1
|
Ng XY, Peh G, Morales-Wong F, Gabriel R, Soong PL, Lin KH, Mehta JS. Towards Clinical Application: Calcium Waves for In Vitro Qualitative Assessment of Propagated Primary Human Corneal Endothelial Cells. Cells 2024; 13:2012. [PMID: 39682760 PMCID: PMC11640329 DOI: 10.3390/cells13232012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/30/2024] [Accepted: 12/04/2024] [Indexed: 12/18/2024] Open
Abstract
Corneal endothelium cells (CECs) regulate corneal hydration between the leaky barrier of the corneal endothelium and the ionic pumps on the surface of CECs. As CECs do not regenerate, loss of CECs leads to poor vision and corneal blindness. Corneal transplant is the only treatment option; however, there is a severe shortage of donor corneas globally. Cell therapy using propagated primary human CECs is an alternative approach to corneal transplantations, and proof of functionality is crucial for validating such CECs. Expression markers like Na-K-ATPase and ZO-1 are typical but not specific to CECs. Assessing the barrier function of the expanded CECs via electrical resistance (i.e., TEER and Ussing's chamber) involves difficult techniques and is thus impractical for clinical application. Calcium has been demonstrated to affect the paracellular permeability of the corneal endothelium. Its absence alters morphology and disrupts apical junctions in bovine CECs, underscoring its importance. Calcium signaling patterns such as calcium waves affect the rate of wound healing in bovine CECs. Therefore, observing calcium waves in expanded CECs could provide valuable insights into their health and functional integrity. Mechanical or chemical stimulations, combined with Ca2+-sensitive fluorescent dyes and time-lapse imaging, can be used to visualize these waves, which could potentially be used to qualify expanded CECs.
Collapse
Affiliation(s)
- Xiao Yu Ng
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
| | - Gary Peh
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Eye-Academic Clinical Program (ACP), Duke-National University of Singapore (NUS) Graduate Medical School, Singapore 169857, Singapore
| | - Fernando Morales-Wong
- Department of Ophthalmology, University Hospital and Faculty of Medicine, Autonomous University of Nuevo León (UANL), Monterrey 64460, Mexico;
| | - Rami Gabriel
- Department of Ophthalmology, Duke University Health Center, Durham, NC 27705, USA;
| | | | - Kun-Han Lin
- Ternion Biosciences, Singapore 574329, Singapore; (P.L.S.)
| | - Jodhbir S. Mehta
- Tissue Engineering and Cell Therapy Group, Singapore Eye Research Institute, Singapore 169856, Singapore;
- Eye-Academic Clinical Program (ACP), Duke-National University of Singapore (NUS) Graduate Medical School, Singapore 169857, Singapore
- Corneal and External Diseases Department, Singapore National Eye Centre, Singapore 168751, Singapore
| |
Collapse
|
2
|
Ismatullah H, Jabeen I, Kiani YS. Structural and functional insight into a new emerging target IP 3R in cancer. J Biomol Struct Dyn 2024; 42:2170-2196. [PMID: 37070253 DOI: 10.1080/07391102.2023.2201332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Calcium signaling has been identified as an important phenomenon in a plethora of cellular processes. Inositol 1,4,5-trisphosphate receptors (IP3Rs) are ER-residing intracellular calcium (Ca2+) release channels responsible for cell bioenergetics by transferring calcium from the ER to the mitochondria. The recent availability of full-length IP3R channel structure has enabled the researchers to design the IP3 competitive ligands and reveal the channel gating mechanism by elucidating the conformational changes induced by ligands. However, limited knowledge is available for IP3R antagonists and the exact mechanism of action of these antagonists within a tumorigenic environment of a cell. Here in this review a summarized information about the role of IP3R in cell proliferation and apoptosis has been discussed. Moreover, structure and gating mechanism of IP3R in the presence of antagonists have been provided in this review. Additionally, compelling information about ligand-based studies (both agonists and antagonists) has been discussed. The shortcomings of these studies and the challenges toward the design of potent IP3R modulators have also been provided in this review. However, the conformational changes induced by antagonists for channel gating mechanism still display some major drawbacks that need to be addressed. However, the design, synthesis and availability of isoform-specific antagonists is a rather challenging one due to intra-structural similarity within the binding domain of each isoform. HighlightsThe intricate complexity of IP3R's in cellular processes declares them an important target whereby, the recently solved structure depicts the receptor's potential involvement in a complex network of processes spanning from cell proliferation to cell death.Pharmacological inhibition of IP3R attenuates the proliferation or invasiveness of cancers, thus inducing necrotic cell death.Despite significant advancements, there is a tremendous need to design new potential hits to target IP3R, based upon 3D structural features and pharmacophoric patterns.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Humaira Ismatullah
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Ishrat Jabeen
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Yusra Sajid Kiani
- Department of Sciences, School of Interdisciplinary Engineering and Sciences (SINES), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
3
|
Abstract
In the body, extracellular stimuli produce inositol 1,4,5-trisphosphate (IP3), an intracellular chemical signal that binds to the IP3 receptor (IP3R) to release calcium ions (Ca2+) from the endoplasmic reticulum. In the past 40 years, the wide-ranging functions mediated by IP3R and its genetic defects causing a variety of disorders have been unveiled. Recent cryo-electron microscopy and X-ray crystallography have resolved IP3R structures and begun to integrate with concurrent functional studies, which can explicate IP3-dependent opening of Ca2+-conducting gates placed ∼90 Å away from IP3-binding sites and its regulation by Ca2+. This review highlights recent research progress on the IP3R structure and function. We also propose how protein plasticity within IP3R, which involves allosteric gating and assembly transformations accompanied by rapid and chronic structural changes, would enable it to regulate diverse functions at cellular microdomains in pathophysiological states.
Collapse
Affiliation(s)
- Kozo Hamada
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| | - Katsuhiko Mikoshiba
- Laboratory of Cell Calcium Signaling, Shanghai Institute for Advanced Immunochemical Studies (SIAIS), ShanghaiTech University, Shanghai, 201210, China; ,
| |
Collapse
|
4
|
Jarius S, Wildemann B. 'Medusa-head ataxia': the expanding spectrum of Purkinje cell antibodies in autoimmune cerebellar ataxia. Part 1: Anti-mGluR1, anti-Homer-3, anti-Sj/ITPR1 and anti-CARP VIII. J Neuroinflammation 2015; 12:166. [PMID: 26377085 PMCID: PMC4574226 DOI: 10.1186/s12974-015-0356-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/02/2015] [Indexed: 01/09/2023] Open
Abstract
Serological testing for anti-neural autoantibodies is important in patients presenting with idiopathic cerebellar ataxia, since these autoantibodies may indicate cancer, determine treatment and predict prognosis. While some of them target nuclear antigens present in all or most CNS neurons (e.g. anti-Hu, anti-Ri), others more specifically target antigens present in the cytoplasm or plasma membrane of Purkinje cells (PC). In this series of articles, we provide a detailed review of the clinical and paraclinical features, oncological, therapeutic and prognostic implications, pathogenetic relevance, and differential laboratory diagnosis of the 12 most common PC autoantibodies (often referred to as 'Medusa-head antibodies' due to their characteristic somatodendritic binding pattern when tested by immunohistochemistry). To assist immunologists and neurologists in diagnosing these disorders, typical high-resolution immunohistochemical images of all 12 reactivities are presented, diagnostic pitfalls discussed and all currently available assays reviewed. Of note, most of these antibodies target antigens involved in the mGluR1/calcium pathway essential for PC function and survival. Many of the antigens also play a role in spinocerebellar ataxia. Part 1 focuses on anti-metabotropic glutamate receptor 1-, anti-Homer protein homolog 3-, anti-Sj/inositol 1,4,5-trisphosphate receptor- and anti-carbonic anhydrase-related protein VIII-associated autoimmune cerebellar ataxia (ACA); part 2 covers anti-protein kinase C gamma-, anti-glutamate receptor delta-2-, anti-Ca/RhoGTPase-activating protein 26- and anti-voltage-gated calcium channel-associated ACA; and part 3 reviews the current knowledge on anti-Tr/delta notch-like epidermal growth factor-related receptor-, anti-Nb/AP3B2-, anti-Yo/cerebellar degeneration-related protein 2- and Purkinje cell antibody 2-associated ACA, discusses differential diagnostic aspects and provides a summary and outlook.
Collapse
Affiliation(s)
- S Jarius
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| | - B Wildemann
- Molecular Neuroimmunology Group, Department of Neurology, University of Heidelberg, Otto Meyerhof Center, Im Neuenheimer Feld 350, D-69120, Heidelberg, Germany.
| |
Collapse
|
5
|
Mikoshiba K. Role of IP3 receptor signaling in cell functions and diseases. Adv Biol Regul 2014; 57:217-27. [PMID: 25497594 DOI: 10.1016/j.jbior.2014.10.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 10/06/2014] [Indexed: 11/25/2022]
Abstract
IP3 receptor (IP3R) was found to release Ca(2+) from non-mitochondrial store but the exact localization and the mode of action of IP3 remained a mystery. IP3R was identified to be P400 protein, a protein, which was missing in the cerebellum of ataxic mutant mice lacking Ca(2+) spikes in Pukinje cells. IP3R was an IP3 binding protein and was a Ca(2+) channel localized on the endoplasmic reticulum. Full-length cDNA of IP3R type 1 was initially cloned and later two other isoforms of IP3R (IP3R type 2 and type 3) were cloned in vertebrates. Interestingly, the phosphorylation sites, splicing sites, associated molecules, IP3 binding affinity and 5' promoter sequences of each isoform were different. Thus each isoform of IP3 receptor plays a role as a signaling hub offering a unique platform for matching various functional molecules that determines different trajectories of cell signaling. Because of this distinct role of each isoform of IP3R, the dysregulation of IP3 receptor causes various kinds of diseases in human and rodents such as ataxia, vulnerability to neuronal degeneration, heart disease, exocrine secretion deficit, taste perception deficit. Moreover, IP3 was found not only to release Ca(2+), but also to release IRBIT (IP3receptor binding protein released with inositol trisphosphate) essential for the regulation of acid-base balance, RNA synthesis and ribonucleotide reductase.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| |
Collapse
|
6
|
Clark KB. Basis for a neuronal version of Grover's quantum algorithm. Front Mol Neurosci 2014; 7:29. [PMID: 24860419 PMCID: PMC4029008 DOI: 10.3389/fnmol.2014.00029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 03/31/2014] [Indexed: 11/25/2022] Open
Abstract
Grover's quantum (search) algorithm exploits principles of quantum information theory and computation to surpass the strong Church–Turing limit governing classical computers. The algorithm initializes a search field into superposed N (eigen)states to later execute nonclassical “subroutines” involving unitary phase shifts of measured states and to produce root-rate or quadratic gain in the algorithmic time (O(N1/2)) needed to find some “target” solution m. Akin to this fast technological search algorithm, single eukaryotic cells, such as differentiated neurons, perform natural quadratic speed-up in the search for appropriate store-operated Ca2+ response regulation of, among other processes, protein and lipid biosynthesis, cell energetics, stress responses, cell fate and death, synaptic plasticity, and immunoprotection. Such speed-up in cellular decision making results from spatiotemporal dynamics of networked intracellular Ca2+-induced Ca2+ release and the search (or signaling) velocity of Ca2+ wave propagation. As chemical processes, such as the duration of Ca2+ mobilization, become rate-limiting over interstore distances, Ca2+ waves quadratically decrease interstore-travel time from slow saltatory to fast continuous gradients proportional to the square-root of the classical Ca2+ diffusion coefficient, D1/2, matching the computing efficiency of Grover's quantum algorithm. In this Hypothesis and Theory article, I elaborate on these traits using a fire-diffuse-fire model of store-operated cytosolic Ca2+ signaling valid for glutamatergic neurons. Salient model features corresponding to Grover's quantum algorithm are parameterized to meet requirements for the Oracle Hadamard transform and Grover's iteration. A neuronal version of Grover's quantum algorithm figures to benefit signal coincidence detection and integration, bidirectional synaptic plasticity, and other vital cell functions by rapidly selecting, ordering, and/or counting optional response regulation choices.
Collapse
Affiliation(s)
- Kevin B Clark
- Research and Development Service, Veterans Affairs Greater Los Angeles Healthcare System Los Angeles, CA, USA ; Complex Biological Systems Alliance North Andover, MA, USA
| |
Collapse
|
7
|
Haldipur P, Bharti U, Alberti C, Sarkar C, Gulati G, Iyengar S, Gressens P, Mani S. Preterm delivery disrupts the developmental program of the cerebellum. PLoS One 2011; 6:e23449. [PMID: 21858122 PMCID: PMC3157376 DOI: 10.1371/journal.pone.0023449] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2011] [Accepted: 07/18/2011] [Indexed: 11/26/2022] Open
Abstract
A rapid growth in human cerebellar development occurs in the third trimester, which is impeded by preterm delivery. The goal of this study was to characterize the impact of preterm delivery on the developmental program of the human cerebellum. Still born infants, which meant that all development up to that age had taken place in-utero, were age paired with preterm delivery infants, who had survived in an ex-utero environment, which meant that their development had also taken place outside the uterus. The two groups were assessed on quantitative measures that included molecular markers of granule neuron, purkinje neuron and bergmann glia differentiation, as well as the expression of the sonic hedgehog signaling pathway, that is important for cerebellar growth. We report that premature birth and development in an ex-utero environment leads to a significant decrease in the thickness and an increase in the packing density of the cells within the external granular layer and the inner granular layer well, as a reduction in the density of bergmann glial fibres. In addition, this also leads to a reduced expression of sonic hedgehog in the purkinje layer. We conclude that the developmental program of the cerebellum is specifically modified by events that follow preterm delivery.
Collapse
Affiliation(s)
| | - Upasna Bharti
- National Brain Research Centre, Manesar, Haryana, India
| | - Corinne Alberti
- Inserm, CIE 5; Assistance publique - Hôpitaux de Paris, Robert Debré Hospital, Unité d'épidémiologie clinique, Paris, France
- Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
| | - Chitra Sarkar
- All India Institute of Medical Sciences, New Delhi, India
| | - Geetika Gulati
- All India Institute of Medical Sciences, New Delhi, India
| | | | - Pierre Gressens
- Université Paris 7, Faculté de Médecine Denis Diderot, Paris, France
- Inserm, U676, Paris, France
- PremUP, Paris, France
| | - Shyamala Mani
- National Brain Research Centre, Manesar, Haryana, India
- * E-mail:
| |
Collapse
|
8
|
Kawaai K, Hisatsune C, Kuroda Y, Mizutani A, Tashiro T, Mikoshiba K. 80K-H Interacts with Inositol 1,4,5-Trisphosphate (IP3) Receptors and Regulates IP3-induced Calcium Release Activity. J Biol Chem 2009; 284:372-380. [DOI: 10.1074/jbc.m805828200] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
9
|
Abstract
Inositol 1,4,5-trisphosphate (IP(3)) is a second messenger that induces the release of Ca(2+) from the endoplasmic reticulum (ER). The IP(3) receptor (IP(3)R) was discovered as a developmentally regulated glyco-phosphoprotein, P400, that was missing in strains of mutant mice. IP(3)R can allosterically and dynamically change its form in a reversible manner. The crystal structures of the IP(3)-binding core and N-terminal suppressor sequence of IP(3)R have been identified. An IP(3) indicator (known as IP(3)R-based IP(3) sensor) was developed from the IP(3)-binding core. The IP(3)-binding core's affinity to IP(3) is very similar among the three isoforms of IP(3)R; instead, the N-terminal IP(3) binding suppressor region is responsible for isoform-specific IP(3)-binding affinity tuning. Various pathways for the trafficking of IP(3)R have been identified; for example, the ER forms a meshwork upon which IP(3)R moves by lateral diffusion, and vesicular ER subcompartments containing IP(3)R move rapidly along microtubles using a kinesin motor. Furthermore, IP(3)R mRNA within mRNA granules also moves along microtubules. IP(3)Rs are involved in exocrine secretion. ERp44 works as a redox sensor in the ER and regulates IP(3)R1 activity. IP(3) has been found to release Ca(2+), but it also releases IRBIT (IP(3)R-binding protein released with IP(3)). IRBIT is a pseudo-ligand for IP(3) that regulates the frequency and amplitude of Ca(2+) oscillations through IP(3)R. IRBIT binds to pancreas-type Na, bicarbonate co-transporter 1, which is important for acid-base balance. The presence of many kinds of binding partners, like homer, protein 4.1N, huntingtin-associated protein-1A, protein phosphatases (PPI and PP2A), RACK1, ankyrin, chromogranin, carbonic anhydrase-related protein, IRBIT, Na,K-ATPase, and ERp44, suggest that IP(3)Rs form a macro signal complex and function as a center for signaling cascades. The structure of IP(3)R1, as revealed by cryoelectron microscopy, fits closely with these molecules.
Collapse
Affiliation(s)
- Katsuhiko Mikoshiba
- Laboratory for Developmental Neurobiology, RIKEN Brain Science Institute and Calcium Oscillation Project, ICORP-SORST, Hirosawa, Wako-shi, Saitama, Japan
| |
Collapse
|
10
|
Mikoshiba K, Furuichi T, Miyawaki A, Yoshikawa S, Maeda N, Niinobe M, Nakade S, Nakagawa T, Okano H, Aruga J. The inositol 1,4,5-trisphosphate receptor. CIBA FOUNDATION SYMPOSIUM 2007; 164:17-29; discussion 29-35. [PMID: 1327678 DOI: 10.1002/9780470514207.ch3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Inositol 1,4,5-trisphosphate (InsP3) is a second messenger that releases Ca2+ from its intracellular stores. The InsP3 receptor has been purified and its cDNA has been cloned. We have found that the InsP3 receptor is identical to P400 protein, first identified as a protein enriched in cerebellar Purkinje cells. We have generated an L-fibroblast cell transfectant that produces cDNA-derived InsP3 receptors. The protein displays high affinity and specificity for InsP3. InsP3 induces greater Ca2+ release from membrane vesicles from transfected cells than from those from control L-fibroblasts. After incorporation of the purified InsP3 receptor into lipid bilayers InsP3-induced Ca2+ currents were demonstrated. These results suggest that the InsP3 receptor is involved in physiological Ca2+ release. Immunogold labelling using monoclonal antibodies against the receptor showed that it is highly concentrated on the smooth-surfaced endoplasmic reticulum and slightly on the outer nuclear membrane and rough endoplasmic reticulum; no labelling of Golgi apparatus, mitochondria and plasmalemma was seen. Cross-linking experiments showed that the receptor forms a homotetramer. The approximately 650 N-terminal amino acids are highly conserved between mouse and Drosophila, and this region contains the critical sequences for InsP3 binding. We have investigated the heterogeneity of the InsP3 receptor using the polymerase chain reaction and have found novel subtypes of the mouse InsP3 receptor that are expressed in a tissue-specific and developmentally specific manner.
Collapse
Affiliation(s)
- K Mikoshiba
- Institute for Protein Research, Osaka University, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Sen M, McMains E, Gleason E. Local influence of mitochondrial calcium transport in retinal amacrine cells. Vis Neurosci 2007; 24:663-78. [PMID: 17697441 DOI: 10.1017/s0952523807070551] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2007] [Accepted: 05/26/2007] [Indexed: 11/07/2022]
Abstract
Ca2+-dependent synaptic transmission from retinal amacrine cells is thought to be initiated locally at dendritic processes. Hence, understanding the spatial and temporal impact of Ca2+ transport is fundamental to understanding how amacrine cells operate. Here, we provide the first examination of the local effects of mitochondrial Ca2+ transport in neuronal processes. By combining mitochondrial localization with measurements of cytosolic Ca2+, the local impacts of mitochondrial Ca2+ transport for two types of Ca2+ signals were investigated. Disruption of mitochondrial Ca2+ uptake with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) produces cytosolic Ca2+ elevations. The amplitudes of these elevations decline with distance from mitochondria suggesting that they are related to mitochondrial Ca2+ transport. The time course of the FCCP-dependent Ca2+ elevations depend on the availability of ER Ca2+ and we provide evidence that Ca2+ is released primarily via nearby ryanodine receptors. These results indicate that interactions between the ER and mitochondria influence cytosolic Ca2+ in amacrine cell processes and cell bodies. We also demonstrate that the durations of glutamate-dependent Ca2+ elevations are dependent on their proximity to mitochondria in amacrine cell processes. Consistent with this observation, disruption of mitochondrial Ca2+ transport alters the duration of glutamate-dependent Ca2+ elevations near mitochondria but not at sites more than 10 microm away. These results indicate that mitochondria influence local Ca2+-dependent signaling in amacrine cell processes.
Collapse
Affiliation(s)
- Madhumita Sen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | | | | |
Collapse
|
12
|
Abstract
The inositol 1,4,5-trisphosphate (InsP3) receptors (InsP3Rs) are a family of Ca2+ release channels localized predominately in the endoplasmic reticulum of all cell types. They function to release Ca2+ into the cytoplasm in response to InsP3 produced by diverse stimuli, generating complex local and global Ca2+ signals that regulate numerous cell physiological processes ranging from gene transcription to secretion to learning and memory. The InsP3R is a calcium-selective cation channel whose gating is regulated not only by InsP3, but by other ligands as well, in particular cytoplasmic Ca2+. Over the last decade, detailed quantitative studies of InsP3R channel function and its regulation by ligands and interacting proteins have provided new insights into a remarkable richness of channel regulation and of the structural aspects that underlie signal transduction and permeation. Here, we focus on these developments and review and synthesize the literature regarding the structure and single-channel properties of the InsP3R.
Collapse
Affiliation(s)
- J Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia 19104-6085, USA.
| | | | | | | |
Collapse
|
13
|
Alessi A, Bragg AD, Percival JM, Yoo J, Albrecht DE, Froehner SC, Adams ME. gamma-Syntrophin scaffolding is spatially and functionally distinct from that of the alpha/beta syntrophins. Exp Cell Res 2006; 312:3084-95. [PMID: 16857187 DOI: 10.1016/j.yexcr.2006.06.019] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/06/2006] [Accepted: 06/07/2006] [Indexed: 10/24/2022]
Abstract
The syntrophins are a family of scaffolding proteins with multiple protein interaction domains that link signaling proteins to dystrophin family members. Each of the three most characterized syntrophins (alpha, beta1, beta2) contains a PDZ domain that binds a unique set of signaling proteins including kinases, ion and water channels, and neuronal nitric oxide synthase (nNOS). The PDZ domains of the gamma-syntrophins do not bind nNOS. In vitro pull-down assays show that the gamma-syntrophins can bind dystrophin but have unique preferences for the syntrophin binding sites of dystrophin family members. Despite their ability to bind dystrophin in vitro, neither gamma-syntrophin isoform co-localizes with dystrophin in skeletal muscle. Furthermore, gamma-syntrophins do not co-purify with dystrophin isolated from mouse tissue. These data suggest that the interaction of gamma-syntrophin with dystrophin is transient and potentially subject to regulatory mechanisms. gamma1-Syntrophin is highly expressed in brain and is specifically localized in hippocampal pyramidal neurons, Purkinje neurons in cerebellum, and cortical neurons. gamma2-Syntrophin is expressed in many tissues including skeletal muscle where it is found only in the subsynaptic space beneath the neuromuscular junction. In both neurons and muscle, gamma-syntrophin isoforms localize to the endoplasmic reticulum where they may form a scaffold for signaling and trafficking.
Collapse
Affiliation(s)
- Amy Alessi
- Department of Physiology and Biophysics, University of Washington, 1959 Pacific ST NE, Seattle, WA 98195-7290, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Iwai M, Tateishi Y, Hattori M, Mizutani A, Nakamura T, Futatsugi A, Inoue T, Furuichi T, Michikawa T, Mikoshiba K. Molecular Cloning of Mouse Type 2 and Type 3 Inositol 1,4,5-Trisphosphate Receptors and Identification of a Novel Type 2 Receptor Splice Variant. J Biol Chem 2005; 280:10305-17. [PMID: 15632133 DOI: 10.1074/jbc.m413824200] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We isolated cDNAs encoding type 2 and type 3 inositol 1,4,5-trisphosphate (IP(3)) receptors (IP(3)R2 and IP(3)R3, respectively) from mouse lung and found a novel alternative splicing segment, SI(m2), at 176-208 of IP(3)R2. The long form (IP(3)R2 SI(m2)(+)) was dominant, but the short form (IP(3)R2 SI(m2)(-)) was detected in all tissues examined. IP(3)R2 SI(m2)(-) has neither IP(3) binding activity nor Ca(2+) releasing activity. In addition to its reticular distribution, IP(3)R2 SI(m2)(+) is present in the form of clusters in the endoplasmic reticulum of resting COS-7 cells, and after ATP or Ca(2+) ionophore stimulation, most of the IP(3)R2 SI(m2)(+) is in clusters. IP(3)R3 is localized uniformly on the endoplasmic reticulum of resting cells and forms clusters after ATP or Ca(2+) ionophore stimulation. IP(3)R2 SI(m2)(-) does not form clusters in either resting or stimulated cells. IP(3) binding-deficient site-directed mutants of IP(3)R2 SI(m2)(+) and IP(3)R3 fail to form clusters, indicating that IP(3) binding is involved in the cluster formation by these isoforms. Coexpression of IP(3)R2 SI(m2)(-) prevents stimulus-induced IP(3)R clustering, suggesting that IP(3)R2 SI(m2)(-) functions as a negative coordinator of stimulus-induced IP(3)R clustering. Expression of IP(3)R2 SI(m2)(-) in CHO-K1 cells significantly reduced ATP-induced Ca(2+) entry, but not Ca(2+) release, suggesting that the novel splice variant of IP(3)R2 specifically influences the dynamics of the sustained phase of Ca(2+) signals.
Collapse
MESH Headings
- Adenosine Triphosphate/chemistry
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Blotting, Western
- CHO Cells
- COS Cells
- Calcium/metabolism
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Cell Line
- Cloning, Molecular
- Cricetinae
- Cytoplasm/metabolism
- DNA, Complementary/metabolism
- Endoplasmic Reticulum/metabolism
- Green Fluorescent Proteins/metabolism
- Immunoprecipitation
- Inositol 1,4,5-Trisphosphate Receptors
- Insecta
- Ionophores/pharmacology
- Kinetics
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Microscopy, Fluorescence
- Microsomes/metabolism
- Molecular Sequence Data
- Multigene Family
- Mutagenesis, Site-Directed
- Rats
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Recombinant Proteins/chemistry
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Homology, Amino Acid
- Time Factors
- Tissue Distribution
Collapse
Affiliation(s)
- Miwako Iwai
- Division of Molecular Neurobiology, Department of Basic Medical Sciences, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Banerjee S, Hasan G. The InsP3 receptor: its role in neuronal physiology and neurodegeneration. Bioessays 2005; 27:1035-47. [PMID: 16163728 DOI: 10.1002/bies.20298] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The InsP3 receptor is a ligand-gated channel that releases Ca2+ from intracellular stores in a variety of cell types, including neurons. Genetic studies from vertebrate and invertebrate model systems suggest that coordinated rhythmic motor functions are most susceptible to changes in Ca2+ release from the InsP3 receptor. In many cases, the InsP3 receptor interacts with other signaling mechanisms that control levels of cytosolic Ca2+, suggesting that the maintenance of Ca2+ homeostasis in normal cells could be controlled by the activity of the InsP3R. In support of this idea, recent studies show that altered InsP3 receptor activity can be partially responsible for Ca2+ dyshomeostasis seen in many neurodegenerative conditions. These observations open new avenues for carrying out genetic and drug screens that target InsP3R function in neurodegenerative conditions.
Collapse
Affiliation(s)
- Santanu Banerjee
- National Centre for Biological Sciences, Tata Institute for Fundamental Research, Bangalore, Karnataka, India.
| | | |
Collapse
|
16
|
Abstract
The endoplasmic reticulum (ER) is a universal signalling organelle, which regulates a wide range of neuronal functional responses. Calcium release from the ER underlies various forms of intracellular Ca(2+) signalling by either amplifying Ca(2+) entry through voltage-gated Ca(2+) channels by Ca(2+)-induced Ca(2+) release (CICR) or by producing local or global cytosolic calcium fluctuations following stimulation of metabotropic receptors through inositol-1,4,5-trisphosphate-induced Ca(2+) release (IICR). The ER Ca(2+) store emerges as a single interconnected pool, thus allowing for a long-range Ca(2+) signalling via intra-ER tunnels. The fluctuations of intra-ER free Ca(2+) concentration regulate the activity of numerous ER resident proteins responsible for post-translational protein folding and modification. Disruption of ER Ca(2+) homeostasis results in the developing of ER stress response, which in turn controls neuronal survival. Altered ER Ca(2+) handling may be involved in pathogenesis of various neurodegenerative diseases including brain ischemia and Alzheimer dementia.
Collapse
Affiliation(s)
- A Verkhratsky
- The University of Manchester, School of Biological Sciences, Manchester, United Kingdom.
| | | |
Collapse
|
17
|
Abstract
Mitochondria have long been known to accumulate Ca2+; the apparent inconsistency between the low affinity of mitochondrial Ca2+ uptake mechanisms, the low concentration of global Ca2+ signals observed in cytoplasm, and the efficiency in intact cells of mitochondrial Ca2+ uptake led to the formulation of the "hotspot hypothesis." This hypothesis proposes that mitochondria preferentially accumulate Ca2+ at microdomains of elevated Ca2+ concentration ([Ca2+]) that exist near endoplasmic reticulum (ER) Ca2+ release sites and other Ca2+ channels. Physiological Ca2+ signals may affect mitochondrial function--both by stimulating key metabolic enzymes and, under some conditions, by promoting apoptosis. Mitochondria in turn may affect both Ca2+ release from the ER and capacitative Ca2+ entry across the plasma membrane, thereby shaping the size and duration of the intracellular Ca2+ signal. Interactions between mitochondria and the ER are critically dependent on the spatial localization of mitochondria within the cell. The molecular mechanisms that define the organization of mitochondria with regard to the ER and other Ca2+ sources, and the extent to which mitochondrial function varies among different cell types, are open questions whose answers remain to be determined.
Collapse
Affiliation(s)
- Rosario Rizzuto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, University of Ferrara, Italy
| | | | | |
Collapse
|
18
|
Ikemoto T, Yorifuji H, Satoh T, Vizi ES. Reversibility of cisternal stack formation during hypoxic hypoxia and subsequent reoxygenation in cerebellar Purkinje cells. Neurochem Res 2003; 28:1535-42. [PMID: 14570398 DOI: 10.1023/a:1025674409572] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cisternal stacks are induced during hypoxia, which may be associated with intracellular Ca2+ regulation. Although neurons are divided internally in different compartments, little is known about regional differences in cisternal stack formation. We investigated the effects of hypoxic hypoxia and later reoxygenation on cisternal stack formation and other ultrastructual changes in the proximal dendrite, dendritic spine, and cell body of cerebellar Purkinje cells in rats. After brief hypoxic events, cisternal stacks appeared predominantly in the proximal dendrites and after longer hypoxic events in dendritic spines and cell body. Following reoxygenation, cisternal stacks disappeared first in the cell body, followed by the dendritic spines, then the proximal dendrites. These results showed that stack formation occurred at different degrees and time courses among the three regions, and the effect was reversible, which suggests that these compartments are differentially sensitive to hypoxia.
Collapse
Affiliation(s)
- Takeshi Ikemoto
- Department of Anesthesiology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | | | | | | |
Collapse
|
19
|
Miyawaki A, Matheson JM, Sayers LG, Muto A, Michikawa T, Furuichi T, Mikoshiba K. Expression of green fluorescent protein and inositol 1,4,5-triphosphate receptor in Xenopus laevis oocytes. Methods Enzymol 2003; 302:225-33. [PMID: 12876775 DOI: 10.1016/s0076-6879(99)02022-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Affiliation(s)
- A Miyawaki
- Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The endoplasmic reticulum (ER) is a multifunctional signalling organelle regulating a wide range of neuronal functional responses. The ER is intimately involved in intracellular Ca(2+) signalling, producing local or global cytosolic calcium fluctuations via Ca(2+)-induced Ca(2+) release (CICR) or inositol-1,4,5-trisphosphate-induced Ca(2+) release (IICR). The CICR and IICR are controlled by two subsets of Ca(2+) release channels residing in the ER membrane, the Ca(2+)-gated Ca(2+) release channels, generally known as ryanodine receptors (RyRs) and InsP(3)-gated Ca(2+) release channels, referred to as InsP(3)-receptors (InsP(3)Rs). Both types of Ca(2+) release channels are expressed abundantly in nerve cells and their activation triggers cytoplasmic Ca(2+) signals important for synaptic transmission and plasticity. The RyRs and InsP(3)Rs show heterogeneous localisation in distinct cellular sub-compartments, conferring thus specificity in local Ca(2+) signals. At the same time, the ER Ca(2+) store emerges as a single interconnected pool fenced by the endomembrane. The continuity of the ER Ca(2+) store could play an important role in various aspects of neuronal signalling. For example, Ca(2+) ions may diffuse within the ER lumen with comparative ease, endowing this organelle with the capacity for "Ca(2+) tunnelling". Thus, continuous intra-ER Ca(2+) highways may be very important for the rapid replenishment of parts of the pool subjected to excessive stimulation (e.g. in small compartments within dendritic spines), the facilitated removal of localised Ca(2+) loads, and finally in conveying Ca(2+) signals from the site of entry towards the cell interior and nucleus.
Collapse
Affiliation(s)
- A Verkhratsky
- School of Biological Sciences, The University of Manchester, 1.124 Stopford Building, Oxford Road, M13 9PT, Manchester, UK.
| |
Collapse
|
21
|
Yang J, McBride S, Mak DOD, Vardi N, Palczewski K, Haeseleer F, Foskett JK. Identification of a family of calcium sensors as protein ligands of inositol trisphosphate receptor Ca(2+) release channels. Proc Natl Acad Sci U S A 2002; 99:7711-6. [PMID: 12032348 PMCID: PMC124329 DOI: 10.1073/pnas.102006299] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The inositol trisphosphate (InsP(3)) receptor (InsP(3)R) is a ubiquitously expressed intracellular Ca(2+) channel that mediates complex cytoplasmic Ca(2+) signals, regulating diverse cellular processes, including synaptic plasticity. Activation of the InsP(3)R channel is normally thought to require binding of InsP(3) derived from receptor-mediated activation of phosphatidylinositol lipid hydrolysis. Here we identify a family of neuronal Ca(2+)-binding proteins as high-affinity protein agonists of the InsP(3)R, which bind to the channel and activate gating in the absence of InsP(3). CaBP/caldendrin, a subfamily of the EF-hand-containing neuronal calcium sensor family of calmodulin-related proteins, bind specifically to the InsP(3)-binding region of all three InsP(3)R channel isoforms with high affinity (K(a) approximately 25 nM) in a Ca(2+)-dependent manner (K(a) approximately 1 microM). Binding activates single-channel gating as efficaciously as InsP(3), dependent on functional EF-hands in CaBP. In contrast, calmodulin neither bound with high affinity nor activated channel gating. CaBP1 and the type 1 InsP(3)R associate in rat whole brain and cerebellum lysates, and colocalize extensively in subcellular regions in cerebellar Purkinje neurons. Thus, InsP(3)R-mediated Ca(2+) signaling in cells is possible even in the absence of InsP(3) generation, a process that may be particularly important in responding to and shaping changes in intracellular Ca(2+) concentration by InsP(3)-independent pathways and for localizing InsP(3)-mediated Ca(2+) signals to individual synapses.
Collapse
Affiliation(s)
- Jun Yang
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104-6085, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Affiliation(s)
- C Job
- Department of Pharmacology, University of Pennsylvania Medical Center, Philadelphia, Pennsylvania 19104-6058, USA
| | | |
Collapse
|
23
|
Mak DOD, McBride S, Foskett JK. ATP regulation of recombinant type 3 inositol 1,4,5-trisphosphate receptor gating. J Gen Physiol 2001; 117:447-56. [PMID: 11331355 PMCID: PMC2233659 DOI: 10.1085/jgp.117.5.447] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
A family of inositol 1,4,5-trisphosphate (InsP3) receptor (InsP3R) Ca2+ release channels plays a central role in Ca2+ signaling in most cells, but functional correlates of isoform diversity are unclear. Patch-clamp electrophysiology of endogenous type 1 (X-InsP3R-1) and recombinant rat type 3 InsP3R (r-InsP3R-3) channels in the outer membrane of isolated Xenopus oocyte nuclei indicated that enhanced affinity and reduced cooperativity of Ca2+ activation sites of the InsP3-liganded type 3 channel distinguished the two isoforms. Because Ca2+ activation of type 1 channel was the target of regulation by cytoplasmic ATP free acid concentration ([ATP](i)), here we studied the effects of [ATP]i on the dependence of r-InsP(3)R-3 gating on cytoplasmic free Ca2+ concentration ([Ca2+]i. As [ATP]i was increased from 0 to 0.5 mM, maximum r-InsP3R-3 channel open probability (Po) remained unchanged, whereas the half-maximal activating [Ca2+]i and activation Hill coefficient both decreased continuously, from 800 to 77 nM and from 1.6 to 1, respectively, and the half-maximal inhibitory [Ca2+]i was reduced from 115 to 39 microM. These effects were largely due to effects of ATP on the mean closed channel duration. Whereas the r-InsP3R-3 had a substantially higher Po than X-InsP3R-1 in activating [Ca2+]i (< 1 microM) and 0.5 mM ATP, the Ca2+ dependencies of channel gating of the two isoforms became remarkably similar in the absence of ATP. Our results suggest that ATP binding is responsible for conferring distinct gating properties on the two InsP3R channel isoforms. Possible molecular models to account for the distinct regulation by ATP of the Ca2+ activation properties of the two channel isoforms and the physiological implications of these results are discussed. Complex regulation by ATP of the types 1 and 3 InsP3R channel activities may enable cells to generate sophisticated patterns of Ca2+ signals with cytoplasmic ATP as one of the second messengers.
Collapse
Affiliation(s)
- Don-On Daniel Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Sean McBride
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - J. Kevin Foskett
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
24
|
Clapp TR, Stone LM, Margolskee RF, Kinnamon SC. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2001; 2:6. [PMID: 11346454 PMCID: PMC31433 DOI: 10.1186/1471-2202-2-6] [Citation(s) in RCA: 186] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2001] [Accepted: 04/23/2001] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Taste receptor cells are responsible for transducing chemical stimuli into electrical signals that lead to the sense of taste. An important second messenger in taste transduction is IP3, which is involved in both bitter and sweet transduction pathways. Several components of the bitter transduction pathway have been identified, including the T2R/TRB taste receptors, phospholipase C beta2, and the G protein subunits alpha-gustducin, beta3, and gamma13. However, the identity of the IP3 receptor subtype in this pathway is not known. In the present study we used immunocytochemistry on rodent taste tissue to identify the IP3 receptors expressed in taste cells and to examine taste bud expression patterns for IP3R3. RESULTS Antibodies against Type I, II, and III IP3 receptors were tested on sections of rat and mouse circumvallate papillae. Robust cytoplasmic labeling for the Type III IP3 receptor (IP3R3) was found in a large subset of taste cells in both species. In contrast, little or no immunoreactivity was seen with antibodies against the Type I or Type II IP3 receptors. To investigate the potential role of IP3R3 in bitter taste transduction, we used double-label immunocytochemistry to determine whether IP3R3 is expressed in the same subset of cells expressing other bitter signaling components. IP3R3 immunoreactive taste cells were also immunoreactive for PLCbeta2 and gamma13. Alpha-gustducin immunoreactivity was present in a subset of IP3R3, PLCbeta2, and gamma13 positive cells. CONCLUSIONS IP3R3 is the dominant form of the IP3 receptor expressed in taste cells and our data suggest it plays an important role in bitter taste transduction.
Collapse
Affiliation(s)
- Tod R Clapp
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, CO 80523 and the Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Leslie M Stone
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, CO 80523 and the Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| | - Robert F Margolskee
- Howard Hughes Medical Institute and Department of Physiology and Biophysics, Mount Sinai School of Medicine of New York University, Box 1677, 1425 Madison Avenue, New York, NY 10029, USA
| | - Sue C Kinnamon
- Department of Anatomy and Neurobiology, Colorado State University, Fort Collins, CO 80523 and the Rocky Mountain Taste and Smell Center, University of Colorado Health Sciences Center, Denver, CO 80262, USA
| |
Collapse
|
25
|
Koulen P, Janowitz T, Johnston LD, Ehrlich BE. Conservation of localization patterns of IP(3) receptor type 1 in cerebellar Purkinje cells across vertebrate species. J Neurosci Res 2000; 61:493-9. [PMID: 10956418 DOI: 10.1002/1097-4547(20000901)61:5<493::aid-jnr3>3.0.co;2-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The distribution of inositol 1,4,5-trisphosphate (IP(3)) receptor type 1 (IP(3)R1) protein was studied in the adult cerebella of six different vertebrate species, zebrafish, skate, claw frog, rat, hamster, and mouse. The receptor was found at high expression levels in Purkinje cells in all species examined using a subtype-specific polyclonal antiserum against IP(3)R1 and fluorescence immunocytochemistry. The immunoreactivity for IP(3)R1 was found intracellularly at high concentrations in dendrites and somata and at lower levels in axons of these cells. Despite the morphological and functional differences of the cerebella the staining patterns of IP(3)R1 labeling in Purkinje cells was preserved. This is notable because the cerebella were taken from organisms representing a large segment of vertebrate phylogenetic development. The high expression levels of IP(3)R1 in Purkinje cells were found independent of the degree of the formation of fissures and folia and of the degree of branching of Purkinje cell dendrites. The conservation of cerebellar structures not only at the cellular level but more importantly at the molecular level suggests that identical intracellular calcium signaling mechanisms are used in a number of species that represent different areas of phylogenetic development and specialization.
Collapse
Affiliation(s)
- P Koulen
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA.
| | | | | | | |
Collapse
|
26
|
Abstract
Physiological studies have provided evidence for the existence of ryanodine receptor (RyR) Ca(2+) channels in compound eyes of insects. The present study identifies and localizes RyR in insect photoreceptors by use of an affinity-purified antibody against lobster muscle RyR. Western blotting and indirect immunofluorescence staining confirm cross-reactivity of the antibody with insect muscle RyR. In both honeybee and fly eyes, the antibody identifies a single protein that comigrates with muscle RyR on sodium dodecylsulfate (SDS) polyacrylamide gels demonstrating that RyR is present in this tissue. By confocal immunofluorescence microscopy on honeybee eyes, RyR is detected within the photoreceptors and shows a nonhomogeneous distribution over the endoplasmic reticulum (ER). Double labeling studies have demonstrated further that RyR is localized at distinct ER elements close to the light-sensitive microvilli and juxtaposed to adherens junctions. RyR has also been observed within the remaining soma of honeybee photoreceptors, being concentrated on ER cisternae close to mitochondria and the nonreceptive plasma membrane. For comparative purposes, the distribution of RyR has also been assayed in compound eyes of flies. In both Calliphora and Drosophila photoreceptors, the anti-RyR antibody provides punctate labeling throughout the cell body. The submicrovillar ER cisternae associated with the base of the microvilli, however, are only lightly labeled for RyR. These results suggest that RyR is involved with Ca(2+) regulation in the nonreceptive cell area of both fly and honeybee photoreceptors, but that it may contribute to Ca(2+) regulation close to the phototransduction compartment only in the latter cell.
Collapse
Affiliation(s)
- O Baumann
- Institut für Zoophysiologie und Zellbiologie, Universität Potsdam, 14471 Potsdam, Germany.
| |
Collapse
|
27
|
Mak DO, McBride S, Foskett JK. ATP regulation of type 1 inositol 1,4,5-trisphosphate receptor channel gating by allosteric tuning of Ca(2+) activation. J Biol Chem 1999; 274:22231-7. [PMID: 10428789 DOI: 10.1074/jbc.274.32.22231] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (InsP(3)) mobilizes intracellular Ca(2+) by binding to its receptor (InsP(3)R), an endoplasmic reticulum-localized Ca(2+) release channel. Patch clamp electrophysiology of Xenopus oocyte nuclei was used to study the effects of cytoplasmic ATP concentration on the cytoplasmic Ca(2+) ([Ca(2+)](i)) dependence of single type 1 InsP(3)R channels in native endoplasmic reticulum membrane. Cytoplasmic ATP free-acid ([ATP](i)), but not the MgATP complex, activated gating of the InsP(3)-liganded InsP(3)R, by stabilizing open channel state(s) and destabilizing the closed state(s). Activation was associated with a reduction of the half-maximal activating [Ca(2+)](i) from 500 +/- 50 nM in 0 [ATP](i) to 29 +/- 4 nM in 9.5 mM [ATP](i), with apparent ATP affinity = 0.27 +/- 0.04 mM, similar to in vivo concentrations. In contrast, ATP was without effect on maximum open probability or the Hill coefficient for Ca(2+) activation. Thus, ATP enhances gating of the InsP(3)R by allosteric regulation of the Ca(2+) sensitivity of the Ca(2+) activation sites of the channel. By regulating the Ca(2+)-induced Ca(2+) release properties of the InsP(3)R, ATP may play an important role in shaping cytoplasmic Ca(2+) signals, possibly linking cell metabolic state to important Ca(2+)-dependent processes.
Collapse
Affiliation(s)
- D O Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6100, USA
| | | | | |
Collapse
|
28
|
Sharp AH, Nucifora FC, Blondel O, Sheppard CA, Zhang C, Snyder SH, Russell JT, Ryugoand DK, Ross CA. Differential cellular expression of isoforms of inositol 1,4,5-triphosphate receptors in neurons and glia in brain. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990405)406:2<207::aid-cne6>3.0.co;2-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
29
|
Banno T, Kohno K. Conformational changes of the smooth endoplasmic reticulum are facilitated by L-glutamate and its receptors in rat Purkinje cells. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19981214)402:2<252::aid-cne9>3.0.co;2-u] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
30
|
Moore TM, Chetham PM, Kelly JJ, Stevens T. Signal transduction and regulation of lung endothelial cell permeability. Interaction between calcium and cAMP. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L203-22. [PMID: 9700080 DOI: 10.1152/ajplung.1998.275.2.l203] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pulmonary endothelium forms a semiselective barrier that regulates fluid balance and leukocyte trafficking. During the course of lung inflammation, neurohumoral mediators and oxidants act on endothelial cells to induce intercellular gaps permissive for transudation of proteinaceous fluid from blood into the interstitium. Intracellular signals activated by neurohumoral mediators and oxidants that evoke intercellular gap formation are incompletely understood. Cytosolic Ca2+ concentration ([Ca2+]i) and cAMP are two signals that importantly dictate cell-cell apposition. Although increased [Ca2+]i promotes disruption of the macrovascular endothelial cell barrier, increased cAMP enhances endothelial barrier function. Furthermore, during the course of inflammation, elevated endothelial cell [Ca2+]i decreases cAMP to facilitate intercellular gap formation. Given the significance of both [Ca2+]i and cAMP in mediating cell-cell apposition, this review addresses potential sites of cross talk between these two intracellular signaling pathways. Emerging data also indicate that endothelial cells derived from different vascular sites within the pulmonary circulation exhibit distinct sensitivities to permeability-inducing stimuli; that is, elevated [Ca2+]i promotes macrovascular but not microvascular barrier disruption. Thus this review also considers the roles of [Ca2+]i and cAMP in mediating site-specific alterations in endothelial permeability.
Collapse
Affiliation(s)
- T M Moore
- Department of Pharmacology and Lung Biology and Pathology Research Laboratory, University of South Alabama College of Medicine, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|
31
|
Affiliation(s)
- M J Berridge
- The Babraham Institute, Babraham Laboratory of Molecular Signalling, Cambridge, United Kingdom
| |
Collapse
|
32
|
Monkawa T, Hayashi M, Miyawaki A, Sugiyama T, Yamamoto-Hino M, Hasegawa M, Furuichi T, Mikoshiba K, Saruta T. Localization of inositol 1,4,5-trisphosphate receptors in the rat kidney. Kidney Int 1998; 53:296-301. [PMID: 9461089 DOI: 10.1046/j.1523-1755.1998.00763.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) serve as intracellular calcium release channels involved in signal transduction of various hormones in the kidney. Molecular cloning studies have shown that there are three types of IP3R, designated type 1, type 2, and type 3. To characterize their localizations in the rat kidney, we employed immunohistochemical studies using type-specific monoclonal antibodies that were raised against the 15 C-terminal amino acids of each type of IP3R. Type 1 was detected in glomerular mesangial cells and vascular smooth muscle cells. Type 2 was expressed exclusively in intercalated cells of collecting ducts from the cortex to the inner medulla. Type 3 was expressed in vascular smooth muscle cells, glomerular mesangial cells, and some cells of cortical collecting ducts, probably principal cells. As to the subcellular distribution, type 1 and type 2 showed a homogenous distribution in the cytoplasm, whereas type 3 was present mainly in the basolateral portion of the cytoplasm. These results indicate that IP3R isoforms were expressed in a cell-specific manner. The heterogeneous subcellular localizations among the IP3R types suggests compartmentalization of distinct IP3-sensitive Ca2+ pools.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal
- Calcium Channels/analysis
- Calcium Channels/immunology
- Glomerular Mesangium/blood supply
- Glomerular Mesangium/chemistry
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/analysis
- Inositol 1,4,5-Trisphosphate/immunology
- Inositol 1,4,5-Trisphosphate Receptors
- Kidney Cortex/blood supply
- Kidney Cortex/chemistry
- Kidney Tubules, Collecting/chemistry
- Male
- Mice
- Muscle, Smooth, Vascular/chemistry
- Rats
- Rats, Wistar
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/immunology
Collapse
Affiliation(s)
- T Monkawa
- Department of Internal Medicine, School of Medicine, Keio University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Solon E, Gupta AP, Gaugler R. Localization of a putative inositol 1,4,5-triphosphate receptor in the Limulus granulocyte. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 1997; 21:277-285. [PMID: 9258609 DOI: 10.1016/s0145-305x(97)00013-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The horseshoe crab (Limulus polyphemus) granulocyte (GR) degranulates upon contact with bacteria and release factors that mediate an immune response. Stimulated cells produce IP3, which binds to receptors (IP3R, M.W.240-300 kD) that function to release stored Ca2+ into the cytoplasm that mediates degranulation. This mechanism is believed to mediate exocytosis in the Limulus GR but IP3R in the GR has not been shown. The present study utilized monoclonal antibody 4C11 and a commercially available anti-IP3R antibody, both of which label amino acids of the N-terminal of all known isoforms. Electron microscopy, immunohistochemistry, SDS-PAGE, and Western blot analysis, which employed the use of the two antibodies, demonstrates that a putative IP3R exists in the: plasma membrane, smooth surfaced vesicles, nucleus and nuclear membrane. We hypothesize that this putative IP3R is involved in mediating the immune response of the Limulus GR.
Collapse
MESH Headings
- Animals
- Blotting, Western
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Cytoplasmic Granules/immunology
- Cytoplasmic Granules/metabolism
- Cytoplasmic Granules/ultrastructure
- Electrophoresis, Polyacrylamide Gel
- Fluorescent Antibody Technique, Indirect
- Hemocytes/metabolism
- Hemocytes/ultrastructure
- Horseshoe Crabs/immunology
- Horseshoe Crabs/metabolism
- Horseshoe Crabs/ultrastructure
- Immunohistochemistry
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Microscopy, Immunoelectron
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- E Solon
- Schering-Plough Research Institute, Kenilworth, NJ 07033-0539, USA
| | | | | |
Collapse
|
34
|
Sayers LG, Miyawaki A, Muto A, Takeshita H, Yamamoto A, Michikawa T, Furuichi T, Mikoshiba K. Intracellular targeting and homotetramer formation of a truncated inositol 1,4,5-trisphosphate receptor-green fluorescent protein chimera in Xenopus laevis oocytes: evidence for the involvement of the transmembrane spanning domain in endoplasmic reticulum targeting and homotetramer complex formation. Biochem J 1997; 323 ( Pt 1):273-80. [PMID: 9173893 PMCID: PMC1218306 DOI: 10.1042/bj3230273] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In an attempt to define structural regions of the type I inositol 1, 4,5-trisphosphate [Ins(1,4,5)P3] receptor [Ins(1,4,5)P3R] involved in its intracellular targeting to the endoplasmic reticulum (ER), we have employed the use of green fluorescent protein (GFP) to monitor the localization of a truncated Ins(1,4,5)P3R mutant containing just the putative transmembrane spanning domain and the C-terminal cytoplasmic domain [amino acids 2216-2749; termed inositol trisphosphate receptor(ES)]. We expressed a chimeric GFP-Ins(1,4, 5)P3R(ES) fusion protein in Xenopus laevis oocytes, and used fluorescence confocal microscopy to monitor its intracellular localization. Fluorescence confocal microscopy data showed an intense fluorescence in the perinuclear region and in a reticular-network under the animal pole of the oocyte, consistent with the targeting of expressed GFP-Ins(1,4,5)P3R(ES) to perinuclear ER and ER under the animal pole. These findings are consistent with the intracellular localization of the endogenous Xenopus Ins(1,4, 5)P3R shown previously. Furthermore, electron microscopy data indicate that expressed GFP-Ins(1,4,5)P3R(ES) is in fact targeted to the ER. Sodium carbonate extraction of microsomal membranes and cross-linking experiments indicate that the expressed chimeric protein is in fact membrane anchored and able to form a homotetrameric complex. Our data provides evidence that Ins(1,4, 5)P3R(ES) constitutes the membrane spanning domain of the Ins(1,4, 5)P3R and is able to mediate homotetramer formation, without the need for the large N-terminal cytoplasmic domain. Furthermore, the localization of GFP-Ins(1,4,5)P3R(ES) on the ER indicates that an ER retention/targeting signal is contained within the transmembrane spanning domain of the inositol trisphosphate receptor.
Collapse
Affiliation(s)
- L G Sayers
- Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, 4-6-1 Shiroganedai, Minato-ku, Tokyo 108
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Khan AA, Soloski MJ, Sharp AH, Schilling G, Sabatini DM, Li SH, Ross CA, Snyder SH. Lymphocyte apoptosis: mediation by increased type 3 inositol 1,4,5-trisphosphate receptor. Science 1996; 273:503-7. [PMID: 8662540 DOI: 10.1126/science.273.5274.503] [Citation(s) in RCA: 211] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
B and T lymphocytes undergoing apoptosis in response to anti-immunoglobulin M antibodies and dexamethasone, respectively, were found to have increased amounts of messenger RNA for the inositol 1,4,5-trisphosphate receptor (IP3R) and increased amounts of IP3R protein. Immunohistochemical analysis revealed that the augmented receptor population was localized to the plasma membrane. Type 3 IP3R (IP3R3) was selectively increased during apoptosis, with no enhancement of type 1 IP3R (IP3R1). Expression of IP3R3 antisense constructs in S49 T cells blocked dexamethasone-induced apoptosis, whereas IP3R3 sense, IP3R1 sense, or IP3R1 antisense control constructs did not block cell death. Thus, the increases in IP3R3 may be causally related to apoptosis.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Apoptosis
- B-Lymphocytes/cytology
- B-Lymphocytes/metabolism
- Base Sequence
- Calcium/metabolism
- Calcium Channels/genetics
- Calcium Channels/immunology
- Calcium Channels/metabolism
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- DNA, Antisense
- Dexamethasone/pharmacology
- Immunoblotting
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Molecular Sequence Data
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/immunology
- Receptors, Cytoplasmic and Nuclear/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/metabolism
- Transfection
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- A A Khan
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Yamamoto A, Masaki R, Tashiro Y. Formation of crystalloid endoplasmic reticulum in COS cells upon overexpression of microsomal aldehyde dehydrogenase by cDNA transfection. J Cell Sci 1996; 109 ( Pt 7):1727-38. [PMID: 8832395 DOI: 10.1242/jcs.109.7.1727] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When rat liver microsomal aldehyde dehydrogenase (msALDH) was overexpressed in COS-1 cells by cDNA transfection, large granular structures containing both msALDH and endogenous protein disulfide isomerase appeared (Masaki et al. (1994) J. Cell Biol. 126, 1407–1420). Confocal laser microscopy revealed that these granular structures are dispersed throughout the cytoplasm. Electron microscopy showed that the structures are composed of regularly arranged crystalloid smooth endoplasmic reticulum (ER). The formation of the crystalloid ER was accompanied by a remarkable proliferation of smooth ER, which appeared occasionally continuous to the rough ER. We suggest that the smooth ER, proliferated from the rough ER, is transformed and assembled into the crystalloid ER by head-to-head association of the msALDH molecules on the apposed smooth ER membranes. In order to understand the molecular mechanism of the crystalloid ER formation, we asked which portions of the msALDH molecules are needed for the crystalloid ER formation by expressing deletion mutants or chimera protein of msALDH in COS-1 cells. The overexpression of msALDH molecules lacking the stem region preceding the membrane spanning region, although they were exclusively localized in the ER, did not induce the formation of crystalloid ER. More detailed analysis showed that the amino acid sequence FFLL, located in the stem region, is necessary to form the crystalloid ER. The chimera protein containing the last 35 amino acids of msALDH at the carboxyl terminus of chloramphenicol acetyltransferase was localized to the ER, but did not induce the formation of the crystalloid ER. These results suggest that at least two regions, the bulky amino-terminal region and the FFLL sequence in the stem region of msALDH molecules are required for the formation of the crystalloid ER.
Collapse
Affiliation(s)
- A Yamamoto
- Department of Physiology, Kansai Medical University, Osaka, Japan. RXL
| | | | | |
Collapse
|
38
|
Abstract
Morphological changes of the smooth endoplasmic reticulum (SER) in rat cerebellar Purkinje cell dendrites were examined under apneic conditions for 1-5 minutes, induced by an incision of the diaphragm and the collapse of the lungs. The dendrites obtained from control rats contained a tubular network of the SER and hypolemmal cisterns adjacent to the plasma membrane. After a 3-5-minute apnea, the cytoplasm was occupied by many flattened cisterns stacked into lamellae, referred to as "lamellar bodies." A quantitative analysis revealed that the number of lamellar bodies became maximum after 3 minutes of apnea. After the treatment time, they increased in size by adding new cisterns to the previous core lamellae. This analysis also showed that the total amount of the SER membranes contained in a dendrite did not change during anoxia. Conformational changes from the tubular or hypolemmal SER to lamellar bodies during brief anoxia might occur through a transient and intermediate form of "fenestrated cisterns," flat across the transverse plane and penetrated by many longitudinally arranged microtubules. We suggest that these morphological changes of the SER during brief anoxia are not fixation artifacts but represent a biological reaction for protecting against intracellular abnormalities during anoxia.
Collapse
Affiliation(s)
- T Banno
- Department of Anatomy, University of Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
39
|
Nucifora FC, Sharp AH, Milgram SL, Ross CA. Inositol 1,4,5-trisphosphate receptors in endocrine cells: localization and association in hetero- and homotetramers. Mol Biol Cell 1996; 7:949-60. [PMID: 8817000 PMCID: PMC275945 DOI: 10.1091/mbc.7.6.949] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The inositol 1,4,5-trisphosphate receptor (IP3R) is an intracellular calcium channel involved in coupling cell membrane receptors to calcium signal transduction pathways within cells including endocrine cells. Several isoforms (I, II, and III) of IP3Rs have been identified, which are encoded by separate genes, and are expressed in many tissues with differing patterns of cellular expression. We have generated specific affinity-purified polyclonal anti-peptide antibodies to each of the three isoforms. Western blot analysis of RINm5F and ATt20 cells shows high levels of endogenously expressed type I and type III IP3R, but undetectable levels of type II. Immunofluorescence studies revealed an endoplasmic reticulum-like pattern similar to BiP, an ER marker. In contrast with previous claims, both type I and type III IP3Rs were absent from the secretory granules of ATt20 cells. Western blots of sucrose gradients and gel filtration probed with antibodies to either type I or type III showed a molecular weight of greater than 1,000 kDa consistent with a tetrameric structure. Co-immunoprecipitation experiments indicated that most of the receptors were present as heterotetramers. Homotetramers were identified for the type III IP3R; however, type I homotetramers were undetectable. These data suggest that molecular association of IP3Rs into heterotetrameric forms can contribute to the complexity of the regulation of Ca2+ release from ER by IP3Rs within cells.
Collapse
Affiliation(s)
- F C Nucifora
- Johns Hopkins University School of Medicine, Department of Psychiatry, Baltimore, Maryland 21205-2196, USA
| | | | | | | |
Collapse
|
40
|
Dekker-Ohno K, Hayasaka S, Takagishi Y, Oda S, Wakasugi N, Mikoshiba K, Inouye M, Yamamura H. Endoplasmic reticulum is missing in dendritic spines of Purkinje cells of the ataxic mutant rat. Brain Res 1996; 714:226-30. [PMID: 8861629 DOI: 10.1016/0006-8993(95)01560-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Dilute-opisthotonus (dop) is a spontaneous ataxic mutation in the rat, regulated by an autosomal recessive gene. Immunohistochemical staining with anti-inositol 1,4,5-trisphosphate receptor antibody and electron microscopic examinations revealed that the endoplasmic reticulum in dendritic spines of Purkinje cell was missing in the ataxic rat. This could impair the intracellular signal transduction in the parallel fiber-Purkinje cell synapse, and be a cause of the severe ataxic movement.
Collapse
Affiliation(s)
- K Dekker-Ohno
- School of Agricultural Sciences, Nagoya University, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Coquil JF, Mauger JP, Claret M. Inositol 1,4,5-trisphosphate slowly converts its receptor to a state of higher affinity in sheep cerebellum membranes. J Biol Chem 1996; 271:3568-74. [PMID: 8631963 DOI: 10.1074/jbc.271.7.3568] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Incubation of cerebellar microsomes with d-myo-inositol 1,4,5-trisphosphate (InsP3) (0.01 1 microM), at 4 or 20 degrees C in a cytosolic-like medium devoid of Ca2+ and Mg2+, followed by InsP3 removal, induced an increase in InsP3 binding determined with 1 nm [3H]InsP3. At 20 degrees C, and pH 7.1, maximal stimulation (1.5 2. 5-fold) was obtained with 1 mum InsP3, and the EC50 was 60 +/- 5 nm. Several lines of evidence suggested that the activating site is identical with the InsP3 binding site: (i) activation and binding exhibited the same inositol phosphate specificity; (ii) addition of decavanadate, a competitive inhibitor of [3H]InsP3 binding, to the preincubation mixture, prevented the activating effect of InsP3; (iii) the concentration of InsP3 giving half-maximal activation was close to that giving half-maximal InsP3 binding. The time course of activation was found to be much slower than that of binding. While a t1/2 less than 0.4 s has been measured recently at neutral pH and 20 degrees C for binding of 0.5 nm [3H]InsP3 (Hannaert-Merah, Z., Coquil, J.-F., Combettes, L., Claret, M., Mauger, J.-P., and Champeil, P. (1994) J. Biol. Chem. 269, 29642-29649), a 20-s preincubation with 1 microM InsP3 was required to half-maximally stimulate binding. Under the present conditions, the InsP3-induced binding increase was only partially reversible. However, this effect was not blocked by antiproteases suggesting that it did not involve proteolysis. Taking advantage of the marked difference in the kinetics of InsP3 binding and InsP3-dependent activation, we performed binding experiments on a short period (3 s) to determine the effect of InsP3 pretreatment on the binding parameters. The data showed that this treatment increased the affinity of the receptor without changing the number of binding sites (control: KD = 107 nm, Bmax = 28 pmol/mg of protein; after preincubation with 1 microM InsP3: KD = 53 nm, Bmax = 32 pmol/mg of protein). The two states of the receptor bound InsP3 with a Hill coefficient close to 1 on a 3-s scale. In agreement with the effect of InsP3 pretreatment, equilibrium binding experiments performed on 10-min incubations revealed an apparent positive cooperative behavior (apparent Hill coefficient = 1.6; apparent KD = 66 nm). These results report a new regulatory process of the InsP3 receptor in cerebellum occurring independently of Ca2+ and on a relatively long time scale.
Collapse
Affiliation(s)
- J F Coquil
- Unité de Recherche U.274, INSERM, Université Paris-Sud, 91405 Orsay Cedex, France
| | | | | |
Collapse
|
42
|
|
43
|
Yamada M, Miyawaki A, Saito K, Nakajima T, Yamamoto-Hino M, Ryo Y, Furuichi T, Mikoshiba K. The calmodulin-binding domain in the mouse type 1 inositol 1,4,5-trisphosphate receptor. Biochem J 1995; 308 ( Pt 1):83-8. [PMID: 7755592 PMCID: PMC1136846 DOI: 10.1042/bj3080083] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We determined the amino acid sequence responsible for the calmodulin (CaM)-binding ability of mouse type 1 Ins(1,4,5)P3 receptor (IP3R1). We expressed various parts of IP3R1 from deleted cDNA and examined their CaM-binding ability. It was shown that the sequence stretching from Lys-1564 to Arg-1585 is necessary for the binding. The full-length IP3R1 with replacement of Trp-1576 by Ala lost its CaM-binding ability. Antibody against residues 1564-1585 of IP3R1 inhibited cerebellar IP3R1 from binding CaM. The fluorescence spectrum of the peptide that corresponds to residues 1564-1585 shifted when Ca(2+)-CaM was added. From the change in the fluorescence spectrum, we estimated the dissociation constant (KD) between the peptide and CaM to be 0.7 microM. The submicromolar value of KD suggests an actual interaction between CaM and IP3R1 within cells. The CaM-binding ability of other types of IP3Rs was also examined. A part of the type 2IP3R, including the region showing sequence identity with the CaM-binding domain of IP3R1, also bound CaM, while the expressed full-length type 3 IP3R did not.
Collapse
Affiliation(s)
- M Yamada
- Department of Molecular Neurobiology, Institute of Medical Science, University of Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Spatiotemporal Ca2+ signalling in the cytoplasm is currently understood as an excitation phenomenon by analogy with electrical excitation in the plasma membrane. In many cell types, Ca2+ waves and Ca2+ oscillations are mediated by inositol 1,4,5-trisphosphate (IP3) receptor/Ca2+ channels in the endoplasmic reticulum membrane, with positive feedback between cytosolic Ca2+ and IP3-induced Ca2+ release creating a regenerative process. Remarkable advances have been made in the past year in the analysis of subcellular Ca2+ microdomains using confocal microscopy and of Ca2+ influx pathways that are functionally coupled to IP3-induced Ca2+ release. Ca2+ signals can be conveyed into the nucleus and mitochondria. Ca2+ entry from outside the cell allows repetitive Ca2+ release by providing Ca2+ to refill the endoplasmic reticulum stores, thus giving rise to frequency-encoded Ca2+ signals.
Collapse
Affiliation(s)
- S Miyazaki
- Department of Physiology, Tokyo Women's Medical College, Japan
| |
Collapse
|
45
|
Jia WW, Liu Y, Cynader M. Postnatal development of inositol 1,4,5-trisphosphate receptors: a disparity with protein kinase C. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 85:109-18. [PMID: 7781157 DOI: 10.1016/0165-3806(94)00181-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ligand-stimulated phosphoinositide hydrolysis activates a bifurcating second messenger system, releasing inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DG), which activates protein kinase C (PKC). Yet, in developing cat visual cortex and hippocampus, high levels of [3H]PDBu binding (labelling PKC) appear much earlier than do [3H]IP3 labelled sites. Binding distributions for the two ligands also appear to be complimentary in both brain regions. Moreover, early surgical removal of input to the visual cortex increases [3H]PDBu binding without affecting that of [3H]IP3. Our results suggest that, (1) at certain developmental stages, IP3 and PKC may act individually or complimentarily rather than synergistically in the visual cortex and hippocampus; (2) in neonatal cortex, IP3 metabolites rather than IP3 itself may act as second messengers; (3) although both IP3 receptors and PKC are localized in intracortical cells, their expression is regulated by different mechanisms during development.
Collapse
Affiliation(s)
- W W Jia
- Department of Ophthalmology, University of British Columbia, Vancouver, Canada
| | | | | |
Collapse
|
46
|
Gruol DL, Curry JG. Calcium signals elicited by quisqualate in cultured Purkinje neurons show developmental changes in sensitivity to acute alcohol. Brain Res 1995; 673:1-12. [PMID: 7757461 DOI: 10.1016/0006-8993(94)01324-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of acute alcohol (33 mM ethanol) on calcium signaling evoked by glutamate receptor activation was studied in cultured cerebellar Purkinje and granule neurons at different stages of development. Calcium signals were measured by microscopic imaging using the calcium sensitive dye fura-2. At an early stage in development (10 days in vitro), acute alcohol enhanced the calcium signals evoked in Purkinje neurons by exogenous application of quisqualate, an agonist at ionotropic and metabotropic glutamate receptors. In contrast, in mature cultured Purkinje neurons (21-24 days in vitro) the calcium signals produced by quisqualate were reduced by alcohol. At an intermediate stage of development (14 days in vitro) reflecting the main period of morphological and physiological maturation, alcohol had no significant effect on the response to quisqualate. Alcohol's actions were significantly altered by manipulation of the intracellular stores with caffeine, implicating intracellular stores in alcohol's actions. Calcium signals produced by quisqualate in the cultured granule neurons were also altered by acute alcohol, in a manner similar to that observed in the Purkinje neurons. These data demonstrate that calcium signaling pathways are a site of alcohol action in developing CNS neurons and that the cellular consequences of alcohol exposure can change with development. Such actions of alcohol could have significant effects on the immature nervous system, where the precise timing of appropriate signaling levels are important aspects of the maturation process.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
47
|
Fujimoto T, Miyawaki A, Mikoshiba K. Inositol 1,4,5-trisphosphate receptor-like protein in plasmalemmal caveolae is linked to actin filaments. J Cell Sci 1995; 108 ( Pt 1):7-15. [PMID: 7738118 DOI: 10.1242/jcs.108.1.7] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported that a plasmalemmal inositol 1,4,5-trisphosphate receptor-like protein (PM InsP3R-L) is localized in caveolae of various non-neuronal cells in vivo (Fujimoto et al. (1992) J. Cell Biol. 119, 1507–1513). In the present study, we investigated the distribution of PM InsP3R-L in cultured cells. In mouse epidermal keratinocytes (Pam 212) cultured in standard Ca2+ (1.8 mM), PM InsP3R-L was distributed densely in the vicinity of cell-to-cell contacts. In contrast, when Pam cells were cultured in low Ca2+ (0.06 mM) without making cell-to-cell contacts, PM InsP3R-L was observed randomly; by restoring the Ca2+ concentration, the circumferential actin filaments became obvious and the density of PM InsP3R-L increased in the contact region. Treatment of Pam cells with cytochalasin D caused aggregation of caveolae where PM InsP3R-L as well as F-actin and fodrin were localized. In bovine aortic endothelial cells, PM InsP3R-L was aligned along actin filaments crossing the cytoplasm in various directions. PM InsP3R-L of Pam cells was hardly extracted by treatment with 0.5% Triton X-100 or 60 mM octyl-glucoside in a cytoskeleton-stabilizing buffer for 15 minutes at 4 degrees C. The results show that the distribution of caveolae bearing PM InsP3R-L changes when the actin cytoskeleton is modified. They also indicate that the association of PM InsP3R-L with actin filaments may mediate the redistribution of caveolae. Since caveolae are thought to be related to signal transduction, their location defined by the actin cytoskeleton may affect the site where cellular reaction is to occur in response to various stimuli.
Collapse
MESH Headings
- Actins/analysis
- Actins/metabolism
- Animals
- Aorta
- Blotting, Western
- Calcium/metabolism
- Calcium Channels/analysis
- Calcium Channels/metabolism
- Cattle
- Cell Line, Transformed
- Cell Membrane/metabolism
- Cell Membrane/ultrastructure
- Cells, Cultured
- Endothelium, Vascular/cytology
- Endothelium, Vascular/metabolism
- Endothelium, Vascular/ultrastructure
- Fluorescent Antibody Technique
- Inositol 1,4,5-Trisphosphate Receptors
- Intercellular Junctions/metabolism
- Intercellular Junctions/ultrastructure
- Keratinocytes
- Mice
- Microscopy, Electron
- Microscopy, Immunoelectron
- Receptors, Cytoplasmic and Nuclear/analysis
- Receptors, Cytoplasmic and Nuclear/metabolism
Collapse
Affiliation(s)
- T Fujimoto
- Department of Anatomy, Graduate School of Medicine, Kyoto University, Japan
| | | | | |
Collapse
|
48
|
Abstract
The temporal and spatial organization of [Ca2+] changes within the nucleus of Fura-2 loaded hepatocytes maintained in primary culture has been investigated. Vasopressin stimulation induced oscillatory waves of cytosolic free [Ca2+] increase, which propagated freely through the nuclear region. Based on the amplitude of the Fura-2 signals from this region, the morphology of the hepatocyte nucleus and the rapid penetration of the nucleus by injected Fura-2, it can be concluded that the nuclear Ca2+ responses reflect changes occurring within the nucleoplasm. Intranuclear Ca2+ increases occurred as waves that appear to be directed by the Ca2+ waves passing through the surrounding cytoplasm. The apparent velocity of Ca2+ waves was higher in the nucleoplasm than in the cytoplasm (19.5 +/- 2.9 versus 11.0 +/- 1.1 microns/s). The nucleoplasm does not contain vesicular Ca2+ stores that might be released by Ins(1,4,5)P3. However, the nuclear envelope functions as a Ca2+ store that is sensitive to mobilization by Ins(1,4,5)P3. We conclude that the [Ca2+] in the nucleoplasm of the hepatocyte is close to equilibrium with the cytosolic [Ca2+] and that oscillatory waves of cytosolic [Ca2+] are closely paralleled by similar [Ca2+] changes in the nucleoplasm. The nuclear envelope is a component of the intracellular Ins(1,4,5)P3-sensitive Ca2+ storage pool and may serve as a reservoir for [Ca2+] elevations within the nucleus.
Collapse
Affiliation(s)
- C Lin
- Department of Pathology and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | |
Collapse
|
49
|
Abstract
During nuclear assembly, vesicles derived from the mitotic disassembly of the nuclear membranes reform the nuclear envelope. The vesicles first bind to chromosomes, specifically recognize other nuclear vesicles and then fuse to enclose the chromosomes. The proteins that mediate these events are largely unknown. Using reconstituted extracts of Xenopus eggs, we found that nuclear vesicle fusion required elevated (microM) concentrations of free Ca2+ [Sullivan KMC. Busa WB. Wilson KL. (1993) Cell, 73, 1411-1422]. Our data suggest that Ca2+ is released from the vesicle lumen by the activation of IP3 receptors (ligand-gated Ca2+ channels). We propose that the role of IP3 receptors during nuclear assembly may be analogous to that of voltage-gated Ca2+ channels during regulated secretion: to provide a microdomain of high cytosolic Ca2+ that triggers fusion. In this article, we will briefly describe current ideas about nuclear assembly and disassembly, and summarize the evidence that IP3 receptors are required for nuclear vesicle fusion. We will discuss parallels between our results and the role of voltage-gated Ca2+ channels, and Ca2+, in regulated exocytosis. Finally, we will address the question of how IP3 receptors are activated during nuclear vesicle fusion: is there a signal that stimulates IP3 production, or is the channel activated directly?
Collapse
Affiliation(s)
- K M Sullivan
- Department of Cell Biology and Anatomy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | | |
Collapse
|
50
|
Yamada N, Makino Y, Clark RA, Pearson DW, Mattei MG, Guénet JL, Ohama E, Fujino I, Miyawaki A, Furuichi T. Human inositol 1,4,5-trisphosphate type-1 receptor, InsP3R1: structure, function, regulation of expression and chromosomal localization. Biochem J 1994; 302 ( Pt 3):781-90. [PMID: 7945203 PMCID: PMC1137299 DOI: 10.1042/bj3020781] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We have isolated cDNA clones encoding an inositol 1,4,5-trisphosphate receptor type 1 (InsP3R1) from human uteri and a leukaemic cell line, HL-60. Northern-blot analysis showed that approx. 10 kb of InsP3R1 mRNA is expressed in human uteri, oviducts and HL-60 cells. The predicted amino acid sequence of human InsP3R1 (2695 amino acids) has 99% identity with that of the mouse SI-/SII- splicing counterpart. Western-blot analysis with anti-(mouse InsP3R1) antibodies showed that InsP3R1 protein of human uteri and oviducts of approx 220 kDa is immunostained. Northern-blot analysis of HL-60 cell differentiation along the neutrophilic lineage induced by retinoic acid or dimethylsulphoxide showed an accompanying enhanced expression of InsP3R1 mRNA. Immunohistochemical analysis of the cerebella of spinocerebellar degeneration patients showed a variable loss of Purkinje cells with an altered pattern of immunostaining. The InsP3R1 gene (Insp3r1) was localized to the 3P25-26 region of human chromosome 3. The data presented here clearly show that InsP3R1 exists widely in human tissues and may play critical roles in various kinds of cellular functions.
Collapse
MESH Headings
- Adult
- Aged
- Amino Acid Sequence
- Animals
- Calcium Channels/chemistry
- Calcium Channels/genetics
- Calcium Channels/metabolism
- Cell Differentiation/genetics
- Cerebellum/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 3
- Dimethyl Sulfoxide/pharmacology
- Fallopian Tubes/metabolism
- Female
- Humans
- Inositol 1,4,5-Trisphosphate/metabolism
- Inositol 1,4,5-Trisphosphate Receptors
- Mice
- Middle Aged
- Molecular Sequence Data
- Molecular Weight
- RNA Splicing
- Receptors, Cytoplasmic and Nuclear/chemistry
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Sequence Alignment
- Spinocerebellar Degenerations/genetics
- Spinocerebellar Degenerations/metabolism
- Tretinoin/pharmacology
- Tumor Cells, Cultured
- Uterus/metabolism
Collapse
Affiliation(s)
- N Yamada
- Department of Molecular Neurobiology, University of Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|