1
|
Li JB, Walkley CR. Leveraging genetics to understand ADAR1-mediated RNA editing in health and disease. Nat Rev Genet 2025:10.1038/s41576-025-00830-5. [PMID: 40229561 DOI: 10.1038/s41576-025-00830-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2025] [Indexed: 04/16/2025]
Abstract
Endogenous, long double-stranded RNA (dsRNA) can resemble viral dsRNA and be recognized by cytosolic dsRNA sensors, triggering autoimmunity. Genetic studies of rare, inherited human diseases and experiments using mouse models have established the importance of adenosine-to-inosine RNA editing by the enzyme adenosine deaminase acting on RNA 1 (ADAR1) as a critical safeguard against autoinflammatory responses to cellular dsRNA. More recently, human genetic studies have revealed that dsRNA editing and sensing mechanisms are involved in common inflammatory diseases, emphasizing the broader role of dsRNA in modulating immune responses and disease pathogenesis. These findings have highlighted the therapeutic potential of targeting dsRNA editing and sensing, as exemplified by the emergence of ADAR1 inhibition in cancer therapy.
Collapse
Affiliation(s)
- Jin Billy Li
- Department of Genetics, Stanford University, Stanford, CA, USA.
| | - Carl R Walkley
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
- Department of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
2
|
Herbert A, Cherednichenko O, Lybrand TP, Egli M, Poptsova M. Zα and Zβ Localize ADAR1 to Flipons That Modulate Innate Immunity, Alternative Splicing, and Nonsynonymous RNA Editing. Int J Mol Sci 2025; 26:2422. [PMID: 40141064 PMCID: PMC11942513 DOI: 10.3390/ijms26062422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 03/04/2025] [Indexed: 03/28/2025] Open
Abstract
The double-stranded RNA editing enzyme ADAR1 connects two forms of genetic programming, one based on codons and the other on flipons. ADAR1 recodes codons in pre-mRNA by deaminating adenosine to form inosine, which is translated as guanosine. ADAR1 also plays essential roles in the immune defense against viruses and cancers by recognizing left-handed Z-DNA and Z-RNA (collectively called ZNA). Here, we review various aspects of ADAR1 biology, starting with codons and progressing to flipons. ADAR1 has two major isoforms, with the p110 protein lacking the p150 Zα domain that binds ZNAs with high affinity. The p150 isoform is induced by interferon and targets ALU inverted repeats, a class of endogenous retroelement that promotes their transcription and retrotransposition by incorporating Z-flipons that encode ZNAs and G-flipons that form G-quadruplexes (GQ). Both p150 and p110 include the Zβ domain that is related to Zα but does not bind ZNAs. Here we report strong evidence that Zβ binds the GQ that are formed co-transcriptionally by ALU repeats and within R-loops. By binding GQ, ADAR1 suppresses ALU-mediated alternative splicing, generates most of the reported nonsynonymous edits and promotes R-loop resolution. The recognition of the various alternative nucleic acid conformations by ADAR1 connects genetic programming by flipons with the encoding of information by codons. The findings suggest that incorporating G-flipons into editmers might improve the therapeutic editing efficacy of ADAR1.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, MA 02129, USA
| | - Oleksandr Cherednichenko
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| | - Terry P. Lybrand
- Department of Chemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
- Center for Structural Biology, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, TN 37232-0146, USA;
| | - Maria Poptsova
- International Laboratory of Bioinformatics, HSE University, 101000 Moscow, Russia; (O.C.); (M.P.)
| |
Collapse
|
3
|
Yang Y, Sakurai M. Advances in Detection Methods for A-to-I RNA Editing. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70014. [PMID: 40223708 PMCID: PMC11995373 DOI: 10.1002/wrna.70014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 03/28/2025] [Accepted: 03/31/2025] [Indexed: 04/15/2025]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is a key post-transcriptional modification that influences gene expression and various cellular processes. Advances in sequencing technologies have greatly contributed to the identification of A-to-I editing sites, providing insights into their distribution across coding and non-coding regions. These developments have facilitated the discovery of functionally relevant editing events and have advanced the understanding of their biological roles. This review presents the evolution of methodologies for RNA editing detection and examines recent advances, including chemically-assisted, enzyme-assisted, and quantitative approaches. By evaluating these techniques, we aim to help researchers select the most effective tools for investigating RNA editing and its broader implications in health and disease.
Collapse
Affiliation(s)
- Yuxi Yang
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Masayuki Sakurai
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| |
Collapse
|
4
|
Zhang Q, Walkley CR. Mouse models for understanding physiological functions of ADARs. Methods Enzymol 2025; 710:153-185. [PMID: 39870443 DOI: 10.1016/bs.mie.2024.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Adenosine-to-inosine (A-to-I) editing, is a highly prevalent posttranscriptional modification of RNA, mediated by the adenosine deaminases acting on RNA (ADAR) proteins. Mammalian transcriptomes contain tens of thousands to millions of A-to-I editing events. Mutations in ADAR can result in rare autoinflammatory disorders such as Aicardi-Goutières syndrome (AGS) through to irreversible conditions such as motor neuron disease, amyotrophic lateral sclerosis (ALS). Mouse models have played an important role in our current understanding of the physiology of ADAR proteins. With the advancement of genetic engineering technologies, a number of new mouse models have been recently generated, each providing additional insight into ADAR function. This review highlights both past and current mouse models, exploring the methodologies used in their generation, their respective discoveries, and the significance of these findings in relation to human ADAR physiology.
Collapse
Affiliation(s)
- Qinyi Zhang
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Carl R Walkley
- St.Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, St. Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia; Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
5
|
Cheng L, Liu Z, Shen C, Xiong Y, Shin SY, Hwang Y, Yang S, Chen Z, Zhang X. A Wonderful Journey: The Diverse Roles of Adenosine Deaminase Action on RNA 1 (ADAR1) in Central Nervous System Diseases. CNS Neurosci Ther 2025; 31:e70208. [PMID: 39753993 PMCID: PMC11702419 DOI: 10.1111/cns.70208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 01/14/2025] Open
Abstract
BACKGROUND Adenosine deaminase action on RNA 1 (ADAR1) can convert the adenosine in double-stranded RNA (dsRNA) molecules into inosine in a process known as A-to-I RNA editing. ADAR1 regulates gene expression output by interacting with RNA and other proteins; plays important roles in development, including growth; and is linked to innate immunity, tumors, and central nervous system (CNS) diseases. RESULTS In recent years, the role of ADAR1 in tumors has been widely discussed, but its role in CNS diseases has not been reviewed. It is worth noting that recent studies have shown ADAR1 has great potential in the treatment of neurodegenerative diseases, but the mechanisms are still unclear. Therefore, it is necessary to elaborate on the role of ADAR1 in CNS diseases. CONCLUSIONS Here, we focus on the effects and mechanisms of ADAR1 on CNS diseases such as Aicardi-AicardiGoutières syndrome, Alzheimer's disease, Parkinson's disease, glioblastoma, epilepsy, amyotrophic lateral sclerosis, and autism. We also evaluate the impact of ADAR1-based treatment strategies on these diseases, with a particular focus on the development and treatment strategies of new technologies such as microRNAs, nanotechnology, gene editing, and stem cell therapy. We hope to provide new directions and insights for the future development of ADAR1 gene editing technology in brain science and the treatment of CNS diseases.
Collapse
Affiliation(s)
- Lin Cheng
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Ziying Liu
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Chunxiao Shen
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Yinyi Xiong
- Department of RehabilitationAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Sang Yol Shin
- Department of Emergency Medical TechnologyWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Yong Hwang
- Department of Emergency MedicineWonkwang University College of MedicineIksanJeonbuk‐doRepublic of Korea
| | - Seung‐Bum Yang
- Department of ParamedicineWonkwang Health Science UniversityIksanJeonbuk‐doRepublic of Korea
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Xiaorong Zhang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
- Department of PathologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| |
Collapse
|
6
|
Zhang Y, Li L, Mendoza JJ, Wang D, Yan Q, Shi L, Gong Z, Zeng Z, Chen P, Xiong W. Advances in A-to-I RNA editing in cancer. Mol Cancer 2024; 23:280. [PMID: 39731127 DOI: 10.1186/s12943-024-02194-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
RNA modifications are widespread throughout the mammalian transcriptome and play pivotal roles in regulating various cellular processes. These modifications are strongly linked to the development of many cancers. One of the most prevalent forms of RNA modifications in humans is adenosine-to-inosine (A-to-I) editing, catalyzed by the enzyme adenosine deaminase acting on RNA (ADAR) in double-stranded RNA (dsRNA). With advancements in RNA sequencing technologies, the role of A-to-I modification in cancer has garnered increasing attention. Research indicates that the levels and specific sites of A-to-I editing are significantly altered in many malignant tumors, correlating closely with tumor progression. This editing occurs in both coding and noncoding regions of RNA, influencing signaling pathways involved in cancer development. These modifications can either promote or suppress cancer progression through several mechanisms, including inducing non-synonymous amino acid mutations, altering the immunogenicity of dsRNAs, modulating mRNA interactions with microRNAs (miRNAs), and affecting the splicing of circular RNAs (circRNAs) as well as the function of long non-coding RNAs (lncRNAs). A comprehensive understanding of A-to-I RNA editing is crucial for advancing the diagnosis, treatment, and prognosis of human cancers. This review explores the regulatory mechanisms of A-to-I editing in cancers and examines their potential clinical applications. It also summarizes current research, identifies future directions, and highlights potential therapeutic implications.
Collapse
Affiliation(s)
- Yi Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Juana Jessica Mendoza
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Dan Wang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Qijia Yan
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Lei Shi
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China
- Furong Laboratory, Changsha, Hunan, 410078, China
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, 410078, China.
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, School of Basic Medicine Sciences, Central South University, Changsha, Hunan, 410078, China.
- Furong Laboratory, Changsha, Hunan, 410078, China.
| |
Collapse
|
7
|
Liang Z, Walkley CR, Heraud-Farlow JE. A-to-I RNA editing and hematopoiesis. Exp Hematol 2024; 139:104621. [PMID: 39187172 DOI: 10.1016/j.exphem.2024.104621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 08/28/2024]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing plays essential roles in modulating normal development and homeostasis. This process is catalyzed by adenosine deaminase acting on RNA (ADAR) family proteins. The most well-understood biological processes modulated by A-to-I editing are innate immunity and neurological development, attributed to ADAR1 and ADAR2, respectively. A-to-I editing by ADAR1 is also critical in regulating hematopoiesis. This review will focus on the role of A-to-I RNA editing and ADAR enzymes, particularly ADAR1, during normal hematopoiesis in humans and mice. Furthermore, we will discuss Adar1 mouse models that have been developed to understand the contribution of ADAR1 to hematopoiesis and its role in innate immune pathways.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia.
| | - Jacki E Heraud-Farlow
- St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia; Department of Medicine, Eastern Hill Precinct, Melbourne Medical School, University of Melbourne, Fitzroy, Victoria, Australia.
| |
Collapse
|
8
|
Hofer MJ, Modesti N, Coufal NG, Wang Q, Sase S, Miner J, Vanderver A, Bennett ML. The prototypical interferonopathy: Aicardi-Goutières syndrome from bedside to bench. Immunol Rev 2024; 327:83-99. [PMID: 39473130 PMCID: PMC11672868 DOI: 10.1111/imr.13413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2024]
Abstract
Aicardi-Goutières syndrome (AGS) is a progressive genetic encephalopathy caused by pathogenic mutations in genes controlling cellular anti-viral responses and nucleic acid metabolism. The mutations initiate autoinflammatory processes in the brain and systemically that are triggered by chronic overproduction of type I interferon (IFN), including IFN-alpha. Emerging disease-directed therapies aim to dampen autoinflammation and block cellular responses to IFN production, creating an urgent and unmet need to understand better which cells, compartments, and mechanisms underlying disease pathogenesis. In this review, we highlight existing pre-clinical models of AGS and our current understanding of how causative genetic mutations promote disease in AGS, to promote new model development and a continued focus on improving and directing future therapies.
Collapse
Affiliation(s)
- Markus J. Hofer
- Charles Perkins Centre and School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia; NHMRC Ideas Grant to MJH APP2001543
| | - Nicholson Modesti
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Nicole G. Coufal
- Department of Pediatrics, University of California, San Diego CA 92093, Rady Children’s Hospital, San Diego CA 92123. Sanford Consortium for Regenerative Medicine, San Diego CA 92037
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213
| | - Sunetra Sase
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Jonathan Miner
- Departments of Medicine and Microbiology, RVCL Research Center, and Colton Center for Autoimmunity, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104
| | - Adeline Vanderver
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| | - Mariko L Bennett
- Division of Neurology, Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA, 19104
| |
Collapse
|
9
|
Zhang N, Chen P, Cui Z, Zhou X, Hao C, Xie B, Hao P, Ye BC, Li X, Jing X. Revealing Differential RNA Editing Specificity of Human ADAR1 and ADAR2 in Schizosaccharomyces pombe. Genes (Basel) 2024; 15:898. [PMID: 39062677 PMCID: PMC11276115 DOI: 10.3390/genes15070898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification mediated by the adenosine deaminases acting on RNA (ADAR) family of enzymes, expanding the transcriptome by altering selected nucleotides A to I in RNA molecules. Recently, A-to-I editing has been explored for correcting disease-causing mutations in RNA using therapeutic guide oligonucleotides to direct ADAR editing at specific sites. Humans have two active ADARs whose preferences and specificities are not well understood. To investigate their substrate specificity, we introduced hADAR1 and hADAR2, respectively, into Schizosaccharomyces pombe (S. pombe), which lacks endogenous ADARs, and evaluated their editing activities in vivo. Using transcriptome sequencing of S. pombe cultured at optimal growth temperature (30 °C), we identified 483 A-to-I high-confident editing sites for hADAR1 and 404 for hADAR2, compared with the non-editing wild-type control strain. However, these sites were mostly divergent between hADAR1 and hADAR2-expressing strains, sharing 33 common sites that are less than 9% for each strain. Their differential specificity for substrates was attributed to their differential preference for neighboring sequences of editing sites. We found that at the -3-position relative to the editing site, hADAR1 exhibits a tendency toward T, whereas hADAR2 leans toward A. Additionally, when varying the growth temperature for hADAR1- and hADAR2-expressing strains, we observed increased editing sites for them at both 20 and 35 °C, compared with them growing at 30 °C. However, we did not observe a significant shift in hADAR1 and hADAR2's preference for neighboring sequences across three temperatures. The vast changes in RNA editing sites at lower and higher temperatures were also observed for hADAR2 previously in budding yeast, which was likely due to the influence of RNA folding at these different temperatures, among many other factors. We noticed examples of longer lengths of dsRNA around the editing sites that induced editing at 20 or 35 °C but were absent at the other two temperature conditions. We found genes' functions can be greatly affected by editing of their transcripts, for which over 50% of RNA editing sites for both hADAR1 and hADAR2 in S. pombe were in coding sequences (CDS), with more than 60% of them resulting in amino acid changes in protein products. This study revealed the extensive differences in substrate selectivity between the two active human ADARS, i.e., ADAR1 and ADAR2, and provided novel insight when utilizing the two different enzymes for in vivo treatment of human genetic diseases using the RNA editing approach.
Collapse
Affiliation(s)
- Niubing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zilin Cui
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chenhui Hao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Bingran Xie
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pei Hao
- Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Jarmoskaite I, Li JB. Multifaceted roles of RNA editing enzyme ADAR1 in innate immunity. RNA (NEW YORK, N.Y.) 2024; 30:500-511. [PMID: 38531645 PMCID: PMC11019752 DOI: 10.1261/rna.079953.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
Innate immunity must be tightly regulated to enable sensitive pathogen detection while averting autoimmunity triggered by pathogen-like host molecules. A hallmark of viral infection, double-stranded RNAs (dsRNAs) are also abundantly encoded in mammalian genomes, necessitating surveillance mechanisms to distinguish "self" from "nonself." ADAR1, an RNA editing enzyme, has emerged as an essential safeguard against dsRNA-induced autoimmunity. By converting adenosines to inosines (A-to-I) in long dsRNAs, ADAR1 covalently marks endogenous dsRNAs, thereby blocking the activation of the cytoplasmic dsRNA sensor MDA5. Moreover, beyond its editing function, ADAR1 binding to dsRNA impedes the activation of innate immune sensors PKR and ZBP1. Recent landmark studies underscore the utility of silencing ADAR1 for cancer immunotherapy, by exploiting the ADAR1-dependence developed by certain tumors to unleash an antitumor immune response. In this perspective, we summarize the genetic and mechanistic evidence for ADAR1's multipronged role in suppressing dsRNA-mediated autoimmunity and explore the evolving roles of ADAR1 as an immuno-oncology target.
Collapse
Affiliation(s)
- Inga Jarmoskaite
- Department of Genetics, Stanford University, Stanford, California 94305, USA
- AIRNA Corporation, Cambridge, Massachusetts 02142, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
11
|
Szabo B, Mandl TC, Woldrich B, Diensthuber G, Martin D, Jantsch MF, Licht K. RNA Pol II-dependent transcription efficiency fine-tunes A-to-I editing levels. Genome Res 2024; 34:231-242. [PMID: 38471738 PMCID: PMC10984384 DOI: 10.1101/gr.277686.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 02/15/2024] [Indexed: 03/14/2024]
Abstract
A-to-I RNA editing is a widespread epitranscriptomic phenomenon leading to the conversion of adenosines to inosines, which are primarily interpreted as guanosines by cellular machines. Consequently, A-to-I editing can alter splicing or lead to recoding of transcripts. As misregulation of editing can cause a variety of human diseases, A-to-I editing requires tight regulation of the extent of deamination, particularly in protein-coding regions. The bulk of A-to-I editing occurs cotranscriptionally. Thus, we studied A-to-I editing regulation in the context of transcription and pre-mRNA processing. We show that stimulation of transcription impacts editing levels. Activation of the transcription factor MYC leads to an up-regulation of A-to-I editing, particularly in transcripts that are suppressed upon MYC activation. Moreover, low pre-mRNA synthesis rates and low pre-mRNA expression levels support high levels of editing. We also show that editing levels greatly differ between nascent pre-mRNA and mRNA in a cellular system, as well as in mouse tissues. Editing levels can increase or decrease from pre-mRNA to mRNA and can vary across editing targets and across tissues, showing that pre-mRNA processing is an important layer of editing regulation. Several lines of evidence suggest that the differences emerge during pre-mRNA splicing. Moreover, actinomycin D treatment of primary neuronal cells and editing level analysis suggests that regulation of editing levels also depends on transcription.
Collapse
Affiliation(s)
- Brigitta Szabo
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Therese C Mandl
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Bernhard Woldrich
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Gregor Diensthuber
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - David Martin
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Michael F Jantsch
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| | - Konstantin Licht
- Department of Cell and Developmental Biology, Center for Anatomy and Cell Biology, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
12
|
Milham LT, Morris GP, Konen LM, Rentsch P, Avgan N, Vissel B. Quantification of AMPA receptor subunits and RNA editing-related proteins in the J20 mouse model of Alzheimer's disease by capillary western blotting. Front Mol Neurosci 2024; 16:1338065. [PMID: 38299128 PMCID: PMC10828003 DOI: 10.3389/fnmol.2023.1338065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/29/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Accurate modelling of molecular changes in Alzheimer's disease (AD) dementia is crucial for understanding the mechanisms driving neuronal pathology and for developing treatments. Synaptic dysfunction has long been implicated as a mechanism underpinning memory dysfunction in AD and may result in part from changes in adenosine deaminase acting on RNA (ADAR) mediated RNA editing of the GluA2 subunit of AMPA receptors and changes in AMPA receptor function at the post synaptic cleft. However, few studies have investigated changes in proteins which influence RNA editing and notably, AD studies that focus on studying changes in protein expression, rather than changes in mRNA, often use traditional western blotting. Methods Here, we demonstrate the value of automated capillary western blotting to investigate the protein expression of AMPA receptor subunits (GluA1-4), the ADAR RNA editing proteins (ADAR1-3), and proteins known to regulate RNA editing (PIN1, WWP2, FXR1P, and CREB1), in the J20 AD mouse model. We describe extensive optimisation and validation of the automated capillary western blotting method, demonstrating the use of total protein to normalise protein load, in addition to characterising the optimal protein/antibody concentrations to ensure accurate protein quantification. Following this, we assessed changes in proteins of interest in the hippocampus of 44-week-old J20 AD mice. Results We observed an increase in the expression of ADAR1 p110 and GluA3 and a decrease in ADAR2 in the hippocampus of 44-week-old J20 mice. These changes signify a shift in the balance of proteins that play a critical role at the synapse. Regression analysis revealed unique J20-specific correlations between changes in AMPA receptor subunits, ADAR enzymes, and proteins that regulate ADAR stability in J20 mice, highlighting potential mechanisms mediating RNA-editing changes found in AD. Discussion Our findings in J20 mice generally reflect changes seen in the human AD brain. This study underlines the importance of novel techniques, like automated capillary western blotting, to assess protein expression in AD. It also provides further evidence to support the hypothesis that a dysregulation in RNA editing-related proteins may play a role in the initiation and/or progression of AD.
Collapse
Affiliation(s)
- Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Gary P. Morris
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- Tasmanian School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Lyndsey M. Konen
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Nesli Avgan
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- St Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
13
|
Liu W, Wu Y, Zhang T, Sun X, Guo D, Yang Z. The role of dsRNA A-to-I editing catalyzed by ADAR family enzymes in the pathogeneses. RNA Biol 2024; 21:52-69. [PMID: 39449182 PMCID: PMC11520539 DOI: 10.1080/15476286.2024.2414156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024] Open
Abstract
The process of adenosine deaminase (ADAR)-catalyzed double-stranded RNA (dsRNA) Adenosine-to-Inosine (A-to-I) editing is essential for the correction of pathogenic mutagenesis, as well as the regulation of gene expression and protein function in mammals. The significance of dsRNA A-to-I editing in disease development and occurrence is explored using inferential statistics and cluster analyses to investigate the enzymes involved in dsRNA editing that can catalyze editing sites across multiple biomarkers. This editing process, which occurs in coding or non-coding regions, has the potential to activate abnormal signalling pathways that contributes to disease pathogenesis. Notably, the ADAR family enzymes play a crucial role in initiating the editing process. ADAR1 is upregulated in most diseases as an oncogene during tumorigenesis, whereas ADAR2 typically acts as a tumour suppressor. Furthermore, this review also provides an overview of small molecular inhibitors that disrupt the expression of ADAR enzymes. These inhibitors not only counteract tumorigenicity but also alleviate autoimmune disorders, neurological neurodegenerative symptoms, and metabolic diseases associated with aberrant dsRNA A-to-I editing processes. In summary, this comprehensive review offers detailed insights into the involvement of dsRNA A-to-I editing in disease pathogenesis and highlights the potential therapeutic roles for related small molecular inhibitors. These scientific findings will undoubtedly contribute to the advancement of personalized medicine based on dsRNA A-to-I editing.
Collapse
Affiliation(s)
- Wanqing Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yufan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
| | - Dean Guo
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, National Engineering Research Center of TCM Standardization Technology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Sciences, University of Chinese Academy of Sciences, Beijing, China
- NMPA Key Laboratory for Quality Control of Traditional Chinese Medicine, Shanghai Institue of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Zizhao Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Beijing, China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Institue of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- NMPA Key Laboratory for Research and Evaluation of Pharmacovigilance, Beijing, China
- Department of General Surgery, Seventh People’s Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
14
|
Mercer HM, Nair AM, Ridgel A, Piontkivska H. Alterations in RNA editing in skeletal muscle following exercise training in individuals with Parkinson's disease. PLoS One 2023; 18:e0287078. [PMID: 38134032 PMCID: PMC10745226 DOI: 10.1371/journal.pone.0287078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/01/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's Disease (PD) is the second most common neurodegenerative disease behind Alzheimer's Disease, currently affecting more than 10 million people worldwide and 1.5 times more males than females. The progression of PD results in the loss of function due to neurodegeneration and neuroinflammation. The etiology of PD is multifactorial, including both genetic and environmental origins. Here we explored changes in RNA editing, specifically editing through the actions of the Adenosine Deaminases Acting on RNA (ADARs), in the progression of PD. Analysis of ADAR editing of skeletal muscle transcriptomes from PD patients and controls, including those that engaged in a rehabilitative exercise training program revealed significant differences in ADAR editing patterns based on age, disease status, and following rehabilitative exercise. Further, deleterious editing events in protein coding regions were identified in multiple genes with known associations to PD pathogenesis. Our findings of differential ADAR editing complement findings of changes in transcriptional networks identified by a recent study and offer insights into dynamic ADAR editing changes associated with PD pathogenesis.
Collapse
Affiliation(s)
- Heather Milliken Mercer
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Department of Biological and Environmental Sciences, University of Mount Union, Alliance, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Aiswarya Mukundan Nair
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
| | - Angela Ridgel
- School of Health Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| | - Helen Piontkivska
- Department of Biological Sciences, Kent State University, Kent, OH, United States of America
- Brain Health Research Institute, Kent State University, Kent, OH, United States of America
- Healthy Communities Research Institute, Kent State University, Kent, OH, United States of America
| |
Collapse
|
15
|
Xu Y, Liu J, Zhao T, Song F, Tian L, Cai W, Li H, Duan Y. Identification and Interpretation of A-to-I RNA Editing Events in Insect Transcriptomes. Int J Mol Sci 2023; 24:17126. [PMID: 38138955 PMCID: PMC10742984 DOI: 10.3390/ijms242417126] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/01/2023] [Accepted: 12/03/2023] [Indexed: 12/24/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is the most prevalent RNA modification in the nervous systems of metazoans. To study the biological significance of RNA editing, we first have to accurately identify these editing events from the transcriptome. The genome-wide identification of RNA editing sites remains a challenging task. In this review, we will first introduce the occurrence, regulation, and importance of A-to-I RNA editing and then describe the established bioinformatic procedures and difficulties in the accurate identification of these sit esespecially in small sized non-model insects. In brief, (1) to obtain an accurate profile of RNA editing sites, a transcriptome coupled with the DNA resequencing of a matched sample is favorable; (2) the single-cell sequencing technique is ready to be applied to RNA editing studies, but there are a few limitations to overcome; (3) during mapping and variant calling steps, various issues, like mapping and base quality, soft-clipping, and the positions of mismatches on reads, should be carefully considered; (4) Sanger sequencing of both RNA and the matched DNA is the best verification of RNA editing sites, but other auxiliary evidence, like the nonsynonymous-to-synonymous ratio or the linkage information, is also helpful for judging the reliability of editing sites. We have systematically reviewed the understanding of the biological significance of RNA editing and summarized the methodology for identifying such editing events. We also raised several promising aspects and challenges in this field. With insightful perspectives on both scientific and technical issues, our review will benefit the researchers in the broader RNA editing community.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yuange Duan
- MOA Key Lab of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China; (Y.X.); (J.L.); (T.Z.); (F.S.); (L.T.); (W.C.); (H.L.)
| |
Collapse
|
16
|
Tan MH. Identification of Bona Fide RNA Editing Sites: History, Challenges, and Opportunities. Acc Chem Res 2023; 56:3033-3044. [PMID: 37827987 DOI: 10.1021/acs.accounts.3c00462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing, catalyzed by the adenosine deaminase acting on the RNA (ADAR) family of enzymes of which there are three members (ADAR1, ADAR2, and ADAR3), is a major gene regulatory mechanism that diversifies the transcriptome. It is widespread in many metazoans, including humans. As inosine is interpreted by cellular machineries mainly as guanosine, A-to-I editing effectively gives A-to-G nucleotide changes. Depending on its location, an editing event can generate new protein isoforms or influence other RNA processing pathways. Researchers have found that ADAR-mediated editing performs diverse functions. For example, it enables living organisms such as cephalopods to adapt rapidly to fluctuating environmental conditions such as water temperature. In development, the loss of ADAR1 is embryonically lethal partly because endogenous double-stranded RNAs (dsRNAs) are no longer marked by inosines, which signal "self", and thus cause the melanoma differentiation-associated protein 5 (MDA5) sensor to trigger a deleterious interferon response. Hence, ADAR1 plays a key role in preventing aberrant activation of the innate immune system. Furthermore, ADAR enzymes have been implicated in myriad human diseases. Intriguingly, some cancer cells are known to exploit ADAR1 activity to dodge immune responses. However, the exact identities of immunogenic RNAs in different biological contexts have remained elusive. Consequently, there is tremendous interest in identifying inosine-containing RNAs in the cell.The identification of A-to-I RNA editing sites is dependent on the sequencing of nucleic acids. Technological and algorithmic advancements over the past decades have revolutionized the way editing events are detected. At the beginning, the discovery of editing sites relies on Sanger sequencing, a first-generation technology. Both RNA, which is reverse transcribed into complementary DNA (cDNA), and genomic DNA (gDNA) from the same source are analyzed. After sequence alignment, one would require an adenosine to be present in the genome but a guanosine to be detected in the RNA sample for a position to be declared as an editing site. However, an issue with Sanger sequencing is its low throughput. Subsequently, Illumina sequencing, a second-generation technology, was invented. By permitting the simultaneous interrogation of millions of molecules, it enables many editing sites to be identified rapidly. However, a key challenge is that the Illumina platform produces short sequencing reads that can be difficult to map accurately. To tackle the challenge, we and others developed computational workflows with a series of filters to discard sites that are likely to be false positives. When Illumina sequencing data sets are properly analyzed, A-to-G variants should emerge as the most dominant mismatch type. Moreover, the quantitative nature of the data allows us to build a comprehensive atlas of editing-level measurements across different biological contexts, providing deep insights into the spatiotemporal dynamics of RNA editing. However, difficulties remain in identifying true A-to-I editing sites in short protein-coding exons or in organisms and diseases where DNA mutations and genomic polymorphisms are prevalent and mostly unknown. Nanopore sequencing, a third-generation technology, promises to address the difficulties, as it allows native RNAs to be sequenced without conversion to cDNA, preserving base modifications that can be directly detected through machine learning. We recently demonstrated that nanopore sequencing could be used to identify A-to-I editing sites in native RNA directly. Although further work is needed to enhance the detection accuracy in single molecules from fewer cells, the nanopore technology holds the potential to revolutionize epitranscriptomic studies.
Collapse
Affiliation(s)
- Meng How Tan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637459, Singapore
- HP-NTU Digital Manufacturing Corporate Laboratory, Nanyang Technological University, Singapore 637460, Singapore
| |
Collapse
|
17
|
Schroader JH, Handley MT, Reddy K. Inosine triphosphate pyrophosphatase: A guardian of the cellular nucleotide pool and potential mediator of RNA function. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1790. [PMID: 37092460 DOI: 10.1002/wrna.1790] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/10/2023] [Accepted: 03/20/2023] [Indexed: 04/25/2023]
Abstract
Inosine triphosphate pyrophosphatase (ITPase), encoded by the ITPA gene in humans, is an important enzyme that preserves the integrity of cellular nucleotide pools by hydrolyzing the noncanonical purine nucleotides (deoxy)inosine and (deoxy)xanthosine triphosphate into monophosphates and pyrophosphate. Variants in the ITPA gene can cause partial or complete ITPase deficiency. Partial ITPase deficiency is benign but clinically relevant as it is linked to altered drug responses. Complete ITPase deficiency causes a severe multisystem disorder characterized by seizures and encephalopathy that is frequently associated with fatal infantile dilated cardiomyopathy. In the absence of ITPase activity, its substrate noncanonical nucleotides have the potential to accumulate and become aberrantly incorporated into DNA and RNA. Hence, the pathophysiology of ITPase deficiency could arise from metabolic imbalance, altered DNA or RNA regulation, or from a combination of these factors. Here, we review the known functions of ITPase and highlight recent work aimed at determining the molecular basis for ITPA-associated pathogenesis which provides evidence for RNA dysfunction. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Jacob H Schroader
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Mark T Handley
- Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Kaalak Reddy
- The RNA Institute, University at Albany, State University of New York, Albany, New York, USA
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
18
|
Guo X, Liu S, Sheng Y, Zenati M, Billiar T, Herbert A, Wang Q. ADAR1 Zα domain P195A mutation activates the MDA5-dependent RNA-sensing signaling pathway in brain without decreasing overall RNA editing. Cell Rep 2023; 42:112733. [PMID: 37421629 PMCID: PMC10691306 DOI: 10.1016/j.celrep.2023.112733] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 05/03/2023] [Accepted: 06/16/2023] [Indexed: 07/10/2023] Open
Abstract
Variants of the RNA-editing enzyme ADAR1 cause Aicardi-Goutières syndrome (AGS), in which severe inflammation occurs in the brain due to innate immune activation. Here, we analyze the RNA-editing status and innate immune activation in an AGS mouse model that carries the Adar P195A mutation in the N terminus of the ADAR1 p150 isoform, the equivalent of the P193A human Zα variant causal for disease. This mutation alone can cause interferon-stimulated gene (ISG) expression in the brain, especially in the periventricular areas, reflecting the pathologic feature of AGS. However, in these mice, ISG expression does not correlate with an overall decrease in RNA editing. Rather, the enhanced ISG expression in the brain due to the P195A mutant is dose dependent. Our findings indicate that ADAR1 can regulate innate immune responses through Z-RNA binding without changing overall RNA editing.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Silvia Liu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yi Sheng
- Magee-Women's Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mazen Zenati
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Timothy Billiar
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; VA Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
19
|
Xing Y, Nakahama T, Wu Y, Inoue M, Kim JI, Todo H, Shibuya T, Kato Y, Kawahara Y. RNA editing of AZIN1 coding sites is catalyzed by ADAR1 p150 after splicing. J Biol Chem 2023; 299:104840. [PMID: 37209819 PMCID: PMC10404624 DOI: 10.1016/j.jbc.2023.104840] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023] Open
Abstract
Adenosine-to-inosine RNA editing is catalyzed by nuclear adenosine deaminase acting on RNA 1 (ADAR1) p110 and ADAR2, and cytoplasmic ADAR1 p150 in mammals, all of which recognize dsRNAs as targets. RNA editing occurs in some coding regions, which alters protein functions by exchanging amino acid sequences, and is therefore physiologically significant. In general, such coding sites are edited by ADAR1 p110 and ADAR2 before splicing, given that the corresponding exon forms a dsRNA structure with an adjacent intron. We previously found that RNA editing at two coding sites of antizyme inhibitor 1 (AZIN1) is sustained in Adar1 p110/Aadr2 double KO mice. However, the molecular mechanisms underlying RNA editing of AZIN1 remain unknown. Here, we showed that Azin1 editing levels were increased upon type I interferon treatment, which activated Adar1 p150 transcription, in mouse Raw 264.7 cells. Azin1 RNA editing was observed in mature mRNA but not precursor mRNA. Furthermore, we revealed that the two coding sites were editable only by ADAR1 p150 in both mouse Raw 264.7 and human embryonic kidney 293T cells. This unique editing was achieved by forming a dsRNA structure with a downstream exon after splicing, and the intervening intron suppressed RNA editing. Therefore, deletion of a nuclear export signal from ADAR1 p150, shifting its localization to the nucleus, decreased Azin1 editing levels. Finally, we demonstrated that Azin1 RNA editing was completely absent in Adar1 p150 KO mice. Thus, these findings indicate that RNA editing of AZIN1 coding sites is exceptionally catalyzed by ADAR1 p150 after splicing.
Collapse
Affiliation(s)
- Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan.
| | - Yuke Wu
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan
| | - Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan; Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, Japan; Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan.
| |
Collapse
|
20
|
Bellingrath JS, McClements ME, Fischer MD, MacLaren RE. Programmable RNA editing with endogenous ADAR enzymes - a feasible option for the treatment of inherited retinal disease? Front Mol Neurosci 2023; 16:1092913. [PMID: 37293541 PMCID: PMC10244592 DOI: 10.3389/fnmol.2023.1092913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/27/2023] [Indexed: 06/10/2023] Open
Abstract
RNA editing holds great promise for the therapeutic correction of pathogenic, single nucleotide variants (SNV) in the human transcriptome since it does not risk creating permanent off-targets edits in the genome and has the potential for innovative delivery options. Adenine deaminases acting on RNA (ADAR) enzymes catalyse the most widespread form of posttranscriptional RNA editing in humans and their ability to hydrolytically deaminate adenosine to inosine in double stranded RNA (dsRNA) has been harnessed to change pathogenic single nucleotide variants (SNVs) in the human genome on a transcriptional level. Until now, the most promising target editing rates have been achieved by exogenous delivery of the catalytically active ADAR deaminase domain (ADARDD) fused to an RNA binding protein. While it has been shown that endogenous ADARs can be recruited to a defined target site with the sole help of an ADAR-recruiting guide RNA, thus freeing up packaging space, decreasing the chance of an immune response against a foreign protein, and decreasing transcriptome-wide off-target effects, this approach has been limited by a low editing efficiency. Through the recent development of novel circular ADAR-recruiting guide RNAs as well as the optimisation of ADAR-recruiting antisense oligonucleotides, RNA editing with endogenous ADAR is now showing promising target editing efficiency in vitro and in vivo. A target editing efficiency comparable to RNA editing with exogenous ADAR was shown both in wild-type and disease mouse models as well as in wild-type non-human primates (NHP) immediately following and up to 6 weeks after application. With these encouraging results, RNA editing with endogenous ADAR has the potential to present an attractive option for the treatment of inherited retinal diseases (IRDs), a field where gene replacement therapy has been established as safe and efficacious, but where an unmet need still exists for genes that exceed the packaging capacity of an adeno associated virus (AAV) or are expressed in more than one retinal isoform. This review aims to give an overview of the recent developments in the field of RNA editing with endogenous ADAR and assess its applicability for the field of treatment of IRD.
Collapse
Affiliation(s)
- Julia-Sophia Bellingrath
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Michelle E. McClements
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - M. Dominik Fischer
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Trust, Oxford, United Kingdom
| |
Collapse
|
21
|
Liang Z, Chalk AM, Taylor S, Goradia A, Heraud‐Farlow JE, Walkley CR. The phenotype of the most common human ADAR1p150 Zα mutation P193A in mice is partially penetrant. EMBO Rep 2023; 24:e55835. [PMID: 36975179 PMCID: PMC10157378 DOI: 10.15252/embr.202255835] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 02/13/2023] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
ADAR1 -mediated A-to-I RNA editing is a self-/non-self-discrimination mechanism for cellular double-stranded RNAs. ADAR mutations are one cause of Aicardi-Goutières Syndrome, an inherited paediatric encephalopathy, classed as a "Type I interferonopathy." The most common ADAR1 mutation is a proline 193 alanine (p.P193A) mutation, mapping to the ADAR1p150 isoform-specific Zα domain. Here, we report the development of an independent murine P195A knock-in mouse, homologous to human P193A. The Adar1P195A/P195A mice are largely normal and the mutation is well tolerated. When the P195A mutation is compounded with an Adar1 null allele (Adar1P195A/- ), approximately half the animals are runted with a shortened lifespan while the remaining Adar1P195A/- animals are normal, contrasting with previous reports. The phenotype of the Adar1P195A/- animals is both associated with the parental genotype and partly non-genetic/environmental. Complementation with an editing-deficient ADAR1 (Adar1P195A/E861A ), or the loss of MDA5, rescues phenotypes in the Adar1P195A/- mice.
Collapse
Affiliation(s)
- Zhen Liang
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Alistair M Chalk
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Scott Taylor
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Ankita Goradia
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
| | - Jacki E Heraud‐Farlow
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| | - Carl R Walkley
- St Vincent's Institute of Medical ResearchFitzroyVic.Australia
- Department of Medicine, Eastern Hill Precinct, Melbourne Medical SchoolUniversity of MelbourneFitzroyVic.Australia
| |
Collapse
|
22
|
Romano G, Le P, Nigita G, Saviana M, Micalo L, Lovat F, Del Valle Morales D, Li H, Nana-Sinkam P, Acunzo M. A-to-I edited miR-411-5p targets MET and promotes TKI response in NSCLC-resistant cells. Oncogene 2023; 42:1597-1606. [PMID: 37002315 PMCID: PMC10336698 DOI: 10.1038/s41388-023-02673-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
Non-small cell lung cancer (NSCLC) patients carrying an epidermal growth factor receptor (EGFR) mutation have an initial favorable clinical response to the tyrosine kinase inhibitors (TKIs). Unfortunately, rapid resistance occurs mainly because of genetic alterations, including amplification of the hepatocyte growth factor receptor (MET) and its abnormal activity. The RNA post-transcriptional modifications that contribute to aberrant expression of MET in cancer are largely under-investigated and among them is the adenosine-to-inosine (A-to-I) RNA editing of microRNAs. A reduction of A-to-I editing in position 5 of miR-411-5p has been identified in several cancers, including NSCLC. In this study, thanks to cancer-associated gene expression analysis, we assessed the effect of the edited miR-411-5p on NSCLC cell lines. We found that edited miR-411-5p directly targets MET and negatively affects the mitogen-activated protein kinases (MAPKs) pathway. Considering the predominant role of the MAPKs pathway on TKIs resistance, we generated NSCLC EGFR mutated cell lines resistant to TK inhibitors and evaluated the effect of edited miR-411-5p overexpression. We found that the edited miR-411-5p reduces proliferation and induces apoptosis, promoting EGFR TKIs response in NSCLC-resistant cells.
Collapse
Affiliation(s)
- Giulia Romano
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patricia Le
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Giovanni Nigita
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Michela Saviana
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Lavender Micalo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Francesca Lovat
- Department of Cancer Biology and Genetics and Comprehensive Cancer Center, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel Del Valle Morales
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Howard Li
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Mario Acunzo
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, Richmond, VA, 23298, USA.
| |
Collapse
|
23
|
Abstract
Cardiovascular disease still remains the leading cause of morbidity and mortality worldwide. Current pharmacological or interventional treatments help to tackle symptoms and even reduce mortality, but cardiovascular disease cases continue to rise. The emergence of novel therapeutic strategies that precisely and efficiently combat cardiovascular disease is therefore deemed more essential than ever. RNA editing, the cell-intrinsic deamination of adenosine or cytidine RNA residues, changes the molecular identity of edited nucleotides, severely altering the fate of RNA molecules involved in key biological processes. The most common type of RNA editing is the deamination of adenosine residue to inosine (A-to-I), which is catalysed by adenosine deaminases acting on RNA (ADARs). Recent efforts have convincingly liaised RNA editing-based mechanisms to the pathophysiology of the cardiovascular system. In this review, we will briefly introduce the basic concepts of the RNA editing field of research. We will particularly focus our discussion on the therapeutic exploitation of RNA editing as a novel therapeutic tool as well as the future perspectives for its use in cardiovascular disease treatment.
Collapse
|
24
|
Nakahama T, Kawahara Y. The RNA-editing enzyme ADAR1: a regulatory hub that tunes multiple dsRNA-sensing pathways. Int Immunol 2023; 35:123-133. [PMID: 36469491 DOI: 10.1093/intimm/dxac056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-editing enzyme that catalyzes adenosine-to-inosine conversions in double-stranded RNAs (dsRNAs). In mammals, ADAR1 is composed of two isoforms: a nuclear short p110 isoform and a cytoplasmic long p150 isoform. Whereas both isoforms contain right-handed dsRNA-binding and deaminase domains, ADAR1 p150 harbors a Zα domain that binds to left-handed dsRNAs, termed Z-RNAs. Myeloma differentiation-associated gene 5 (MDA5) sensing of endogenous dsRNAs as non-self leads to the induction of type I interferon (IFN)-stimulated genes, but recent studies revealed that ADAR1 p150-mediated RNA editing, but not ADAR1 p110, prevents this MDA5-mediated sensing. ADAR1 p150-specific RNA-editing sites are present and at least a Zα domain-Z-RNA interaction is required for this specificity. Mutations in the ADAR1 gene cause Aicardi-Goutières syndrome (AGS), an infant encephalopathy with type I IFN overproduction. Insertion of a point mutation in the Zα domain of the Adar1 gene induces AGS-like encephalopathy in mice, which is rescued by concurrent deletion of MDA5. This finding indicates that impaired ADAR1 p150-mediated RNA-editing is a mechanism underlying AGS caused by an ADAR1 mutation. ADAR1 p150 also prevents ZBP1 sensing of endogenous Z-RNA, which leads to programmed cell death, via the Zα domain and its RNA-editing activity. Furthermore, ADAR1 prevents protein kinase R (PKR) sensing of endogenous right-handed dsRNAs, which leads to translational shutdown and growth arrest. Thus, ADAR1 acts as a regulatory hub that blocks sensing of endogenous dsRNAs as non-self by multiple sensor proteins, both in RNA editing-dependent and -independent manners, and is a potential therapeutic target for diseases, especially cancer.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871, Japan.,Integrated Frontier Research for Medical Science Division and RNA Frontier Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka 565-0871, Japan.,Division of Microbiology and Immunology, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
25
|
Duan Y, Cai W, Li H. Chloroplast C-to-U RNA editing in vascular plants is adaptive due to its restorative effect: testing the restorative hypothesis. RNA (NEW YORK, N.Y.) 2023; 29:141-152. [PMID: 36649983 PMCID: PMC9891260 DOI: 10.1261/rna.079450.122] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/30/2022] [Indexed: 06/10/2023]
Abstract
The adaptiveness of nonsynonymous RNA editing (recoding) could be conferred by the flexibility of the temporal-spatially controllable proteomic diversity, or by its restorative effect which fixes unfavorable genomic mutations at the RNA level. These two complementary hypotheses, namely, the diversifying hypothesis and the restorative hypothesis, have distinct predictions on the landscape of RNA editing sites. We collected the chloroplast C-to-U RNA editomes of 21 vascular plants (11 angiosperms, four gymnosperms, and six ferns) from a previous study, aiming to testify whether the plant editomes typically conform to the restorative hypothesis. All predictions made by the restorative hypothesis are verified: (i) nonsynonymous editing sites are more frequent and have higher editing levels than synonymous sites; (ii) nonsynonymous editing levels are extremely high and show weak tissue-specificity in plants; (iii) on the inferred genomic sites with recent T-to-C mutations, nonsynonymous sites but not synonymous sites are compensated by C-to-U RNA editing. In conclusion, nonsynonymous C-to-U RNA editing in plants is adaptive due to its restorative effects. The recoding levels are high and are constantly required across the whole plant so that the recoding events could perfectly mimic DNA mutations. The evolutionary significance of plant RNA editing is systematically demonstrated at the genome-wide level.
Collapse
Affiliation(s)
- Yuange Duan
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Wanzhi Cai
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Hu Li
- Key Laboratory of Pest Monitoring and Green Management, Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Guo X, Steinman RA, Sheng Y, Cao G, Wiley CA, Wang Q. An AGS-associated mutation in ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the brain. J Neuroinflammation 2022; 19:285. [PMID: 36457126 PMCID: PMC9714073 DOI: 10.1186/s12974-022-02646-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aicardi-Goutières syndrome (AGS) is a severe neurodegenerative disease with clinical features of early-onset encephalopathy and progressive loss of intellectual abilities and motor control. Gene mutations in seven protein-coding genes have been found to be associated with AGS. However, the causative role of these mutations in the early-onset neuropathogenesis has not been demonstrated in animal models, and the mechanism of neurodegeneration of AGS remains ambiguous. METHODS Via CRISPR/Cas-9 technology, we established a mutant mouse model in which a genetic mutation found in AGS patients at the ADAR1 coding gene (Adar) loci was introduced into the mouse genome. A mouse model carrying double gene mutations encoding ADAR1 and MDA-5 was prepared using a breeding strategy. Phenotype, gene expression, RNA sequencing, innate immune pathway activation, and pathologic studies including RNA in situ hybridization (ISH) and immunohistochemistry were used for characterization of the mouse models to determine potential disease mechanisms. RESULTS We established a mouse model bearing a mutation in the catalytic domain of ADAR1, the D1113H mutation found in AGS patients. With this mouse model, we demonstrated a causative role of this mutation for the early-onset brain injuries in AGS and determined the signaling pathway underlying the neuropathogenesis. First, this mutation altered the RNA editing profile in neural transcripts and led to robust IFN-stimulated gene (ISG) expression in the brain. By ISH, the brains of mutant mice showed an unusual, multifocal increased expression of ISGs that was cell-type dependent. Early-onset astrocytosis and microgliosis and later stage calcification in the deep white matter areas were observed in the mutant mice. Brain ISG activation and neuroglial reaction were completely prevented in the Adar D1113H mutant mice by blocking RNA sensing through deletion of the cytosolic RNA receptor MDA-5. CONCLUSIONS The Adar D1113H mutation in the ADAR1 catalytic domain results in early-onset and MDA5-dependent encephalopathy with IFN pathway activation in the mouse brain.
Collapse
Affiliation(s)
- Xinfeng Guo
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Richard A. Steinman
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Yi Sheng
- Magee Women Research Institute, University of Pittsburgh, Pittsburgh, PA USA
| | - Guodong Cao
- Department of Neurology, University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| | - Clayton A. Wiley
- Department of Pathology, School of Medicine, University of Pittsburgh, Scaife Hall, 200 Lothrop Street, Pittsburgh, PA 15213 USA
| | - Qingde Wang
- Department of Surgery, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15213 USA
- V.A. Pittsburgh Health System, Pittsburgh, PA USA
- Pittsburgh Liver Research Center, University of Pittsburgh Medical Center and University of Pittsburgh School of Medicine, Pittsburgh, PA USA
| |
Collapse
|
27
|
ADAR regulates APOL1 via A-to-I RNA editing by inhibition of MDA5 activation in a paradoxical biological circuit. Proc Natl Acad Sci U S A 2022; 119:e2210150119. [PMID: 36282916 PMCID: PMC9636950 DOI: 10.1073/pnas.2210150119] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
APOL1 risk variants are associated with increased risk of kidney disease in patients of African ancestry, but not all individuals with the APOL1 high-risk genotype develop kidney disease. As APOL1 gene expression correlates closely with the degree of kidney cell injury in both cell and animal models, the mechanisms regulating APOL1 expression may be critical determinants of risk allele penetrance. The APOL1 messenger RNA includes Alu elements at the 3' untranslated region that can form a double-stranded RNA structure (Alu-dsRNA) susceptible to posttranscriptional adenosine deaminase acting on RNA (ADAR)-mediated adenosine-to-inosine (A-to-I) editing, potentially impacting gene expression. We studied the effects of ADAR expression and A-to-I editing on APOL1 levels in podocytes, human kidney tissue, and a transgenic APOL1 mouse model. In interferon-γ (IFN-γ)-stimulated human podocytes, ADAR down-regulates APOL1 by preventing melanoma differentiation-associated protein 5 (MDA5) recognition of dsRNA and the subsequent type I interferon (IFN-I) response. Knockdown experiments showed that recognition of APOL1 messenger RNA itself is an important contributor to the MDA5-driven IFN-I response. Mathematical modeling suggests that the IFN-ADAR-APOL1 network functions as an incoherent feed-forward loop, a biological circuit capable of generating fast, transient responses to stimuli. Glomeruli from human kidney biopsies exhibited widespread editing of APOL1 Alu-dsRNA, while the transgenic mouse model closely replicated the edited sites in humans. APOL1 expression in mice was inversely correlated with Adar1 expression under IFN-γ stimuli, supporting the idea that ADAR regulates APOL1 levels in vivo. ADAR-mediated A-to-I editing is an important regulator of APOL1 expression that could impact both penetrance and severity of APOL1-associated kidney disease.
Collapse
|
28
|
Niescierowicz K, Pryszcz L, Navarrete C, Tralle E, Sulej A, Abu Nahia K, Kasprzyk ME, Misztal K, Pateria A, Pakuła A, Bochtler M, Winata C. Adar-mediated A-to-I editing is required for embryonic patterning and innate immune response regulation in zebrafish. Nat Commun 2022; 13:5520. [PMID: 36127363 PMCID: PMC9489775 DOI: 10.1038/s41467-022-33260-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Adenosine deaminases (ADARs) catalyze the deamination of adenosine to inosine, also known as A-to-I editing, in RNA. Although A-to-I editing occurs widely across animals and is well studied, new biological roles are still being discovered. Here, we study the role of A-to-I editing in early zebrafish development. We demonstrate that Adar, the zebrafish orthologue of mammalian ADAR1, is essential for establishing the antero-posterior and dorso-ventral axes and patterning. Genome-wide editing discovery reveals pervasive editing in maternal and the earliest zygotic transcripts, the majority of which occurred in the 3'-UTR. Interestingly, transcripts implicated in gastrulation as well as dorso-ventral and antero-posterior patterning are found to contain multiple editing sites. Adar knockdown or overexpression affect gene expression by 12 hpf. Analysis of adar-/- zygotic mutants further reveals that the previously described role of Adar in mammals in regulating the innate immune response is conserved in zebrafish. Our study therefore establishes distinct maternal and zygotic functions of RNA editing by Adar in embryonic patterning along the zebrafish antero-posterior and dorso-ventral axes, and in the regulation of the innate immune response, respectively.
Collapse
Affiliation(s)
| | - Leszek Pryszcz
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Cristina Navarrete
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eugeniusz Tralle
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Agata Sulej
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Karim Abu Nahia
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Marta Elżbieta Kasprzyk
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.,Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | - Katarzyna Misztal
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Abhishek Pateria
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrianna Pakuła
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland. .,Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Warsaw, Poland.
| | - Cecilia Winata
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.
| |
Collapse
|
29
|
Han RC, MacLaren RE. RNA gene editing in the eye and beyond: The neglected tool of the gene editing armatorium? INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 372:175-205. [PMID: 36064264 DOI: 10.1016/bs.ircmb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA editing allows correction of pathological point mutations without permanently altering genomic DNA. Theoretically targetable to any RNA type and site, its flexibility and reversibility makes it a potentially powerful gene editing tool. RNA editing offers a host of potential advantages in specific niches when compared to currently available alternative gene manipulation techniques. Unlike DNA editors, which are currently too large to be delivered in vivo using a viral vector, smaller RNA editors fit easily within the capabilities of an adeno-associated virus (AAV). Unlike gene augmentation, which is limited by gene size and viral packaging constraints, RNA editing may correct transcripts too long to fit within a viral vector. In this article we examine the development of RNA editing and discuss potential applications and pitfalls. We argue that, although in its infancy, an RNA editing approach can offer unique advantages for selected retinal diseases.
Collapse
Affiliation(s)
- Ruofan Connie Han
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | - Robert E MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom; Oxford Eye Hospital, John Radcliffe, Oxford, United Kingdom
| |
Collapse
|
30
|
Unifying Different Cancer Theories in a Unique Tumour Model: Chronic Inflammation and Deaminases as Meeting Points. Int J Mol Sci 2022; 23:ijms23158720. [PMID: 35955853 PMCID: PMC9368936 DOI: 10.3390/ijms23158720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 12/24/2022] Open
Abstract
The increase in cancer incidences shows that there is a need to better understand tumour heterogeneity to achieve efficient treatments. Interestingly, there are several common features among almost all types of cancers, with chronic inflammation induction and deaminase dysfunctions singled out. Deaminases are a family of enzymes with nucleotide-editing capacity, which are classified into two main groups: DNA-based and RNA-based. Remarkably, a close relationship between inflammation and the dysregulation of these molecules has been widely documented, which may explain the characteristic intratumor heterogeneity, both at DNA and transcriptional levels. Indeed, heterogeneity in cancer makes it difficult to establish a unique tumour progression model. Currently, there are three main cancer models—stochastic, hierarchic, and dynamic—although there is no consensus on which one better resembles cancer biology because they are usually overly simplified. Here, to accurately explain tumour progression, we propose interactions among chronic inflammation, deaminases dysregulation, intratumor genetic heterogeneity, cancer phenotypic plasticity, and even the previously proposed appearance of cancer stem-like cell populations in the edges of advanced solid tumour masses (instead of being the cells of origin of primary malignancies). The new tumour development model proposed in this study does not contradict previously accepted models and it may open up a window to interesting therapeutic approaches.
Collapse
|
31
|
Liu X, Liu X, Zhou J, Dong Y, Jiang W, Jiang W. Rampant C-to-U deamination accounts for the intrinsically high mutation rate in SARS-CoV-2 spike gene. RNA (NEW YORK, N.Y.) 2022; 28:917-926. [PMID: 35508354 PMCID: PMC9202584 DOI: 10.1261/rna.079160.122] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 04/24/2022] [Indexed: 06/01/2023]
Abstract
The high mutation rate of SARS-CoV-2 largely complicates our control of the pandemic. In particular, it is currently unclear why the spike (S) gene has an extraordinarily high mutation rate among all SARS-CoV-2 genes. By analyzing the occurrence of fixed synonymous mutations between SARS-CoV-2 and RaTG13, and profiling the DAF (derived allele frequency) of polymorphic synonymous sites among millions of worldwide SARS-CoV-2 strains, we found that both fixed and polymorphic mutations show higher mutation rates in the S gene than other genes. The majority of mutations are C-to-T, representing the APOBEC-mediated C-to-U deamination instead of the previously proposed A-to-I deamination. Both in silico and in vivo evidence indicated that the S gene is more likely to be single-stranded compared to other SARS-CoV-2 genes, agreeing with the APOBEC preference of ssRNA. We conclude that the single-stranded property of the S gene makes it a favorable target for C-to-U deamination, leading to its excessively high mutation rate compared to other non-S genes. In conclusion, APOBEC, rather than ADAR, is the "editor-in-chief" of SARS-CoV-2 RNAs. This work helps us to understand the molecular mechanism underlying the mutation and evolution of SARS-CoV-2, and we believe it will contribute to the control of the pandemic.
Collapse
Affiliation(s)
- Xueyan Liu
- Institute of Integrative Medicine, School of Basic Medicine, Qingdao University, Qingdao, Shandong 266073, China
- Department of Disease Prevention, Qingdao Hiser Medical Group, Qingdao, Shandong 266033, China
| | - Xuan Liu
- Respiratory and Critical Illness Medicine Department II, Qingdao Hiser Medical Group, Qingdao, Shandong 266033, China
| | - Jie Zhou
- Nursing Department, Qingdao Central Hospital, Qingdao, Shandong 266042, China
| | - Yu Dong
- Interventional Catheterization Lab, Qingdao Central Hospital, Qingdao, Shandong 266042, China
| | - Wen Jiang
- Respiratory and Critical Illness Medicine Department II, Qingdao Hiser Medical Group, Qingdao, Shandong 266033, China
| | - Wenqing Jiang
- Respiratory and Critical Illness Medicine Department II, Qingdao Hiser Medical Group, Qingdao, Shandong 266033, China
| |
Collapse
|
32
|
Koganti P, Kadali VN, Manikoth Ayyathan D, Emanuelli A, Paolini B, Levy-Cohen G, Blank M. The E3 ubiquitin ligase SMURF2 stabilizes RNA editase ADAR1p110 and promotes its adenosine-to-inosine (A-to-I) editing function. Cell Mol Life Sci 2022; 79:237. [PMID: 35403872 PMCID: PMC11072456 DOI: 10.1007/s00018-022-04272-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/17/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
Abstract
Epitranscriptomic changes in RNA catalyzed by the RNA-editing enzyme ADAR1 play an essential role in the regulation of diverse molecular and cellular processes, both under physiological conditions and in disease states, including cancer. Yet, despite a growing body of evidence pointing to ADAR1 as a potential therapeutic target, the mechanisms regulating its cellular abundance and activity, particularly of its constitutively expressed and ubiquitous form, ADAR1p110, are poorly understood. Here, we report the HECT-type E3 ubiquitin ligase SMURF2 as a pivotal regulator of ADAR1p110. We show that SMURF2, which is primarily known to promote the ubiquitin-mediated degradation of its protein substrates, protects ADAR1p110 from proteolysis and promotes its A-to-I editase activity in human and mouse cells and tissues. ADAR1p110's interactome analysis performed in human cells also showed a positive influence of SMURF2 on the stability and function of ADAR1p110. Mechanistically, we found that SMURF2 directly binds, ubiquitinates and stabilizes ADAR1p110 in an E3 ubiquitin ligase-dependent manner, through ADAR1p110 ubiquitination at lysine-744 (K744). Mutation of this residue to arginine (K744R), which is also associated with several human disorders, including dyschromatosis symmetrica hereditaria (DSH) and some types of cancer, abolished SMURF2-mediated protection of ADAR1p110 from both proteasomal and lysosomal degradation and inactivated ADAR1p110-mediated RNA editing. Our findings reveal a novel mechanism underlying the regulation of ADAR1 in mammalian cells and suggest SMURF2 as a key cellular factor influencing the protein abundance, interactions and functions of ADAR1p110.
Collapse
Affiliation(s)
- Praveen Koganti
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Venkata Narasimha Kadali
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Dhanoop Manikoth Ayyathan
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Andrea Emanuelli
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Biagio Paolini
- Department of Pathology and Laboratory Medicine, IRCCS Fondazione, Istituto Nazionale dei Tumori, Milan, Italy
| | - Gal Levy-Cohen
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel
| | - Michael Blank
- Laboratory of Molecular and Cellular Cancer Biology, Azrieli Faculty of Medicine, Bar-Ilan University, 1311502, Safed, Israel.
| |
Collapse
|
33
|
Gaidin SG, Kosenkov AM. mRNA editing of kainate receptor subunits: what do we know so far? Rev Neurosci 2022; 33:641-655. [DOI: 10.1515/revneuro-2021-0144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/18/2022] [Indexed: 11/15/2022]
Abstract
Abstract
Kainate receptors (KARs) are considered one of the key modulators of synaptic activity in the mammalian central nervous system. These receptors were discovered more than 30 years ago, but their role in brain functioning remains unclear due to some peculiarities. One such feature of these receptors is the editing of pre-mRNAs encoding GluK1 and GluK2 subunits. Despite the long history of studying this phenomenon, numerous questions remain unanswered. This review summarizes the current data about the mechanism and role of pre-mRNA editing of KAR subunits in the mammalian brain and proposes a perspective of future investigations.
Collapse
Affiliation(s)
- Sergei G. Gaidin
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| | - Artem M. Kosenkov
- Institute of Cell Biophysics of the Russian Academy of Sciences , 142290 , Pushchino , Russia
| |
Collapse
|
34
|
Widmark A, Sagredo EA, Karlström V, Behm M, Biryukova I, Friedländer MR, Daniel C, Öhman M. ADAR1- and ADAR2-mediated regulation of maturation and targeting of miR-376b to modulate GABA neurotransmitter catabolism. J Biol Chem 2022; 298:101682. [PMID: 35124003 PMCID: PMC8892144 DOI: 10.1016/j.jbc.2022.101682] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/31/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
miRNAs are short noncoding RNA molecules that regulate gene expression by inhibiting translation or inducing degradation of target mRNAs. miRNAs are often expressed as polycistronic transcripts, so-called miRNA clusters, containing several miRNA precursors. The largest mammalian miRNA cluster, the miR-379–410 cluster, is expressed primarily during embryonic development and in the adult brain; however, downstream regulation of this cluster is not well understood. Here, we investigated adenosine deamination to inosine (RNA editing) in the miR-379–410 cluster by adenosine deaminase acting on RNA (ADAR) enzymes as a possible mechanism modulating the expression and activity of these miRNAs in a brain-specific manner. We show that the levels of editing in the majority of mature miRNAs are lower than the editing levels of the corresponding site in primary miRNA precursors. However, for one miRNA, miR-376b-3p, editing was significantly higher in the mature form than in the primary precursor. We found miR-376b-3p maturation is negatively regulated by ADAR2 in an editing activity–independent manner, whereas ADAR1-mediated and ADAR2-mediated editing were observed to be competitive. In addition, the edited miR-376b-3p targets a different set of mRNAs than unedited miR-376b-3p, including 4-aminobutyrate aminotransferase, encoding the enzyme responsible for the catabolism of the neurotransmitter gamma aminobutyric acid (GABA). Expression of edited miR-376b-3p led to increased intracellular GABA levels as well as increased cell surface presentation of GABA type A receptors. Our results indicate that both editing and editing-independent effects modulate the expression of miR-376b-3p, with the potential to regulate GABAergic signaling in the brain.
Collapse
Affiliation(s)
- Albin Widmark
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.
| | - Eduardo A Sagredo
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Victor Karlström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Mikaela Behm
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Inna Biryukova
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Chammiran Daniel
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marie Öhman
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
35
|
Song B, Shiromoto Y, Minakuchi M, Nishikura K. The role of RNA editing enzyme ADAR1 in human disease. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1665. [PMID: 34105255 PMCID: PMC8651834 DOI: 10.1002/wrna.1665] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 03/02/2021] [Accepted: 04/22/2021] [Indexed: 12/19/2022]
Abstract
Adenosine deaminase acting on RNA (ADAR) catalyzes the posttranscriptional conversion of adenosine to inosine in double-stranded RNA (dsRNA), which can lead to the creation of missense mutations in coding sequences. Recent studies show that editing-dependent functions of ADAR1 protect dsRNA from dsRNA-sensing molecules and inhibit innate immunity and the interferon-mediated response. Deficiency in these ADAR1 functions underlie the pathogenesis of autoinflammatory diseases such as the type I interferonopathies Aicardi-Goutieres syndrome and dyschromatosis symmetrica hereditaria. ADAR1-mediated editing of endogenous coding and noncoding RNA as well as ADAR1 editing-independent interactions with DICER can also have oncogenic or tumor suppressive effects that affect tumor proliferation, invasion, and response to immunotherapy. The combination of proviral and antiviral roles played by ADAR1 in repressing the interferon response and editing viral RNAs alters viral morphogenesis and cell susceptibility to infection. This review analyzes the structure and function of ADAR1 with a focus on its position in human disease pathways and the mechanisms of its disease-associated effects. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA Processing > RNA Editing and Modification RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Brian Song
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Yusuke Shiromoto
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Moeko Minakuchi
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Kazuko Nishikura
- Department of Gene Expression and Regulation, The Wistar Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
36
|
Inoue M, Nakahama T, Yamasaki R, Shibuya T, Kim JI, Todo H, Xing Y, Kato Y, Morii E, Kawahara Y. An Aicardi-Goutières Syndrome-Causative Point Mutation in Adar1 Gene Invokes Multiorgan Inflammation and Late-Onset Encephalopathy in Mice. THE JOURNAL OF IMMUNOLOGY 2021; 207:3016-3027. [PMID: 34772697 DOI: 10.4049/jimmunol.2100526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 10/13/2021] [Indexed: 12/23/2022]
Abstract
Aicardi-Goutières syndrome (AGS) is a congenital inflammatory disorder accompanied by overactivated type I IFN signaling and encephalopathy with leukodystrophy and intracranial calcification. To date, none of the mouse models carrying an AGS-causative mutation has mimicked such brain pathology. Here, we established a mutant mouse model carrying a K948N point mutation, corresponding to an AGS-causative K999N mutation, located in a deaminase domain of the Adar1 gene that encodes an RNA editing enzyme. Adar1K948N/K948N mice displayed postnatal growth retardation. Hyperplasia of splenic white pulps with germinal centers and hepatic focal inflammation were observed from 2 mo of age. Inflammation developed in the lungs and heart with lymphocyte infiltration in an age-dependent manner. Furthermore, white matter abnormalities with astrocytosis and microgliosis were detected at 1 y of age. The increased expression of IFN-stimulated genes was detected in multiple organs, including the brain, from birth. In addition, single-nucleus RNA sequencing revealed that this elevated expression of IFN-stimulated genes was commonly observed in all neuronal subtypes, including neurons, oligodendrocytes, and astrocytes. We further showed that a K948N point mutation reduced the RNA editing activity of ADAR1 in vivo. The pathological abnormalities found in Adar1K948N/K948N mice were ameliorated by either the concurrent deletion of MDA5, a cytosolic sensor of unedited transcripts, or the sole expression of active ADAR1 p150, an isoform of ADAR1. Collectively, such data suggest that although the degree is mild, Adar1K948N/K948N mice mimic multiple AGS phenotypes, including encephalopathy, which is caused by reduced RNA editing activity of the ADAR1 p150 isoform.
Collapse
Affiliation(s)
- Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ryuichiro Yamasaki
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan.,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Eiichi Morii
- Department of Pathology, Graduate School of Medicine, Osaka University, Osaka, Japan; and
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka, Japan; .,Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan.,Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
37
|
Piontkivska H, Wales-McGrath B, Miyamoto M, Wayne ML. ADAR Editing in Viruses: An Evolutionary Force to Reckon with. Genome Biol Evol 2021; 13:evab240. [PMID: 34694399 PMCID: PMC8586724 DOI: 10.1093/gbe/evab240] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2021] [Indexed: 02/06/2023] Open
Abstract
Adenosine Deaminases that Act on RNA (ADARs) are RNA editing enzymes that play a dynamic and nuanced role in regulating transcriptome and proteome diversity. This editing can be highly selective, affecting a specific site within a transcript, or nonselective, resulting in hyperediting. ADAR editing is important for regulating neural functions and autoimmunity, and has a key role in the innate immune response to viral infections, where editing can have a range of pro- or antiviral effects and can contribute to viral evolution. Here we examine the role of ADAR editing across a broad range of viral groups. We propose that the effect of ADAR editing on viral replication, whether pro- or antiviral, is better viewed as an axis rather than a binary, and that the specific position of a given virus on this axis is highly dependent on virus- and host-specific factors, and can change over the course of infection. However, more research needs to be devoted to understanding these dynamic factors and how they affect virus-ADAR interactions and viral evolution. Another area that warrants significant attention is the effect of virus-ADAR interactions on host-ADAR interactions, particularly in light of the crucial role of ADAR in regulating neural functions. Answering these questions will be essential to developing our understanding of the relationship between ADAR editing and viral infection. In turn, this will further our understanding of the effects of viruses such as SARS-CoV-2, as well as many others, and thereby influence our approach to treating these deadly diseases.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences, Kent State University, Ohio, USA
- School of Biomedical Sciences, Kent State University, Ohio, USA
- Brain Health Research Institute, Kent State University, Ohio, USA
| | | | - Michael Miyamoto
- Department of Biology, University of Florida, Gainesville, Florida, USA
| | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
38
|
Nakahama T, Kawahara Y. Deciphering the Biological Significance of ADAR1-Z-RNA Interactions. Int J Mol Sci 2021; 22:ijms222111435. [PMID: 34768866 PMCID: PMC8584189 DOI: 10.3390/ijms222111435] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/24/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1) is an enzyme responsible for double-stranded RNA (dsRNA)-specific adenosine-to-inosine RNA editing, which is estimated to occur at over 100 million sites in humans. ADAR1 is composed of two isoforms transcribed from different promoters: p150 and N-terminal truncated p110. Deletion of ADAR1 p150 in mice activates melanoma differentiation-associated protein 5 (MDA5)-sensing pathway, which recognizes endogenous unedited RNA as non-self. In contrast, we have recently demonstrated that ADAR1 p110-mediated RNA editing does not contribute to this function, implying that a unique Z-DNA/RNA-binding domain α (Zα) in the N terminus of ADAR1 p150 provides specific RNA editing, which is critical for preventing MDA5 activation. In addition, a mutation in the Zα domain is identified in patients with Aicardi–Goutières syndrome (AGS), an inherited encephalopathy characterized by overproduction of type I interferon. Accordingly, we and other groups have recently demonstrated that Adar1 Zα-mutated mice show MDA5-dependent type I interferon responses. Furthermore, one such mutant mouse carrying a W197A point mutation in the Zα domain, which inhibits Z-RNA binding, manifests AGS-like encephalopathy. These findings collectively suggest that Z-RNA binding by ADAR1 p150 is essential for proper RNA editing at certain sites, preventing aberrant MDA5 activation.
Collapse
Affiliation(s)
- Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan;
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Osaka 565-0871, Japan
- Correspondence: ; Tel.: +81-6-6879-3827
| |
Collapse
|
39
|
Hofmann CS, Carrington S, Keller AN, Gregory KJ, Niswender CM. Regulation and functional consequences of mGlu 4 RNA editing. RNA (NEW YORK, N.Y.) 2021; 27:1220-1240. [PMID: 34244459 PMCID: PMC8457003 DOI: 10.1261/rna.078729.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Metabotropic glutamate receptor 4 (mGlu4) is one of eight mGlu receptors within the Class C G protein-coupled receptor superfamily. mGlu4 is primarily localized to the presynaptic membrane of neurons where it functions as an auto and heteroreceptor controlling synaptic release of neurotransmitter. mGlu4 is implicated in numerous disorders and is a promising drug target; however, more remains to be understood about its regulation and pharmacology. Using high-throughput sequencing, we have validated and quantified an adenosine-to-inosine (A-to-I) RNA editing event that converts glutamine 124 to arginine in mGlu4; additionally, we have identified a rare but novel K129R site. Using an in vitro editing assay, we then validated the pre-mRNA duplex that allows for editing by ADAR enzymes and predicted its conservation across the mammalian species. Structural modeling of the mGlu4 protein predicts the Q124R substitution to occur in the B helix of the receptor that is critical for receptor dimerization and activation. Interestingly, editing of a receptor homodimer does not disrupt G protein activation in response to the endogenous agonist, glutamate. Using an assay designed to specifically measure heterodimer populations at the surface, however, we found that Q124R substitution decreased the propensity of mGlu4 to heterodimerize with mGlu2 and mGlu7 Our study is the first to extensively describe the extent and regulatory factors of RNA editing of mGlu4 mRNA transcripts. In addition, we have proposed a novel functional consequence of this editing event that provides insights regarding its effects in vivo and expands the regulatory capacity for mGlu receptors.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Adenosine Deaminase/metabolism
- Amino Acid Sequence
- Animals
- Base Pairing
- Base Sequence
- Birds
- Cerebral Cortex/cytology
- Cerebral Cortex/metabolism
- Corpus Striatum/cytology
- Corpus Striatum/metabolism
- HEK293 Cells
- Hippocampus/cytology
- Hippocampus/metabolism
- Humans
- Models, Molecular
- Neurons/cytology
- Neurons/metabolism
- Nucleic Acid Conformation
- Point Mutation
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- RNA Editing
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Binding Proteins/genetics
- RNA-Binding Proteins/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Metabotropic Glutamate/chemistry
- Receptors, Metabotropic Glutamate/genetics
- Receptors, Metabotropic Glutamate/metabolism
- Reptiles
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Christopher S Hofmann
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Sheridan Carrington
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
| | - Andrew N Keller
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Karen J Gregory
- Department of Pharmacology and Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, Tennessee 37232, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, Tennessee 37232, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, Tennessee 37203, USA
| |
Collapse
|
40
|
Mutations in the adenosine deaminase ADAR1 that prevent endogenous Z-RNA binding induce Aicardi-Goutières-syndrome-like encephalopathy. Immunity 2021; 54:1976-1988.e7. [PMID: 34525338 DOI: 10.1016/j.immuni.2021.08.022] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/27/2021] [Accepted: 08/18/2021] [Indexed: 11/22/2022]
Abstract
Mutations in the adenosine-to-inosine RNA-editing enzyme ADAR1 p150, including point mutations in the Z-RNA recognition domain Zα, are associated with Aicardi-Goutières syndrome (AGS). Here, we examined the in vivo relevance of ADAR1 binding of Z-RNA. Mutation of W197 in Zα, which abolished Z-RNA binding, reduced RNA editing. Adar1W197A/W197A mice displayed severe growth retardation after birth, broad expression of interferon-stimulated genes (ISGs), and abnormal development of multiple organs. Notably, malformation of the brain was accompanied by white matter vacuolation and gliosis, reminiscent of AGS-associated encephalopathy. Concurrent deletion of the double-stranded RNA sensor MDA5 ameliorated these abnormalities. ADAR1 (W197A) expression increased in a feedback manner downstream of type I interferons, resulting in increased RNA editing at a subset of, but not all, ADAR1 target sites. This increased expression did not ameliorate inflammation in Adar1W197A/W197A mice. Thus, editing of select endogenous RNAs by ADAR1 is essential for preventing inappropriate MDA5-mediated inflammation, with relevance to the pathogenesis of AGS.
Collapse
|
41
|
Duan Y, Tang X, Lu J. Evolutionary driving forces of A-to-I editing in metazoans. WILEY INTERDISCIPLINARY REVIEWS-RNA 2021; 13:e1666. [PMID: 33998151 DOI: 10.1002/wrna.1666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/12/2021] [Accepted: 04/24/2021] [Indexed: 11/05/2022]
Abstract
Adenosine-to-inosine (A-to-I) RNA editing is an evolutionarily conserved mechanism that converts adenosines to inosines in metazoans' transcriptomes. However, the landscapes of editomes have considerably changed during evolution. Here, we review some of our current knowledge of A-to-I editing in the metazoan transcriptomes, focusing on the possible evolutionary driving forces underlying the editing events. First, we review the evolution of ADAR gene family in animals. Then, we summarize the recent advances in characterizing the editomes of various metazoan species. Next, we highlight several factors contributing to the interspecies differences in editomes, including variations in copy number and expression patterns of ADAR genes, the differences in genomic architectures and contents, and the differences in the efficacy of natural selection. After that, we review the possible diversifying and restorative effects of the editing (recoding) events that change the protein sequences. Finally, we discuss the possible convergent evolution of RNA editing in distantly related clades. This article is categorized under: RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Processing > RNA Editing and Modification.
Collapse
Affiliation(s)
- Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Xiaolu Tang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
42
|
Kim JI, Nakahama T, Yamasaki R, Costa Cruz PH, Vongpipatana T, Inoue M, Kanou N, Xing Y, Todo H, Shibuya T, Kato Y, Kawahara Y. RNA editing at a limited number of sites is sufficient to prevent MDA5 activation in the mouse brain. PLoS Genet 2021; 17:e1009516. [PMID: 33983932 PMCID: PMC8118328 DOI: 10.1371/journal.pgen.1009516] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/28/2021] [Indexed: 12/22/2022] Open
Abstract
Adenosine deaminase acting on RNA 1 (ADAR1), an enzyme responsible for adenosine-to-inosine RNA editing, is composed of two isoforms: nuclear p110 and cytoplasmic p150. Deletion of Adar1 or Adar1 p150 genes in mice results in embryonic lethality with overexpression of interferon-stimulating genes (ISGs), caused by the aberrant recognition of unedited endogenous transcripts by melanoma differentiation-associated protein 5 (MDA5). However, among numerous RNA editing sites, how many RNA sites require editing, especially by ADAR1 p150, to avoid MDA5 activation and whether ADAR1 p110 contributes to this function remains elusive. In particular, ADAR1 p110 is abundant in the mouse brain where a subtle amount of ADAR1 p150 is expressed, whereas ADAR1 mutations cause Aicardi-Goutières syndrome, in which the brain is one of the most affected organs accompanied by the elevated expression of ISGs. Therefore, understanding RNA editing-mediated prevention of MDA5 activation in the brain is especially important. Here, we established Adar1 p110-specific knockout mice, in which the upregulated expression of ISGs was not observed. This result suggests that ADAR1 p150-mediated RNA editing is enough to suppress MDA5 activation. Therefore, we further created Adar1 p110/Adar2 double knockout mice to identify ADAR1 p150-mediated editing sites. This analysis demonstrated that although the elevated expression of ISGs was not observed, only less than 2% of editing sites were preserved in the brains of Adar1 p110/Adar2 double knockout mice. Of note, we found that some sites were highly edited, which was comparable to those found in wild-type mice, indicating the presence of ADAR1 p150-specific sites. These data suggest that RNA editing at a very limited sites, which is mediated by a subtle amount of ADAR1 p150, is sufficient to prevents MDA5 activation, at least in the mouse brain.
Collapse
Affiliation(s)
- Jung In Kim
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Taisuke Nakahama
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Ryuichiro Yamasaki
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Pedro Henrique Costa Cruz
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Tuangtong Vongpipatana
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Maal Inoue
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Nao Kanou
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yanfang Xing
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Hiroyuki Todo
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Toshiharu Shibuya
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Yuki Kato
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| | - Yukio Kawahara
- Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
- Genome Editing Research and Development Center, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
43
|
Abstract
Double-stranded RNA (dsRNA) is produced both by virus and host. Its recognition by the melanoma differentiation-associated gene 5 (MDA5) initiates type I interferon responses. How can a host distinguish self-transcripts from nonself to ensure that responses are targeted correctly? Here, I discuss a role for MDA5 helicase in inducing Z-RNA formation by Alu inverted repeat (AIR) elements. These retroelements have highly conserved sequences that favor Z-formation, creating a site for the dsRNA-specific deaminase enzyme ADAR1 to dock. The subsequent editing destabilizes the dsRNA, ending further interaction with MDA5 and terminating innate immune responses directed against self. By enabling self-recognition, Alu retrotransposons, once invaders, now are genetic elements that keep immune responses in check. I also discuss the possible but less characterized roles of the other helicases in modulating innate immune responses, focusing on DExH-box helicase 9 (DHX9) and Mov10 RISC complex RNA helicase (MOV10). DHX9 and MOV10 function differently from MDA5, but still use nucleic acid structure, rather than nucleotide sequence, to define self. Those genetic elements encoding the alternative conformations involved, referred to as flipons, enable helicases to dynamically shape a cell's repertoire of responses. In the case of MDA5, Alu flipons switch off the dsRNA-dependent responses against self. I suggest a number of genetic systems in which to study interactions between flipons and helicases further.
Collapse
Affiliation(s)
- Alan Herbert
- Discovery, InsideOutBio, Charlestown, Massachusetts, United States of America
| |
Collapse
|
44
|
Heraud-Farlow JE, Walkley CR. What do editors do? Understanding the physiological functions of A-to-I RNA editing by adenosine deaminase acting on RNAs. Open Biol 2020; 10:200085. [PMID: 32603639 PMCID: PMC7574547 DOI: 10.1098/rsob.200085] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adenosine-to-inosine (A-to-I) editing is a post-transcriptional modification of RNA which changes its sequence, coding potential and secondary structure. Catalysed by the adenosine deaminase acting on RNA (ADAR) proteins, ADAR1 and ADAR2, A-to-I editing occurs at approximately 50 000-150 000 sites in mice and into the millions of sites in humans. The vast majority of A-to-I editing occurs in repetitive elements, accounting for the discrepancy in total numbers of sites between species. The species-conserved primary role of editing by ADAR1 in mammals is to suppress innate immune activation by unedited cell-derived endogenous RNA. In the absence of editing, inverted paired sequences, such as Alu elements, are thought to form stable double-stranded RNA (dsRNA) structures which trigger activation of dsRNA sensors, such as MDA5. A small subset of editing sites are within coding sequences and are evolutionarily conserved across metazoans. Editing by ADAR2 has been demonstrated to be physiologically important for recoding of neurotransmitter receptors in the brain. Furthermore, changes in RNA editing are associated with various pathological states, from the severe autoimmune disease Aicardi-Goutières syndrome, to various neurodevelopmental and psychiatric conditions and cancer. However, does detection of an editing site imply functional importance? Genetic studies in humans and genetically modified mouse models together with evolutionary genomics have begun to clarify the roles of A-to-I editing in vivo. Furthermore, recent developments suggest there may be the potential for distinct functions of editing during pathological conditions such as cancer.
Collapse
Affiliation(s)
- Jacki E Heraud-Farlow
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia
| | - Carl R Walkley
- Cancer and RNA Laboratory, St Vincent's Institute of Medical Research, Fitzroy, VIC 3065, Australia.,Department of Medicine, St Vincent's Hospital, Melbourne Medical School, University of Melbourne, Fitzroy, VIC 3065, Australia.,Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, VIC 3000, Australia
| |
Collapse
|
45
|
Herbert A. ALU non-B-DNA conformations, flipons, binary codes and evolution. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200222. [PMID: 32742689 PMCID: PMC7353975 DOI: 10.1098/rsos.200222] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/18/2020] [Indexed: 05/08/2023]
Abstract
ALUs contribute to genetic diversity by altering DNA's linear sequence through retrotransposition, recombination and repair. ALUs also have the potential to form alternative non-B-DNA conformations such as Z-DNA, triplexes and quadruplexes that alter the read-out of information from the genome. I suggest here these structures enable the rapid reprogramming of cellular pathways to offset DNA damage and regulate inflammation. The experimental data supporting this form of genetic encoding is presented. ALU sequence motifs that form non-B-DNA conformations under physiological conditions are called flipons. Flipons are binary switches. They are dissipative structures that trade energy for information. By efficiently targeting cellular machines to active genes, flipons expand the repertoire of RNAs compiled from a gene. Their action greatly increases the informational capacity of linearly encoded genomes. Flipons are programmable by epigenetic modification, synchronizing cellular events by altering both chromatin state and nucleosome phasing. Different classes of flipon exist. Z-flipons are based on Z-DNA and modify the transcripts compiled from a gene. T-flipons are based on triplexes and localize non-coding RNAs that direct the assembly of cellular machines. G-flipons are based on G-quadruplexes and sense DNA damage, then trigger the appropriate protective responses. Flipon conformation is dynamic, changing with context. When frozen in one state, flipons often cause disease. The propagation of flipons throughout the genome by ALU elements represents a novel evolutionary innovation that allows for rapid change. Each ALU insertion creates variability by extracting a different set of information from the neighbourhood in which it lands. By elaborating on already successful adaptations, the newly compiled transcripts work with the old to enhance survival. Systems that optimize flipon settings through learning can adapt faster than with other forms of evolution. They avoid the risk of relying on random and irreversible codon rewrites.
Collapse
|