manifest in cotton wilting and fresh weight decline. These findings lay a foundation for further investigations into the role of CYPs in regulating anthocyanin synthesis and responding to alkali stress.
Collapse
Affiliation(s)
- Yuping Sun
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China
| | - Ning Wang
- Institute of Crop Sciences, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, Gansu, China
| | - Xiugui Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Fanjia Peng
- Hunan Institute of Cotton Science, Changde, 415101, Hunan, China
| | - Junling Zhang
- Shawan City Xinyao Rural Property Rights Transfer Trading Center Co., LTD, Xinjiang, China
| | - Heling Song
- Shawan City Xinyao Rural Property Rights Transfer Trading Center Co., LTD, Xinjiang, China
| | - Yuan Meng
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Mengyue Liu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Hui Huang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Yapeng Fan
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lidong Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Zhining Yang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Menghao Zhang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Xiao Chen
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lanjie Zhao
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Lixue Guo
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Xuke Lu
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Junjuan Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Shuai Wang
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China
| | - Jing Jiang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China.
| | - Wuwei Ye
- Institute of Cotton Research of Chinese Academy of Agricultural Sciences / Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University / National Center of Technology Innovation for Comprehensive Utilization of Saline-Alkali Land, Anyang, 455000, Henan, China.
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Henan University, Kaifeng, 475004, Henan, China.
| |
Collapse
|
4
|
An M, Zhu Y, Chang D, Wang X, Wang K. Metabolic and Photosynthesis Analysis of Compound-Material-Mediated Saline and Alkaline Stress Tolerance in Cotton Leaves. PLANTS (BASEL, SWITZERLAND) 2025; 14:394. [PMID: 39942955 PMCID: PMC11819938 DOI: 10.3390/plants14030394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Soil salinization and alkalization can cause great losses to agricultural production in arid regions. Cotton, a common crop in arid and semi-arid regions in China, often encounters saline stress and alkaline stress. In this study, NaCl (8 g·kg-1), Na2CO3 (8 g·kg-1), and a compound material (an organic polymer compound material) were mixed with field soil before cotton sowing, and the ion content, photosynthetic characteristics, and metabolite levels of the new cotton leaves were analyzed at the flowering and boll-forming stage, aiming to clarify the photosynthetic and metabolic mechanisms by which compound material regulates cotton's tolerance to saline stress and alkaline stress. The results showed that the application of the compound material led to an increase in the K+/Na+ ratio, stomatal conductance (Gs), efficiency of PSII photochemistry (ψPSⅡ), potential activity (Fv/Fo), and chlorophyll content (Chla and Chlb), as well as the abundances of D-xylonic acid and DL-phenylalanine in the NaCl treatments. Additionally, there were increases in the K+ content, K+/Na+ ratio, Chla/b ratio, net photosynthetic rate (Pn), transpiration rate (Tr), ψPSⅡ, and D-saccharic acid abundance in the Na2CO3 treatments. A correlation analysis and a metabolic pathway analysis revealed that the compound material mainly regulated the photosynthetic characteristics of and the ion balance in the new leaves through regulating the abundance of key metabolites when the cotton was under NaCl stress or Na2CO3 stress. Furthermore, the positive impact of the compound material on the cotton's NaCl stress tolerance was stronger than that on the cotton's Na2CO3 stress tolerance.
Collapse
Affiliation(s)
- Mengjie An
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (M.A.); (Y.Z.)
| | - Yongqi Zhu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science & Technology, Xinjiang University, Urumqi 830046, China; (M.A.); (Y.Z.)
| | - Doudou Chang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/Agricultural College, Shihezi University, Shihezi 832000, China;
| | - Xiaoli Wang
- Xinjiang Agricultural Vocational Technical College, Changji 831100, China
| | - Kaiyong Wang
- The Key Laboratory of Oasis Eco-Agriculture, Xinjiang Production and Construction Corps/Agricultural College, Shihezi University, Shihezi 832000, China;
| |
Collapse
|
5
|
Das AK, Ghosh PK, Nihad SAI, Sultana S, Keya SS, Rahman MA, Ghosh TK, Akter M, Hasan M, Salma U, Hasan MM, Rahman MM. Salicylic Acid Priming Improves Cotton Seedling Heat Tolerance through Photosynthetic Pigment Preservation, Enhanced Antioxidant Activity, and Osmoprotectant Levels. PLANTS (BASEL, SWITZERLAND) 2024; 13:1639. [PMID: 38931071 PMCID: PMC11207704 DOI: 10.3390/plants13121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/06/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
The escalating global temperatures associated with climate change are detrimental to plant growth and development, leading to significant reductions in crop yields worldwide. Our research demonstrates that salicylic acid (SA), a phytohormone known for its growth-promoting properties, is crucial in enhancing heat tolerance in cotton (Gossypium hirsutum). This enhancement is achieved through modifications in various biochemical, physiological, and growth parameters. Under heat stress, cotton plants typically show significant growth disturbances, including leaf wilting, stunted growth, and reduced biomass. However, priming cotton plants with 1 mM SA significantly mitigated these adverse effects, evidenced by increases in shoot dry mass, leaf-water content, and chlorophyll concentrations in the heat-stressed plants. Heat stress also prompted an increase in hydrogen peroxide levels-a key reactive oxygen species-resulting in heightened electrolyte leakage and elevated malondialdehyde concentrations, which indicate severe impacts on cellular membrane integrity and oxidative stress. Remarkably, SA treatment significantly reduced these oxidative stresses by enhancing the activities of critical antioxidant enzymes, such as catalase, glutathione S-transferase, and ascorbate peroxidase. Additionally, the elevated levels of total soluble sugars in SA-treated plants enhanced osmotic regulation under heat stress. Overall, our findings reveal that SA-triggered protective mechanisms not only preserve photosynthetic pigments but also ameliorate oxidative stress and boost plant resilience in the face of elevated temperatures. In conclusion, the application of 1 mM SA is highly effective in enhancing heat tolerance in cotton and is recommended for field trials before being commercially used to improve crop resilience under increasing global temperatures.
Collapse
Affiliation(s)
- Ashim Kumar Das
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
| | - Protik Kumar Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (P.K.G.); (M.A.)
| | | | - Sharmin Sultana
- Institute of Biotechnology and Genetic Engineering, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Sanjida Sultana Keya
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| | - Md. Abiar Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
| | - Totan Kumar Ghosh
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh;
| | - Munny Akter
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (P.K.G.); (M.A.)
| | - Mehedi Hasan
- Department of Agriculture, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Umme Salma
- Department of Biochemistry and Molecular Biology, Primeasia University, Dhaka 1213, Bangladesh;
| | - Md. Mahadi Hasan
- State Key Laboratory of Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou 730000, China
| | - Md. Mezanur Rahman
- Department of Agroforestry and Environment, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (A.K.D.); (M.A.R.)
- Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA;
| |
Collapse
|
6
|
Li Z, Fan H, Yang L, Wang S, Hong D, Cui W, Wang T, Wei C, Sun Y, Wang K, Liu Y. Multi-Omics Analysis of the Effects of Soil Amendment on Rapeseed ( Brassica napus L.) Photosynthesis under Drip Irrigation with Brackish Water. Int J Mol Sci 2024; 25:2521. [PMID: 38473771 DOI: 10.3390/ijms25052521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 03/14/2024] Open
Abstract
Drip irrigation with brackish water increases the risk of soil salinization while alleviating water shortage in arid areas. In order to alleviate soil salinity stress on crops, polymer soil amendments are increasingly used. But the regulation mechanism of a polymer soil amendment composed of polyacrylamide polyvinyl alcohol, and manganese sulfate (PPM) on rapeseed photosynthesis under drip irrigation with different types of brackish water is still unclear. In this field study, PPM was applied to study the responses of the rapeseed (Brassica napus L.) phenotype, photosynthetic physiology, transcriptomics, and metabolomics at the peak flowering stage under drip irrigation with water containing 6 g·L-1 NaCl (S) and Na2CO3 (A). The results showed that the inhibitory effect of the A treatment on rapeseed photosynthesis was greater than that of the S treatment, which was reflected in the higher Na+ content (73.30%) and lower photosynthetic-fluorescence parameters (6.30-61.54%) and antioxidant enzyme activity (53.13-77.10%) of the A-treated plants. The application of PPM increased the biomass (63.03-75.91%), photosynthetic parameters (10.55-34.06%), chlorophyll fluorescence parameters (33.83-62.52%), leaf pigment content (10.30-187.73%), and antioxidant enzyme activity (28.37-198.57%) under S and A treatments. However, the difference is that under the S treatment, PPM regulated the sulfur metabolism, carbon fixation and carbon metabolism pathways in rapeseed leaves. And it also regulated the photosynthesis-, oxidative phosphorylation-, and TCA cycle-related metabolic pathways in rapeseed leaves under A treatment. This study will provide new insights for the application of polymer materials to tackle the salinity stress on crops caused by drip irrigation with brackish water, and solve the difficulty in brackish water utilization.
Collapse
Affiliation(s)
- Ziwei Li
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Hua Fan
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Le Yang
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Shuai Wang
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Dashuang Hong
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Wenli Cui
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Tong Wang
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Chunying Wei
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Yan Sun
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Kaiyong Wang
- Agricultural College, Shihezi University, Shihezi 832000, China
| | - Yantao Liu
- Institute of Crop Research, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832000, China
| |
Collapse
|
7
|
Xu M, Zuo D, Wang Q, Lv L, Zhang Y, Jiao H, Zhang X, Yang Y, Song G, Cheng H. Identification and molecular evolution of the GLX genes in 21 plant species: a focus on the Gossypium hirsutum. BMC Genomics 2023; 24:474. [PMID: 37608304 PMCID: PMC10464159 DOI: 10.1186/s12864-023-09524-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/19/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The glyoxalase system includes glyoxalase I (GLXI), glyoxalase II (GLXII) and glyoxalase III (GLXIII), which are responsible for methylglyoxal (MG) detoxification and involved in abiotic stress responses such as drought, salinity and heavy metal. RESULTS In this study, a total of 620 GLX family genes were identified from 21 different plant species. The results of evolutionary analysis showed that GLX genes exist in all species from lower plants to higher plants, inferring that GLX genes might be important for plants, and GLXI and GLXII account for the majority. In addition, motif showed an expanding trend in the process of evolution. The analysis of cis-acting elements in 21 different plant species showed that the promoter region of the GLX genes were rich in phytohormones and biotic and abiotic stress-related elements, indicating that GLX genes can participate in a variety of life processes. In cotton, GLXs could be divided into two groups and most GLXIs distributed in group I, GLXIIs and GLXIIIs mainly belonged to group II, indicating that there are more similarities between GLXII and GLXIII in cotton evolution. The transcriptome data analysis and quantitative real-time PCR analysis (qRT-PCR) show that some members of GLX family would respond to high temperature treatment in G.hirsutum. The protein interaction network of GLXs in G.hirsutum implied that most members can participate in various life processes through protein interactions. CONCLUSIONS The results elucidated the evolutionary history of GLX family genes in plants and lay the foundation for their functions analysis in cotton.
Collapse
Affiliation(s)
- Menglin Xu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Huixin Jiao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiang Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yi Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Guoli Song
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Hailiang Cheng
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
- State Key Laboratory of Cotton Biology, Cotton Research Institute of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
8
|
Ju C, Wang C. Gγ subunit AT1/GS3-the "code" of alkaline tolerance in main graminaceous crops. STRESS BIOLOGY 2023; 3:9. [PMID: 37676334 PMCID: PMC10441878 DOI: 10.1007/s44154-023-00090-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 04/17/2023] [Indexed: 09/08/2023]
Abstract
This brief article highlights the results of Zhang et al. (Science 379, eade8416, 2023), who recently found that the Gγ subunit AT1/GS3 contributes to alkaline tolerance in several main monocots crops, and revealed the molecular mechanism of AT1/GS3-mediated response to alkaline stress in plants, which involves regulating H2O2 levels by inhibiting the phosphorylation of aquaporin PIP2s.
Collapse
Affiliation(s)
- Chuanfeng Ju
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
- Institute of Future Agriculture, Northwest Agriculture & Forestry University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Zhang H, Yu F, Xie P, Sun S, Qiao X, Tang S, Chen C, Yang S, Mei C, Yang D, Wu Y, Xia R, Li X, Lu J, Liu Y, Xie X, Ma D, Xu X, Liang Z, Feng Z, Huang X, Yu H, Liu G, Wang Y, Li J, Zhang Q, Chen C, Ouyang Y, Xie Q. A Gγ protein regulates alkaline sensitivity in crops. Science 2023; 379:eade8416. [PMID: 36952416 DOI: 10.1126/science.ade8416] [Citation(s) in RCA: 127] [Impact Index Per Article: 63.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The use of alkaline salt lands for crop production is hindered by a scarcity of knowledge and breeding efforts for plant alkaline tolerance. Through genome association analysis of sorghum, a naturally high-alkaline-tolerant crop, we detected a major locus, Alkaline Tolerance 1 (AT1), specifically related to alkaline-salinity sensitivity. An at1 allele with a carboxyl-terminal truncation increased sensitivity, whereas knockout of AT1 increased tolerance to alkalinity in sorghum, millet, rice, and maize. AT1 encodes an atypical G protein γ subunit that affects the phosphorylation of aquaporins to modulate the distribution of hydrogen peroxide (H2O2). These processes appear to protect plants against oxidative stress by alkali. Designing knockouts of AT1 homologs or selecting its natural nonfunctional alleles could improve crop productivity in sodic lands.
Collapse
Affiliation(s)
- Huili Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Feifei Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- College of Grassland Science and Technology, China Agricultural University, Beijing 100083, China
| | - Peng Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengyuan Sun
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology and Co-Innovation Center for Modern Production Technology of Grain Crops, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Chengxuan Chen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuo Mei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jun Lu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuxi Liu
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaowei Xie
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Dongmei Ma
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Xing Xu
- Breeding Base of State Key Laboratory of Land Degradation and Ecological Restoration of North Western China, School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhengwei Liang
- Northeast Institute of Geography and Agroecology, Daan National Station for Agro-ecosystem Observation and Research, Chinese Academy of Sciences, Changchun 130102, China
| | - Zhonghui Feng
- University of Chinese Academy of Sciences, Beijing 100049, China
- Northeast Institute of Geography and Agroecology, Daan National Station for Agro-ecosystem Observation and Research, Chinese Academy of Sciences, Changchun 130102, China
| | - Xiahe Huang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Guifu Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchun Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qifa Zhang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yidan Ouyang
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research (Wuhan), Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- National Center of Technology Innovation for Maize, State Key Laboratory of Maize Germplasm Innovation and Molecular Breeding, Syngenta Group China, Beijing 102206, China
| |
Collapse
|
10
|
Wang N, Wang S, Qi F, Wang Y, Lin Y, Zhou Y, Meng W, Zhang C, Wang Y, Ma J. Autotetraploidization Gives Rise to Differential Gene Expression in Response to Saline Stress in Rice. PLANTS (BASEL, SWITZERLAND) 2022; 11:3114. [PMID: 36432844 PMCID: PMC9698567 DOI: 10.3390/plants11223114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Plant polyploidization represents an effective means for plants to perpetuate their adaptive advantage in the face of environmental variation. Numerous studies have identified differential responsiveness to environmental cues between polyploids and their related diploids, and polyploids might better adapt to changing environments. However, the mechanism that underlies polyploidization contribution during abiotic stress remains hitherto obscure and needs more comprehensive assessment. In this study, we profile morphological and physiological characteristics, and genome-wide gene expression between an autotetraploid rice and its diploid donor plant following saline stress. The results show that the autotetraploid rice is more tolerant to saline stress than its diploid precursor. The physiological characteristics were rapidly responsive to saline stress in the first 24 h, during which the elevations in sodium ion, superoxide dismutase, peroxidase, and 1-aminocyclopropane-1-carboxylic acid were all significantly higher in the autotetraploid than in the diploid rice. Meanwhile, the genome-wide gene expression analysis revealed that the genes related to ionic transport, peroxidase activity, and phytohormone metabolism were differentially expressed in a significant manner between the autotetraploid and the diploid rice in response to saline stress. These findings support the hypothesis that diverse mechanisms exist between the autotetraploid rice and its diploid donor plant in response to saline stress, providing vital information for improving our understanding on the enhanced performance of polyploid plants in response to salt stress.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Shiyan Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Fan Qi
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Yingkai Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Yiming Zhou
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Weilong Meng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Chunying Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| | - Yunpeng Wang
- Institute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130117, China
| |
Collapse
|
11
|
Wang N, Fan X, Lin Y, Li Z, Wang Y, Zhou Y, Meng W, Peng Z, Zhang C, Ma J. Alkaline Stress Induces Different Physiological, Hormonal and Gene Expression Responses in Diploid and Autotetraploid Rice. Int J Mol Sci 2022; 23:ijms23105561. [PMID: 35628377 PMCID: PMC9142035 DOI: 10.3390/ijms23105561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 02/04/2023] Open
Abstract
Saline−alkaline stress is a critical abiotic stress that negatively affects plants’ growth and development. Considerably higher enhancements in plant tolerance to saline−alkaline stress have often been observed in polyploid plants compared to their diploid relatives, the underlying mechanism of which remains elusive. In this study, we explored the variations in morphological and physiological characteristics, phytohormones, and genome-wide gene expression between an autotetraploid rice and its diploid relative in response to alkaline stress. It was observed that the polyploidization in the autotetraploid rice imparted a higher level of alkaline tolerance than in its diploid relative. An eclectic array of physiological parameters commonly used for abiotic stress, such as proline, soluble sugars, and malondialdehyde, together with the activities of some selected antioxidant enzymes, was analyzed at five time points in the first 24 h following the alkaline stress treatment between the diploid and autotetraploid rice. Phytohormones, such as abscisic acid and indole-3-acetic acid were also comparatively evaluated between the two types of rice with different ploidy levels under alkaline stress. Transcriptomic analysis revealed that gene expression patterns were altered in accordance with the variations in the cellular levels of phytohormones between diploid and autotetraploid plants upon alkaline stress. In particular, the expression of genes related to peroxide and transcription factors was substantially upregulated in autotetraploid plants compared to diploid plants in response to the alkaline stress treatment. In essence, diploid and autotetraploid rice plants exhibited differential gene expression patterns in response to the alkaline stress, which may shed more light on the mechanism underpinning the ameliorated plant tolerance to alkaline stress following genome duplication.
Collapse
Affiliation(s)
- Ningning Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Xuhong Fan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China;
| | - Yujie Lin
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhe Li
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yingkai Wang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Yiming Zhou
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Weilong Meng
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Zhanwu Peng
- Information Center, Jilin Agricultural University, Changchun 130000, China;
| | - Chunying Zhang
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
| | - Jian Ma
- Faculty of Agronomy, Jilin Agricultural University, Changchun 130000, China; (N.W.); (Y.L.); (Z.L.); (Y.W.); (Y.Z.); (W.M.); (C.Z.)
- Correspondence: ; Tel.: +86-431-845332776
| |
Collapse
|
12
|
Liu Y, Cao X, Yue L, Wang C, Tao M, Wang Z, Xing B. Foliar-applied cerium oxide nanomaterials improve maize yield under salinity stress: Reactive oxygen species homeostasis and rhizobacteria regulation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118900. [PMID: 35085650 DOI: 10.1016/j.envpol.2022.118900] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/08/2022] [Accepted: 01/22/2022] [Indexed: 05/04/2023]
Abstract
Salinity stress seriously threatens agricultural productivity and food security worldwide. This work reports on the mechanisms of alleviating salinity stress by cerium oxide nanomaterials (CeO2 NMs) in maize (Zea may L.). Soil-grown maize plants were irrigated with deionized water or 100 mM NaCl solution as the control or the salinity stress treatment. CeO2 NMs (1, 5, 10, 20, and 50 mg/L) with antioxidative enzyme mimicking activities were foliarly applied on maize leaves for 7 days. The morphological, physiological, biochemical, and transcriptomic responses of maize were evaluated. Specifically, salinity stress significantly reduced 59.0% and 63.8% in maize fresh and dry biomass, respectively. CeO2 NMs at 10, 20, and 50 mg/L improved the salt tolerance of maize by 69.5%, 69.1%, and 86.8%, respectively. Also, 10 mg/L CeO2 NMs maintained Na+/K+ homeostasis, enhanced photosynthetic efficiency by 30.8%, and decreased reactive oxygen species (ROS) level by 58.5% in salt-stressed maize leaves. Transcriptomic analysis revealed that the antioxidative defense system-related genes recovered to the normal control level after CeO2 NMs application, indicating that CeO2 NMs eliminated ROS through their intrinsic antioxidative enzyme properties. The down-regulation of genes related to lignin synthesis in the phenylpropanoid biosynthesis pathway accelerated leaf cell elongation. In addition, CeO2 NMs increased the rhizobacteria richness and diversity through the increment of carbon source in root exudates and improved the abundance of halotolerant plant growth-promoting rhizobacteria (HT-PGPR). Importantly, the yield of salt-stressed maize was enhanced by 293.3% after 10 mg/L CeO2 NMs foliar application. These results will provide new insights for the application of CeO2 NMs in management to reduce the salinity-caused crop loss.
Collapse
Affiliation(s)
- Yinglin Liu
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Xuesong Cao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Le Yue
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Chuanxi Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Mengna Tao
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Jiangsu Key Laboratory of Anaerobic Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, United States
| |
Collapse
|