1
|
Shi D, Yang Z, Cai Y, Li H, Lin L, Wu D, Zhang S, Guo Q. Research advances in the molecular classification of gastric cancer. Cell Oncol (Dordr) 2024; 47:1523-1536. [PMID: 38717722 PMCID: PMC11466988 DOI: 10.1007/s13402-024-00951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2024] [Indexed: 06/27/2024] Open
Abstract
Gastric cancer (GC) is a malignant tumor with one of the lowest five-year survival rates. Traditional first-line treatment regimens, such as platinum drugs, have limited therapeutic efficacy in treating advanced GC and significant side effects, greatly reducing patient quality of life. In contrast, trastuzumab and other immune checkpoint inhibitors, such as nivolumab and pembrolizumab, have demonstrated consistent and reliable efficacy in treating GC. Here, we discuss the intrinsic characteristics of GC from a molecular perspective and provide a comprehensive review of classification and treatment advances in the disease. Finally, we suggest several strategies based on the intrinsic molecular characteristics of GC to aid in overcoming clinical challenges in the development of precision medicine and improve patient prognosis.
Collapse
Affiliation(s)
- Dike Shi
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Zihan Yang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Yanna Cai
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Hongbo Li
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Lele Lin
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Dan Wu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China
| | - Shengyu Zhang
- Department of Gastroenterology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| | - Qingqu Guo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Jiefang Road, Hangzhou, 310009, China.
| |
Collapse
|
2
|
Mazzoleni A, Awuah WA, Sanker V, Bharadwaj HR, Aderinto N, Tan JK, Huang HYR, Poornaselvan J, Shah MH, Atallah O, Tawfik A, Elmanzalawi MEAE, Ghozlan SH, Abdul-Rahman T, Moyondafoluwa JA, Alexiou A, Papadakis M. Chromosomal instability: a key driver in glioma pathogenesis and progression. Eur J Med Res 2024; 29:451. [PMID: 39227895 PMCID: PMC11373396 DOI: 10.1186/s40001-024-02043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024] Open
Abstract
Chromosomal instability (CIN) is a pivotal factor in gliomas, contributing to their complexity, progression, and therapeutic challenges. CIN, characterized by frequent genomic alterations during mitosis, leads to genetic abnormalities and impacts cellular functions. This instability results from various factors, including replication errors and toxic compounds. While CIN's role is well documented in cancers like ovarian cancer, its implications for gliomas are increasingly recognized. CIN influences glioma progression by affecting key oncological pathways, such as tumor suppressor genes (e.g., TP53), oncogenes (e.g., EGFR), and DNA repair mechanisms. It drives tumor evolution, promotes inflammatory signaling, and affects immune interactions, potentially leading to poor clinical outcomes and treatment resistance. This review examines CIN's impact on gliomas through a narrative approach, analyzing data from PubMed/Medline, EMBASE, the Cochrane Library, and Scopus. It highlights CIN's role across glioma subtypes, from adult glioblastomas and astrocytomas to pediatric oligodendrogliomas and astrocytomas. Key findings include CIN's effect on tumor heterogeneity and its potential as a biomarker for early detection and monitoring. Emerging therapies targeting CIN, such as those modulating tumor mutation burden and DNA damage response pathways, show promise but face challenges. The review underscores the need for integrated therapeutic strategies and improved bioinformatics tools like CINdex to advance understanding and treatment of gliomas. Future research should focus on combining CIN-targeted therapies with immune modulation and personalized medicine to enhance patient outcomes.
Collapse
Affiliation(s)
- Adele Mazzoleni
- Barts and the London School of Medicine and Dentistry, London, UK
| | | | - Vivek Sanker
- Department Of Neurosurgery, Trivandrum Medical College, Trivandrum, India
| | | | - Nicholas Aderinto
- Internal Medicine Department, LAUTECH Teaching Hospital, Ogbomoso, Nigeria
| | | | - Helen Ye Rim Huang
- Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, Ireland
| | | | | | - Oday Atallah
- Department of Neurosurgery, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Aya Tawfik
- Faculty of Biotechnology, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | | | - Sama Hesham Ghozlan
- Arab Academy for Science, Technology & Maritime Transport, Alexandria, Egypt
| | | | | | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Chandigarh-Ludhiana Highway, Mohali, Punjab, India
- Funogen, Department of Research & Development, Athens, Greece
- Department of Research & Development, AFNP Med, 1030, Vienna, Austria
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
3
|
Lee J, Ku G. State of the art and upcoming trends in HER2-directed therapies in gastrointestinal malignancies. Curr Opin Oncol 2024; 36:326-331. [PMID: 38726843 PMCID: PMC11611523 DOI: 10.1097/cco.0000000000001043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
PURPOSE OF REVIEW This review critically evaluates the evolution and current status of human epidermal growth factor receptor 2 (HER2)-directed therapies in upper gastrointestinal (GI) malignancies, a timely and relevant inquiry given the dynamic shifts in therapeutic strategies over the past decade. Initial enthusiasm following the Trastuzumab for Gastric Cancer (ToGA) study's demonstration of trastuzumab's efficacy, however, encountered hurdles due to subsequent trials showing limited progress, underscoring the necessity for a reevaluation of therapeutic approaches and the exploration of novel agents. RECENT FINDINGS The review highlights significant breakthroughs in the form of immune checkpoint inhibitors and innovative therapeutic technologies, which have redefined treatment paradigms and shown promising efficacy in HER2-positive cases. Emerging treatments such as trastuzumab deruxtecan (T-DXd), zanidatamab and evorpacept further illustrate the ongoing efforts to leverage unique mechanisms of action for improved HER2-positive antitumor activity. SUMMARY The advancements in HER2-directed therapies underscore a pivotal era in the management of upper GI malignancies. These developments not only reflect the profound impact of integrating novel therapeutic combinations but also highlight the critical role of ongoing research in overcoming resistance mechanisms and tailoring treatment to individual disease profiles.
Collapse
Affiliation(s)
- Jaeyop Lee
- Medical Oncology Fellow, Medicine, Memorial Sloan Kettering Cancer Center New York, NY, USA
| | - Geoffrey Ku
- Associate Attending Physician, Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
4
|
Lee J, Ku G. Advances in Human Epidermal Growth Factor Receptor 2-Targeted Therapy in Upper Gastrointestinal Cancers. Hematol Oncol Clin North Am 2024; 38:585-598. [PMID: 38521686 DOI: 10.1016/j.hoc.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
The Trastuzumab for Gastric Cancer (ToGA) trial marked a pivotal moment in the adoption of trastuzumab for treating advanced human epidermal growth factor receptor 2 (HER2)-positive esophagogastric (EG) cancer. The KEYNOTE-811 trial brought to light the synergistic effect of immune modulation and HER2 targeting. Additionally, the emergence of trastuzumab deruxtecan (T-DXd) highlighted the potential of new pharmaceutical technologies to extend response, particularly for patients who have advanced beyond initial HER2-targeted therapies. This review aims to navigate through both the successes and challenges encountered historically, as well as promising current trials on innovative and transformative therapeutic strategies, including promising first-in-class and novel first-in-human agents.
Collapse
Affiliation(s)
- Jaeyop Lee
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Geoffrey Ku
- Gastrointestinal Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
5
|
Sun H, Li L, Lao I, Li X, Xu B, Cao Y, Jin W. Single-cell RNA sequencing reveals cellular and molecular reprograming landscape of gliomas and lung cancer brain metastases. Clin Transl Med 2022; 12:e1101. [PMID: 36336787 PMCID: PMC9637666 DOI: 10.1002/ctm2.1101] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Brain malignancies encompass gliomas and brain metastases originating from extracranial tumours including lung cancer. Approximately 50% of patients with lung adenocarcinoma (LUAD) will eventually develop brain metastases. However, the specific characteristics of gliomas and lung-to-brain metastases (LC) are largely unknown. METHODS We applied single-cell RNA sequencing to profile immune and nonimmune cells in 4 glioma and 10 LC samples. RESULTS Our analysis revealed that tumour microenvironment (TME) cells are present in heterogeneous subpopulations. LC reprogramed cells into immune suppressed state, including microglia, macrophages, endothelial cells, and CD8+ T cells, with unique cell proportions and gene signatures. Particularly, we identified that a subset of macrophages was associated with poor prognosis. ROS (reactive oxygen species)-producing neutrophils was found to participant in angiogenesis. Furthermore, endothelial cells participated in active communication with fibroblasts. Metastatic epithelial cells exhibited high heterogeneity in chromosomal instability (CIN) and cell population. CONCLUSIONS Our findings provide a comprehensive understanding of the heterogenicity of the tumor microenvironment and tumour cells and it will be crucial for successful immunotherapy development for brain metastasis of lung cancer.
Collapse
Affiliation(s)
- He‐Fen Sun
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Liang‐Dong Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - I‐Weng Lao
- Department of PathologyFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Xuan Li
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Bao‐Jin Xu
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Yi‐Qun Cao
- Department of NeurosurgeryFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| | - Wei Jin
- Department of Breast SurgeryKey Laboratory of Breast Cancer in ShanghaiFudan University Shanghai Cancer CenterShanghaiChina
- Department of OncologyShanghai Medical CollegeFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Ghojazadeh M, Somi MH, Naseri A, Salehi-Pourmehr H, Hassannezhad S, Hajikamanaj Olia A, Kafshdouz L, Nikniaz Z. Systematic Review and Meta-analysis of TP53, HER2/ERBB2, KRAS, APC, and PIK3CA Genes Expression Pattern in Gastric Cancer. Middle East J Dig Dis 2022; 14:335-345. [PMID: 36619267 PMCID: PMC9489438 DOI: 10.34172/mejdd.2022.292] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/19/2022] [Indexed: 11/06/2022] Open
Abstract
Background: With a global prevalence of about 10%, gastric cancer is among the most prevalent cancers. Currently, there has been an ongoing trend toward investigating genetic disruptions in different cancers because they can be used as a target-specific therapy. We aimed to systemically review some gene expression patterns in gastric cancer. Methods: The current systematic review was designed and executed in 2020. Scopus, PubMed, Cochrane Library, Google Scholar, web of knowledge, and Science Direct were searched for relevant studies. A manual search of articles (hand searching), reference exploring, checking for grey literature, and seeking expert opinion were also done. Results: In this review, 65 studies were included, and the expression pattern of HER2/ ERBB2, ER1/Erb1/EGFR, PIK3CA, APC, KRAS, ARID1A, TP53, FGFR2 and MET was investigated. TP53, APC, KRAS, and PIK3CA mutation cumulative frequency were 24.8 (I2=95.05, Q value=525.53, df=26, P<0.001), 7.2 (I2=89.79, Q value=48.99, df=5, P<0.001), 7.8 (I2=93.60, Q value=140.71, df=9, P=0.001) and 8.6 (I2=80.78, Q value=525.53, df=9, P<0.001) percent, respectively. Overexpression was investigated for HER1/ Erb1/EGFR, PIK3CA, APC, KRAS, ARID1A, TP53, CCND1, FGFR2, MET and MYC. The frequency of TP53 and HER2/ERBB2 were 43.1 (I2=84.06, Q value=58.09, df=9, P<0.001) and 20.8 (I2=93.61, Q value=234.89, df=15, P<0.001) percent, respectively. Conclusion: More research is encouraged to investigate the genes for which we could not perform a meta-analysis.
Collapse
Affiliation(s)
- Morteza Ghojazadeh
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hossein Somi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirreza Naseri
- Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hanieh Salehi-Pourmehr
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sina Hassannezhad
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Hajikamanaj Olia
- Research Center for Evidence-based Medicine, Iranian EBM Centre: A Joanna Briggs Institute (JBI) Center of Excellence, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Kafshdouz
- Genetic Department, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding Author: Zeinab Nikniaz, PhD Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran Tel:+98 4133367473 Fax:+984133367473
| |
Collapse
|
7
|
Chen W, Li J, Li C, Fan HN, Zhang J, Zhu JS. Network pharmacology-based identification of the antitumor effects of taraxasterol in gastric cancer. Int J Immunopathol Pharmacol 2021; 34:2058738420933107. [PMID: 32701378 PMCID: PMC7378706 DOI: 10.1177/2058738420933107] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Taraxasterol (TAX), a pentacyclic triterpene, has been reported to exhibit potent antitumor activity. However, the effects and molecular mechanisms of TAX in gastric cancer (GC) remain undocumented. A network pharmacology approach was applied to identify the collective targets of TAX and GC. Nude mice were subcutaneously injected with MKN-28 cells to establish GC subcutaneous xenograft model, which were treated with TAX for 16 days. Tumor volume was then examined every other day. The pathological scoring was assessed by using hematoxylin and eosin (H&E) staining, and the expression levels of Ki-67 and the target genes of TAX were confirmed by immunohistochemistry analysis. Five collective targets of TAX and GC were identified, such as epidermal growth factor receptor (EGFR), matrix metalloproteinase 2 (MMP2), B-Raf proto-oncogene, serine/threonine kinase (BRAF), fibroblast growth factor receptor 2 (FGFR2), and AKT serine/threonine kinase 1 (AKT1). Further investigations showed that, TAX administration repressed xenograft tumor growth and decreased Ki-67 levels, followed by the downregulation of EGFR and AKT1 expression in xenograft tumor tissues as compared with the untreated group. Our findings demonstrated that TAX inhibited the growth of GC by inhibition of EGFR/AKT1 signaling and might provide a novel therapeutic strategy for treatment of GC.
Collapse
Affiliation(s)
- Wei Chen
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jingwei Li
- Cardiac Function Room, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Li
- Department of General Surgery, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui-Ning Fan
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jing Zhang
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| | - Jin-Shui Zhu
- Department of Gastroenterology, Shanghai Jiao Tong University Affiliated Shanghai Sixth People's Hospital, Shanghai, China
| |
Collapse
|
8
|
Che N, Zhao X, Zhao N, Zhang Y, Ni C, Zhang D, Su S, Liang X, Li F, Li Y. The role of different PI3K protein subtypes in the metastasis, angiogenesis and clinical prognosis of hepatocellular carcinoma. Ann Diagn Pathol 2021; 53:151755. [PMID: 34023498 DOI: 10.1016/j.anndiagpath.2021.151755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVES Abnormal activation of the PI3K/AKT pathway is closely related to tumor occurrence, development and angiogenesis. PI3K, as a key protein in the PI3K/Akt pathway, has different subtypes that play diverse roles in various tumors. The aim of this study was to examine the roles of different PI3K protein subtypes (PI3Kp110α, PI3Kp110β, and PI3Kp110δ) in the metastasis, angiogenesis and prognosis of hepatocellular carcinoma (HCC). METHODS The roles of different PI3K protein subtypes in the metastasis, angiogenesis and prognosis of HCC were assessed by immunohistochemical staining of 97 HCC tissues and the STRING database. RESULTS Our results showed that PI3Kp110α and PI3Kp110δ were associated with HCC metastasis and angiogenesis. Patients with high expression of PI3Kp110α and PI3Kp110δ had a worse prognosis and shorter survival time, respectively, than those with low expression, whereas these effects were not observed for PI3Kp110β. Cox regression analysis showed that PI3Kp110α and clinical stage were independent risk factors for the overall survival of HCC patients. CONCLUSIONS PI3Kp110α and PI3Kp110δ promoted HCC metastasis and angiogenesis via the PI3K/AKT pathway, and PI3Kp110α was an independent risk factor for HCC patients. These findings provide valuable insights for the prognosis evaluation and the selection of subtype inhibitors of HCC patients.
Collapse
Affiliation(s)
- Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yanhui Zhang
- Department of Pathology, Tianjin Medical University Cancer Hospital, Tianjin 300060, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Danfang Zhang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Shuai Su
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, 300052, China
| | - Xiaohui Liang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fan Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Yue Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China; Department of Pathology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
9
|
Liu X, Du Q, Tian C, Tang M, Jiang Y, Wang Y, Cao Y, Wang Z, Wang Z, Yang J, Li Y, Jiao X, Xie P. Discovery of CAPE derivatives as dual EGFR and CSK inhibitors with anticancer activity in a murine model of hepatocellular carcinoma. Bioorg Chem 2020; 107:104536. [PMID: 33342565 DOI: 10.1016/j.bioorg.2020.104536] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022]
Abstract
Caffeic acid phenethyl ester (CAPE), a bioactive component extracted from propolis of honeybee hives, can inhibit hepatocellular carcinoma (HCC). In order to explore more stable CAPE derivatives, 25 compounds were designed, synthesized, and pharmacologically assessed in vitro and in vivo as anti-tumor agents in HCC. Compounds 8d, 8f, 8l, 8j, and 8k showed favorable antiproliferative activity than other compounds including CAPE in the HCC cell lines. Based on the result of QTRP (Quantitative Thiol Reactivity Profiling), epidermal growth factor receptor (EGFR) and C-terminal Src kinase (CSK) were supposed to the targets of 8f, which was confirmed by binding mode analysis. Furthermore, compounds 8f, 8l, 8j, 8k, 8g, and 8h showed potent inhibitory effects against both CSK and EGFR than other derivatives in an ADP-Glo™ kinase assay. The representative compound, 8f, potently inhibited various tumor growth in murine model including murine hepatocellular carcinoma H22, meanwhile downregulating the EGFR/AKT pathway and enhancing T cell proliferation through inhibition of CSK. Metabolic stability in vitro suggested 8f and 8k were more stable in mouse plasma than CAPE and susceptible to metabolism in liver microsomes. The overall excellent profile of compound 8f makes it a potential candidate for further preclinical investigation.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Qianqian Du
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Caiping Tian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China; School of Medicine, Tsinghua University, Beijing, China
| | - Mei Tang
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yingjun Jiang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yong Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Yang Cao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhe Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenwei Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Beijing Institute of Lifeomics, Beijing 102206, China
| | - Yan Li
- Beijing Key Laboratory of New Drug Mechanisms and Pharmacological Evaluation Study, Department of Pharmacology, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| | - Xiaozhen Jiao
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ping Xie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicine, Beijing Key Laboratory of Active Substance Discovery and Druggability Evaluation, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
10
|
Zhang X, Yu Z. Expression of PDK1 in malignant pheochromocytoma as a new promising potential therapeutic target. Clin Transl Oncol 2019; 21:1312-1318. [DOI: 10.1007/s12094-019-02055-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/29/2019] [Indexed: 01/03/2023]
|
11
|
Cao GD, Chen K, Chen B, Xiong MM. Positive prognostic value of HER2-HER3 co-expression and p-mTOR in gastric cancer patients. BMC Cancer 2017; 17:841. [PMID: 29233126 PMCID: PMC5727869 DOI: 10.1186/s12885-017-3851-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 11/28/2017] [Indexed: 02/07/2023] Open
Abstract
Background The HER2-HER3 heterodimer significantly decreases survival in breast cancer patients. However, the prognostic value of HER2-HER3 overexpression remains unknown in gastric cancer (GC). Methods The expression levels of HER2, HER3, Akt, p-Akt, mTOR and p-mTOR were examined in specimens from 120 GC patients by immunohistochemistry and quantitative reverse transcription-PCR. The associations of HER proteins, PI3K/Akt/mTOR pathway-related proteins, clinicopathological features of GC, and overall survival (OS) were assessed. To comprehensively evaluate the prognostic values of pathway-related proteins, meta-analyses were conducted with STATA 11.0. Results HER2 overexpression was significantly associated with HER3 levels (P = 0.02). HER3 was highly expressed in gastric cancer tissues. High HER2 and HER3 levels were associated with elevated p-Akt and p-mTOR amounts (P < 0.05). Furthermore, HER2-HER3 co-expression was associated with high p-Akt and p-mTOR (P < 0.05) levels. Meanwhile, p-mTOR overexpression was tightly associated with differentiation, depth of invasion, lymph node metastasis, TNM stage and OS (P < 0.05). By meta-analyses, Akt, p-Akt, and mTOR levels were unrelated to clinicopathological characters. HER3 overexpression was associated with depth of invasion (OR = 2.39, 95%CI 1.62–3.54, P < 0.001) and lymph node metastasis (OR = 2.35, 95%CI 1.34–4.11, P = 0.003). Further, p-mTOR overexpression was associated with patient age, tumor location, depth of invasion (OR = 1.63, 95%CI 1.08–2.45, P = 0.02) and TNM stage (OR = 1.73, 95%CI 1.29–2.32, P < 0.001). In addition, HER2-HER3 overexpression corresponded to gradually shortened 5-year OS (P < 0.05), and significant relationships were shown among HER3, p-mTOR overexpression, and 1-, 3-, 5-year OS (P < 0.05). Conclusions HER2-HER3 co-expression may potentially enhance mTOR phosphorylation. HER2-HER3 co-expression and p-mTOR are both related to the prognosis of GC patients. Electronic supplementary material The online version of this article (10.1186/s12885-017-3851-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guo-Dong Cao
- Anhui Medical University, Hefei, Anhui, 230022, China
| | - Ke Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China
| | - Bo Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| | - Mao-Ming Xiong
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.
| |
Collapse
|
12
|
Maleki SS, Röcken C. Chromosomal Instability in Gastric Cancer Biology. Neoplasia 2017; 19:412-420. [PMID: 28431273 PMCID: PMC5397576 DOI: 10.1016/j.neo.2017.02.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/21/2017] [Indexed: 02/08/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common cancer in the world and accounts for 7% of the total cancer incidence. The prognosis of GC is dismal in Western countries due to late diagnosis: approximately 70% of the patients die within 5 years following initial diagnosis. Recently, integrative genomic analyses led to the proposal of a molecular classification of GC into four subtypes, i.e.,microsatellite-instable, Epstein-Barr virus–positive, chromosomal-instable (CIN), and genomically stable GCs. Molecular classification of GC advances our knowledge of the biology of GC and may have implications for diagnostics and patient treatment. Diagnosis of microsatellite-instable GC and Epstein-Barr virus–positive GC is more or less straightforward. Microsatellite instability can be tested by immunohistochemistry (MLH1, PMS2, MSH2, and MSH6) and/or molecular-biological analysis. Epstein-Barr virus–positive GC can be tested by in situ hybridization (Epstein-Barr virus encoded small RNA). However, with regard to CIN, testing may be more complicated and may require a more in-depth knowledge of the underlying mechanism leading to CIN. In addition, CIN GC may not constitute a distinct subgroup but may rather be a compilation of a more heterogeneous group of tumors. In this review, we aim to clarify the definition of CIN and to point out the molecular mechanisms leading to this molecular phenotype and the challenges faced in characterizing this type of cancer.
Collapse
Affiliation(s)
| | - Christoph Röcken
- Department of Pathology, Christian-Albrechts-University, Kiel, Germany.
| |
Collapse
|
13
|
Cao F, Zhang C, Han W, Gao XJ, Ma J, Hu YW, Gu X, Ding HZ, Zhu LX, Liu Q. p-Akt as a potential poor prognostic factor for gastric cancer: a systematic review and meta-analysis. Oncotarget 2017; 8:59878-59888. [PMID: 28938690 PMCID: PMC5601786 DOI: 10.18632/oncotarget.17001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/17/2017] [Indexed: 12/18/2022] Open
Abstract
To understand the relationship between p-Akt expression and the prognosis of patients with gastric cancer, we searched six databases, Pubmed, EMBASE, Cochrane Library, CNKI, Wanfang and CBM for relevant articles in order to conduct this metaanalysis. The pooled hazard ratios and corresponding 95%CI of overall survival were calculated to evaluate the prognostic value of p-Akt expression in patients with gastric cancer. With 2261 patients combined from 13 available studies, the pooled HR showed a poor prognosis in patients with gastric cancer in the univariate analysis (HR=1.88, 95%CI:1.45-2.43, P<0.00001), and the group "univariate analysis+estimate" (HR=1.41, 95%CI: 1.01-1.97, P=0.04), but not in multivariate analysis (HR=0.66, 95%CI: 0.29-1.52, P=0.33) and estimate (HR=1.13, 95%CI: 0.65-1.95, P=0.67). In conclusion, our results indicated that p-Akt was likely to be an indicator of poor prognosis in patients with gastric cancer.
Collapse
Affiliation(s)
- Fang Cao
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Cong Zhang
- Department of Pharmacy, Kunshan Hospital of TCM, Kunshan, Jiangsu 215300, P.R. China
| | - Wei Han
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Xiao-Jiao Gao
- Department of Pathology, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Jun Ma
- Department of Urological Surgery, Kunshan Hospital of TCM, Kunshan, Jiangsu 215300, P.R. China
| | - Yong-Wei Hu
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Xing Gu
- Department of Gynaecology and Obstetrics, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Hou-Zhong Ding
- Department of General Surgery, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Li-Xia Zhu
- Department of Gynaecology and Obstetrics, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| | - Qin Liu
- Department of Gynaecology and Obstetrics, Kunshan First People's Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu 215300, P.R. China
| |
Collapse
|