1
|
Ghosh G, Das D, Nandi A, De S, Gangappa SN, Prasad M. Ecdysone regulates phagocytic cell fate of epithelial cells in developing Drosophila eggs. J Cell Biol 2025; 224:e202411073. [PMID: 40434296 PMCID: PMC12118371 DOI: 10.1083/jcb.202411073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/01/2025] [Accepted: 05/12/2025] [Indexed: 05/29/2025] Open
Abstract
Acquisition of nonprofessional phagocytic cell fate plays an important role in sculpting functional metazoan organs and maintaining overall tissue homeostasis. Though physiologically highly relevant, how the normal epithelial cells acquire phagocytic fate is still mostly unclear. We have employed the Drosophila ovary model to demonstrate that the classical ecdysone signaling in the somatic epithelial follicle cells (AFCs) aids the removal of germline nurse cells (NCs) in late oogenesis. Our live-cell imaging data reveal a novel phenomenon wherein collective behavior of 4-5 AFCs is required for clearing a single NC. By employing classical genetics, molecular biology, and yeast one-hybrid assay, we demonstrate that ecdysone modulates the phagocytic disposition of AFCs at two levels. It regulates the epithelial-mesenchymal transition of the AFCs through Serpent and modulates the phagocytic behavior of the AFCs through Croquemort and Draper. Our data provide unprecedented novel molecular insights into how ecdysone signaling reprograms AFCs toward a phagocytic fate.
Collapse
Affiliation(s)
- Gaurab Ghosh
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Devyan Das
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Abhrajyoti Nandi
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Souvik De
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Sreeramaiah N. Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| | - Mohit Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research-Kolkata, Mohanpur, India
| |
Collapse
|
2
|
Kim KY, Hwang YL, Yeom S, Kwon SH, Jeon SH. Pss knockdown in the midgut causes growth retardation in Drosophila similar to that in human LMHD. Dev Dyn 2025. [PMID: 40401988 DOI: 10.1002/dvdy.70039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 03/18/2025] [Accepted: 04/22/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Phosphatidylserine synthase (PSS), localized in the mitochondrial membrane, synthesizes phosphatidylserine. In humans, mutations in Pss lead to Lenz-Majewski hyperostotic dwarfism, a disorder affecting growth and development. The effects of Pss mutations on the growth of Drosophila melanogaster are not fully known. Hence, this study was conducted to investigate the effects of Pss knockdown on the growth and development of D. melanogaster. RESULTS Enterocyte (EC)-specific Pss knockdown resulted in reduced cell size in the gut via reduced Akt signaling. EC-specific Pss knockdown was associated with a decrease in gut size, a change in gut pH, and reduced food intake. These abnormalities affected normal nutrient metabolism in larvae, leading to decreased secretion of Drosophila insulin-like peptides. Consequently, the reduced systemic Akt signaling at the organismal level resulted not only in impaired gut growth but also in abnormal organismal growth and development. CONCLUSION These findings highlight the significant role of the Pss gene in the growth and development of D. melanogaster.
Collapse
Affiliation(s)
- Kwan-Young Kim
- Center for Educational Research, Seoul National University, Seoul, Republic of Korea
| | - You-Lim Hwang
- Department of Science Education, Seoul National University, Seoul, Republic of Korea
| | - Sunwoo Yeom
- Department of Science Education, Seoul National University, Seoul, Republic of Korea
| | - Seung-Hae Kwon
- Korea Basic Science Institute, Seoul Center, Seoul, Republic of Korea
| | - Sang-Hak Jeon
- Department of Science Education, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
3
|
Evdokimova A, Kolesnikova T, Mazina MY, Krasnov A, Erokhin M, Chetverina D, Vorobyeva N. Transcriptional induction by ecdysone in Drosophila salivary glands involves an increase in chromatin accessibility and acetylation. Nucleic Acids Res 2025; 53:gkaf284. [PMID: 40239993 PMCID: PMC11997763 DOI: 10.1093/nar/gkaf284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/18/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Transcriptional activation by 20-hydroxyecdysone (20E) in Drosophila provides an excellent model for studying tissue-specific responses to steroids. An increase in the 20E concentration regulates the degradation of larval and the proliferation of adult tissues during metamorphosis. To study 20E-dependent transcription, we used the natural system for controlling the 20E concentration-the E23 membrane transporter-which exports 20E from the cell. We artificially expressed E23 in tissues to suppress the first wave of 20E-inducible transcription at metamorphosis. E23 expression revealed a plethora of 20E-dependent genes in salivary glands, while mildly affecting transcription in brain. We described the mechanisms controlling transcriptional activation by 20E in salivary glands. 20E depletion decreased the binding of Pol II and the TFIID subunit, TBP, to the promoters of primary targets, demonstrating the role of 20E in transcription initiation. At target loci, 20E depletion resulted in the malfunctioning of sites co-bound with EcR and CBP/Nejire and enriched for the H3K27Ac mark inherent to active enhancers. At these sites, the 20E concentration was found to control chromatin accessibility and acetylation. We suggest that the activity of these 'active' ecdysone-sensitive elements was responsible for the active status of 20E targets in the salivary glands of wandering larvae.
Collapse
Affiliation(s)
| | - Tatyana D Kolesnikova
- Institute of Molecular and Cellular Biology, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia
| | - Marina Yu Mazina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Aleksey N Krasnov
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Maksim Erokhin
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | - Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, 119334, Moscow, Russia
| | | |
Collapse
|
4
|
Liu C, Wu MZ, Zheng ZJ, Fan ST, Tan JF, Jiao Y, Palli SR, Zhu GH. Knockout BR-C induces premature expression of E93 thus triggering adult differentiation under larval morphology. PEST MANAGEMENT SCIENCE 2025; 81:1923-1933. [PMID: 39641237 DOI: 10.1002/ps.8592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND Holometabolan pupal-specifier broad-complex (BR-C) and adult specifier ecdysone-induced protein 93F (E93) are essential for metamorphosis; however, their interaction and effects on programmed cell death and cell differentiation during pupation remain unclear. RESULTS Here, multiple single-guide RNA (sgRNA)-mediated mosaic knockout of BR-C induced a deformed larva/pupa intermediate phenotype in Spodoptera frugiperda. Quantitative real-time polymerase chain reaction (qPCR) analysis showed that the adult specifier E93 was prematurely expressed in the BR-C mutants during the penultimate and last instar larval stages. Additionally, histological observation and TUNEL assay showed that apoptosis in the fat body and midgut was activated in the larval tissues; astonishingly, the adult midgut appeared in the pupae of BR-C mutants. CONCLUSION Overall, the results demonstrated that the premature expression of E93 induced by lack of BR-C triggers adult differentiation during the larval stages, which revealed the inhibitory effect of BR-C on E93 during metamorphosis in S. frugiperda. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Chang Liu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Mian-Zhi Wu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Zi-Jing Zheng
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Shu-Ting Fan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Jin-Fang Tan
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| | - Yaoyu Jiao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, USA
| | - Guan-Heng Zhu
- School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- State Key Laboratory of Biocontrol, School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
5
|
Umargamwala R, Manning J, Dorstyn L, Denton D, Kumar S. Understanding Developmental Cell Death Using Drosophila as a Model System. Cells 2024; 13:347. [PMID: 38391960 PMCID: PMC10886741 DOI: 10.3390/cells13040347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/09/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
Cell death plays an essential function in organismal development, wellbeing, and ageing. Many types of cell deaths have been described in the past 30 years. Among these, apoptosis remains the most conserved type of cell death in metazoans and the most common mechanism for deleting unwanted cells. Other types of cell deaths that often play roles in specific contexts or upon pathological insults can be classed under variant forms of cell death and programmed necrosis. Studies in Drosophila have contributed significantly to the understanding and regulation of apoptosis pathways. In addition to this, Drosophila has also served as an essential model to study the genetic basis of autophagy-dependent cell death (ADCD) and other relatively rare types of context-dependent cell deaths. Here, we summarise what is known about apoptosis, ADCD, and other context-specific variant cell death pathways in Drosophila, with a focus on developmental cell death.
Collapse
Affiliation(s)
- Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Jantina Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Loretta Dorstyn
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; (J.M.); (L.D.)
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
6
|
Nicolson S, Manning JA, Lim Y, Jiang X, Kolze E, Dayan S, Umargamwala R, Xu T, Sandow JJ, Webb AI, Kumar S, Denton D. The Drosophila ZNRF1/2 homologue, detour, interacts with HOPS complex and regulates autophagy. Commun Biol 2024; 7:183. [PMID: 38360932 PMCID: PMC10869362 DOI: 10.1038/s42003-024-05834-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Autophagy, the process of elimination of cellular components by lysosomal degradation, is essential for animal development and homeostasis. Using the autophagy-dependent Drosophila larval midgut degradation model we identified an autophagy regulator, the RING domain ubiquitin ligase CG14435 (detour). Depletion of detour resulted in increased early-stage autophagic vesicles, premature tissue contraction, and overexpression of detour or mammalian homologues, ZNRF1 and ZNRF2, increased autophagic vesicle size. The ablation of ZNRF1 or ZNRF2 in mammalian cells increased basal autophagy. We identified detour interacting proteins including HOPS subunits, deep orange (dor/VPS18), Vacuolar protein sorting 16A (VPS16A), and light (lt/VPS41) and found that detour promotes their ubiquitination. The detour mutant accumulated autophagy-related proteins in young adults, displayed premature ageing, impaired motor function, and activation of innate immunity. Collectively, our findings suggest a role for detour in autophagy, likely through regulation of HOPS complex, with implications for healthy aging.
Collapse
Affiliation(s)
- Shannon Nicolson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Yoon Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Erica Kolze
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5001, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Ruchi Umargamwala
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Tianqi Xu
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia
| | - Jarrod J Sandow
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Andrew I Webb
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia.
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, 5001, Australia.
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, 5001, Australia.
| |
Collapse
|
7
|
Long S, Cao W, Qiu Y, Deng R, Liu J, Zhang L, Dong R, Liu F, Li S, Zhao H, Li N, Li K. The appearance of cytoplasmic cytochrome C precedes apoptosis during Drosophila salivary gland degradation. INSECT SCIENCE 2024; 31:157-172. [PMID: 37370257 DOI: 10.1111/1744-7917.13240] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023]
Abstract
Apoptosis is an important process for organism development that functions to eliminate cell damage, maintain homeostasis, and remove obsolete tissues during morphogenesis. In mammals, apoptosis is accompanied by the release of cytochrome C (Cyt-c) from mitochondria to the cytoplasm. However, whether this process is conserved in the fruit fly, Drosophila melanogaster, remains controversial. In this study, we discovered that during the degradation of Drosophila salivary gland, the transcription of mitochondria apoptosis factors (MAPFs), Cyt-c, and death-associated APAF1-related killer (Dark) encoding genes are all upregulated antecedent to initiator and effector caspases encoding genes. The proteins Cyt-c and the active caspase 3 appear gradually in the cytoplasm during salivary gland degradation. Meanwhile, the Cyt-c protein colocates with mito-GFP, the marker indicating cytoplasmic mitochondria, and the change in mitochondrial membrane potential coincides with the appearance of Cyt-c in the cytoplasm. Moreover, impeding or promoting 20E-induced transcription factor E93 suppresses or enhances the staining of Cyt-c and the active caspase 3 in the cytoplasm of salivary gland, and accordingly decreases or increases the mitochondrial membrane potential, respectively. Our research provides evidence that cytoplasmic Cyt-c appears before apoptosis during Drosophila salivary gland degradation, shedding light on partial conserved mechanism in apoptosis between insects and mammals.
Collapse
Affiliation(s)
- Shihui Long
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Wenxin Cao
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Yongyu Qiu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Ruohan Deng
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Renke Dong
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Fengxin Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Haigang Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
- ChemPartner PharmaTech Co., Ltd, Jiangmen, Guangdong Province, China
| | - Na Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, Guangdong Province, China
| |
Collapse
|
8
|
Brooks EC, Zeidler MP, Ong ACM, Evans IR. Macrophage subpopulation identity in Drosophila is modulated by apoptotic cell clearance and related signalling pathways. Front Immunol 2024; 14:1310117. [PMID: 38283366 PMCID: PMC10811221 DOI: 10.3389/fimmu.2023.1310117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
In Drosophila blood, plasmatocytes of the haemocyte lineage represent the functional equivalent of vertebrate macrophages and have become an established in vivo model with which to study macrophage function and behaviour. However, the use of plasmatocytes as a macrophage model has been limited by a historical perspective that plasmatocytes represent a homogenous population of cells, in contrast to the high levels of heterogeneity of vertebrate macrophages. Recently, a number of groups have reported transcriptomic approaches which suggest the existence of plasmatocyte heterogeneity, while we identified enhancer elements that identify subpopulations of plasmatocytes which exhibit potentially pro-inflammatory behaviours, suggesting conservation of plasmatocyte heterogeneity in Drosophila. These plasmatocyte subpopulations exhibit enhanced responses to wounds and decreased rates of efferocytosis when compared to the overall plasmatocyte population. Interestingly, increasing the phagocytic requirement placed upon plasmatocytes is sufficient to decrease the size of these plasmatocyte subpopulations in the embryo. However, the mechanistic basis for this response was unclear. Here, we examine how plasmatocyte subpopulations are modulated by apoptotic cell clearance (efferocytosis) demands and associated signalling pathways. We show that loss of the phosphatidylserine receptor Simu prevents an increased phagocytic burden from modulating specific subpopulation cells, while blocking other apoptotic cell receptors revealed no such rescue. This suggests that Simu-dependent efferocytosis is specifically involved in determining fate of particular subpopulations. Supportive of our original finding, mutations in amo (the Drosophila homolog of PKD2), a calcium-permeable channel which operates downstream of Simu, phenocopy simu mutants. Furthermore, we show that Amo is involved in the acidification of the apoptotic cell-containing phagosomes, suggesting that this reduction in pH may be associated with macrophage reprogramming. Additionally, our results also identify Ecdysone receptor signalling, a pathway related to control of cell death during developmental transitions, as a controller of plasmatocyte subpopulation identity. Overall, these results identify fundamental pathways involved in the specification of plasmatocyte subpopulations and so further validate Drosophila plasmatocytes as a heterogeneous population of macrophage-like cells within this important developmental and immune model.
Collapse
Affiliation(s)
- Elliot C. Brooks
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Martin P. Zeidler
- School of Biosciences and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Albert C. M. Ong
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| | - Iwan R. Evans
- School of Medicine and Population Health and the Bateson Centre, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
9
|
Yu J, Song H, Wang Y, Liu Z, Wang H, Xu B. 20-hydroxyecdysone Upregulates Ecdysone Receptor (ECR) Gene to Promote Pupation in the Honeybee, Apis mellifera Ligustica. Integr Comp Biol 2023; 63:288-303. [PMID: 37365683 DOI: 10.1093/icb/icad077] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
A heterodimeric complex of two nuclear receptors, the ecdysone receptor (ECR) and ultraspiracle (USP), transduces 20-hydroxyecdysone (20E) signaling to modulate insect growth and development. Here, we aimed to determine the relationship between ECR and 20E during larval metamorphosis and also the specific roles of ECR during larval-adult transition in Apis mellifera. We found that ECR gene expression peaked in the 7-day-old larvae, then decreased gradually from the pupae stage. 20E slowly reduced food consumption and then induced starvation, resulting in small-sized adults. In addition, 20E induced ECR expression to regulate larval development time. Double-stranded RNAs (dsRNAs) were prepared using common dsECR as templates. After dsECR injection, larval transition to the pupal stage was delayed, and 80% of the larvae showed prolonged pupation beyond 18 h. Moreover, the mRNA levels of shd, sro, nvd, and spo, and ecdysteroid titers were significantly decreased in ECR RNAi larvae compared with those in GFP RNAi control larvae. ECR RNAi disrupted 20E signaling during larval metamorphosis. We performed rescuing experiments by injecting 20E in ECR RNAi larvae and found that the mRNA levels of ECR, USP, E75, E93, and Br-c were not restored. 20E induced apoptosis in the fat body during larval pupation, while RNAi knockdown of ECR genes reduced apoptosis. We concluded that 20E induced ECR to modulate 20E signaling to promote honeybee pupation. These results assist our understanding of the complicated molecular mechanisms of insect metamorphosis.
Collapse
Affiliation(s)
- Jing Yu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongyu Song
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Ying Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Zhenguo Liu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Hongfang Wang
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| | - Baohua Xu
- College of Animal Science and Technology, Shandong Agricultural University, Tai'an 271000, China
| |
Collapse
|
10
|
Zhang J, Zhang W, Wei L, Zhang L, Liu J, Huang S, Li S, Yang W, Li K. E93 promotes transcription of RHG genes to initiate apoptosis during Drosophila salivary gland metamorphosis. INSECT SCIENCE 2023; 30:588-598. [PMID: 36281570 DOI: 10.1111/1744-7917.13135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/03/2022] [Accepted: 10/14/2022] [Indexed: 06/15/2023]
Abstract
20-hydroxyecdysone (20E) induced transcription factor E93 is important for larval-adult transition, which functions in programmed cell death of larval obsolete tissues, and the formation of adult new tissues. However, the apoptosis-related genes directly regulated by E93 are still ambiguous. In this study, an E93 mutation fly strain was obtained by clustered regularly interspaced palindromic repeats (CRISPR) / CRISPR-associated protein 9-mediated long exon deletion to investigate whether and how E93 induces apoptosis during larval tissues metamorphosis. The transcriptional profile of E93 was consistent with 3 RHG (rpr, hid, and grim) genes and the effector caspase gene drice, and all their expressions peaked at the initiation of apoptosis during the degradation of salivary glands. The transcription expression of 3 RHG genes decreased and apoptosis was blocked in E93 mutation salivary gland during metamorphosis. In contrast, E93 overexpression promoted the transcription of 3 RHG genes, and induced advanced apoptosis in the salivary gland. Moreover, E93 not only enhance the promoter activities of the 3 RHG genes in Drosophila Kc cells in vitro, but also in the salivary gland in vivo. Our results demonstrated that 20E induced E93 promotes the transcription of RHG genes to trigger apoptosis during obsolete tissues degradation at metamorphosis in Drosophila.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenhao Zhang
- College of Biological and Food Engineering, Huaihua University, Huaihua, 418000, China
| | - Lin Wei
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Lidan Zhang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Jiali Liu
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Shumin Huang
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| | - Weike Yang
- The Sericultural and Apicultural Research Institute, Yunnan Academy of Agricultural Sciences, Mengzi, Yunnan, 661100, China
| | - Kang Li
- Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, 510631, China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
- Guangmeiyuan R&D Center, Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, South China Normal University, Meizhou, 514779, China
| |
Collapse
|
11
|
Truman JW, Riddiford LM. Drosophila postembryonic nervous system development: a model for the endocrine control of development. Genetics 2023; 223:iyac184. [PMID: 36645270 PMCID: PMC9991519 DOI: 10.1093/genetics/iyac184] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
During postembryonic life, hormones, including ecdysteroids, juvenile hormones, insulin-like peptides, and activin/TGFβ ligands act to transform the larval nervous system into an adult version, which is a fine-grained mosaic of recycled larval neurons and adult-specific neurons. Hormones provide both instructional signals that make cells competent to undergo developmental change and timing cues to evoke these changes across the nervous system. While touching on all the above hormones, our emphasis is on the ecdysteroids, ecdysone and 20-hydroxyecdysone (20E). These are the prime movers of insect molting and metamorphosis and are involved in all phases of nervous system development, including neurogenesis, pruning, arbor outgrowth, and cell death. Ecdysteroids appear as a series of steroid peaks that coordinate the larval molts and the different phases of metamorphosis. Each peak directs a stereotyped cascade of transcription factor expression. The cascade components then direct temporal programs of effector gene expression, but the latter vary markedly according to tissue and life stage. The neurons read the ecdysteroid titer through various isoforms of the ecdysone receptor, a nuclear hormone receptor. For example, at metamorphosis the pruning of larval neurons is mediated through the B isoforms, which have strong activation functions, whereas subsequent outgrowth is mediated through the A isoform through which ecdysteroids play a permissive role to allow local tissue interactions to direct outgrowth. The major circulating ecdysteroid can also change through development. During adult development ecdysone promotes early adult patterning and differentiation while its metabolite, 20E, later evokes terminal adult differentiation.
Collapse
Affiliation(s)
- James W Truman
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| | - Lynn M Riddiford
- Friday Harbor Laboratories, University of Washington, Friday Harbor, WA 98250, USA
- Department of Biology, University of Washington, Box 351800, Seattle, WA 98195, USA
| |
Collapse
|
12
|
Wynen H, Taylor E, Heyland A. Thyroid hormone-induced cell death in sea urchin metamorphic development. J Exp Biol 2022; 225:284353. [PMID: 36412991 PMCID: PMC10112870 DOI: 10.1242/jeb.244560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 11/07/2022] [Indexed: 11/23/2022]
Abstract
Thyroid hormones (THs) are important regulators of development, metabolism and homeostasis in metazoans. Specifically, they have been shown to regulate the metamorphic transitions of vertebrates and invertebrates alike. Indirectly developing sea urchin larvae accelerate the formation of juvenile structures in response to thyroxine (T4) treatment, while reducing their larval arm length. The mechanisms underlying larval arm reduction are unknown and we hypothesized that programmed cell death (PCD) is linked to this process. To test this hypothesis, we measured larval arm retraction in response to different THs (T4, T3, rT3, Tetrac) and assessed cell death in larvae using three different methods (TUNEL, YO-PRO-1 and caspase-3 activity) in the sea urchin Strongylocentrotus purpuratus. We also compared the extent of PCD in response to TH treatment before and after the invagination of the larval ectoderm, which marks the initiation of juvenile development in larval sea urchin species. We found that T4 treatment results in the strongest reduction of larval arms but detected a significant increase of PCD in response to T4, T3 and Tetrac in post-ingression but not pre-ingression larvae. As post-ingression larvae have initiated metamorphic development and therefore allocate resources to both larval and the juvenile structures, these results provide evidence that THs regulate larval development differentially via PCD. PCD in combination with cell proliferation likely has a key function in sea urchin development.
Collapse
Affiliation(s)
- Hannah Wynen
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Elias Taylor
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| | - Andreas Heyland
- University of Guelph, Integrative Biology, Guelph, ON, Canada, N1G 2W1
| |
Collapse
|
13
|
Zhu GH, Gaddelapati SC, Jiao Y, Koo J, Palli SR. CRISPR-Cas9 Genome Editing Uncovers the Mode of Action of Methoprene in the Yellow Fever Mosquito, Aedes aegypti. CRISPR J 2022; 5:813-824. [PMID: 36374965 PMCID: PMC9805843 DOI: 10.1089/crispr.2022.0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Methoprene, a juvenile hormone (JH) analog, is widely used for insect control, but its mode of action is not known. To study methoprene action in the yellow fever mosquito, Aedes aegypti, the E93 (ecdysone-induced transcription factor) was knocked out using the CRISPR-Cas9 system. The E93 mutant pupae retained larval tissues similar to methoprene-treated insects. These insects completed pupal ecdysis and died as pupa. In addition, the expression of transcription factors, broad complex and Krüppel homolog 1 (Kr-h1), increased and that of programmed cell death (PCD) and autophagy genes decreased in E93 mutants. These data suggest that methoprene functions through JH receptor, methoprene-tolerant, and induces the expression of Kr-h1, which suppresses the expression of E93, resulting in a block in PCD and autophagy of larval tissues. Failure in the elimination of larval tissues and the formation of adult structures results in their death. These results answered long-standing questions on the mode of action of methoprene.
Collapse
Affiliation(s)
- Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Sharath Chandra Gaddelapati
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Yaoyu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Jinmo Koo
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, Kentucky, USA.,Address correspondence to: Subba Reddy Palli, Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY 40546, USA.
| |
Collapse
|
14
|
Luo GH, Chen XE, Jiao YY, Zhu GH, Zhang R, Dhandapani RK, Fang JC, Palli SR. SoxC is Required for Ecdysteroid Induction of Neuropeptide Genes During Insect Eclosion. Front Genet 2022; 13:942884. [PMID: 35899187 PMCID: PMC9309532 DOI: 10.3389/fgene.2022.942884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/06/2022] [Indexed: 01/22/2023] Open
Abstract
In insects, the shedding of the old exoskeleton is accomplished through ecdysis which is typically followed by the expansion and tanning of the new cuticle. Four neuropeptides, eclosion hormone (EH), ecdysis triggering hormone (ETH), crustacean cardioactive peptide (CCAP) and bursicon (Bur) are known to control ecdysis. However, the regulation of these neuropeptide genes is still poorly understood. Here, we report that in the red flour beetle (RFB) Tribolium castaneum and the fall armyworm (FAW) Spodoptera frugiperda, knockdown or knockout of the SoxC gene caused eclosion defects. The expansion and tanning of wings were not complete. In both RFB and FAW, the knockdown or knockout of SoxC resulted in a decrease in the expression of EH gene. Electrophoretic mobility shift assays revealed that the SfSoxC protein directly binds to a motif present in the promoter of SfEH. The luciferase reporter assays in Sf9 cells confirmed these results. These data suggest that transcription factor SoxC plays a key role in ecdysteroid induction of genes coding for neuropeptides such as EH involved in the regulation of insect eclosion.
Collapse
Affiliation(s)
- Guang-Hua Luo
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Xi-En Chen
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Yao-Yu Jiao
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Guan-Heng Zhu
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States,School of Agriculture, Sun Yat-sen University, Shenzhen, China
| | - Ru Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China
| | - Ramesh Kumar Dhandapani
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States
| | - Ji-Chao Fang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Jiangsu Key Laboratory for Food and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, China,*Correspondence: Ji-Chao Fang, ; Subba Reddy Palli,
| | - Subba Reddy Palli
- Department of Entomology, College of Agriculture, Food and Environment, University of Kentucky, Lexington, KY, United States,*Correspondence: Ji-Chao Fang, ; Subba Reddy Palli,
| |
Collapse
|
15
|
Lam G, Nam HJ, Velentzas PD, Baehrecke EH, Thummel CS. Drosophila E93 promotes adult development and suppresses larval responses to ecdysone during metamorphosis. Dev Biol 2022; 481:104-115. [PMID: 34648816 PMCID: PMC8665130 DOI: 10.1016/j.ydbio.2021.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 01/03/2023]
Abstract
Pulses of the steroid hormone ecdysone act through transcriptional cascades to direct the major developmental transitions during the Drosophila life cycle. These include the prepupal ecdysone pulse, which occurs 10 hours after pupariation and triggers the onset of adult morphogenesis and larval tissue destruction. E93 encodes a transcription factor that is specifically induced by the prepupal pulse of ecdysone, supporting a model proposed by earlier work that it specifies the onset of adult development. Although a number of studies have addressed these functions for E93, little is known about its roles in the salivary gland where the E93 locus was originally identified. Here we show that E93 is required for development through late pupal stages, with mutants displaying defects in adult differentiation and no detectable effect on the destruction of larval salivary glands. RNA-seq analysis demonstrates that E93 regulates genes involved in development and morphogenesis in the salivary glands, but has little effect on cell death gene expression. We also show that E93 is required to direct the proper timing of ecdysone-regulated gene expression in salivary glands, and that it suppresses earlier transcriptional programs that occur during larval and prepupal stages. These studies support the model that the stage-specific induction of E93 in late prepupae provides a critical signal that defines the end of larval development and the onset of adult differentiation.
Collapse
Affiliation(s)
- Geanette Lam
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112 USA
| | - Hyuck-Jin Nam
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112 USA
| | - Panagiotis D. Velentzas
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Eric H. Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605 USA
| | - Carl S. Thummel
- Department of Human Genetics, University of Utah School of Medicine, 15 N 2030 E Rm 5100, Salt Lake City, UT 84112 USA,Corresponding author. (C.S. Thummel)
| |
Collapse
|
16
|
Dynein Heavy Chain 64C Differentially Regulates Cell Survival and Proliferation of Wingless-Producing Cells in Drosophila melanogaster. J Dev Biol 2021; 9:jdb9040043. [PMID: 34698231 PMCID: PMC8544498 DOI: 10.3390/jdb9040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Dynein is a multi-subunit motor protein that moves toward the minus-end of microtubules, and plays important roles in fly development. We identified Dhc64Cm115, a new mutant allele of the fly Dynein heavy chain 64C (Dhc64C) gene whose heterozygotes survive against lethality induced by overexpression of Sol narae (Sona). Sona is a secreted metalloprotease that positively regulates Wingless (Wg) signaling, and promotes cell survival and proliferation. Knockdown of Dhc64C in fly wings induced extensive cell death accompanied by widespread and disorganized expression of Wg. The disrupted pattern of the Wg protein was due to cell death of the Wg-producing cells at the DV midline and overproliferation of the Wg-producing cells at the hinge in disorganized ways. Coexpression of Dhc64C RNAi and p35 resulted in no cell death and normal pattern of Wg, demonstrating that cell death is responsible for all phenotypes induced by Dhc64C RNAi expression. The effect of Dhc64C on Wg-producing cells was unique among components of Dynein and other microtubule motors. We propose that Dhc64C differentially regulates survival of Wg-producing cells, which is essential for maintaining normal expression pattern of Wg for wing development.
Collapse
|
17
|
Krasovec G, Karaiskou A, Quéinnec É, Chambon JP. Comparative transcriptomic analysis reveals gene regulation mediated by caspase activity in a chordate organism. BMC Mol Cell Biol 2021; 22:51. [PMID: 34615460 PMCID: PMC8495957 DOI: 10.1186/s12860-021-00388-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Apoptosis is a caspase regulated cell death present in all metazoans defined by a conserved set of morphological features. A well-described function of apoptosis is the removal of excessive cells during development and homeostasis. Recent studies have shown an unexpected signalling property of apoptotic cells, affecting cell fate and/or behaviour of neighbouring cells. In contrast to the apoptotic function of cell elimination, this new role of apoptosis is not well understood but seems caspase-dependent. To deepen our understanding of apoptotic functions, it is necessary to work on a biological model with a predictable apoptosis pattern affecting cell fate and/or behaviour. The tunicate Ciona intestinalis has a bi-phasic life cycle with swimming larvae which undergo metamorphosis after settlement. Previously, we have shown that the tail regression step during metamorphosis, characterized by a predictable polarized apoptotic wave, ensures elimination of most tail cells and controls primordial germ cells survival and migration. RESULTS We performed differential transcriptomic analysis between control metamorphosing larvae and larvae treated with the pan-caspase inhibitor Z-VAD-fmk in order to explore the transcriptional control of apoptotic cells on neighbouring cells that survive and migrate. When caspase activity was impaired, genes known to be involved in metamorphosis were downregulated along with other implicated in cell migration and survival molecular pathways. CONCLUSION We propose these results as a confirmation that apoptotic cells can control surrounding cells fate and as a reference database to explore novel apoptotic functions in animals, including those related to migration and differentiation.
Collapse
Affiliation(s)
- Gabriel Krasovec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France. .,Center for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland.
| | - Anthi Karaiskou
- INSERM UMRS_938, Centre de recherche Saint-Antoine (CRSA), Sorbonne Université, Paris, France
| | - Éric Quéinnec
- Institut de Systématique, Evolution, Biodiversité (ISYEB), UMR 7205, Sorbonne Université, Muséum National d'histoire Naturelle, CNRS, EPHE, 7 Quai St-Bernard, F-75252, Paris Cedex 05, France
| | - Jean-Philippe Chambon
- Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), Montpellier Univ., CNRS, 34000, Montpellier, France
| |
Collapse
|
18
|
Almeida Machado Costa C, Wang XF, Ellsworth C, Deng WM. Polyploidy in development and tumor models in Drosophila. Semin Cancer Biol 2021; 81:106-118. [PMID: 34562587 DOI: 10.1016/j.semcancer.2021.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 12/26/2022]
Abstract
Polyploidy, a cell status defined as more than two sets of genomic DNA, is a conserved strategy across species that can increase cell size and biosynthetic production, but the functional aspects of polyploidy are nuanced and vary across cell types. Throughout Drosophila developmental stages (embryo, larva, pupa and adult), polyploid cells are present in numerous organs and help orchestrate development while contributing to normal growth, well-being and homeostasis of the organism. Conversely, increasing evidence has shown that polyploid cells are prevalent in Drosophila tumors and play important roles in tumor growth and invasiveness. Here, we summarize the genes and pathways involved in polyploidy during normal and tumorigenic development, the mechanisms underlying polyploidization, and the functional aspects of polyploidy in development, homeostasis and tumorigenesis in the Drosophila model.
Collapse
Affiliation(s)
- Caique Almeida Machado Costa
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Xian-Feng Wang
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Calder Ellsworth
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States
| | - Wu-Min Deng
- Department of Biochemistry and Molecular Biology, Tulane University School of Medicine, Tulane Cancer Center, New Orleans, LA 70112, United States.
| |
Collapse
|
19
|
Shen JL, Fortier TM, Zhao YG, Wang R, Burmeister M, Baehrecke EH. Vmp1, Vps13D, and Marf/Mfn2 function in a conserved pathway to regulate mitochondria and ER contact in development and disease. Curr Biol 2021; 31:3028-3039.e7. [PMID: 34019822 PMCID: PMC8319081 DOI: 10.1016/j.cub.2021.04.062] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/26/2021] [Accepted: 04/26/2021] [Indexed: 12/14/2022]
Abstract
Mutations in Vps13D cause defects in autophagy, clearance of mitochondria, and human movement disorders. Here, we discover that Vps13D functions in a pathway downstream of Vmp1 and upstream of Marf/Mfn2. Like vps13d, vmp1 mutant cells exhibit defects in autophagy, mitochondrial size, and clearance. Through the relationship between vmp1 and vps13d, we reveal a novel role for Vps13D in the regulation of mitochondria and endoplasmic reticulum (ER) contact. Significantly, the function of Vps13D in mitochondria and ER contact is conserved between fly and human cells, including fibroblasts derived from patients suffering from VPS13D mutation-associated neurological symptoms. vps13d mutants have increased levels of Marf/MFN2, a regulator of mitochondrial fusion. Importantly, loss of marf/MFN2 suppresses vps13d mutant phenotypes, including mitochondria and ER contact. These findings indicate that Vps13d functions at a regulatory point between mitochondria and ER contact, mitochondrial fusion and autophagy, and help to explain how Vps13D contributes to disease.
Collapse
Affiliation(s)
- James L Shen
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tina M Fortier
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Yan G Zhao
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Ruoxi Wang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
20
|
Yamashita K, Oi A, Kosakamoto H, Yamauchi T, Kadoguchi H, Kuraishi T, Miura M, Obata F. Activation of innate immunity during development induces unresolved dysbiotic inflammatory gut and shortens lifespan. Dis Model Mech 2021; 14:271978. [PMID: 34448472 PMCID: PMC8405880 DOI: 10.1242/dmm.049103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/29/2021] [Indexed: 12/16/2022] Open
Abstract
Early-life inflammatory response is associated with risks of age-related pathologies. How transient immune signalling activity during animal development influences life-long fitness is not well understood. Using Drosophila as a model, we find that activation of innate immune pathway IMD signalling in the developing larvae increases adult starvation resistance, decreases food intake, and shortens organismal lifespan. Interestingly, lifespan is shortened by the IMD activation in the larval gut and fat body, while starvation resistance and food intake are altered by that in neurons. The adult flies developed with IMD activation show sustained IMD activity in the gut, despite complete tissue renewal during metamorphosis. The larval IMD activation increases an immuno-stimulative bacterial species Gluconobacter sp. in the gut microbiome, and this dysbiosis is persistent to adulthood. Removing gut microbiota by antibiotics in adult mitigates intestinal immune activation and rescues the shortened lifespan. This study demonstrates that early-life immune activation triggers long-term physiological changes as highlighted as an irreversible gut microbiota alteration, prolonged inflammatory intestine, and concomitant shortening of the organismal lifespan.
Collapse
Affiliation(s)
- Kyoko Yamashita
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ayano Oi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Hina Kosakamoto
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan
| | - Toshitaka Yamauchi
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Hibiki Kadoguchi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Shizenken, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Takayuki Kuraishi
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Shizenken, Kakuma-machi, Kanazawa, Ishikawa 920-1192, Japan
| | - Masayuki Miura
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Fumiaki Obata
- Department of Genetics, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.,Laboratory for Nutritional Biology, RIKEN Center for Biosystems Dynamics Research, Kobe 650-0047, Japan.,Laboratory of Molecular Cell Biology and Development, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
21
|
Finger DS, Whitehead KM, Phipps DN, Ables ET. Nuclear receptors linking physiology and germline stem cells in Drosophila. VITAMINS AND HORMONES 2021; 116:327-362. [PMID: 33752824 PMCID: PMC8063499 DOI: 10.1016/bs.vh.2020.12.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Maternal nutrition and physiology are intimately associated with reproductive success in diverse organisms. Despite decades of study, the molecular mechanisms linking maternal diet to the production and quality of oocytes remain poorly defined. Nuclear receptors (NRs) link nutritional signals to cellular responses and are essential for oocyte development. The fruit fly, Drosophila melanogaster, is an excellent genetically tractable model to study the relationship between NR signaling and oocyte production. In this review, we explore how NRs in Drosophila regulate the earliest stages of oocyte development. Long-recognized as an essential mediator of developmental transitions, we focus on the intrinsic roles of the Ecdysone Receptor and its ligand, ecdysone, in oogenesis. We also review recent studies suggesting broader roles for NRs as regulators of maternal physiology and their impact specifically on oocyte production. We propose that NRs form the molecular basis of a broad physiological surveillance network linking maternal diet with oocyte production. Given the functional conservation between Drosophila and humans, continued experimental investigation into the molecular mechanisms by which NRs promote oogenesis will likely aid our understanding of human fertility.
Collapse
Affiliation(s)
- Danielle S Finger
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Kaitlin M Whitehead
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Daniel N Phipps
- Department of Biology, East Carolina University, Greenville, NC, United States
| | - Elizabeth T Ables
- Department of Biology, East Carolina University, Greenville, NC, United States.
| |
Collapse
|
22
|
Xu T, Nicolson S, Sandow JJ, Dayan S, Jiang X, Manning JA, Webb AI, Kumar S, Denton D. Cp1/cathepsin L is required for autolysosomal clearance in Drosophila. Autophagy 2020; 17:2734-2749. [PMID: 33112206 DOI: 10.1080/15548627.2020.1838105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Macroautophagy/autophagy is a highly conserved lysosomal degradative pathway important for maintaining cellular homeostasis. Much of our current knowledge of autophagy is focused on the initiation steps in this process. Recently, an understanding of later steps, particularly lysosomal fusion leading to autolysosome formation and the subsequent role of lysosomal enzymes in degradation and recycling, is becoming evident. Autophagy can function in both cell survival and cell death, however, the mechanisms that distinguish adaptive/survival autophagy from autophagy-dependent cell death remain to be established. Here, using proteomic analysis of Drosophila larval midguts during degradation, we identify a group of proteins with peptidase activity, suggesting a role in autophagy-dependent cell death. We show that Cp1/cathepsin L-deficient larval midgut cells accumulate aberrant autophagic vesicles due to a block in autophagic flux, yet later stages of midgut degradation are not compromised. The accumulation of large aberrant autolysosomes in the absence of Cp1 appears to be the consequence of decreased degradative capacity as they contain undigested cytoplasmic material, rather than a defect in autophagosome-lysosome fusion. Finally, we find that other cathepsins may also contribute to proper autolysosomal degradation in Drosophila larval midgut cells. Our findings provide evidence that cathepsins play an essential role in the autolysosome to maintain basal autophagy flux by balancing autophagosome production and turnover.
Collapse
Affiliation(s)
- Tianqi Xu
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Shannon Nicolson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jarrod J Sandow
- Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sonia Dayan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Xin Jiang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Jantina A Manning
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Andrew I Webb
- Advanced Technology and Biology, The Walter & Eliza Hall Institute of Medical Research, Parkville, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Sharad Kumar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia
| |
Collapse
|
23
|
Newton H, Wang YF, Camplese L, Mokochinski JB, Kramer HB, Brown AEX, Fets L, Hirabayashi S. Systemic muscle wasting and coordinated tumour response drive tumourigenesis. Nat Commun 2020; 11:4653. [PMID: 32938923 PMCID: PMC7495438 DOI: 10.1038/s41467-020-18502-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/13/2020] [Indexed: 12/29/2022] Open
Abstract
Cancer cells demand excess nutrients to support their proliferation, but how tumours exploit extracellular amino acids during systemic metabolic perturbations remain incompletely understood. Here, we use a Drosophila model of high-sugar diet (HSD)-enhanced tumourigenesis to uncover a systemic host-tumour metabolic circuit that supports tumour growth. We demonstrate coordinate induction of systemic muscle wasting with tumour-autonomous Yorkie-mediated SLC36-family amino acid transporter expression as a proline-scavenging programme to drive tumourigenesis. We identify Indole-3-propionic acid as an optimal amino acid derivative to rationally target the proline-dependency of tumour growth. Insights from this whole-animal Drosophila model provide a powerful approach towards the identification and therapeutic exploitation of the amino acid vulnerabilities of tumourigenesis in the context of a perturbed systemic metabolic network.
Collapse
Affiliation(s)
- Holly Newton
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Yi-Fang Wang
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Laura Camplese
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Joao B Mokochinski
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Holger B Kramer
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - André E X Brown
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Louise Fets
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Susumu Hirabayashi
- Medical Research Council London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
24
|
Bhattacharjee S, Mishra AK. The tale of caspase homologues and their evolutionary outlook: deciphering programmed cell death in cyanobacteria. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4639-4657. [PMID: 32369588 PMCID: PMC7475262 DOI: 10.1093/jxb/eraa213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/28/2020] [Indexed: 06/11/2023]
Abstract
Programmed cell death (PCD), a genetically orchestrated mechanism of cellular demise, is paradoxically required to support life. As in lower eukaryotes and bacteria, PCD in cyanobacteria is poorly appreciated, despite recent biochemical and molecular evidence that supports its existence. Cyanobacterial PCD is an altruistic reaction to stressful conditions that significantly enhances genetic diversity and inclusive fitness of the population. Recent bioinformatic analysis has revealed an abundance of death-related proteases, i.e. orthocaspases (OCAs) and their mutated variants, in cyanobacteria, with the larger genomes of morphologically complex strains harbouring most of them. Sequence analysis has depicted crucial accessory domains along with the proteolytic p20-like sub-domain in OCAs, predicting their functional versatility. However, the cascades involved in sensing death signals, their transduction, and the downstream expression and activation of OCAs remain to be elucidated. Here, we provide a comprehensive description of the attempts to identify mechanisms of PCD and the existence and importance of OCAs based on in silico approaches. We also review the evolutionary and ecological significance of PCD in cyanobacteria. In the future, the analysis of cyanobacterial PCD will identify novel proteins that have varied functional roles in signalling cascades and also help in understanding the incipient mechanism of PCD morphotype(s) from where eukaryotic PCD might have originated.
Collapse
Affiliation(s)
- Samujjal Bhattacharjee
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| | - Arun Kumar Mishra
- Laboratory of Microbial Genetics, Department of Botany, Banaras Hindu University, Varanasi, India
| |
Collapse
|
25
|
Abstract
Cell death is an important facet of animal development. In some developing tissues, death is the ultimate fate of over 80% of generated cells. Although recent studies have delineated a bewildering number of cell death mechanisms, most have only been observed in pathological contexts, and only a small number drive normal development. This Primer outlines the important roles, different types and molecular players regulating developmental cell death, and discusses recent findings with which the field currently grapples. We also clarify terminology, to distinguish between developmental cell death mechanisms, for which there is evidence for evolutionary selection, and cell death that follows genetic, chemical or physical injury. Finally, we suggest how advances in understanding developmental cell death may provide insights into the molecular basis of developmental abnormalities and pathological cell death in disease.
Collapse
Affiliation(s)
- Piya Ghose
- Department of Biology, The University of Texas at Arlington, 655 Mitchell St., Arlington, TX 76019, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
26
|
Abstract
20-Hydroxyecdysone (20-HE) plays essential roles in coordinating developmental transitions of insects through responsive protein-coding genes and microRNAs (miRNAs). The involvement of single miRNAs in the ecdysone-signalling pathways has been extensively explored, but the interplay between ecdysone and the majority of miRNAs still remains largely unknown. Here, by small RNA sequencing, we systematically investigated the genome-wide responses of miRNAs to 20-HE in the embryogenic cell lines of Bombyx mori and Drosophila melanogaster. Over 60 and 70 20-HE-responsive miRNAs were identified in the BmE cell line and S2 cell line, respectively. The response of miRNAs to ecdysone exhibited a time-dependent pattern, and the response intensity increased with extending exposure to 20-HE. The relationship between ecdysone and the miRNAs was further explored through knockdown of ecdysone-signalling pathway genes. Specifically, ecdysone regulated the cluster miR-275 and miR-305 through the coordination of BmEcR-B and downstream BmE75B, and the interaction between BmEcR and miR-275 cluster was strengthened by the feedback regulation of BmE75B. Ecdysone induced miR-275-3p and miR-305-5p through the ecdysone response effectors (EcREs) at the upstream of the pre-miR-275 cluster. Overall, the results might help us further understand the relationship between ecdysone signalling pathways and small RNAs in the development and metamorphosis of insects.
Collapse
Affiliation(s)
- Xiaoli Jin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Xiaoyan Wu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Lanting Zhou
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Ting He
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Quan Yin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China
| | - Shiping Liu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University , Chongqing, PR China.,College of Life Science, China West Normal University , Nanchong, PR China
| |
Collapse
|
27
|
Beňová-Liszeková D, Beňo M, Farkaš R. Fine infrastructure of released and solidified Drosophila larval salivary secretory glue using SEM. BIOINSPIRATION & BIOMIMETICS 2019; 14:055002. [PMID: 31216519 DOI: 10.1088/1748-3190/ab2b2b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The Golgi-derived large secretory granules of Drosophila salivary glands (SGs) constitute the components of the salivary glue secretion (Sgs). The Sgs represents a highly special and unique extracellular composite glue matrix that has not yet been identified outside of Cyclorrhaphous Dipterans. For over half a century, the only major and unambiguously documented function of the larval salivary glands was to produce a large amount of mucinous glue-containing secretory granules that, when released during pupariation, serves to affix the freshly formed puparia to a substrate. Besides initial biochemical characterization of the Sgs proteins and cloning of their corresponding Sgs genes, very little is known about other properties and functions of the Sgs glue. We report here observations on the fine SEM-ultrastructure of the Sgs glue released into to the lumen of SGs, and after it has been expectorated and solidified into the external environment. Surprisingly, in contrast to long held expectations, it appears to be a highly structured bioadhesive mass with an internal spongious to trabecular infrastructure, reflecting the state of its hydratation. We also found that in addition to its cementing properties, it is highly efficient at glueing and trapping microorganisms, and thus may serve a potentially very important immune and defense role. High hydration capacity, the speed by which this glue can dry, uniqueness of its protein composition and spongious infrastructure can provide inspiration for development of potential biomimetics that can attach completely different or incompatible surfaces with high efficiency and strength.
Collapse
Affiliation(s)
- Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava, Slovakia
| | | | | |
Collapse
|
28
|
Liu X, Zhang S, Shen ZJ, Liu Y, Li Z, Liu X. Vrille is required for larval moulting and metamorphosis of Helicoverpa armigera (Lepidoptera: Noctuidae). INSECT MOLECULAR BIOLOGY 2019; 28:355-371. [PMID: 30485565 DOI: 10.1111/imb.12557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Vrille (Vri), a basic leucine zipper transcription factor, plays important roles in insect circadian clock regulation, tracheal development, proliferation, flight and metamorphosis. Here, Helicoverpa armigera was used as a model to investigate the role of Vri in larval moulting and metamorphosis. Sequence analysis results revealed that H. armigera Vri (HaVri) shares a high amino acid identity with other Lepidoptera Vri homologues. Spatial-temporal expression pattern data showed that HaVri expression was highly abundant in larval moulting and metamorphosis stages and was mainly expressed in the midgut and Malpighian tubule during metamorphosis. HaVri knockdown by RNA interference in the fourth-instar larvae prevented larval moulting, and HaVri knockdown in the fifth-instar larvae suppressed midgut remodelling and delayed or blocked metamorphosis. Further studies confirmed that 20-hydroxyecdysone (20E) activated HaVri expression via its heterodimer receptors, ecdysone receptor (EcRB1) and ultraspiracle protein (USP1), whereas methoprene [juvenile hormone analogue (JHA)] promoted HaVri expression via its intracellular receptor methoprene-tolerant (Met1). However, 20E and JHA can counteract each other in the activation of HaVri expression. Together, the present results suggested that HaVri was involved in larval moulting and metamorphosis and was regulated by 20E and JHA in H. armigera.
Collapse
Affiliation(s)
- X Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - S Zhang
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Z J Shen
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Y Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Z Li
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - X Liu
- Department of Entomology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
29
|
Moreno E, Valon L, Levillayer F, Levayer R. Competition for Space Induces Cell Elimination through Compaction-Driven ERK Downregulation. Curr Biol 2018; 29:23-34.e8. [PMID: 30554899 PMCID: PMC6331351 DOI: 10.1016/j.cub.2018.11.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/01/2018] [Accepted: 11/01/2018] [Indexed: 12/18/2022]
Abstract
The plasticity of developing tissues relies on the adjustment of cell survival and growth rate to environmental cues. This includes the effect of mechanical cues on cell survival. Accordingly, compaction of an epithelium can lead to cell extrusion and cell death. This process was proposed to contribute to tissue homeostasis but also to facilitate the expansion of pretumoral cells through the compaction and elimination of the neighboring healthy cells. However, we know very little about the pathways that can trigger apoptosis upon tissue deformation, and the contribution of compaction-driven death to clone expansion has never been assessed in vivo. Using the Drosophila pupal notum and a new live sensor of ERK, we show first that tissue compaction induces cell elimination through the downregulation of epidermal growth factor receptor/extracellular signal regulated kinase (EGFR/ERK) pathway and the upregulation of the pro-apoptotic protein Hid. Those results suggest that the sensitivity of EGFR/ERK pathway to mechanics could play a more general role in the fine tuning of cell elimination during morphogenesis and tissue homeostasis. Second, we assessed in vivo the contribution of compaction-driven death to pretumoral cell expansion. We found that the activation of the oncogene Ras in clones can downregulate ERK and activate apoptosis in the neighboring cells through their compaction, which eventually contributes to Ras clone expansion. The mechanical modulation of EGFR/ERK during growth-mediated competition for space may contribute to tumor progression. Caspase activity in Drosophila pupal notum is regulated by EGFR/ERK and hid EGFR/ERK can be activated or downregulated by tissue stretching or compaction Cell compaction near fast-growing clones downregulates ERK and triggers cell death Compaction-driven ERK downregulation promotes fast-growing clone expansion
Collapse
Affiliation(s)
- Eduardo Moreno
- Champalimaud Centre for the Unknown, Av. Brasília, 1400-038 Lisbon, Portugal.
| | - Léo Valon
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
30
|
Yalonetskaya A, Mondragon AA, Elguero J, McCall K. I Spy in the Developing Fly a Multitude of Ways to Die. J Dev Biol 2018; 6:E26. [PMID: 30360387 PMCID: PMC6316796 DOI: 10.3390/jdb6040026] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 12/11/2022] Open
Abstract
Cell proliferation and cell death are two opposing, yet complementary fundamental processes in development. Cell proliferation provides new cells, while developmental programmed cell death adjusts cell numbers and refines structures as an organism grows. Apoptosis is the best-characterized form of programmed cell death; however, there are many other non-apoptotic forms of cell death that occur throughout development. Drosophila is an excellent model for studying these varied forms of cell death given the array of cellular, molecular, and genetic techniques available. In this review, we discuss select examples of apoptotic and non-apoptotic cell death that occur in different tissues and at different stages of Drosophila development. For example, apoptosis occurs throughout the nervous system to achieve an appropriate number of neurons. Elsewhere in the fly, non-apoptotic modes of developmental cell death are employed, such as in the elimination of larval salivary glands and midgut during metamorphosis. These and other examples discussed here demonstrate the versatility of Drosophila as a model organism for elucidating the diverse modes of programmed cell death.
Collapse
Affiliation(s)
- Alla Yalonetskaya
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Albert A Mondragon
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Johnny Elguero
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| | - Kimberly McCall
- Cell and Molecular Biology Program, Department of Biology, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
- Molecular Biology, Cell Biology, and Biochemistry Program, 5 Cummington Mall, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
31
|
Velentzas PD, Zhang L, Das G, Chang TK, Nelson C, Kobertz WR, Baehrecke EH. The Proton-Coupled Monocarboxylate Transporter Hermes Is Necessary for Autophagy during Cell Death. Dev Cell 2018; 47:281-293.e4. [PMID: 30318245 DOI: 10.1016/j.devcel.2018.09.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/25/2018] [Accepted: 09/14/2018] [Indexed: 02/06/2023]
Abstract
Nutrient availability influences the production and degradation of materials that are required for cell growth and survival. Autophagy is a nutrient-regulated process that is used to degrade cytoplasmic materials and has been associated with human diseases. Solute transporters influence nutrient availability and sensing, yet we know little about how transporters influence autophagy. Here, we screen for solute transporters that are required for autophagy-dependent cell death and identify CG11665/hermes. We show that hermes is required for both autophagy during steroid-triggered salivary gland cell death and TNF-induced non-apoptotic eye cell death. hermes encodes a proton-coupled monocarboxylate transporter that preferentially transports pyruvate over lactate. mTOR signaling is elevated in hermes mutant cells, and decreased mTOR function suppresses the hermes salivary gland cell death phenotype. Hermes is most similar to human SLC16A11, a protein that was recently implicated in type 2 diabetes, thus providing a link between pyruvate, mTOR, autophagy, and possibly metabolic disorders.
Collapse
Affiliation(s)
- Panagiotis D Velentzas
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lejie Zhang
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Gautam Das
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Tsun-Kai Chang
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Cancer Immunology, Genentech Inc, South San Francisco, CA 94080, USA
| | - Charles Nelson
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - William R Kobertz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
32
|
Abstract
Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.
Collapse
|
33
|
Farkaš R, Beňová-Liszeková D, Mentelová L, Beňo M, Babišová K, Trusinová-Pečeňová L, Raška O, Chase BA, Raška I. Endosomal vacuoles of the prepupal salivary glands of Drosophila play an essential role in the metabolic reallocation of iron. Dev Growth Differ 2018; 60:411-430. [PMID: 30123964 DOI: 10.1111/dgd.12562] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 06/30/2018] [Accepted: 07/02/2018] [Indexed: 12/17/2022]
Abstract
In the recent past, we demonstrated that a great deal is going on in the salivary glands of Drosophila in the interval after they release their glycoprotein-rich secretory glue during pupariation. The early-to-mid prepupal salivary glands undergo extensive endocytosis with widespread vacuolation of the cytoplasm followed by massive apocrine secretion. Here, we describe additional novel properties of these endosomes. The use of vital pH-sensitive probes provided confirmatory evidence that these endosomes have acidic contents and that there are two types of endocytosis seen in the prepupal glands. The salivary glands simultaneously generate mildly acidic, small, basally-derived endosomes and strongly acidic, large and apical endosomes. Staining of the large vacuoles with vital acidic probes is possible only after there is ambipolar fusion of both basal and apical endosomes, since only basally-derived endosomes can bring fluorescent probes into the vesicular system. We obtained multiple lines of evidence that the small basally-derived endosomes are chiefly involved in the uptake of dietary Fe3+ iron. The fusion of basal endosomes with the larger and strongly acidic apical endosomes appears to facilitate optimal conditions for ferrireductase activity inside the vacuoles to release metabolic Fe2+ iron. While iron was not detectable directly due to limited staining sensitivity, we found increasing fluorescence of the glutathione-sensitive probe CellTracker Blue CMAC in large vacuoles, which appeared to depend on the amount of iron released by ferrireductase. Moreover, heterologous fluorescently-labeled mammalian iron-bound transferrin is actively taken up, providing direct evidence for active iron uptake by basal endocytosis. In addition, we serendipitously found that small (basal) endosomes were uniquely recognized by PNA lectin, whereas large (apical) vacuoles bound DBA lectin.
Collapse
Affiliation(s)
- Robert Farkaš
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Denisa Beňová-Liszeková
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucia Mentelová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Milan Beňo
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Klaudia Babišová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia.,Department of Genetics, Comenius University, Bratislava, Slovakia
| | - Ludmila Trusinová-Pečeňová
- Laboratory of Developmental Genetics, Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Otakar Raška
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic.,Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Bruce A Chase
- Department of Biology, University of Nebraska, Omaha, Nebraska
| | - Ivan Raška
- Institute of Biology and Medical Genetics, 1st Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
34
|
Ugrankar R, Theodoropoulos P, Akdemir F, Henne WM, Graff JM. Circulating glucose levels inversely correlate with Drosophila larval feeding through insulin signaling and SLC5A11. Commun Biol 2018; 1:110. [PMID: 30271990 PMCID: PMC6123810 DOI: 10.1038/s42003-018-0109-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 07/03/2018] [Indexed: 12/27/2022] Open
Abstract
In mammals, blood glucose levels likely play a role in appetite regulation yet the mechanisms underlying this phenomenon remain opaque. Mechanisms can often be explored from Drosophila genetic approaches. To determine if circulating sugars might be involved in Drosophila feeding behaviors, we scored hemolymph glucose and trehalose, and food ingestion in larvae subjected to various diets, genetic mutations, or RNAi. We found that larvae with glucose elevations, hyperglycemia, have an aversion to feeding; however, trehalose levels do not track with feeding behavior. We further discovered that insulins and SLC5A11 may participate in glucose-regulated feeding. To see if food aversion might be an appropriate screening method for hyperglycemia candidates, we developed a food aversion screen to score larvae with abnormal feeding for glucose. We found that many feeding defective larvae have glucose elevations. These findings highlight intriguing roles for glucose in fly biology as a potential cue and regulator of appetite. Rupali Ugrankar et al. show that Drosophila larvae with high levels of circulating glucose, but not trehalose, don’t eat much. This study suggests that circulating glucose communicates with insulin signaling and the sodium/solute co-transporter SLC5A11 in the brain to suppress larval appetite.
Collapse
Affiliation(s)
- Rupali Ugrankar
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. .,Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| | - Pano Theodoropoulos
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Fatih Akdemir
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.,Department of Basic Sciences, Medical Biology, Ataturk University, 25240 Erzurum, Turkey
| | - W Mike Henne
- Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA
| | - Jonathan M Graff
- Department of Developmental Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. .,Department of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA. .,Department of Internal Medicine, Division of Endocrinology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX, 75390, USA.
| |
Collapse
|
35
|
Vishal K, Bawa S, Brooks D, Bauman K, Geisbrecht ER. Thin is required for cell death in the Drosophila abdominal muscles by targeting DIAP1. Cell Death Dis 2018; 9:740. [PMID: 29970915 PMCID: PMC6030163 DOI: 10.1038/s41419-018-0756-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/28/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022]
Abstract
In holometabolous insects, developmentally controlled programmed cell death (PCD) is a conserved process that destroys a subset of larval tissues for the eventual creation of new adult structures. This process of histolysis is relatively well studied in salivary gland and midgut tissues, while knowledge concerning larval muscle destruction is limited. Here, we have examined the histolysis of a group of Drosophila larval abdominal muscles called the dorsal external oblique muscles (DEOMs). Previous studies have defined apoptosis as the primary mediator of DEOM breakdown, whose timing is controlled by ecdysone signaling. However, very little is known about other factors that contribute to DEOM destruction. In this paper, we examine the role of thin (tn), which encodes for the Drosophila homolog of mammalian TRIM32, in the regulation of DEOM histolysis. We find that loss of Tn blocks DEOM degradation independent of ecdysone signaling. Instead, tn genetically functions in a pathway with the death-associated inhibitor of apoptosis (DIAP1), Dronc, and death-associated APAF1-related killer (Dark) to regulate apoptosis. Importantly, blocking Tn results in the absence of active Caspase-3 immunostaining, upregulation of DIAP1 protein levels, and inhibition of Dronc activation. DIAP1 and Dronc mRNA levels are not altered in tn mutants, showing that Tn acts post-transcriptionally on DIAP1 to regulate apoptosis. Herein, we also find that the RING domain of Tn is required for DEOM histolysis as loss of this domain results in higher DIAP1 levels. Together, our results suggest that the direct control of DIAP1 levels, likely through the E3 ubiquitin ligase activity of Tn, provides a mechanism to regulate caspase activity and to facilitate muscle cell death.
Collapse
Affiliation(s)
- Kumar Vishal
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Simranjot Bawa
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - David Brooks
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA
| | - Kenneth Bauman
- Department of Cell Biology and Biophysics, School of Biological Sciences, University of Missouri-Kansas, Kansas City, MO, 64110, USA
| | - Erika R Geisbrecht
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
36
|
Boyan G, Graf P, Ehrhardt E. Patterns of cell death in the embryonic antenna of the grasshopper Schistocerca gregaria. Dev Genes Evol 2018; 228:105-118. [PMID: 29511851 DOI: 10.1007/s00427-018-0607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 02/22/2018] [Indexed: 12/27/2022]
Abstract
We have investigated the pattern of apoptosis in the antennal epithelium during embryonic development of the grasshopper Schistocerca gregaria. The molecular labels lachesin and annulin reveal that the antennal epithelium becomes subdivided into segment-like meristal annuli within which sensory cell clusters later differentiate. To determine whether apoptosis is involved in the development of such sensory cell clusters, we examined the expression pattern of the cell death labels acridine orange and TUNEL in the epithelium. We found stereotypic, age-dependent, wave-like patterns of cell death in the antenna. Early in embryogenesis, apoptosis is restricted to the most basal meristal annuli but subsequently spreads to encompass almost the entire antenna. Cell death then declines in more basal annuli and is only found in the tip region later in embryogenesis. Apoptosis is restricted throughout to the midregion of a given annulus and away from its border with neighboring annuli, arguing against a causal role in annular formation. Double-labeling for cell death and sensory cell differentiation reveals apoptosis occurring within bands of differentiating sensory cell clusters, matching the meristal organization of the apical antenna. Examination of the individual epithelial lineages which generate sensory cells reveals that apoptosis begins peripherally within a lineage and with age expands to encompass the differentiated sensory cell at the base. We conclude that complete lineages can undergo apoptosis and that the youngest cells in these lineages appear to die first, with the sensory neuron dying last. Lineage-based death in combination with cell death patterns in different regions of the antenna may contribute to odor-mediated behaviors in the grasshopper.
Collapse
Affiliation(s)
- George Boyan
- Graduate School of Systemic Neuroscience, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany.
| | - Philip Graf
- Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, Virginia, 20147, USA
| | - Erica Ehrhardt
- Section of Neurobiology, Department of Biology II, Biocenter, Ludwig-Maximilians-Universität, Grosshadernerstrasse 2 Martinsried, 82152, Planegg, Germany
| |
Collapse
|
37
|
Gonçalves WG, Fernandes KM, Santana WC, Martins GF, Zanuncio JC, Serrão JE. Post-embryonic development of the Malpighian tubules in Apis mellifera (Hymenoptera) workers: morphology, remodeling, apoptosis, and cell proliferation. PROTOPLASMA 2018; 255:585-599. [PMID: 28988368 DOI: 10.1007/s00709-017-1171-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 10/02/2017] [Indexed: 05/22/2023]
Abstract
The honeybee Apis mellifera has ecological and economic importance; however, it experiences a population decline, perhaps due to exposure to toxic compounds, which are excreted by Malpighian tubules. During metamorphosis of A. mellifera, the Malpighian tubules degenerate and are formed de novo. The objective of this work was to verify the cellular events of the Malpighian tubule renewal in the metamorphosis, which are the gradual steps of cell remodeling, determining different cell types and their roles in the excretory activity in A. mellifera. Immunofluorescence and ultrastructural analyses showed that the cells of the larval Malpighian tubules degenerate by apoptosis and autophagy, and the new Malpighian tubules are formed by cell proliferation. The ultrastructure of the cells in the Malpighian tubules suggest that cellular remodeling only occurs from dark-brown-eyed pupae, indicating the onset of excretion activity in pupal Malpighian tubules. In adult forager workers, two cell types occur in the Malpighian tubules, one with ultrastructural features (abundance of mitochondria, vacuoles, microvilli, and narrow basal labyrinth) for primary urine production and another cell type with dilated basal labyrinth, long microvilli, and absence of spherocrystals, which suggest a role in primary urine re-absorpotion. This study suggests that during the metamorphosis, Malpighian tubules are non-functional until the light-brown-eyed pupae, indicating that A. mellifera may be more vulnerable to toxic compounds at early pupal stages. In addition, cell ultrastructure suggests that the Malpighian tubules may be functional from dark-brown-eyed pupae and acquire greater complexity in the forager worker bee.
Collapse
Affiliation(s)
- Wagner Gonzaga Gonçalves
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Kenner Morais Fernandes
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Weyder Cristiano Santana
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - Gustavo Ferreira Martins
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Cola Zanuncio
- Departamento de Entomologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil
| | - José Eduardo Serrão
- Departamento de Biologia Geral, Universidade Federal de Viçosa, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
38
|
Zumaya-Estrada FA, Martínez-Barnetche J, Lavore A, Rivera-Pomar R, Rodríguez MH. Comparative genomics analysis of triatomines reveals common first line and inducible immunity-related genes and the absence of Imd canonical components among hemimetabolous arthropods. Parasit Vectors 2018; 11:48. [PMID: 29357911 PMCID: PMC5778769 DOI: 10.1186/s13071-017-2561-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 11/28/2017] [Indexed: 12/13/2022] Open
Abstract
Background Insects operate complex humoral and cellular immune strategies to fend against invading microorganisms. The majority of these have been characterized in Drosophila and other dipterans. Information on hemipterans, including Triatominae vectors of Chagas disease remains incomplete and fractionated. Results We identified putative immune-related homologs of three Triatominae vectors of Chagas disease, Triatoma pallidipennis, T. dimidiata and T. infestans (TTTs), using comparative transcriptomics based on established immune response gene references, in conjunction with the predicted proteomes of Rhodnius prolixus, Cimex lecticularis and Acyrthosiphon pisum hemimetabolous. We present a compressive description of the humoral and cellular innate immune components of these TTTs and extend the immune information of other related hemipterans. Key homologs of the constitutive and induced immunity genes were identified in all the studied hemipterans. Conclusions Our results in the TTTs extend previous observations in other hemipterans lacking several components of the Imd signaling pathway. Comparison with other hexapods, using published data, revealed that the absence of various Imd canonical components is common in several hemimetabolous species. Electronic supplementary material The online version of this article (10.1186/s13071-017-2561-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Jesús Martínez-Barnetche
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México
| | - Andrés Lavore
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina
| | - Rolando Rivera-Pomar
- Centro de Bioinvestigaciones (CeBio) and Centro de Investigación y Transferencia del Noroeste de Buenos Aires (CITNOBA-CONICET), Universidad Nacional del Noroeste de la Provincia de Buenos Aires, Pergamino, Argentina.,Laboratorio de Genética y Genómica Funcional. Centro Regional de Estudios Genómicos. Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mario Henry Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública, Cuernavaca, México.
| |
Collapse
|
39
|
Tango7 regulates cortical activity of caspases during reaper-triggered changes in tissue elasticity. Nat Commun 2017; 8:603. [PMID: 28928435 PMCID: PMC5605750 DOI: 10.1038/s41467-017-00693-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 07/20/2017] [Indexed: 11/08/2022] Open
Abstract
Caspases perform critical functions in both living and dying cells; however, how caspases perform physiological functions without killing the cell remains unclear. Here we identify a novel physiological function of caspases at the cortex of Drosophila salivary glands. In living glands, activation of the initiator caspase dronc triggers cortical F-actin dismantling, enabling the glands to stretch as they accumulate secreted products in the lumen. We demonstrate that tango7, not the canonical Apaf-1-adaptor dark, regulates dronc activity at the cortex; in contrast, dark is required for cytoplasmic activity of dronc during salivary gland death. Therefore, tango7 and dark define distinct subcellular domains of caspase activity. Furthermore, tango7-dependent cortical dronc activity is initiated by a sublethal pulse of the inhibitor of apoptosis protein (IAP) antagonist reaper. Our results support a model in which biological outcomes of caspase activation are regulated by differential amplification of IAP antagonists, unique caspase adaptor proteins, and mutually exclusive subcellular domains of caspase activity. Caspases are known for their role in cell death, but they can also participate in other physiological functions without killing the cells. Here the authors show that unique caspase adaptor proteins can regulate caspase activity within mutually-exclusive and independently regulated subcellular domains.
Collapse
|
40
|
Kaieda Y, Masuda R, Nishida R, Shimell M, O'Connor MB, Ono H. Glue protein production can be triggered by steroid hormone signaling independent of the developmental program in Drosophila melanogaster. Dev Biol 2017; 430:166-176. [PMID: 28782527 DOI: 10.1016/j.ydbio.2017.08.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 07/29/2017] [Accepted: 08/02/2017] [Indexed: 01/09/2023]
Abstract
Steroid hormones regulate life stage transitions, allowing animals to appropriately follow a developmental timeline. During insect development, the steroid hormone ecdysone is synthesized and released in a regulated manner by the prothoracic gland (PG) and then hydroxylated to the active molting hormone, 20-hydroxyecdysone (20E), in peripheral tissues. We manipulated ecdysteroid titers, through temporally controlled over-expression of the ecdysteroid-inactivating enzyme, CYP18A1, in the PG using the GeneSwitch-GAL4 system in the fruit fly Drosophila melanogaster. We monitored expression of a 20E-inducible glue protein gene, Salivary gland secretion 3 (Sgs3), using a Sgs3:GFP fusion transgene. In wild type larvae, Sgs3-GFP expression is activated at the midpoint of the third larval instar stage in response to the rising endogenous level of 20E. By first knocking down endogenous 20E levels during larval development and then feeding 20E to these larvae at various stages, we found that Sgs3-GFP expression could be triggered at an inappropriate developmental stage after a certain time lag. This stage-precocious activation of Sgs3 required expression of the Broad-complex, similar to normal Sgs3 developmental regulation, and a small level of nutritional input. We suggest that these studies provide evidence for a tissue-autonomic regulatory system for a metamorphic event independent from the primary 20E driven developmental progression.
Collapse
Affiliation(s)
- Yuya Kaieda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ryota Masuda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Ritsuo Nishida
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - MaryJane Shimell
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Michael B O'Connor
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Hajime Ono
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
41
|
Lin L, Rodrigues FSLM, Kary C, Contet A, Logan M, Baxter RHG, Wood W, Baehrecke EH. Complement-Related Regulates Autophagy in Neighboring Cells. Cell 2017; 170:158-171.e8. [PMID: 28666117 DOI: 10.1016/j.cell.2017.06.018] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 11/25/2022]
Abstract
Autophagy degrades cytoplasmic components and is important for development and human health. Although autophagy is known to be influenced by systemic intercellular signals, the proteins that control autophagy are largely thought to function within individual cells. Here, we report that Drosophila macroglobulin complement-related (Mcr), a complement ortholog, plays an essential role during developmental cell death and inflammation by influencing autophagy in neighboring cells. This function of Mcr involves the immune receptor Draper, suggesting a relationship between autophagy and the control of inflammation. Interestingly, Mcr function in epithelial cells is required for macrophage autophagy and migration to epithelial wounds, a Draper-dependent process. This study reveals, unexpectedly, that complement-related from one cell regulates autophagy in neighboring cells via an ancient immune signaling program.
Collapse
Affiliation(s)
- Lin Lin
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Embryology, Carnegie Institution for Science, 3520 San Martin Dr., Baltimore, MD 21218, USA
| | - Frederico S L M Rodrigues
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Christina Kary
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Alicia Contet
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mary Logan
- Junger's Center for Neurosciences Research, Department of Neurology, Oregon Health and Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Richard H G Baxter
- Department of Chemistry and Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Will Wood
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, University Walk, Bristol BS8 1TD, UK
| | - Eric H Baehrecke
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
42
|
Tsujita N, Kuwahara H, Koyama H, Yanaka N, Arakawa K, Kuniyoshi H. Molecular characterization of aspartylglucosaminidase, a lysosomal hydrolase upregulated during strobilation in the moon jellyfish, Aurelia aurita. Biosci Biotechnol Biochem 2017; 81:938-950. [PMID: 28388360 DOI: 10.1080/09168451.2017.1285686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The life cycle of the moon jellyfish, Aurelia aurita, alternates between a benthic asexual polyp stage and a planktonic sexual medusa (jellyfish) stage. Transition from polyp to medusa is called strobilation. To investigate the molecular mechanisms of strobilation, we screened for genes that are upregulated during strobilation using the differential display method and we identified aspartylglucosaminidase (AGA), which encodes a lysosomal hydrolase. Similar to AGAs from other species, Aurelia AGA possessed an N-terminal signal peptide and potential N-glycosylation sites. The genomic region of Aurelia AGA was approximately 9.8 kb in length and contained 12 exons and 11 introns. Quantitative RT-PCR analysis revealed that AGA expression increased during strobilation, and was then decreased in medusae. To inhibit AGA function, we administered the lysosomal acidification inhibitors, chloroquine or bafilomycin A1, to animals during strobilation. Both inhibitors disturbed medusa morphogenesis at the oral end, suggesting involvement of lysosomal hydrolases in strobilation.
Collapse
Affiliation(s)
- Natsumi Tsujita
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Hiroyuki Kuwahara
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Hiroki Koyama
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Noriyuki Yanaka
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| | - Kenji Arakawa
- b Graduate School of Advanced Sciences of Matter , Hiroshima University , Higashi-Hiroshima , Japan
| | - Hisato Kuniyoshi
- a Graduate School of Biosphere Science , Hiroshima University , Higashi-Hiroshima , Japan
| |
Collapse
|
43
|
Voigt J, Morawski M, Wöstemeyer J. The Cytotoxic Effects of Camptothecin and Mastoparan on the Unicellular Green Alga Chlamydomonas reinhardtii. J Eukaryot Microbiol 2017; 64:806-819. [PMID: 28337817 DOI: 10.1111/jeu.12413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 03/02/2017] [Accepted: 03/15/2017] [Indexed: 11/28/2022]
Abstract
We have recently reported that protease inhibitors affecting the activity of the proteasome cause necrotic cell death in Chlamydomonas reinhardtii instead of inducing apoptosis as shown for some mammalian cell lines. Therefore, we have studied other well-known inducers of apoptosis in mammalian cells for their effects on C. reinhardtii cells. Mastoparan caused rapid cell death without a prominent lag-phase under all growth conditions, whereas the cytotoxic effect of the topoisomerase I inhibitor camptothecin exclusively occurred during the cell-division phase. Essentially no differences between wall-deficient and wild-type cells were observed with respect to dose-response and time-course of camptothecin and mastoparan. In cultures of the wall-deficient strain, cell death was accompanied by swelling and subsequent disruption of the cells, established markers of necrosis. In case of the wild-type strain, camptothecin and mastoparan caused accumulation of apparently intact, but dead cells instead of cell debris due to the presence of the wall. Both in cultures of the wall-deficient and the wild-type strains, cell death was accompanied by an increase of the protein concentration in the culture medium indicating a lytic process like necrosis. Taking together, we have severe doubts on the existence of an apoptotic program in case of C. reinhardtii.
Collapse
Affiliation(s)
- Jürgen Voigt
- Institute of Microbiology, Friedrich-Schiller-University, Jena, D-07743, Germany
| | - Markus Morawski
- Paul-Flechsig-Institute for Brain Research, University of Leipzig, Leipzig, D-04103, Germany
| | - Johannes Wöstemeyer
- Institute of Microbiology, Friedrich-Schiller-University, Jena, D-07743, Germany
| |
Collapse
|
44
|
Non-apoptotic cell death in animal development. Cell Death Differ 2017; 24:1326-1336. [PMID: 28211869 DOI: 10.1038/cdd.2017.20] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death (PCD) is an important process in the development of multicellular organisms. Apoptosis, a form of PCD characterized morphologically by chromatin condensation, membrane blebbing, and cytoplasm compaction, and molecularly by the activation of caspase proteases, has been extensively investigated. Studies in Caenorhabditis elegans, Drosophila, mice, and the developing chick have revealed, however, that developmental PCD also occurs through other mechanisms, morphologically and molecularly distinct from apoptosis. Some non-apoptotic PCD pathways, including those regulating germ cell death in Drosophila, still appear to employ caspases. However, another prominent cell death program, linker cell-type death (LCD), is morphologically conserved, and independent of the key genes that drive apoptosis, functioning, at least in part, through the ubiquitin proteasome system. These non-apoptotic processes may serve as backup programs when caspases are inactivated or unavailable, or, more likely, as freestanding cell culling programs. Non-apoptotic PCD has been documented extensively in the developing nervous system, and during the formation of germline and somatic gonadal structures, suggesting that preservation of these mechanisms is likely under strong selective pressure. Here, we discuss our current understanding of non-apoptotic PCD in animal development, and explore possible roles for LCD and other non-apoptotic developmental pathways in vertebrates. We raise the possibility that during vertebrate development, apoptosis may not be the major PCD mechanism.
Collapse
|
45
|
Cloning and functional characterizations of an apoptogenic Hid gene in the Scuttle Fly, Megaselia scalaris (Diptera; Phoridae). Gene 2016; 604:9-21. [PMID: 27940109 DOI: 10.1016/j.gene.2016.11.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 11/24/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
Abstract
Although the mechanisms of apoptotic cell death have been well studied in the fruit fly, Drosophila melanogaster, it is unclear whether such mechanisms are conserved in other distantly related species. Using degenerate primers and PCR, we cloned a proapoptotic gene homologous to Head involution defective (Hid) from the Scuttle fly, Megaselia scalaris (MsHid). MsHid cDNA encodes a 197-amino acid-long polypeptide, which so far is the smallest HID protein. PCR analyses revealed that the MsHid gene consists of four exons and three introns. Ectopic expression of MsHid in various peptidergic neurons and non-neuronal tissues in Drosophila effectively induced apoptosis of these cells. However, deletion of either conserved domain, N-terminal IBM or C-terminal MTS, abolished the apoptogenic activity of MsHID, indicating that these two domains are indispensable. Expression of MsHid was found in all life stages, but more prominently in embryos and pupae. MsHid is actively expressed in the central nervous system (CNS), indicating its important role in CNS development. Together MsHID is likely to be an important cell death inducer during embryonic and post-embryonic development in this species. In addition, we found 2-fold induction of MsHid expression in UV-irradiated embryos, indicating a possible role for MsHid in UV-induced apoptosis.
Collapse
|
46
|
Guo Y, Flegel K, Kumar J, McKay DJ, Buttitta LA. Ecdysone signaling induces two phases of cell cycle exit in Drosophila cells. Biol Open 2016; 5:1648-1661. [PMID: 27737823 PMCID: PMC5155522 DOI: 10.1242/bio.017525] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
During development, cell proliferation and differentiation must be tightly coordinated to ensure proper tissue morphogenesis. Because steroid hormones are central regulators of developmental timing, understanding the links between steroid hormone signaling and cell proliferation is crucial to understanding the molecular basis of morphogenesis. Here we examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, ecdysone signaling at the larva-to-puparium transition induces Broad which in turn represses the cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and flattening. As ecdysone levels decline after the larva-to-puparium pulse during early metamorphosis, Broad expression plummets, allowing String to become re-activated, which promotes rapid G2/M progression and a subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both synchronize the final cell cycle and promote the coordinated acquisition of terminal differentiation characteristics in the wing. Summary: Pulsed ecdysone signaling remodels cell cycle dynamics, causing distinct primary and secondary cell cycle arrests in Drosophila cells, analogous to those observed in the wing during metamorphosis.
Collapse
Affiliation(s)
- Yongfeng Guo
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kerry Flegel
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jayashree Kumar
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Daniel J McKay
- Biology Department and Genetics Department, Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, Chapel Hill, NC 27599, USA
| | - Laura A Buttitta
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
47
|
Liu Y, Lin J, Zhang M, Chen K, Yang S, Wang Q, Yang H, Xie S, Zhou Y, Zhang X, Chen F, Yang Y. PINK1 is required for timely cell-type specific mitochondrial clearance during Drosophila midgut metamorphosis. Dev Biol 2016; 419:357-372. [DOI: 10.1016/j.ydbio.2016.08.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/22/2022]
|
48
|
Goncu E, Uranlı R, Selek G, Parlak O. Developmental Expression of Ecdysone-Related Genes Associated With Metamorphic Changes During Midgut Remodeling of Silkworm Bombyx mori (Lepidoptera:Bombycidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iew061. [PMID: 27620558 PMCID: PMC5019025 DOI: 10.1093/jisesa/iew061] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/21/2016] [Indexed: 06/06/2023]
Abstract
Steroid hormone 20-hydroxyecdysone is known as the systemic regulators of insect cells; however, how to impact the fate and function of mature and stem cells is unclear. For the first time, we report ecdysone regulatory cascades in both mature midgut cell and stem cell fractions related to developmental events by using histological, immunohistochemical, biochemical and gene expression analysis methods. Ecdysone receptor-B1 (EcR-B1) and ultraspiracle 1 (USP-1) mRNAs were detected mainly in mature cells during programmed cell death (PCD). Lowered E75A and probably BR-C Z4 in mature cells appear to provide a signal to the initiation of PCD. E74B, E75B and BR-C Z2 seem to be early response genes which are involved in preparatory phase of cell death. It is likely that βFTZ-F1, E74A and BR-C Z1 are probably associated with execution of death. EcR-A and USP2 mRNAs were found in stem cells during remodeling processes but EcR-B1, USP1 and E74B genes imply an important role during initial phase of metamorphic events in stem cells. BHR3 mRNAs were determined abundantly in stem cells suggesting its primary role in differentiation. All of these results showed the determination the cell fate in Bombyx mori (Linnaeus) midgut depends on type of ecdysone receptor isoforms and ecdysone-related transcription factors.
Collapse
Affiliation(s)
- Ebru Goncu
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; ),
| | - Ramazan Uranlı
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Gozde Selek
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| | - Osman Parlak
- Department of Biology, Faculty of Science, Ege University, 35100 Bornova, Izmir/Turkey (; ; ; )
| |
Collapse
|
49
|
Zhong G, Cui G, Yi X, Sun R, Zhang J. Insecticide cytotoxicology in China: Current status and challenges. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 132:3-12. [PMID: 27521907 DOI: 10.1016/j.pestbp.2016.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 06/06/2023]
Abstract
The insecticide cytotoxicology, as a new branch of toxicology, has rapidly developed in China. During the past twenty years, thousands of investigations have sprung up to evaluate the damages and clarify the mechanisms of insecticidal chemical substances to insect cells in vivo or in vitro. The mechanisms of necrosis, apoptosis or autophagy induced by synthetic or biogenic pesticides and virus infections have been systematically illuminated in many important models, including S2, BmN, SL-1, Sf21 and Sf9 cell lines. In addition, a variety of methods have also been applied to examine the effects of insecticides and elaborate the modes of action. As a result, many vital factors and pathways, such as cytochrome c, the Bcl-2 family and caspases, in mitochondrial signaling pathways, intracellular free calcium and lysosome signal pathways have been illuminated and drawn much attention. Benefiting from the application of insecticide cytotoxicology, natural products purifications, biological activities assessments of synthetic compounds and high throughput screening models have been accelerated in China. However, many questions remained, and there exist great challenges, especially in theory system, evaluation criterion, evaluation model, relationship between activity in vitro and effectiveness in vivo, and the toxicological mechanism. Fortunately, the generation of "omics" could bring opportunities for the development of insecticide cytotoxicology.
Collapse
Affiliation(s)
- Guohua Zhong
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Gaofeng Cui
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Xin Yi
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Ranran Sun
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| | - Jingjing Zhang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, South China Agricultural University, Guangzhou, China
| |
Collapse
|
50
|
Wang D, Li XR, Dong DJ, Huang H, Wang JX, Zhao XF. The Steroid Hormone 20-Hydroxyecdysone Promotes the Cytoplasmic Localization of Yorkie to Suppress Cell Proliferation and Induce Apoptosis. J Biol Chem 2016; 291:21761-21770. [PMID: 27551043 DOI: 10.1074/jbc.m116.719856] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 08/18/2016] [Indexed: 01/04/2023] Open
Abstract
The transcriptional co-activator Yki (Yorkie), a member of the Hippo pathway, regulates cell proliferation or apoptosis, depending on its nuclear or cytoplasmic location. However, the upstream factors regulating the subcellular localization of Yki are unclear. We found that the steroid hormone 20-hydroxyecdysone (20E) induces phosphorylation of Yki, causing it to remain in the cytoplasm, where it promotes apoptosis in the midgut of the lepidopteran insect Helicoverpa armigera Yki is expressed in various tissues, with an increase in the epidermis and midgut during early metamorphic molting. Yki is localized mainly in the nucleus of feeding larval midgut cells but is mainly localized in the cytoplasm of metamorphic molting larval midgut cells. The knockdown of Yki in the feeding larvae promotes larval-pupal transition, midgut programmed cell death, and repressed IAP1 (inhibitor of apoptosis 1) expression. Knockdown of Yki in the epidermal cell line (HaEpi) induced increased activation of Caspase3/7. Overexpressed Yki in HaEpi cells was mainly localized in the nucleus and induced cell proliferation. 20E promotes the cytoplasmic localization of Yki, reducing the expression of the IAP1, resulting in apoptosis. 20E promotes cytoplasmic retention of Yki by increasing Yki phosphorylation levels and promoting the interaction between Yki and the adaptor protein 14-3-3-ϵ. This regulation of Yki suppresses cell proliferation and induces cell apoptosis.
Collapse
Affiliation(s)
- Di Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiang-Ru Li
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Du-Juan Dong
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Hua Huang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Jin-Xing Wang
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| | - Xiao-Fan Zhao
- From the Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Jinan 250100, China
| |
Collapse
|