1
|
Sun W, Shahrajabian MH, Wang N. A Study of the Different Strains of the Genus Azospirillum spp. on Increasing Productivity and Stress Resilience in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:267. [PMID: 39861620 PMCID: PMC11768469 DOI: 10.3390/plants14020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
One of the most important and essential components of sustainable agricultural production is biostimulants, which are emerging as a notable alternative of chemical-based products to mitigate soil contamination and environmental hazards. The most important modes of action of bacterial plant biostimulants on different plants are increasing disease resistance; activation of genes; production of chelating agents and organic acids; boosting quality through metabolome modulation; affecting the biosynthesis of phytochemicals; coordinating the activity of antioxidants and antioxidant enzymes; synthesis and accumulation of anthocyanins, vitamin C, and polyphenols; enhancing abiotic stress through cytokinin and abscisic acid (ABA) production; upregulation of stress-related genes; and the production of exopolysaccharides, secondary metabolites, and ACC deaminase. Azospirillum is a free-living bacterial genus which can promote the yield and growth of many species, with multiple modes of action which can vary on the basis of different climate and soil conditions. Different species of Bacillus spp. can increase the growth, yield, and biomass of plants by increasing the availability of nutrients; enhancing the solubilization and subsequent uptake of nutrients; synthesizing indole-3-acetic acid; fixing nitrogen; solubilizing phosphorus; promoting the production of phytohormones; enhancing the growth, production, and quality of fruits and crops via enhancing the production of carotenoids, flavonoids, phenols, and antioxidants; and increasing the synthesis of indoleacetic acid (IAA), gibberellins, siderophores, carotenoids, nitric oxide, and different cell surface components. The aim of this manuscript is to survey the effects of Azospirillum spp. and Bacillus spp. by presenting case studies and successful paradigms in several horticultural and agricultural plants.
Collapse
Affiliation(s)
- Wenli Sun
- Correspondence: ; Tel.: +86-4260-83836
| | | | | |
Collapse
|
2
|
Acharya BR, Gill SP, Kaundal A, Sandhu D. Strategies for combating plant salinity stress: the potential of plant growth-promoting microorganisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1406913. [PMID: 39077513 PMCID: PMC11284086 DOI: 10.3389/fpls.2024.1406913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/24/2024] [Indexed: 07/31/2024]
Abstract
Global climate change and the decreasing availability of high-quality water lead to an increase in the salinization of agricultural lands. This rising salinity represents a significant abiotic stressor that detrimentally influences plant physiology and gene expression. Consequently, critical processes such as seed germination, growth, development, and yield are adversely affected. Salinity severely impacts crop yields, given that many crop plants are sensitive to salt stress. Plant growth-promoting microorganisms (PGPMs) in the rhizosphere or the rhizoplane of plants are considered the "second genome" of plants as they contribute significantly to improving the plant growth and fitness of plants under normal conditions and when plants are under stress such as salinity. PGPMs are crucial in assisting plants to navigate the harsh conditions imposed by salt stress. By enhancing water and nutrient absorption, which is often hampered by high salinity, these microorganisms significantly improve plant resilience. They bolster the plant's defenses by increasing the production of osmoprotectants and antioxidants, mitigating salt-induced damage. Furthermore, PGPMs supply growth-promoting hormones like auxins and gibberellins and reduce levels of the stress hormone ethylene, fostering healthier plant growth. Importantly, they activate genes responsible for maintaining ion balance, a vital aspect of plant survival in saline environments. This review underscores the multifaceted roles of PGPMs in supporting plant life under salt stress, highlighting their value for agriculture in salt-affected areas and their potential impact on global food security.
Collapse
Affiliation(s)
- Biswa R. Acharya
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
- College of Natural and Agricultural Sciences, University of California Riverside, Riverside, CA, United States
| | - Satwinder Pal Gill
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Amita Kaundal
- Plants, Soils, and Climate, College of Agricultural and Applied Sciences, Utah State University, Logan, UT, United States
| | - Devinder Sandhu
- US Salinity Laboratory, USDA-ARS, Riverside, CA, United States
| |
Collapse
|
3
|
El-Ballat EM, Elsilk SE, Ali HM, Ali HE, Hano C, El-Esawi MA. Metal-Resistant PGPR Strain Azospirillum brasilense EMCC1454 Enhances Growth and Chromium Stress Tolerance of Chickpea ( Cicer arietinum L.) by Modulating Redox Potential, Osmolytes, Antioxidants, and Stress-Related Gene Expression. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112110. [PMID: 37299089 DOI: 10.3390/plants12112110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/16/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023]
Abstract
Heavy metal stress, including from chromium, has detrimental effects on crop growth and yields worldwide. Plant growth-promoting rhizobacteria (PGPR) have demonstrated great efficiency in mitigating these adverse effects. The present study investigated the potential of the PGPR strain Azospirillum brasilense EMCC1454 as a useful bio-inoculant for boosting the growth, performance and chromium stress tolerance of chickpea (Cicer arietinum L.) plants exposed to varying levels of chromium stress (0, 130 and 260 µM K2Cr2O7). The results revealed that A. brasilense EMCC1454 could tolerate chromium stress up to 260 µM and exhibited various plant growth-promoting (PGP) activities, including nitrogen fixation, phosphate solubilization, and generation of siderophore, trehalose, exopolysaccharide, ACC deaminase, indole acetic acid, and hydrolytic enzymes. Chromium stress doses induced the formation of PGP substances and antioxidants in A. brasilense EMCC1454. In addition, plant growth experiments showed that chromium stress significantly inhibited the growth, minerals acquisition, leaf relative water content, biosynthesis of photosynthetic pigments, gas exchange traits, and levels of phenolics and flavonoids of chickpea plants. Contrarily, it increased the concentrations of proline, glycine betaine, soluble sugars, proteins, oxidative stress markers, and enzymatic (CAT, APX, SOD, and POD) and non-enzymatic (ascorbic acid and glutathione) antioxidants in plants. On the other hand, A. brasilense EMCC1454 application alleviated oxidative stress markers and significantly boosted the growth traits, gas exchange characteristics, nutrient acquisition, osmolyte formation, and enzymatic and non-enzymatic antioxidants in chromium-stressed plants. Moreover, this bacterial inoculation upregulated the expression of genes related to stress tolerance (CAT, SOD, APX, CHS, DREB2A, CHI, and PAL). Overall, the current study demonstrated the effectiveness of A. brasilense EMCC1454 in enhancing plant growth and mitigating chromium toxicity impacts on chickpea plants grown under chromium stress circumstances by modulating the antioxidant machinery, photosynthesis, osmolyte production, and stress-related gene expression.
Collapse
Affiliation(s)
- Enas M El-Ballat
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Sobhy E Elsilk
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hamada E Ali
- Department of Biology, College of Science, Sultan Qaboos University, Muscat 123, Oman
- Botany and Microbiology Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
| | - Christophe Hano
- Laboratoire de Biologie des Ligneux et des Grandes Cultures, INRAE USC1328, Campus Eure et Loir, Orleans University, 45067 Orleans, France
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
- Photobiology Research Group, Sorbonne Université CNRS, 75005 Paris, France
| |
Collapse
|
4
|
Gureeva MV, Gureev AP. Molecular Mechanisms Determining the Role of Bacteria from the Genus Azospirillum in Plant Adaptation to Damaging Environmental Factors. Int J Mol Sci 2023; 24:ijms24119122. [PMID: 37298073 DOI: 10.3390/ijms24119122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Agricultural plants are continuously exposed to environmental stressors, which can lead to a significant reduction in yield and even the death of plants. One of the ways to mitigate stress impacts is the inoculation of plant growth-promoting rhizobacteria (PGPR), including bacteria from the genus Azospirillum, into the rhizosphere of plants. Different representatives of this genus have different sensitivities or resistances to osmotic stress, pesticides, heavy metals, hydrocarbons, and perchlorate and also have the ability to mitigate the consequences of such stresses for plants. Bacteria from the genus Azospirillum contribute to the bioremediation of polluted soils and induce systemic resistance and have a positive effect on plants under stress by synthesizing siderophores and polysaccharides and modulating the levels of phytohormones, osmolytes, and volatile organic compounds in plants, as well as altering the efficiency of photosynthesis and the antioxidant defense system. In this review, we focus on molecular genetic features that provide bacterial resistance to various stress factors as well as on Azospirillum-related pathways for increasing plant resistance to unfavorable anthropogenic and natural factors.
Collapse
Affiliation(s)
- Maria V Gureeva
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
| | - Artem P Gureev
- Department of Biochemistry and Cell Physiology, Voronezh State University, 394018 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technology, 394036 Voronezh, Russia
| |
Collapse
|
5
|
Swain R, Sahoo S, Behera M, Rout GR. Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. FRONTIERS IN PLANT SCIENCE 2023; 14:1104874. [PMID: 36844040 PMCID: PMC9947512 DOI: 10.3389/fpls.2023.1104874] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2023]
Abstract
In recent times, the demand for food and feed for the ever-increasing population has achieved unparalleled importance, which cannot afford crop yield loss. Now-a-days, the unpleasant situation of abiotic stress triggers crop improvement by affecting the different metabolic pathways of yield and quality advances worldwide. Abiotic stress like drought, salinity, cold, heat, flood, etc. in plants diverts the energy required for growth to prevent the plant from shock and maintain regular homeostasis. Hence, the plant yield is drastically reduced as the energy is utilized for overcoming the stress in plants. The application of phytohormones like the classical auxins, cytokinins, ethylene, and gibberellins, as well as more recent members including brassinosteroids, jasmonic acids, etc., along with both macro and micronutrients, have enhanced significant attention in creating key benefits such as reduction of ionic toxicity, improving oxidative stress, maintaining water-related balance, and gaseous exchange modification during abiotic stress conditions. Majority of phytohormones maintain homeostasis inside the cell by detoxifying the ROS and enhancing the antioxidant enzyme activities which can enhance tolerance in plants. At the molecular level, phytohormones activate stress signaling pathways or genes regulated by abscisic acid (ABA), salicylic acid (SA), Jasmonic acid (JA), and ethylene. The various stresses primarily cause nutrient deficiency and reduce the nutrient uptake of plants. The application of plant nutrients like N, K, Ca, and Mg are also involved in ROS scavenging activities through elevating antioxidants properties and finally decreasing cell membrane leakage and increasing the photosynthetic ability by resynthesizing the chlorophyll pigment. This present review highlighted the alteration of metabolic activities caused by abiotic stress in various crops, the changes of vital functions through the application of exogenous phytohormones and nutrition, as well as their interaction.
Collapse
Affiliation(s)
- Rinny Swain
- Department of Agricultural Biotechnology, Crop Improvement Division, School of Agriculture, Gandhi University of Engineering and Technology (GIET) University, Rayagada, Odisha, India
| | - Smrutishree Sahoo
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Mamata Behera
- Department of Genetics and Plant Breeding, Crop Improvement Division, School of Agriculture, GIET University, Rayagada, Odisha, India
| | - Gyana Ranjan Rout
- Department of Agricultural Biotechnology, College of Agriculture, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| |
Collapse
|
6
|
PopW improves salt stress tolerance of red clover (Trifolium pratense L.) via activating phytohormones and salinity related genes. Biologia (Bratisl) 2022. [DOI: 10.1007/s11756-022-01280-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
7
|
Integrated Metabolomics and Morpho-Biochemical Analyses Reveal a Better Performance of Azospirillum brasilense over Plant-Derived Biostimulants in Counteracting Salt Stress in Tomato. Int J Mol Sci 2022; 23:ijms232214216. [PMID: 36430691 PMCID: PMC9698407 DOI: 10.3390/ijms232214216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Increased soil salinity is one of the main concerns in agriculture and food production, and it negatively affects plant growth and crop productivity. In order to mitigate the adverse effects of salinity stress, plant biostimulants (PBs) have been indicated as a promising approach. Indeed, these products have a beneficial effect on plants by acting on primary and secondary metabolism and by inducing the accumulation of protective molecules against oxidative stress. In this context, the present work is aimed at comparatively investigating the effects of microbial (i.e., Azospirillum brasilense) and plant-derived biostimulants in alleviating salt stress in tomato plants by adopting a multidisciplinary approach. To do so, the morphological and biochemical effects were assessed by analyzing the biomass accumulation and root characteristics, the activity of antioxidant enzymes and osmotic stress protection. Furthermore, modifications in the metabolomic profiles of both leaves and root exudates were also investigated by ultra-high performance liquid chromatography/quadrupole time-of-flight mass spectrometry (UHPLC/QTOF-MS). According to the results, biomass accumulation decreased under high salinity. However, the treatment with A. brasilense considerably improved root architecture and increased root biomass by 156% and 118% in non-saline and saline conditions, respectively. The antioxidant enzymes and proline production were enhanced in salinity stress at different levels according to the biostimulant applied. Moreover, the metabolomic analyses pointed out a wide set of processes being affected by salinity and biostimulant interactions. Crucial compounds belonging to secondary metabolism (phenylpropanoids, alkaloids and other N-containing metabolites, and membrane lipids) and phytohormones (brassinosteroids, cytokinins and methylsalicylate) showed the most pronounced modulation. Overall, our results suggest a better performance of A. brasilense in alleviating high salinity than the vegetal-derived protein hydrolysates herein evaluated.
Collapse
|
8
|
Omer AM, Osman MS, Badawy AA. Inoculation with Azospirillum brasilense and/or Pseudomonas geniculata reinforces flax (Linum usitatissimum) growth by improving physiological activities under saline soil conditions. BOTANICAL STUDIES 2022; 63:15. [PMID: 35587317 PMCID: PMC9120335 DOI: 10.1186/s40529-022-00345-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 05/02/2022] [Indexed: 05/22/2023]
Abstract
BACKGROUND Salinized soils negatively affect plant growth, so it has become necessary to use safe and eco-friendly methods to mitigate this stress. In a completely randomized design, a pot experiment was carried out to estimate the influence of the inoculation with endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata and their co-inoculation on growth and metabolic aspects of flax (Linum usitatissimum) plants that already grown in salinized soil. RESULTS The results observed that inoculation of salinity-stressed flax plants with the endophytes A. brasilense and P. geniculata (individually or in co-inoculation) increases almost growth characteristics (shoot and root lengths, fresh and dry weights as well as number of leaves). Moreover, contents of chlorophylls and carotenoids pigments, soluble sugars, proteins, free proline, total phenols, ascorbic acid, and potassium (K+) in flax plants grown in salinized soil were augmented because of the inoculation with A. brasilense and P. geniculata. Oppositely, there are significant decreases in free proline, malondialdehyde (MDA), hydrogen peroxide (H2O2), and sodium (Na+) contents. Regarding antioxidant enzymes, including superoxide dismutase (SOD), peroxidase (POD), and ascorbate peroxidase (APX), the inoculation with the tested endophytes led to significant enhancements in the activities of antioxidant enzymes in stressed flax plants. CONCLUSIONS The results of this work showed that the use of the endophytic bacterial isolates Azospirillum brasilense, Pseudomonas geniculata (individually or in co-inoculation) could be regarded as an uncommon new model to alleviate salinity stress, especially in salinized soils.
Collapse
Affiliation(s)
- Amal M Omer
- Soil Fertility and Microbiology Department, Desert Research Center, El-Matareya 11753, Cairo, Egypt
| | - Mahmoud S Osman
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt
| | - Ali A Badawy
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Nasr City, Cairo, 11884, Egypt.
| |
Collapse
|
9
|
Abstract
Soil salinization has become a major problem for agriculture worldwide, especially because this phenomenon is continuously expanding in different regions of the world. Salinity is a complex mechanism, and in the soil ecosystem, it affects both microorganisms and plants, some of which have developed efficient strategies to alleviate salt stress conditions. Currently, various methods can be used to reduce the negative effects of this problem. However, the use of biological methods, such as plant-growth-promoting bacteria (PGPB), phytoremediation, and amendment, seems to be very advantageous and promising as a remedy for sustainable and ecological agriculture. Other approaches aim to combine different techniques, as well as the utilization of genetic engineering methods. These techniques alone or combined can effectively contribute to the development of sustainable and eco-friendly agriculture.
Collapse
|
10
|
Li Z, Geng W, Tan M, Ling Y, Zhang Y, Zhang L, Peng Y. Differential Responses to Salt Stress in Four White Clover Genotypes Associated With Root Growth, Endogenous Polyamines Metabolism, and Sodium/Potassium Accumulation and Transport. FRONTIERS IN PLANT SCIENCE 2022; 13:896436. [PMID: 35720567 PMCID: PMC9201400 DOI: 10.3389/fpls.2022.896436] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/09/2022] [Indexed: 05/04/2023]
Abstract
Selection and utilization of salt-tolerant crops are essential strategies for mitigating salinity damage to crop productivity with increasing soil salinization worldwide. This study was conducted to identify salt-tolerant white clover (Trifolium repens) genotypes among 37 materials based on a comprehensive evaluation of five physiological parameters, namely, chlorophyll (Chl) content, photochemical efficiency of PS II (Fv/Fm), performance index on an absorption basis (PIABS), and leaf relative water content (RWC), and to further analyze the potential mechanism of salt tolerance associated with changes in growth, photosynthetic performance, endogenous polyamine metabolism, and Na+/K+ uptake and transport. The results showed that significant variations in salt tolerance were identified among 37 genotypes, as PI237292 and Tr005 were the top two genotypes with the highest salt tolerance, and PI251432 and Korla were the most salt-sensitive genotypes compared to other materials. The salt-tolerant PI237292 and Tr005 not only maintained significantly lower EL but also showed significantly better photosynthetic performance, higher leaf RWC, underground dry weight, and the root to shoot ratio than the salt-sensitive PI251432 and Korla under salt stress. Increases in endogenous PAs, putrescine (Put), and spermidine (Spd) contents could be key adaptive responses to salt stress in the PI237292 and the Tr005 through upregulating genes encoding Put and Spd biosynthesis (NCA, ADC, SAMDC, and SPDS2). For Na+ and K+ accumulation and transport, higher salt tolerance of the PI237292 could be associated with the maintenance of Na+ and Ca+ homeostasis associated with upregulations of NCLX and BTB/POZ. The K+ homeostasis-related genes (KEA2, HAK25, SKOR, POT2/8/11, TPK3/5, and AKT1/5) are differentially expressed among four genotypes under salt stress. However, the K+ level and K+/Na+ ratio were not completely consistent with the salt tolerance of the four genotypes. The regulatory function of these differentially expressed genes (DEGs) on salt tolerance in the white clover and other leguminous plants needs to be investigated further. The current findings also provide basic genotypes for molecular-based breeding for salt tolerance in white clover species.
Collapse
Affiliation(s)
- Zhou Li
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Wan Geng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Meng Tan
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yao Ling
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yan Zhang
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Liquan Zhang
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, Inner Mongolia University, Hohhot, China
- *Correspondence: Liquan Zhang,
| | - Yan Peng
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, China
- Yan Peng,
| |
Collapse
|
11
|
Liu HL, Lee ZX, Chuang TW, Wu HC. Effect of heat stress on oxidative damage and antioxidant defense system in white clover (Trifolium repens L.). PLANTA 2021; 254:103. [PMID: 34674051 DOI: 10.1007/s00425-021-03751-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
This study leads to advances in the field of heat tolerance among different plant species. We concluded that a coordinated, increased antioxidant defense system enabled white clover to reduce heat-induced oxidative damage. The rise in global ambient temperature has a wide range of effects on plant growth, and, therefore, on the activation of various molecular defenses before the appearance of heat damage. Elevated temperatures result in accelerated generation of reactive oxygen species (ROS), causing an imbalance between ROS production and the ability of scavenging systems to detoxify and remove the reactive intermediates. The aim of this study was to determine the role of antioxidant defense systems in the alleviation of heat stress (HS) consequences in white clover (Trifolium repens L.), which is cultivated worldwide. We evaluated how temperature and time parameters contribute to the thermotolerance of white clover at different growth stages. We revealed HS protection in white clover from 37 to 40 °C, with 40 °C providing the greatest protection of 3-day-old seedlings and 28-day-old adult plants. Heat-provoked oxidative stress in white clover was confirmed by substantial changes in electrolyte leakage, malondialdehyde (MDA), and chlorophyll content, as well as superoxide anion (O2·-) and hydrogen peroxide (H2O2) production. Furthermore, superoxide dismutase (SOD) and ascorbate peroxidase (APX) as well as a high level of GSH non-enzymatic antioxidant were the most responsive, and were associated with acquired thermotolerance through the regulation of ROS generation. We demonstrated, by studying protoplast transient gene expression, direct genetic evidence of endogenous antioxidant-related genes that confer HS tolerance in white clover. Our present study clearly establishes that oxidative stress ensues from HS, which triggers the induction of antioxidant defense systems for ROS scavenging in white clover.
Collapse
Affiliation(s)
- Hsiang-Lin Liu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan
| | - Zhu-Xuan Lee
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan
| | - Tzu-Wei Chuang
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan
| | - Hui-Chen Wu
- Department of Biological Sciences and Technology, National University of Tainan, Tainan, 70005, Taiwan.
| |
Collapse
|
12
|
Dūmiņš K, Andersone-Ozola U, Samsone I, Elferts D, Ievinsh G. Growth and Physiological Performance of a Coastal Species Trifolium fragiferum as Affected by a Coexistence with Trifolium repens, NaCl Treatment and Inoculation with Rhizobia. PLANTS 2021; 10:plants10102196. [PMID: 34686005 PMCID: PMC8539394 DOI: 10.3390/plants10102196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/09/2021] [Accepted: 10/13/2021] [Indexed: 11/29/2022]
Abstract
The aim of the present study was to analyze the growth and physiological performance of two coexisting species, Trifolium fragiferum, and Trifolium repens, under the effect of NaCl and rhizobial symbiosis. Seeds of T. fragiferum and T. repens were collected from populations in the wild, and plants were cultivated in an automated greenhouse, two plants per container. Three basic types of planting were performed: (1) both plants were T. fragiferum (single species), (2) one T. fragiferum and one T. repens (species coexistence), (3) both plants were T. repens (single species). For every basic type, three subtypes were made: (1) non-inoculated, (2) inoculated with rhizobia taken from T. fargiferum, (3) inoculated with rhizobia taken from T. repens. For every subtype, half of the containers were used as control, and half were treated with NaCl. Shoot fresh mass of plants was significantly (p < 0.001) affected by species coexistence, inoculant, and NaCl. Three significant two-way interactions on plant shoot growth were found: between species coexistence and NaCl (p < 0.001), inoculant and species (p < 0.05), and NaCl and species (p < 0.001). A significant three-way interaction between inoculant, NaCl, and species (p < 0.001) indicated different responses of shoot growth of the two species to inoculant type and NaCl. NaCl treatment was an important factor for T. fragiferum, resulting in better growth in conditions of species coexistence, but the positive effect of bacterial inoculant was significantly more pronounced. A decrease in peroxidase activity in leaves was a good indicator of relative NaCl tolerance, while the absence/presence of rhizobial inoculation was reflected by changes in leaf chlorophyll concentration and photochemical activity of photosystem II. It can be concluded that interaction between biotic and abiotic factors affected the outcome of the coexistence of the two Trifolium species. Distribution of T. fragiferum in sea-affected habitats seems to be related to a higher competitive ability with allied species at increased substrate salinity, based on better physiological salinity tolerance.
Collapse
Affiliation(s)
- Kārlis Dūmiņš
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
| | - Una Andersone-Ozola
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
| | - Ineta Samsone
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
| | - Didzis Elferts
- Department of Botany and Ecology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia;
| | - Gederts Ievinsh
- Department of Plant Physiology, Faculty of Biology, University of Latvia, 1 Jelgavas Str., LV-1004 Riga, Latvia; (K.D.); (U.A.-O.); (I.S.)
- Correspondence:
| |
Collapse
|
13
|
The immediate effect of riboflavin and lumichrome on the mitigation of saline stress in the microalga Chlorella sorokiniana by the plant-growth-promoting bacterium Azospirillum brasilense. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102424] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Plant growth promoting soil microbiomes and their potential implications for agricultural and environmental sustainability. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00806-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
15
|
The Effect of Biogas Slurry Application on Biomass Production and Forage Quality of Lolium Multiflorum. SUSTAINABILITY 2021. [DOI: 10.3390/su13073605] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The development of ecological circular agriculture has been highly encouraged to recycle agricultural wastes, reduce mineral fertilizer input, and protect the environment. Biogas slurry (BS), a by-product of biogas production generated from anaerobic digestion of animal waste and crop residues, is often considered a substitute to reduce mineral fertilizer input. Being a cheap source of organic matter and plant nutrients, its application may improve soil fertility and yield quality and quantity. The field experiments were conducted in 2016 and 2017 to study the plant growth responses and forage quality by applying biogas slurry to replace chemical synthetic fertilizer (CSF). Results revealed that biogas slurry combination with chemical synthetic fertilizer significantly (p < 0.05) improved the growth of Italian ryegrass on treatment with T2, and the Italian ryegrass dry matter was increased by more than 9.00%, while the stem-to-leaf ratio was decreased by more than 12% (second cutting), in comparison with only chemical synthetic fertilizer group. In the case of forage quality, the crude protein (CP) and crude fiber (CF) content had a significant difference was observed between the T0 and T2 treatment group. Compare with the chemical synthetic fertilizer group, the CP content improved by 10.35%, and the CF content decreased about 10.00%. Based on these results, it was concluded that the application of 37.5 kg/ha CSF + 100.5 t/ha BS could improve the production of biomass and forage quality in Italian ryegrass.
Collapse
|
16
|
Ha-Tran DM, Nguyen TTM, Hung SH, Huang E, Huang CC. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int J Mol Sci 2021; 22:3154. [PMID: 33808829 PMCID: PMC8003591 DOI: 10.3390/ijms22063154] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
To date, soil salinity becomes a huge obstacle for food production worldwide since salt stress is one of the major factors limiting agricultural productivity. It is estimated that a significant loss of crops (20-50%) would be due to drought and salinity. To embark upon this harsh situation, numerous strategies such as plant breeding, plant genetic engineering, and a large variety of agricultural practices including the applications of plant growth-promoting rhizobacteria (PGPR) and seed biopriming technique have been developed to improve plant defense system against salt stress, resulting in higher crop yields to meet human's increasing food demand in the future. In the present review, we update and discuss the advantageous roles of beneficial PGPR as green bioinoculants in mitigating the burden of high saline conditions on morphological parameters and on physio-biochemical attributes of plant crops via diverse mechanisms. In addition, the applications of PGPR as a useful tool in seed biopriming technique are also updated and discussed since this approach exhibits promising potentials in improving seed vigor, rapid seed germination, and seedling growth uniformity. Furthermore, the controversial findings regarding the fluctuation of antioxidants and osmolytes in PGPR-treated plants are also pointed out and discussed.
Collapse
Affiliation(s)
- Dung Minh Ha-Tran
- Molecular and Biological Agricultural Sciences Program, Taiwan International Graduate Program, Academia Sinica and National Chung Hsing University, Taipei 11529, Taiwan;
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Trinh Thi My Nguyen
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
| | - Shih-Hsun Hung
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
- Department of Horticulture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Eugene Huang
- College of Agriculture and Natural Resources, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Chieh-Chen Huang
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan; (T.T.M.N.); (S.-H.H.)
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
17
|
Wu D, Zhang XJ, Liu HC, Zhou YG, Wu XL, Nie Y, Kang YQ, Cai M. Azospirillum oleiclasticum sp. nov, a nitrogen-fixing and heavy oil degrading bacterium isolated from an oil production mixture of Yumen Oilfield. Syst Appl Microbiol 2020; 44:126171. [PMID: 33360414 DOI: 10.1016/j.syapm.2020.126171] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/16/2020] [Accepted: 11/21/2020] [Indexed: 12/14/2022]
Abstract
Two nitrogen-fixing and heavy oil degrading strains, designated RWY-5-1-1T and ROY-1-1-2, were isolated from an oil production mixture from Yumen Oilfield in China. The 16S rRNA gene sequence showed they belong to Azospirillum and have less than 96.1 % pairwise similarity with each species in this genus. The average nucleotide identity and digital DNA-DNA hybridization values between them and other type strains of Azospirillum species were less than 75.69 % and 22.0 %, respectively, both below the species delineation threshold. Pan-genomic analysis showed that the novel isolate RWY-5-1-1T shared 2145 core gene families with other type strains in Azospirillum, and the number of strain-specific gene families was 1623, almost two times more than the number known from other species. Furthermore, genes related to nitrogenase, hydrocarbon degradation and biosurfactant production were found in the isolates' genomes. Also, this strain was capable of reducing acetylene to ethylene at a rate of 22nmol ethylene h-1 (108 cells) and degrading heavy oil at a rate of 36.2 %. The major fatty acids and polar lipids were summed feature 8 (C18:1ω7c/C18:1ω6c), and phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, and phosphatidylcholine. Furthermore, a combination of phenotypic, chemotaxonomic, phylogenetic and genotypic data clearly indicated that strains RWY-5-1-1T and ROY-1-1-2 represent a novel species, for which the name Azospirillum oleiclasticum sp. nov. is proposed. The type strain is RWY-5-1-1T (=CGMCC 1.13426T =KCTC 72259 T). Azospirillum novel strains with the ability of heavy oil degradation associated with the promotion of plant growth has never been reported to date.
Collapse
Affiliation(s)
- Danni Wu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-Juan Zhang
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025 Guizhou, People's Republic of China
| | - Hong-Can Liu
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Yu-Guang Zhou
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Yong Nie
- College of Engineering, Peking University, Beijing 100871, People's Republic of China
| | - Ying-Qian Kang
- School of Basic Medical Sciences, Guizhou Medical University, Guiyang, 550025 Guizhou, People's Republic of China
| | - Man Cai
- China General Microbiological Culture Collection Center, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, People's Republic of China.
| |
Collapse
|
18
|
Azospirillum brasilense reduces oxidative stress in the green microalgae Chlorella sorokiniana under different stressors. J Biotechnol 2020; 325:179-185. [PMID: 33147514 DOI: 10.1016/j.jbiotec.2020.10.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/06/2023]
Abstract
In this study, we investigated oxidative stress in the green microalgae, Chlorella sorokiniana, in co-culture with the plant growth promoting bacteria (PGPB), Azospirillum brasilense. This relationship was studied in the absence of an exogenous stressor, under copper stress, and under nitrogen limitation stress. We confirmed that copper and nitrogen limitation induced algal oxidative stress and reductions in chlorophyll content. In all cases, the presence of A. brasilense lowered the accumulation of intracellular reactive oxygen species (ROS) while promoting chlorophyll content. This effect was driven, in part, by A. brasilense's secretion of the auxin hormone, indole-3-acetic acid, which is known to mitigate stress in higher plants. The findings of the present study show that stress mitigation by A. brasilense resulted in suppressed starch accumulation under nitrogen limitation stress and neutral lipid accumulation under copper stress. In fact, A. brasilense could almost completely mitigate oxidative stress in C. sorokiniana resulting from nitrogen limitation, with ROS accumulation rates comparable to the axenic control cultures. The biotechnological implication of these findings is that co-culture strategies with A. brasilense (and similar PGPB) are most effective for high growth applications. A second growth stage may be needed to induce accumulation of desired products.
Collapse
|
19
|
Abdel Latef AAH, Abu Alhmad MF, Kordrostami M, Abo–Baker ABAE, Zakir A. Inoculation with Azospirillum lipoferum or Azotobacter chroococcum Reinforces Maize Growth by Improving Physiological Activities Under Saline Conditions. JOURNAL OF PLANT GROWTH REGULATION 2020; 39:1293-1306. [DOI: 10.1007/s00344-020-10065-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 01/07/2020] [Indexed: 09/02/2023]
|
20
|
Farhangi-Abriz S, Tavasolee A, Ghassemi-Golezani K, Torabian S, Monirifar H, Rahmani HA. Growth-promoting bacteria and natural regulators mitigate salt toxicity and improve rapeseed plant performance. PROTOPLASMA 2020; 257:1035-1047. [PMID: 32100101 DOI: 10.1007/s00709-020-01493-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Salinity is a major environmental stress that limits plant production and portraits a critical challenge to food security in the world. In this research, the impacts of plant growth-promoting bacteria (Pseudomonas RS-198 and Azospirillum brasilense RS-SP7) and foliar application of plant hormones (salicylic acid 1 mM and jasmonic acid 0.5 mM) on alleviating the harmful effects of salt stress in rapeseed plants (Brassica napus cv. okapi) were examined under greenhouse condition. Salt stress diminished rapeseed biomass, leaf area, water content, nitrogen, phosphorus, potassium, calcium, magnesium, and chlorophyll content, while it increased sodium content, endogenous salicylic and jasmonic acids, osmolyte production, H2O2 and O2•- generations, TBARS content, and antioxidant enzyme activities. Plant growth, nutrient content, leaf expansion, osmolyte production, and antioxidant enzyme activities were increased, but oxidative and osmotic stress indicators were decreased by bacteria inoculation + salicylic acid under salt stress. Antioxidant enzyme activities were amplified by jasmonic acid treatments under salt stress, although rapeseed growth was not generally affected by jasmonic acid. Bacterial + hormonal treatments were superior to individual treatments in reducing detrimental effects of salt stress. The best treatment in rectifying rapeseed growth under salt stress was combination of Pseudomonas and salicylic acid. This combination attenuated destructive salinity properties and subsequently amended rapeseed growth via enhancing endogenous salicylic acid content and some essential nutrients such as potassium, phosphorus, and magnesium.
Collapse
Affiliation(s)
- Salar Farhangi-Abriz
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Alireza Tavasolee
- Soil and Water Research Department, East Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
| | - Kazem Ghassemi-Golezani
- Department of Plant Eco-physiology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
| | - Shahram Torabian
- Department of Agronomy, College of Agriculture, Isfahan University of Technology, Isfahan, Iran
| | - Hassan Monirifar
- Seed and Plant Improvement Research Department, East Azerbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Tabriz, Iran
| | - Hadi Asadi Rahmani
- Soil and Water Research Institute, Agriculture Research, Education and Extension Organization, Karaj, Iran
| |
Collapse
|
21
|
Peng H, de-Bashan LE, Bashan Y, Higgins BT. Indole-3-acetic acid from Azosprillum brasilense promotes growth in green algae at the expense of energy storage products. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Khalid M, Hui N, Rahman SU, Hayat K, Huang D. Suppression of clubroot (Plasmodiophora brassicae) development in Brassica campestris sp. chinensis L. via exogenous inoculation of Piriformospora indica. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1719337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Muhammad Khalid
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Nan Hui
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Saeed-ur- Rahman
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kashif Hayat
- Key Laboratory of Urban Agriculture, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Danfeng Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
23
|
Characterization of ethno-medicinal plant resources of karamar valley Swabi, Pakistan. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2019. [DOI: 10.1016/j.jrras.2017.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Cheng B, Li Z, Liang L, Cao Y, Zeng W, Zhang X, Ma X, Huang L, Nie G, Liu W, Peng Y. The γ-Aminobutyric Acid (GABA) Alleviates Salt Stress Damage during Seeds Germination of White Clover Associated with Na⁺/K⁺ Transportation, Dehydrins Accumulation, and Stress-Related Genes Expression in White Clover. Int J Mol Sci 2018; 19:ijms19092520. [PMID: 30149642 PMCID: PMC6163210 DOI: 10.3390/ijms19092520] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/16/2022] Open
Abstract
The objective of this study was to determine the effect of soaking with γ-aminobutyric acid (GABA) on white clover (Trifolium repens cv. Haifa) seed germination under salt stress induced by 100 mM NaCl. Seeds soaking with GABA (1 μM) significantly alleviated salt-induced decreases in endogenous GABA content, germination percentage, germination vigor, germination index, shoot and root length, fresh and dry weight, and root activity of seedling during seven days of germination. Exogenous application of GABA accelerated starch catabolism via the activation of amylase and also significantly reduced water-soluble carbohydrate, free amino acid, and free proline content in seedlings under salt stress. In addition, improved antioxidant enzyme activities (SOD, GPOX, CAT, APX, DHAR, GR and MDHR) and gene transcript levels (Cu/ZnSOD, FeSOD, MnSOD, CAT, GPOX, APX, MDHR, GPX and GST) was induced by seeds soaking with GABA, followed by decreases in O₂∙-, H₂O₂, and MDA accumulation during germination under salt stress. Seeds soaking with GABA could also significantly improve Na⁺/K⁺ content and transcript levels of genes encoding Na⁺/K⁺ transportation (HKT1, HKT8, HAL2, H⁺-ATPase and SOS1) in seedlings of white clover. Moreover, exogenous GABA significantly induced the accumulation of dehydrins and expression of genes encoding dehydrins (SK2, Y2K, Y2SK, and dehydrin b) in seedlings under salt stress. These results indicate that GABA mitigates the salt damage during seeds germination through enhancing starch catabolism and the utilization of sugar and amino acids for the maintenance of growth, improving the antioxidant defense for the alleviation of oxidative damage, increasing Na⁺/K⁺ transportation for the osmotic adjustment, and promoting dehydrins accumulation for antioxidant and osmotic adjustment under salt stress.
Collapse
Affiliation(s)
- Bizhen Cheng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Zhou Li
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linlin Liang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yiqin Cao
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Weihang Zeng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xiao Ma
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Linkai Huang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Wei Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yan Peng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
25
|
Fukami J, Cerezini P, Hungria M. Azospirillum: benefits that go far beyond biological nitrogen fixation. AMB Express 2018; 8:73. [PMID: 29728787 PMCID: PMC5935603 DOI: 10.1186/s13568-018-0608-1] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 04/30/2018] [Indexed: 12/25/2022] Open
Abstract
The genus Azospirillum comprises plant-growth-promoting bacteria (PGPB), which have been broadly studied. The benefits to plants by inoculation with Azospirillum have been primarily attributed to its capacity to fix atmospheric nitrogen, but also to its capacity to synthesize phytohormones, in particular indole-3-acetic acid. Recently, an increasing number of studies has attributed an important role of Azospirillum in conferring to plants tolerance of abiotic and biotic stresses, which may be mediated by phytohormones acting as signaling molecules. Tolerance of biotic stresses is controlled by mechanisms of induced systemic resistance, mediated by increased levels of phytohormones in the jasmonic acid/ethylene pathway, independent of salicylic acid (SA), whereas in the systemic acquired resistance-a mechanism previously studied with phytopathogens-it is controlled by intermediate levels of SA. Both mechanisms are related to the NPR1 protein, acting as a co-activator in the induction of defense genes. Azospirillum can also promote plant growth by mechanisms of tolerance of abiotic stresses, named as induced systemic tolerance, mediated by antioxidants, osmotic adjustment, production of phytohormones, and defense strategies such as the expression of pathogenesis-related genes. The study of the mechanisms triggered by Azospirillum in plants can help in the search for more-sustainable agricultural practices and possibly reveal the use of PGPB as a major strategy to mitigate the effects of biotic and abiotic stresses on agricultural productivity.
Collapse
Affiliation(s)
- Josiane Fukami
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| | - Paula Cerezini
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
| | - Mariangela Hungria
- Embrapa Soja, C.P. 231, Londrina, Paraná 86001-970 Brazil
- Department Biochemistry and Biotechnology, Universidade Estadual de Londrina, C.P. 60001, Londrina, Paraná 86051-990 Brazil
| |
Collapse
|
26
|
Fukami J, de la Osa C, Ollero FJ, Megías M, Hungria M. Co-inoculation of maize with Azospirillum brasilense and Rhizobium tropici as a strategy to mitigate salinity stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:328-339. [PMID: 32290956 DOI: 10.1071/fp17167] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Accepted: 09/09/2017] [Indexed: 05/15/2023]
Abstract
Plants are highly affected by salinity, but some plant growth-promoting bacteria (PGPB) may trigger induced systemic tolerance (IST), conferring protection against abiotic stresses. We investigated plant mechanisms under saline stress (170mM NaCl) when maize was singly or co-inoculated with Azospirillum brasilense strains Ab-V5 and Ab-V6 and Rhizobium tropici strain CIAT 899. Under greenhouse conditions, plants responded positively to inoculation and co-inoculation, but with differences between strains. Inoculation affected antioxidant enzymes that detoxify reactive oxygen species (ROS) - ascorbate peroxidase (APX), catalase (CAT) and superoxide dismutase (SOD) - mainly in leaves. Proline contents in leaves and roots and malondialdehyde (MDA) in leaves - plant-stress-marker molecules - were significantly reduced due to the inoculation, indicating reduced need for the synthesis of these molecules. Significant differences were attributed to inoculation in the expression of genes related to antioxidant activity, in general with upregulation of APX1, CAT1, SOD2 and SOD4 in leaves, and APX2 in roots. Pathogenesis-related genes PR1, prp2, prp4 and heat-shock protein hsp70 were downregulated in leaves and roots, indicating that inoculation with PGPB might reduce the need for this protection. Together the results indicate that inoculation with PGPB might provide protection from the negative effects of saline stress. However, differences were observed between strains, as A. brasilense Ab-V5 did not show salt tolerance, while the best inoculation treatments to mitigate saline stress were with Ab-V6 and co-inoculation with Ab-V6+CIAT 899. Inoculation with these strains may represent an effective strategy to mitigate salinity stress.
Collapse
Affiliation(s)
- Josiane Fukami
- Embrapa Soja, CP 231, 86001-970, Londrina, Paraná, Brazil
| | - Clara de la Osa
- Universidad de Sevilla, Facultad de Biología, Dept. de Fisiología Vegetal, CP 41012 Sevilla, Spain
| | - Francisco Javier Ollero
- Universidad de Sevilla, Facultad de Biología, Dept. de Microbiología, CP 41012 Sevilla, Spain
| | - Manuel Megías
- Universidad de Sevilla, Facultad de Biología, Dept. de Microbiología, CP 41012 Sevilla, Spain
| | | |
Collapse
|
27
|
Role of Secondary Metabolites from Plant Growth-Promoting Rhizobacteria in Combating Salinity Stress. PLANT MICROBIOME: STRESS RESPONSE 2018. [DOI: 10.1007/978-981-10-5514-0_6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|